
Extending Narrative Planning Domains with
Linguistic Resources

Julie Porteous
School of Science, RMIT University

Melbourne, Australia. julie.porteous@rmit.edu.au

João F. Ferreira
INESC-ID & Instituto Superior Técnico,

Universidade de Lisboa, Portugal. joao@joaoff.com

Alan Lindsay
University of Huddersfield

Huddersfield, UK. alan.lindsay@hw.ac.uk

Marc Cavazza
University of Greenwich

London, UK. m.cavazza@greenwich.ac.uk

ABSTRACT

Interactive Narrative (IN) is an emerging application of planning 
for control of virtual character behaviours. Despite popularity in re-
search, more widespread adoption of planning has been hindered by 
the difficulty of authoring planning domain models as INs require 
models which are robust to dynamic environments and capable of 
generating a diversity of solutions. To reduce this authoring burden 
we explored automated extension of partially developed planning 
domains to address robustness and diversity. We introduce a novel al-
gorithm, thype, which proposes additional types of characters and 
objects to extend a domain model. The extensions increase robust-
ness by enlarging the range of ways to enact planned behaviours. 
In the paper we embed thype within a modular and extensible 
framework that allows multiple off-line generated extensions to 
be combined. We present results of a user study that show thype 
suggestions are plausible. We also empirically demonstrate the abil-
ity of thype extensions to increase the robustness of the models, 
demonstrate the modular nature of our extension framework by 
combining thype with another extension approach dedicated to 
recovery from plan failure and present results which show that 
enhanced performance results from combining multiple extensions.

KEYWORDS

Socially interactive agents; Virtual Humans; Interactive Narrative

Julie Porteous, João F. Ferreira, Alan Lindsay, and Marc Cavazza. 2020. 
Extending Narrative Planning Domains with Linguistic Resources. In Proc. 
of the 19th International Conference on Autonomous Agents and Multiagent 
Systems (AAMAS 2020), Auckland, New Zealand, May 9–13, 2020, IFAAMAS, 
9 pages.

1 INTRODUCTION

One approach to the control of Virtual Characters in Interactive 
Narrative (IN) applications has been to use AI Planning to gener-
ate plans corresponding to character behaviours which are then 
presented to human audiences using, for example, 2D or 3D graph-
ics or text [18, 21, 27, 30]. Planning is a powerful technology for 
such applications as it has a good representational fit, helps ensure 
causality (important for appropriate virtual character behaviour) 
and offers flexible narrative generation possibilities [34].

However, developing planning domain models is challenging
and this is compounded for IN applications due to the issues of
robustness and diversity. Domain models for use in IN systems need
to be robust: cover world state variations resulting from dynamic
changes to the narrative world (e.g. user interactions) and enable
appropriate recovery via replanning. Domain models also need to
be diverse: to allow for generation of diverse sets of plans to ensure
replayability. One further complication is the need for non-technical
authors to create the content to populate the models.

Whilst a number of tools have been developed to assist domain
modelling [5, 25], maintain models [1] and automate the process
[3, 14, 29], the potential to assist the modelling process through
automated extension of partially developed models remains largely
unexplored. Yet domain model extension has much to offer for
the development of robust and diverse models, as the authoring
process by which baseline narratives are translated into planning
models that support the generation of variants faces the difficulty of
encoding what these variants could be. In other words, the paradox
of interactive narrative also applies to its authoring component: a
situation which has hitherto not received sufficient attention.

Our starting point was reasoning about potential sources of
execution failure as a drive for narrative evolution, as well as alter-
native use of narrative resources (including virtual characters and
narrative objects as these are a translation, in Planning terms, of
the authoring intention for narrative generation). As illustration,
consider the crime drama example in Figure 1 with a plan which
has characters committing crimes, with others performing arrests
and so on. Also shown are possible user interactions: one where the
user renders the detective unable to arrest the suspect (e.g. shoot the
detective); and another where they render the car unroadworthy
(e.g. shoot the car tyres). A more robust domain model would cover
these states and enable recovery planning. This could be achieved
by extending the domain model with additional types of virtual
characters and narrative objects able to arrest the criminal (e.g. the
addition of a different type to detective) and different types of trans-
port (e.g. introduce a new type of motor vehicle). Such an extended
domain is also more diverse: capable of generating a wider range
of narratives.

We have developed a novel algorithm, called thype, that pro-
poses precisely this form of domain model extensions: additional
types of virtual characters and narrative objects. These are identi-
fied using semantic relationship information sourced from online
linguistic resources, taking advantage of the linguistic properties
inherent in pddl actions and domain predicates. Given an input



Figure 1: Crime Drama Example (from [13]) showing plan for Virtual Characters and possible User Interaction causing execu-

tion failure: 1 the detective (lestrade) not alive; 2 the car (lcar) not roadworthy. Possible thype domainmodel extensions are

shown: traffic cop and jeep as alternatives to detective and car respectively. System recovery from user interaction is possible

via replanning using object instances of these new types of virtual character and narrative object (see Section 3 for detail).

domain model, represented using a typed language such as pddl
2.1 [7], thype outputs alternative suggestions for types of virtual
characters and narrative objects in the domain.

In this paper we overview the thype algorithm and evaluate
its ability to increase domain model robustness and diversity. We
also embed it within an extensible modular framework that allows
it to be combined with other extension mechanisms. We present
the results of evaluation in a range of domains which support our
expectations that thype extensions make models more robust and
diverse both on their own and in conjunction with other extensions.

2 RELATEDWORK

A growing body of work in the AI Planning literature has consid-
ered the implications of incomplete models. In [2, 33] the planning
model is extended during execution in order to incorporate initially
unknown information. In [2], an ontology captures the objects,
with their types and attributes, and underpins the construction of
the planning model. When a new object is detected by the system,
the object is added to the ontology. The object can be used in re-
planning, which can lead to shorter plans. In [2], it is assumed that
the types of objects are known a priori, whereas a more general
framework is developed in [32, 33], where the surrounding objects
are used to build a context and a general image labeller is used
to identify objects. Model-lite planning [12, 31] is also motivated
by the impracticality of always completely defining a planning
model upfront. These works do consider incompleteness within
the planning framework itself, but differ with respect to focus (e.g.
such things as reducing planning length) and nature of the target
extensions which are less concerned with issues such as diversity
and hence are not as applicable in Interactive Narrative.

Also related is the work on excuse generation [8] which was
later extended to planning task revision [9] which considers how a
given problem description can be updated when a plan solution is
not possible. We observe that the approaches of [8] and [9] might
also be used to generate extended domain models: creating new
content and extending the model on the fly at run-time. In contrast,
we present a process for determining how a domain model can

be extended during off-line processing, which we see as being
complementary to on-line model extension.

We observe that the general issues that surround the creation of
planning models have led to the development of a number of tools
to assist the process such as the post-design framework of Vaquero
et al [25] and the pddl plug-in to vscode of Dolejsi et al [5], along
with approaches to support the maintenance of existing models [1]
and other approaches that aim to automate the process entirely,
such as the locm family of algorithms (e.g. [4] and [3]), the framer
approach of [14], Janghorbani et al [11] and Walsh et al [26]. In our
work we aim to automatically extend existing domain models, thus
it could be used in combination with these approaches to extend
them with the potential to enhance robustness.

As far as we are aware, the only approach which has sought to
automatically generate extensions to partially developed narrative
domain models is the anton approach of Porteous et al [19]. With
anton, domain models were analysed, during off-line processing,
for the absence of actions enabling reverse transitions. Such missing
transitions were used to suggest new actions to be used to extend
the domainmodel.With thypewe introduce an approach to domain
model extension which is complementary to anton. Indeed, in our
evaluation we demonstrate that combination of both approaches
results in domains with enhanced robustness.

3 MOTIVATING EXAMPLE

To motivate our approach to domain model extension we consider a
narrative domain model loosely based on the crime drama domain
introduced in [13]. This domain features a range of different types
of characters including police detectives and inspectors, along with
citizens. The baseline domain model can generate narrative plans
that see virtual characters committing crimes, moving around be-
tween locations in the world, leaving clues, being arrested, getting
angry and even playing basketball to calm down. Figure 1 shows
an example plan for control of such virtual character behaviours.

When embedded in an interactive narrative system, planning
operates inside an execution loopwhere user interaction can change
the state of the planning world and hence require re-planning or



repair (as in Young’s “gun” example [34]). Hence in order to be able
to respond to dynamic changes to the story world and to continue
the story through to the intended ending, which tends to be one of
a limited set of domain values, the domain model needs to be robust
i.e. able to recover. In Figure 1 some possible user interactions are
shown: 1 the user renders the detective unable to arrest the suspect
(e.g. they shoot the detective); 2 renders the car unroadworthy (e.g.
shoot the car tyres). The effects of such user interactions simply
make the original goal impossible to reach and ignore real-world
remediation; the latter could be captured through making the model
more robust and diverse as follows:
• The model can be made more robust with the addition of different
types of virtual characters and narrative objects. For example
different type of police officer to perform the arrest, such as a
traffic cop and different type of motor vehicle, such as jeep.
• Diversity relates to generation of diverse and consistent narra-
tives: domain model consistency is something which would be
enhanced via system generated extensions (i.e. no human error).
thype extension would increase diversity as new virtual charac-
ters and narrative objects open up a wider range of narratives.

These automatic suggestions simplify the authoring process while
retaining the combinatorial properties of plan-based generation (as
opposed to branching narratives). The underlying idea is to use
natural language labels of planning domain elements to generate
related concepts using lexical relations between these labels and
other terms in online lexical resources. Hence our approach iden-
tifies plausible candidate types of virtual characters and narrative
objects based on information about semantic relations such as hy-
pernym (more general) and hyponym (more specific) from linguistic
resources (as shown for detective and car in Figure 1). This is pred-
icated on the fact that linguistic hierarchies such as ConceptNet
[15, 24], can be used as partial ontologies and for common sense
reasoning.

We also note that robustness and diversity can be increased by
the addition of missing actions capturing reverse state transitions
(the result reported in [19]). For example, in the crime example this
could include generation of a missing action that repairs a flat tyre.
In our evaluation (Section 6) we show that combination of thype
with this approach further enhances robustness and diversity.

4 GENERATING ALTERNATIVE TYPES

We introduce an algorithm for automatically generating plausible
additional types of virtual characters and narrative objects with
which to extend an existing domain model1. The algorithm is based
on the observation that the natural language labels used to name
planning domain elements can be used to generate related concepts
using lexical relations between the predicate labels and other terms
in online lexical resources. Thus the algorithm aims to identify
plausible alternative types from online linguistic resources, via
traversal of hypernym and hyponym semantic relations (where
hypernyms give amore general semantic term and hyponyms give a
larger set of more specific terms) in combinationwith commonsense
reasoning to maximize the relevance of the suggested additional
types. We refer to this algorithm as thype, to denote the extraction
of types from hyponyms and hypernyms.
1We assume a typed planning representation such as pddl 2.1 [7, 16].

Algorithm 1 thype: generate alternate types of objects.

1: function thype(𝑡 , 𝐴)
2: 𝑠𝑠 ← getRelevantSynonyms(𝑡, 𝐴)
3: for all 𝑠 ∈ 𝑠𝑠 do
4: ℎ𝑒 ← ℎ𝑒 + getHypernyms(𝑠, 𝐻𝑌𝑃𝐸𝑅𝑁𝑌𝑀_𝐿𝐸𝑉𝐸𝐿)
5: end for

6: for all ℎ ∈ ℎ𝑒 do
7: ℎ𝑜 ← ℎ𝑜 + getHyponyms(ℎ)
8: end for

9: ℎ𝑜 ← filterCommonSense(ℎ𝑜, 𝑡)
10: return ℎ𝑜

11: end function

12: function filterCommonSense(ℎ𝑜 , 𝑡 )
13: for all ℎ ∈ ℎ𝑜 do

14: if isRelatedCN(ℎ, 𝑡) ∧ ¬isAntonymCN(ℎ, 𝑡) ∧
15: ¬isDistinctFromCN(ℎ, 𝑡) then

16: ℎ𝑜 ′ ← ℎ𝑜 ′ + ℎ
17: end if

18: end for

19: if Length(ℎ𝑜 ′) > 𝑀𝐴𝑋_𝑁𝑈𝑀 then

20: for all ℎ ∈ ℎ𝑜 ′ ∧ ¬isACN(ℎ, 𝑡) do
21: ℎ𝑜 ′ ← ℎ𝑜 ′ − ℎ
22: end for

23: if Length(ℎ𝑜 ′) < 𝑀𝐼𝑁_𝑁𝑈𝑀 then

24: ℎ𝑜 ′ ← getTopRelated(ℎ𝑜,𝑀𝐴𝑋_𝑁𝑈𝑀)
25: end if

26: end if

27: return ℎ𝑜 ′

28: end function

An outline to the generation process is shown in Algorithm 1,
with thype being the main function. Input is some named type of
object, 𝑡 , in the planning domain model and the set of action names
in the current domain model, 𝐴. The first part of the algorithm
consists in getting the set of hypernyms for type 𝑡 using online
resources (lines 2–5). Our implementation uses WordNet 3.0 [6],
although approaches such as Word2Vec [22] can also be used to
extract resources. We chose WordNet because it is compatible with
a larger variety of semantic domains, without having to collect text
samples for each single narrative domain. As it does not depend on
specific corpora it can thus cover the multiple application domains
we wanted to test. This contrasts with more recent methods for
hypernym or antonym generation based on Word2Vec [22].

At this stage there can be multiple meanings of a word and hence
we filter the set of synonyms of the term to reduce the number that
are considered and the consequent number of alternate types re-
turned by thype. To do this we look for definitions (in the text from
WordNet) whose words intersect with action names in the domain
model. This is achieved via the function getRelevantSynonyms
which selects the most likely synonyms (nouns) of 𝑡 on the basis of
intersection with 𝐴, the names of the actions in the current version
of the domain model. This filtering approach is based on semantic
cohesion in a manner inspired by [17].

When searching for hypernyms of a given term, it is possible to
specify how many levels of the tree from the term to the summum



Figure 2: Example of thype generation for ranch from original model: 1 use action labels to filter meanings of the term; 2

WordNet hierarchies are accessed to level 3 to get Hypernyms; 3 get Hyponyms for all selected Hypernyms; 4 ConceptNet

lookup is used as part of common sense filtering; 5 relatedness is used to reject Hyponyms under threshold value of 0.2; 6

example of selection from output thype alternatives to extend the domain model (see text for further detail).

genus (i.e. the most generic element of the hierarchy), we retain
(𝐻𝑌𝑃𝐸𝑅𝑁𝑌𝑀_𝐿𝐸𝑉𝐸𝐿 in line 4). This is based on the observation
that thype fails to provide relevant suggestions when looking at
hypernyms of already generic terms, something that we measure
by the distance between the term and summum genus. In our ex-
periments, we used 3 levels, as this worked best in practice in terms
of quality and performance (in other experiments we observed that
increases in level yielded no significant improvements but degraded
performance). As a result, for each type, we retained 3 terms: the
original term and 2 hypernyms.

Once the set of hypernyms is obtained, then a set of candidate
alternative types is collected, ℎ𝑜 , by considering each hypernym
and extracting its hyponyms (line 6-8). Finally, the set of hyponyms
is filtered using common sense reasoning (line 9). To do this, we use
ConceptNet [15, 24], a common sense knowledge based developed
from natural language units.

Common sense reasoning is performed by the function filter-
CommonSense. The rationale for the filtering is to place some
semantic restrictions on the alternative characters or narrative ob-
jects to be added to the domain model: thus we are interested in
those terms which are related and not those which are antonyms.
The function returns a set ℎ𝑜 ′, which is a filtered version of the in-
put set of alternatives ℎ𝑜 . The filtering process is based on whether
alternatives from ℎ𝑜 are related to type 𝑡 , according to specific
relations provided by ConceptNet (lines 13–18). First, we only con-
sider alternatives that are related to 𝑡 (isRelated returns true if the

/relatedness API returns a value greater or equal than 0.2; this
value was found to be adequate experimentally). Of these, we ex-
clude the terms that are antonyms or distinct (using the /r/Antonym
and /r/DistinctFrom relations respectively).

We are interested in keeping the number of alternatives returned
by thype to a reasonable number, to avoid spurious expansion that
would not comply with the underlying actions and pddl operators.
In our experiments we took this to be 20 (variable 𝑀𝐴𝑋_𝑁𝑈𝑀).
If the number of hyponyms is reasonable, ℎ𝑜 ′ ≤ 𝑀𝐴𝑋_𝑁𝑈𝑀

(line 19), no further common sense reasoning is performed and
this set of alternatives, ℎ𝑜 ′, is returned. Should it happen that
ℎ𝑜 ′ > 𝑀𝐴𝑋_𝑁𝑈𝑀 (line 19) further processing is performed to
bring this within the reasonable bound. However we wanted to
avoid removing too many suggestions at this stage and hence we
introduced an additional variable,𝑀𝐼𝑁_𝑁𝑈𝑀 , to control the lower
bound of the final set of alternatives. Our implementation used 5
as the default value of𝑀𝐼𝑁_𝑁𝑈𝑀 . Then we further filter the set
ℎ𝑜 ′ so it excludes alternatives that are not considered a subtype of
𝑡 in ConceptNet (lines 19–22). For this, we use the relation /r/isA.
If the resulting set of alternatives is too small, we return a subset
of the original set ℎ𝑜 with the alternatives that are more related to
𝑡 (according to ConceptNet’s /relatedness API, lines 23–25).

We have implemented this algorithm2 and used it in experiments
with a range of narrative domains taken from those in the literature.

2Our implementation is in Python 3. We use the packages nltk (with its corpus
wordnet) and requests (to query ConceptNet’s REST API).



Type 1 2 3 4 Type 1 2 3 4

A
la
dd

in dragon 4 27 20 ✓ - knight 2 19 14 ✓ -
genie 1 22 6 ✓ - princess 1 57 12 ✓ -
king 10 15 10 ✓ -

Cr
im

e car 5 54 40 24 ✓ detective 2 34 22 20 ✓

citizen 1 412 36 20 ✓ inspector 2 31 21 20 ✓

crime 2 50 23 20 ✓ place 16 77 16 ✓ -

M
ed
ic
al doctor 4 24 20 ✓ - patient 2 416 50 20 ✓

family 8 62 11 ✓ - symptom 2 122 86 20 ✓

nurse 2 26 16 ✓ - treatment 4 64 26 20 ✓

Re
d

axe 1 28 20 ✓ - house 12 143 54 27 ✓

hunter 4 149 15 ✓ - girl 5 112 27 20 ✓

grand- 1 5 4 ✓ - wolf 5 19 15 ✓ -
mother

W
es
te
rn

city 3 22 15 ✓ - sheriff 1 31 15 ✓ -
rancher 1 28 10 ✓ - sickness 3 25 19 ✓ -
ranch 2 45 12 ✓ - son 2 8 6 ✓ -
saloon 3 111 44 20 ✓

Figure 3: Alternatives suggested by thype. For each domain:

1 #meanings for each type of character and narrative ob-

ject; 2 #Hyponyms output by getHyponyms; 3 #alterna-

tives after filterCommonSense; 4 (if required) #alterna-

tives after relatedness reasoning with ¬isACN and getTo-

pRelated. For the majority, over 90% marked ✓, the num-

ber of alternatives is deemed acceptable (@20 alternatives).

The results are shown in Figure 3. For each domain model and each
type in the domain the figure lists the number of alternatives for
each step of the processing. We discuss these results further in the
evaluation in Section 6.1 but observe here that in the vast majority
of cases the number of alternatives proposed is acceptable.

EXAMPLE. As illustration consider the application of thype to
ranch from our pddl encoding of a Western domain [28] (Figure
2). Shown is a part of the original pddl domain model, M, from
which types and action labels have been extracted: input to thype
is a type from the domain model and the action labels. For ranch,
getRelevant Synonyms 1 , accesses the WordNet hierarchies
which returns the two meanings shown in the figure. Our cohesion-
based filtering relates the occurrence of “land” in the definition to
the labels of the action sell-land defined in the domain. Hence this
meaning is selected and used to obtain the set of hypernyms ℎ𝑒 . 2
shows the WordNet tree from the selected meaning to the summum
genus. We use a 𝐻𝑌𝑃𝐸𝑅𝑁𝑌𝑀_𝐿𝐸𝑉𝐸𝐿 of 3, and hence the set of
hypernyms includes “farm” and “workplace”.

The next step is to get the associated hyponyms for each hyper-
nym in ℎ𝑒 3 . For this example the number of hyponyms before
any common sense reasoning is 45. This is because the set of hyper-
nyms includes the quite general term “workplace”, and thus some of
the hyponyms include unrelated terms such as “bakery” and “lab”.
Thus common sense reasoning is applied to reduce the number of
alternatives on the basis of relatedness (via lookup in ConceptNet
4 and common sense filtering 5 ). It can be seen that after com-
mon sense reasoning, these unrelated terms are eliminated and the
number of alternative types is reduced to 12 in this case, which can
then be shown to a human domain modeller to select which ones
to use to extend the domain. It is important to note that the final

Good Unsure Poor
Domain % # % # % # Total#
Aladdin 73 45 19 12 8 5 62
Crime Drama 45 54 22 26 33 40 120
Medical Drama 54 58 9 10 36 39 107
Red Riding Hood 51 52 34 34 15 15 101
Western 47 46 20 19 33 32 97
Total 52 255 21 101 27 131 487

Figure 4:thypePlausibilityRankings (gold standard) : Good

(clearly plausible), Poor (not plausible) and Unsure. Across

domains 50% of alternatives ranked as Good (plausible).

set contains alternatives originated by all hypernyms. For example,
the final set contains the alternatives “creamery” and “stud_farm”,
which are hyponyms of “workplace” and “farm” respectively.

Also illustrated in Figure 2 is selection of thype alternatives to
extend the original pddl domain model,M: in this case stud_farm
is shown selected to produce the thype extended domain model,
M𝑇 (see the next section for further detail on this process).

5 DOMAIN MODEL EXTENSION

We introduce a modular and extensible framework that allows the
combination of multiple off-line generated extensions into an origi-
nal domain model,M. Consider a library of language extensions, E,
as a collection of functions, 𝑒 : M ↦→ M𝑒 , such that the model,M,
is extended through some process into a richer model, denotedM𝑒 .

In the next section we detail how an original domain model,M,
can be extended with the addition of new types generated using
thype (Section 5.1). We also consider the combination of multiple
extensions and to illustrate this we extend the domain model with
extensions generated using anton3 [19] (Section 5.2).

We denote the thype and anton extensions of M as M𝑇 and
M𝐴 respectively and useM𝑇𝐴 for the use of these extension meth-
ods in combination. Note that because thype adds new types of
objects and anton adds new actions the extension mechanisms are
commutative and thus the order of application is unimportant. As
a consequenceM𝐴𝑇 is equivalent toM𝑇𝐴 .

5.1 M𝑇
Domain Extension with thype

thype proposed domain extensions are added to the original domain
modelM to createM𝑇 as follows:
• For type 𝑡 inM, the selected alternate types 𝑡 ′ are placed at the
same level of the type hierarchy inM𝑇 .
• A new parent type, the hypernym shared by 𝑡 and members of
𝑡 ′ (from WordNet), is introduced.
• The new parent type replaces the original type as appropriate in
actions, thus enabling the use of the set of different types.

As illustration, consider the type king in the Aladdin domain with
type hierarchy inM as shown in Figure 6. Suppose a domain mod-
eller has selected emperor as an alternative type of character with
which to extend the domain. This new entity is automatically added
to the domain model with the hypernym of king as parent type
(i.e., sovereign) with the new type placed as child type, inheriting
properties from the parent. In addition, references to type king in



Type 1 2 Type 1 2

A
la
dd

in Dragon 3 2.14 Knight 2 2.01 ✓✓

Genie 3 2.42 Princess 1.75 2.04 ✓✓

King 2.75 2.47 ✓

Cr
im

e Car 2.8 2.34 Detective 2.5 2.06
Citizen 1.5 2.19 ✓✓ Inspector 2.25 2.17 ✓✓

Crime 2 2.22 ✓✓ Place 1 2.2 ✓✓

M
ed
ic
al Doctor 2 1.95 ✓ Patient 1.25 1.63 ✓✓

Family 1.7 2.04 ✓✓ Symptom 3 2.76 ✓

Nurse 2.5 2.35 ✓ Treatment 2 2.27 ✓✓

Re
d

Axe 1.8 2.12 ✓✓ House 2.7 2.46 ✓

Girl 2 2.07 ✓✓ Hunter 2.75 2.04
Grandmother 2.5 2.77 ✓✓ Wolf 2 2.15 ✓✓

W
es
te
rn

City 2.25 2.3 ✓✓ Sheriff 2 2.14 ✓✓

Rancher 2.66 2.49 ✓ Sickness 2.4 2.47 ✓✓

Ranch 2 2.28 ✓✓ Son 2 2.65 ✓✓

Saloon 1.4 1.57 ✓✓

Figure 5: User Validation of Plausibility Rankings (random

sample of 25% of alternatives): 1 gold standard rankings;

2 User rankings. Numbers obtained by assigning scores

(Good=3, Unsure=2, Poor=1) and averaging across #alterna-

tives for each type. Overall the gold standard rankings are

more conservative (30% of user rankings are higher (✓✓);

23% are within 0.25 (✓). These results provide support for

the gold standard overall rankings (see text for more detail).

M are amended inM𝑇 to the new parent type, sovereign, with cor-
responding changes to parameters in all action occurrences (such
as the action order in Figure 6).

5.2 M𝐴
Domain Extension with anton

Our expectation is that robustness will be further increased when
multiple model extensions are combined. To evaluate this we use
thype in combination with anton3 [19].

anton extends the set of actions in the domain model with con-
trary (i.e. opposite) actions. It proceeds via construction of sets of
state transition rules representing the partial transitions defined
by the domain model. From these rules, domain model extensions
are constructed via analysis of contrary transitions. For all transi-
tions in the original model, the expectation is that their opposite
transitions have a natural interpretation in the domain and should
also be in the model. Thus if any are found to be missing they
are proposed as extensions to the model (subject to domain model
author approval). The actions are constructed, as in [19], as follows:
• Name: generated with antonyms from online resources.
• Parameters: the same as those in the action fromM′ which is
being extended and which this action represents the opposite.
• Pre-conditions: are formed from enabling pre-conditions of
original action inM′ i.e. predicates required to apply the action
and unchanged by it; and post-conditions of the original action
inM′ become pre-conditions.

3We use our original implementation of anton as introduced in Porteous et al [19]

Original ModelM Extended ModelM𝑇

(:types (:types 1
person - object person - object
king - person sovereign - person
...) king emperor - sovereign ...)

(:action order (:action order 2
:parameters :parameters

(?k - king ...) (?k - sovereign ...)
Figure 6: Aladdin Example [21] showing addition of a new

type of character, emperor, which has been generated by

thype and selected by an author as an alternative to king:
1 new type emperor is placed at same level as king and par-

ent type sovereign is added; 2 new parent type sovereign re-

places original type king in all action parameter occurrences.

• Post-conditions: are formed from the post-conditions of the
original action inM′. The positive effects of the new action are
any predicates deleted by the original, and the negative effects
are those that were gained by the original action.

6 EVALUATION

There were two parts to the evaluation: (i) assess the ability of
thype to generate alternatives in the context of a given narrative
domain (both the number of alternatives proposed along with their
plausibility); (ii) assess the ability of thype model extensions to
increase robustness of extended domain models, both individually
and in combination with other extension mechanisms.

For the evaluation we created pddl 2.1 representations of a range
of narrative planning domains. These were selected because they
had appeared in the literature, provided a range of narrative con-
texts and had been modelled independently by different narrative
authors. These domains are: Aladdin [21], Crime Drama [13], Med-
ical Drama [19], Red Riding Hood [20], Western [28].

6.1 thype generated extensions

Our implementation of thype (see Algorithm 1) used WordNet 3.0
[6] and ConceptNet [15, 24]. The results of our experiments with
this implementation are shown in Figure 3.

6.1.1 Number of Alternatives. For our experiments we took a
“reasonable” number of alternatives suggested by thype to be 20.
Figure 3 shows the number of types suggested for each of the
domains used in the evaluation. We observe that for the majority
of terms, over 90%, the number of thype generated alternatives is
reasonable i.e. within this bound. These numbers are promising
in terms of the ability of the approach to control the numbers
of alternatives generated. There are a few exceptions where the
number is over this upper bound (e.g. car and house in Figure 3),
which result from a preference in the common sense filtering for
hyponyms which are in IsA relations. It is only when the number of
hyponyms falls below𝑀𝐼𝑁_𝑁𝑈𝑀 that this preference is relaxed
and the set of hyponyms are sorted by “relatedness” and the highest
ranked𝑀𝐴𝑋_𝑁𝑈𝑀 are selected (20 in our experiments).

6.1.2 Plausibility of Alternatives. To assess plausibility we as-
signed a ranking to each of the alternatives: Good if we thought it



Domain TypeM TypesM𝑇 ,M𝑇𝐴 ParentM𝑇 ,M𝑇𝐴

Aladdin king emperor sovereign
knight sir maleAristocrat
genie shaitan spirit

Crime car jeep vehicle
detective trafficCop policeOfficer

Medical doctor extern medicalPractitioner

Red wolf wild-dog canine
hunter huntress skilledWorker

Western rancher stockman farmer
sheriff texasRanger lawman

Figure 7: Figure shows example types selected from the

thype suggestions and used to extendM to formM𝑇
andM𝑇𝐴

.

Also added are system generated parent types which group

related types and are used in pddl action parameters (e.g.

king and emperor of type sovereign as in Figure 6).

was clearly a plausible alternative; Poor if we thought it was clearly
not a plausible alternative; or Unsure if it wasn’t clear. The totals
of our rankings, the gold standard, are summarised in Figure 4. In
order to validate these rankings we conducted a user study. Since
the total number of alternatives across all types and domains was
close to 500, for the study we chose to randomly sample 25% of the
alternatives and used those in the validation study. The study itself
consisted of a series of questions which were put to a sample of 30
native English speaking adults via an online questionnaire. For each
narrative domain and for each of the selected types, users were
asked to rank whether they thought the alternative was plausible,
using the same rankings as above: Good, Poor or Unsure.

Results of the user validation study are summarised in Figure
5: 1 are the rankings taken from the gold standard and 2 the
rankings from the users. The numbers were obtained by assigning
scores to rankings (Good=3,Unsure=2 and Poor=1) and averaging
across the alternatives for each type. We allowed for some variation
and took averaged user rankings that were higher or within .25
of the gold standard as validating ours (marked with ✓✓ and ✓

respectively). Here we have 83% correspondence to our gold stan-
dard rankings which represents a promising initial validation of the
plausibility of the thype generated alternatives. Given this initial
validation of our plausibility rankings, the overall results in Figure 5
are very encouraging: with over 50% of all suggestions being ranked
plausible and only 28% felt to be not plausible. This is important
as it shows thype can generate a high number of alternatives that
appear plausible to laypeople which increases our expectation that
expert domain modellers (i.e. authors) will also find these useful.

6.2 Robustness of Extended Domain Models

6.2.1 Generating Extended Domain Models. For each of the do-
mains used in the evaluation, extended versions were created start-
ing from the original domain modelM, as follows:
• M𝑇 was generated by selecting additional types from those pro-
posed by the system as shown in Figure 7. In addition, instances
of each new type were added to narrative planning problem in-
stances: a single instance of each of the new types was added to

the problem instances in the test set. Using a naming convention
for these object instances of adding a digit to the type name (e.g.
for Aladdin, emperor1 of type emperor).
• M𝐴 was generated for individual comparison withM𝑇 . For each
of the domains the number of anton3 actions added was:

M M𝐴 M M𝐴 M M𝐴

Aladdin 12 21 Crime 9 11 Medical 10 19
Red 5 9 Western 19 25

• M𝑇𝐴 was generated by adding the anton3 extensions intoM𝑇 .

6.2.2 Simulation of Execution Failure. To explore the ability of
extended models to support plan generation through to the original
goal in a dynamically changing environment we conducted a series
of simulations with M, M𝑇 , M𝐴 and M𝑇𝐴 . The intention was to
simulate the execution of an Interactive Narrative System, where
user interactions can change the state of the narrative world leading
to execution failure. These simulated interactions, their frequency
and impact on the narrative world were selected at random.

For each run the simulation firstly generated a narrative plan
for the input planning problem (using metric-ff [10]) and stepped
through each action in the plan. At random points of the simulated
execution a random selection of the current actions preconditions
were updated in the current state of the world so that it could not be
applied. At this point of failure, the simulation tried to regenerate
the remainder of the plan from the current state still using the
original goal. Whenever the system was unable to generate a plan
the system reported failure and restarted, otherwise it continued
to the original goal, reported success and restarted. The results of
simulation runs, for 10 problem instances for each of the 5 domains,
with 100 simulated failures and restarts on each problem instance,
are shown in Figure 8.

To evaluate the robustness of thype extended domain models
firstly consider the results for M𝑇 , the thype extended domain
model. Our expectation was that this would improve simulation
performance over the original domainM which is very clearly the
case: 100% of the runs for Aladdin, Medical Drama and Western;
90% for Red Riding Hood; and 80% for Crime Drama. The instances
where thype makes no impact occur when a virtual character is
specified in the goal itself and where state changes negate this e.g.
in Crime Drama and Red Riding Hood when characters are left
¬𝑎𝑙𝑖𝑣𝑒 but can’t be replaced by an alternate type of character.

Another aspect of the thype extended domain models is compar-
ison with an existing extension mechanism, anton3. The results
for M𝑇 show that it performs consistently well, yielding similar
performance improvements toM𝐴 . Taken over all of the domains,
performance ofM𝑇 is consistently good and outperformsM𝐴 on
48% of problem instances: a very encouraging result.

To evaluate the robustness of a combination of domain model
extensions we should consider the results for M𝑇𝐴 . On all prob-
lem instances across the domains, where the individual extensions
improved performance, this model outperforms all others (i.e. excep-
tions are the aforementioned Crime and Red Riding Hood examples
and single instances of Aladdin and Western where anton has no
impact). This is to be expected as it leverages the robustness gains
from both sets of extensions. For example, consider Aladdin, where
narrative continuation following execution failure can require both



(a) Aladdin: M𝑇
outperforms M𝐴

on 60% (3-4, 6, 8-10) (b) Crime Drama: M𝑇
outperforms M𝐴

on 30% (2, 5-6)

(c) Medical Drama: M𝑇
outperforms M𝐴

on 50% (2, 5-6, 8) (d) Red Riding Hood: M𝑇
outperforms M𝐴

on 40% (3, 4, 5, 10)

(e) Western: M𝑇
outperforms M𝐴

on 60% (3-4, 6, 8-10)

KEY

M original Domain Model
M𝑇 thype Extended Model
M𝐴 anton Extended Model
M𝑇𝐴 anton and thype Extended Domain Model

Figure 8: Robustness Results: comparing ability of M𝑇
and M𝑇𝐴

to continue to original goal in execution failure simulation

(5 domains, 10 problems, 100 fail-restarts on each); M and M𝐴
included for comparison. (1) Performance ofM𝑇

is consis-

tently good across all domains and very similar toM𝐴
:M𝑇

outperforms on 48% of problem instances. (2)M𝑇𝐴
outperforms all

other models and demonstrates the performance gains that can result from combining extensions (see text for detail).

anton extensions such as divorce (to render a character single and
able to marry) and thype generated alternative types of characters
such as suitors. We conclude that the results support our expec-
tations of the robustness of extended domains: both for M𝑇 and
M𝑇𝐴 .

7 CONCLUSION

Defining complete planning models upfront is challenging, espe-
cially for domains where plan failure can occur such as interactive
narrative. In this work we have presented an off-line approach to
domain model extension aimed at supporting a domain modeller
extend a partially developed model. We make no assumptions about
how the domains have beenmodelled and hence for evaluation used
domains from the literature, familiar to the research community.

We have focused on two aspects of domain model extension.
The first was our introduction of a novel mechanism, thype, for
generation of alternative types to extend a domain and help in-
crease its robustness. Results of a user study showed the majority

of thype generated alternatives to be plausible. Results of exper-
iments showed how the addition of system suggested types can
increase the likelihood of continuation to the original goal across a
range of domains. The results also show that combining different
extension mechanisms, for our experiments thype and anton3, re-
sults in greater increases in domain robustness (in terms of recovery
from plan failure).

In future work, we plan to: extend thype to further reason about
the levels of words in semantic hierarchies to get clues to the con-
struction of detailed type hierarchies; and explore if, for specific
domains, specialized knowledge graphs improve common sense
filtering (e.g. using the graph in [23] with medical domains).

ACKNOWLEDGEMENTS

The work reported in this article was supported by national funds
through Fundação para a Ciência e a Tecnologia (FCT) with refer-
ence UIDB/50021/2020; and by funds from DSI Collaborative Grant
CR-0016.



REFERENCES

[1] D. Bryce, J. Benton, and M. W. Boldt. 2016. Maintaining Evolving Domain Models.
In Proc. of the 25th Int. Joint Conference on AI (IJCAI).

[2] M. Cashmore, M. Fox, D. Long, D. Magazzeni, B. Ridder, V. De Carolis, D. Lane, and
F. Maurelli. 2015. Dynamically Extending Planning Models using an Ontology.
Planning and Robotics (2015).

[3] S. Cresswell and P. Gregory. 2011. Generalised Domain Model Acquisition from
Action Traces.. In Proc. of the 21st Int. Conference on Automated Planning and
Scheduling (ICAPS).

[4] S Cresswell, T Mccluskey, and M West. 2009. Acquisition of Object-Centred
Domain Models from Planning Examples. In Proc. of the 19th Int. Conference on
Automated Planning and Scheduling (ICAPS).

[5] J. Dolejsi, D. Long,M. Fox, and G. Besancon. 2018. PDDLAuthoring and Validation
Environment for Building end-to-end Planning Solutions. In Proc. of the 28th Int.
Conference on Automated Planning and Scheduling (ICAPS).

[6] C. Fellbaum. 1998. WordNet: An Electronic Lexical Database. Cambridge, MA:
MIT Press. https://wordnet.princeton.edu/

[7] Maria Fox and Derek Long. 2003. PDDL2.1: An Extension to PDDLfor Expressing
Temporal Planning Domains. J. Artif. Intell. Res. 20 (2003), 61–124.

[8] M. Göbelbecker, T. Keller, P. Eyerich, M. Brenner, and B Nebel. 2010. Coming Up
With Good Excuses: What to do When no Plan Can be Found. In Proc. of the 20th
Int. Conference on Automated Planning and Scheduling (ICAPS).

[9] A. Herzig, V. Menezes, L. Nunes de Barros, and R. Wassermann. 2014. On the
revision of planning tasks. In Proc. of the 21st European Conference on AI (ECAI).

[10] J. Hoffmann. 2003. The Metric-FF Planning System: Translating "Ignoring Delete
Lists" to Numeric State Variables. Journal of Artificial Intelligence Research 20
(2003), 291–341.

[11] S. Janghorbani, A. Modi, J. Buhmann, and M. Kapadia. 2019. Domain Authoring
Assistant for Intelligent Virtual Agent. In Proc. of the 18th Int. Conference on
Autonomous Agents and MultiAgent Systems (AAMAS).

[12] S. Kambhampati. 2007. Model-lite planning for the web age masses: The chal-
lenges of planning with incomplete and evolving domain models. In Proc. of the
22nd National Conference on AI (AAAI).

[13] B. Kartal, J. Koenig, and S. J. Guy. 2014. User-driven narrative variation in large
story domains using monte carlo tree search. In Proceedings of the 13th Int. Conf.
on Autonomous Agents and MultiAgent Systems, (AAMAS).

[14] A. Lindsay, J. Read, J. F. Ferreira, T. Hayton, J. Porteous, and P. J. Gregory. 2017.
Framer: Planning Models from Natural Language Action Descriptions. In Proc. of
the 27th Int. Conference on Automated Planning and Scheduling (ICAPS).

[15] H. Liu and P. Singh. 2004. ConceptNet—a practical commonsense reasoning
tool-kit. BT technology journal 22, 4 (2004), 211–226.

[16] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram,
Manuela Veloso, Daniel Weld, and David Wilkins. 1998. PDDL-the planning
domain definition language. Technical Report. Yale University.

[17] J. Morris and G. Hirst. 1991. Lexical cohesion computed by thesaural relations
as an indicator of the structure of text. Computational linguistics 17, 1 (1991),
21–48.

[18] Julie Porteous, Marc Cavazza, and Fred Charles. 2010. Applying planning to inter-
active storytelling: Narrative control using state constraints. ACM Transactions
on Intelligent Systems and Technology (TIST) 1, 2 (2010), 10.

[19] J Porteous, A Lindsay, J Read, M Truran, and M Cavazza. 2015. Automated
Extension of Narrative Planning Domains with Antonymic Operators. In Proc.
Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS).

[20] M. O. Riedl. 2009. Incorporating Authorial Intent into Generative Narrative
Systems. In Proc. of AAAI Spring Symp. Intelligent Narrative Technologies.

[21] M O Riedl and RM Young. 2010. Narrative planning: Balancing plot and character.
Journal of Artificial Intelligence Research 39 (2010), 217–268.

[22] G. Sahin. 2017. Extraction of Hyponymy, Meronymy and Antonymy Relation
Pairs : A Brief Survey. International Journal on Natural Language Computing
(IJNLC) 6, 2 (2017).

[23] J. Siddle, A. Lindsay, J. F. Ferreira, J. Porteous, J. Read, F. Charles, M. Cavazza,
and G. Georg. 2017. Visualization of Patient Behavior from Natural Language
Recommendations. In Proceedings of the Knowledge Capture Conference (K-CAP).
ACM.

[24] Robert Speer, Joshua Chin, and Catherine Havasi. 2017. Conceptnet 5.5: An open
multilingual graph of general knowledge. In Thirty-First AAAI Conference on
Artificial Intelligence.

[25] Tiago Stegun Vaquero, José Reinaldo Silva, and J. Christopher Beck. 2013. Post-
design Analysis for Building and Refining AI Planning Systems. Eng. Appl. Artif.
Intell. 26, 8 (Sept. 2013), 1967–1979.

[26] Thomas J Walsh and Michael L Littman. 2008. Efficient Learning of Action
Schemas and Web-Service Descriptions. In AAAI. 714 – 719.

[27] P Wang, J Rowe, W Min, B Mott, and J Lester. 2018. High-Fidelity Simulated
Players for Interactive Narrative Planning. In Proc. of the 27th Int. Joint Conference
on Artificial Intelligence (IJCAI).

[28] S. Ware. (Accessed: 11-11-2019). Glaive Narrative Planner. ((Accessed: 11-11-
2019)). https://www.cs.uky.edu/~sgware/projects/glaive/

[29] K. Wu, Q. Yang, and Y. Jiang. 2007. ARMS: An automatic knowledge engineering
tool for learning action models for AI planning. The Knowledge Engineering
Review 22, 2 (2007), 135–152.

[30] L. Yao, N. Peng, R. M. Weischedel, K. Knight, D.n Zhao, and R. Yan. 2019. Plan-
And-Write: Towards Better Automatic Storytelling. In Proc. of the 33rd National
Conference on AI (AAAI).

[31] S Yoon and S Kambhampati. 2007. Towards model-lite planning: A for learning
& planning with incomplete domain models. In ICAPS Workshop on Artificial
Intelligence Planning and Learning.

[32] J Young, V Basile, L Kunze, E Cabrio, and N Hawes. 2016. Towards lifelong object
learning by integrating situated robot perception and semantic web mining. In
Proc. of the European Conference on Artificial Intelligence (ECAI).

[33] Jay Young, Lars Kunze, Valerio Basile, Elena Cabrio, Nick Hawes, and Barbara Ca-
puto. 2017. Semantic Web-Mining and Deep Vision for Lifelong Object Discovery.
In IEEE International Conference on Robotics and Automation (ICRA).

[34] R. Michael Young. 1999. Notes on the Use of Plan Structures in the Creation of
Interactive Plot. In AAAI Fall Symposium on Narrative Intelligence.

https://wordnet.princeton.edu/
https://www.cs.uky.edu/~sgware/projects/glaive/

	Abstract
	1 Introduction
	2 Related Work
	3 Motivating Example
	4 Generating Alternative Types 
	5 Domain Model Extension
	5.1 MT Domain Extension with thype
	5.2 MA Domain Extension with anton

	6 Evaluation
	6.1 thype generated extensions
	6.2 Robustness of Extended Domain Models

	7 Conclusion
	References

