
Data Integrity Auditing without Private Key Storage
for Secure Cloud Storage

Wenting Shen, Jing Qin, Jia Yu, Rong Hao, Jiankun Hu, Senior Member, IEEE and Jixin Ma

Abstract—Using cloud storage services, users can store their
data in the cloud to avoid the expenditure of local data storage
and maintenance. To ensure the integrity of the data stored in the
cloud, many data integrity auditing schemes have been proposed.
In most, if not all, of the existing schemes, a user needs to
employ his private key to generate the data authenticators for
realizing the data integrity auditing. Thus, the user has to possess
a hardware token (e.g. USB token, smart card) to store his private
key and memorize a password to activate this private key. If this
hardware token is lost or this password is forgotten, most of the
current data integrity auditing schemes would be unable to work.
In order to overcome this problem, we propose a new paradigm
called data integrity auditing without private key storage and
design such a scheme. In this scheme, we use biometric data
(e.g. iris scan, fingerprint) as the user’s fuzzy private key to
avoid using the hardware token. Meanwhile, the scheme can still
effectively complete the data integrity auditing. We utilize a linear
sketch with coding and error correction processes to confirm
the identity of the user. In addition, we design a new signature
scheme which not only supports blockless verifiability, but also
is compatible with the linear sketch. The security proof and the
performance analysis show that our proposed scheme achieves
desirable security and efficiency.

Index Terms—Cloud storage, Data integrity auditing, Data
security, Biometric data

I. INTRODUCTION

CLOUD storage can provide powerful and on-demand
data storage services for users [1]. By using the cloud

service, users can outsource their data to the cloud without
wasting substantial maintenance expenditure of hardware and

This research is supported by National Natural Science Foundation of China
(61772311, 61572267, 61272091), National Cryptography Development Fund
of China (MMJJ20170118), the Open Project of Co-Innovation Center for
Information Supply & Assurance Technology, Anhui University, the Open
Project of the State Key Laboratory of Information Security, Institute of
Information Engineering, Chinese Academy of Sciences (2017-MS-21, 2017-
MS-05). (Corresponding author: J. Qin)

W. Shen is with the School of Mathematics, Shandong University, Shandong
250100, China. E-mail:Shenwentingmath@163.com.

J. Qin is with the School of Mathematics, Shandong University, Shandong
250100, China, with State Key Laboratory of Cryptology,P.O. Box 5159,Bei-
jing,10078,China. E-mail:qinjing@sdu.edu.cn.

J. Yu is with the College of Computer Science and Technology, Qingdao
University, Qingdao 266071, China, with State Key Laboratory of Information
Security, Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, China. E-mail:qduyujia@gmail.com.

R. Hao is with the College of Computer Science and Technology, Qingdao
University, Qingdao 266071, China. E-mail:hr@qdu.edu.cn.

J. Hu is with the Chair Professor and Research Director of Cyber Security
Lab, School of Engineering and IT, University of New South Wales at the
Australian Defence Force Academy (UNSW@ADFA), Canberra, Australia.
E-mail:J.Hu@adfa.edu.au.

J. Ma is with is the director and academic-reader of Computing and
Mathematical Sciences Department at University of Greenwich, the United
Kingdom. E-mail:j.ma@greenwich.ac.uk

software, which brings great benefits to users. However, once
the users upload their data to the cloud, they will lose the
physical control of their data since they no longer keep their
data in local. Thus, the integrity of the cloud data is hard to
be guaranteed, due to the inevitable hardware/software failures
and human errors in the cloud [2].

Many data integrity auditing schemes have been proposed to
allow either the data owner or the Third Party Auditor (TPA)
to check whether the data stored in the cloud is intact or not.
These schemes focus on different aspects of data integrity
auditing, such as data dynamic operation [3–5], the privacy
protection of data and user identities [6–8], key exposure
resilience [9–11], the simplification of certificate management
[12, 13] and privacy-preserving authenticators [14], etc. In
the above data integrity auditing schemes, the user needs to
generate authenticators for data blocks with his private key.
It means that the user has to store and manage his private
key in a secure manner [15]. In general, the user needs a
portable secure hardware token (e.g. USB token, smart card)
to store his private key and memorizes a password that is
used to activate this private key. The user might need to
remember multiple passwords for different secure applications
in practical scenarios, which is not user friendly. In addition,
the hardware token that contains the private key might be lost.
Once the password is forgotten or the hardware token is lost,
the user would no longer be able to generate the authenticator
for any new data block. The data integrity auditing will not
be functioning as usual. Therefore, it is very interesting and
appealing to find a method to realize data integrity auditing
without storing the private key.

A feasible method is to use biometric data, such as finger-
print and iris scan [16, 17], as the private key. Biometric data,
as a part of human body, can uniquely link the individual and
the private key. Unfortunately, biometric data is measured with
inevitable noise each time and cannot be reproduced precisely
[18] since some factors can affect the change of biometric
data. For example, the finger of each person will generate
a different fingerprint image every time due to pressure,
moisture, presentation angle, dirt, different sensors, and so on.
Therefore, the biometric data cannot be used directly as the
private key to generate authenticators in data integrity auditing.

Contribution. The contribution of this paper can be sum-
marized as follows:

We initiate the first study on how to employ biometric data
as fuzzy private key to perform data integrity auditing, and
propose a new paradigm called data integrity auditing without
private key storage. In such a scheme, a user utilizes biometric
data as his fuzzy private key for confirming his identity. The



IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. , NO. , 2018

data integrity auditing can be performed under the condition 
that there is not any hardware token for storing the private key. 
We further formalize the definition o f d ata i ntegrity auditing 
scheme without private key storage for secure cloud storage.

We design a practical data integrity auditing scheme without 
private key storage for secure cloud storage. In our scheme, 
two fuzzy private keys (biometric data) are extracted from the 
user in the phase of registration and the phase of signature 
generation. We respectively use these two fuzzy private keys 
to generate two linear sketches that contain coding and error 
correction processes. In order to confirm the user’s identity, we 
compare these two fuzzy private keys by removing the “noise” 
from two sketches. If the two biometric data are sufficiently 
close, we can confirm t hat t hey a re e xtracted f rom t he same 
user; otherwise, from different users. How to design a signa-
ture satisfying both the compatibility with the linear sketch 
and the blockless verifiability i s a  key challenge for realizing 
data integrity auditing without private key storage. In order to 
overcome this challenge, we design a new signature scheme 
named as MBLSS by modifying the BLS short signature based 
on the idea of fuzzy signature. We give the security analysis 
and justify the performance via concrete implementations. The 
results show that the proposed scheme is secure and efficient.

A. Related Work

Ateniese et al. [19] firstly proposed the notion of Provable
Data Possession (PDP). They employed the random sample
technique and homomorphic linear authenticators to design a
PDP scheme, which allows an auditor to verify the integrity
of cloud data without downloading the whole data from the
cloud. Juels and Kaliski [20] proposed the concept of Proof
of Retrievability (PoR). In the proposed scheme, the error-
correcting codes and the spot-checking technique are utilized
to ensure the retrievability and the integrity of the data stored
in the cloud. Shacham and Waters [21] constructed two PoR
schemes with private verifiability and public verifiability by
using pseudorandom function and BLS signature.

To support user-interactions, including data modification,
insertion and deletion, Zhu et al. [22] constructed a dynamic
data integrity auditing scheme by exploiting the index hash
tables. Sookhak et al. [23] also considered the problem of
data dynamics in data integrity auditing and designed a data
integrity auditing scheme supporting data dynamic operations
based on the Divide and Conquer Table. In public data
integrity auditing, the TPA might derive the contents of user’s
data by challenging the same data blocks multiple times. To
protect the data privacy, Wang et al. [24] exploited the random
masking technique to construct the first public data integrity
auditing scheme supporting privacy preserving. Li et al. [25]
proposed a data integrity auditing scheme which preserves
data privacy from the TPA. Yu et al. [26] proposed a cloud
storage auditing scheme with perfect data privacy preserving
by making use of zero-knowledge proof. To relieve the user’s
computation burden of authenticator generation, Guan et al.
[27] constructed a data integrity auditing scheme using indis-
tinguishability obfuscation technique, which reduces the over-
head for generating data authenticators. Li et al. [28] proposed

a data integrity auditing scheme which contains a cloud storage
server and a cloud audit server. In this scheme, the cloud
audit server helps user to generate data authenticators before
uploading data to the cloud storage server. Shen et al. [29]
designed a light-weight data integrity auditing scheme, which
introduced a Third Party Medium to generate authenticators
and verify data integrity on behalf of users.

The data sharing is used widely in cloud storage scenarios.
To protect the identity privacy of user, Wang et al. [30]
proposed a shared data integrity auditing scheme based on
the ring signature. Yang et al. [31] designed a remote data
integrity auditing scheme for shared data, which supports
both the identity privacy and the identity traceability. By
using the homomorphic verifiable group signature, Fu et al.
[32] proposed a privacy-aware remote data integrity auditing
scheme for shared data. In order to achieve efficient user
revocation, Wang et al. [33] designed a shared data integrity
auditing scheme supporting user revocation by making use of
the proxy re-signature. Based on the identity-based setting,
Zhang et al. [34] constructed a cloud storage auditing scheme
for shared data supporting real efficient user revocation. To
realize the data sharing with sensitive information hiding, Shen
et al. [35] designed an identity-based cloud storage auditing
scheme for shared data.

Other aspects, such as eliminating certificate management
[36] and key exposure resilience [9–11] in data integrity
auditing have also been studied. However, all of existing
remote data integrity auditing schemes do not take the problem
of private key storage into account. In this paper, we explore
how to achieve data integrity auditing scheme without private
key storage for secure cloud storage.

B. Organization

The rest of this paper is organized as follows: We describe
the system model, notations and the cryptographic knowledge
in Section II. In Section III, we review some preliminaries.
In Section IV and Section V, the detailed description of the
modified BLS short signature and the proposed data integrity
auditing scheme without private key storage are introduced re-
spectively. In Section VI, the security analysis of the proposed
data integrity auditing scheme is given. Finally, we evaluate
the performance of our scheme in Section VII and conclude
the paper in Section VIII.

II. SYSTEM MODEL, NOTATIONS AND CRYPTOGRAPHIC
KNOWLEDGE

A. System model

As illustrated in Fig. 1, the system model involves three
types of entities: the user, the cloud, and the TPA. The cloud
provides enormous data storage space to the user. The user
has a large number of files to be uploaded to the cloud. The
TPA is a public verifier who is delegated by the user to verify
the integrity of the data stored in the cloud.

In the phase of user registration, the biometric data (e.g.
fingerprint) is extracted from the user who wants to use the
cloud storage service. When a data owner would like to upload
data to the cloud, he firstly extracts biometric data as his fuzzy



TABLE I
NOTATIONS

Notation Meaning
w An n-dimensional vector, which is denoted as w= {w1, w2, ..., wn}
W An aggregated element, which is computed by

∏
i∈{1,2,...n} wi

p The smallest prime satisfying W | p− 1
G1, G2 Multiplicative cyclic groups with prime order p
g, u Two generators of group G1

e A bilinear pairing map e : G1 ×G1 → G2

Z∗p A prime field with nonzero elements
H A cryptographic hash function, H : {0, 1}∗ → G1

z An element of Z∗p with order W
x, x′ The elements of ZW

y, y′ Biometric data extracted from the user
c, c′ The sketches used to code and correct the error of biometric data

mi(i = 1, 2, ..., s) The i-th block of file F
σi(i = 1, 2, ..., s) The authenticators of blocks mi(i = 1, 2, ..., s)
Φ = {σi}1≤i≤s The authenticator set of file F

α The signature corresponding to file F
c The number of challenged blocks
µ The linear combination of data blocks
σ An aggregated data authenticator

Fig. 1. System model of our data integrity auditing

private key and randomly generates a signing key. Then, this
data owner computes authenticators for data blocks with his
signing key. Finally, he uploads these data blocks along with
the authenticator set to the cloud and deletes these messages
from the local storage. In the phase of data integrity auditing,
the TPA verifies whether the cloud truly keeps the user’s intact
data or not by executing the challenge-response protocol with
the cloud.

B. Design Goals

To enable data integrity auditing without private key storage
for secure cloud storage, our scheme should achieve the
following goals:

1) Auditing correctness: to ensure that when the cloud
properly stores users’ data, the proof it generates can pass
the verification of the TPA.

2) Auditing soundness: to assure that if the cloud does not
possess users’ intact data, it cannot pass the verification
of the TPA.

3) Auditing without private key storage: to allow the user to
utilize biometric data as fuzzy private key to accomplish
data integrity auditing without private key storage.

C. Notations

In Table 1, we describe the notations used in the description
of our scheme.

D. Cryptographic Knowledge

1) Bilinear Maps
Assume G1 and G2 are two multiplicative cyclic

groups which have the same prime order p. A map
e : G1 × G1 → G2 is called bilinear map if it satisfies
the following properties:

a) Bilinearity: for all u, v ∈ G1 and a, b ∈ Z∗p ,
e
(
ua, vb

)
= e(u, v)

ab.
b) Non-degeneracy: e (g, g) 6= 1, where g is a generator

of G1.
c) Computability: there exists an efficiently computable

algorithm for computing map e : G1 ×G1 → G2.
Let PPGen be a bilinear groups generation algorithm

(referred to as a bilinear group generator) which takes
1k (k is a security parameter) as input, and generates a
description of bilinear groups PP = (p,G1, G2, g, e).

2) Security Assumptions
The security of our proposed scheme is based on the

following security assumptions:
Computational Diffie-Hellman (CDH) Problem. Given

g, gx and h ∈ G1, where x ∈ Z∗p is unknown, compute
hx ∈ G1.
Definition 1: (Computational Diffie-Hellman (CDH) As-
sumption) The advantage of a probabilistic polynomial
time algorithm A in solving the CDH problem in G1 is



Fig. 2. The architecture of fuzzy signature

defined as

AdvCDHA = Pr[A(g, gx, h) = hx : x
R← Z∗p , h

R← G1].

The probability is taken over the choice of x and h,
and the coin tosses of A. The CDH assumption means,
for any polynomial time algorithm A, the advantage that
A solves the CDH problem in G1 is negligible.

Discrete Logarithm (DL) Problem. Given g, gx ∈ G1,
where x ∈ Z∗p are unknown, compute x.
Definition 2: (Discrete Logarithm (DL) Assumption) The
advantage of a probabilistic polynomial time algorithm
A in solving the DL problem in G1 is defined as

AdvDLA = Pr[A(g, gx) = x : x
R← Z∗p ].

The probability is taken over the choice of x, and the
coin tosses of A. The DL assumption means, for any
polynomial time algorithmA, the advantage thatA solves
the DL problem in G1 is negligible.

III. PRELIMINARIES

In this section, we provide some preliminaries of this paper,
consisting of fuzzy signature, group isomorphism based on
Chinese Remainder Theorem, coding and error correction and
linear sketch.

A. Fuzzy Signature

The concept of fuzzy signature was proposed in [37]. It uses
biometric data as private key, such as iris scan and fingerprint,
to generate the signature. The biometric data y is a feature
vector [38] which is defined as an n-dimensional vector in our
scheme.

Fig. 2 presents the architecture of fuzzy signature. In a fuzzy
signature scheme, the key generation algorithm KeyGen takes
the biometric data y as input, and generates a verification key
vk. The signature generation algorithm SigGen takes as input
the biometric data y′ and a data block mi, and generates the
signature σi of mi. The verification algorithm Verify takes
as input the verification key vk, the data block mi and the
signature σi, and verifies whether the signature σi is valid
or not. If the biometric data y′ is sufficiently close to the
biometric data y, it means that y′ and y are extracted from
the same user. Thus, the signature σi is valid; otherwise, it is
invalid.
1 Formalization of Fuzzy Key Setting

In a typical biometric authentication scheme [39], bio-
metric data y = (y1, ..., yn) ∈ Y (Y is the metric space

including all possible biometric data y) is extracted from
a user in the phase of registration. In the phase of authen-
tication, biometric data y′ = (y′1, ..., y

′
n) ∈ Y is extracted

from a user. If y′ is sufficiently close to y, we can conclude
that the user who generated the biometric data y′ and the
user who generated the biometric data y are the same user;
otherwise, they are different users.

A fuzzy key setting FKS includes ((d,Y), γ, ε,Ω, θ) [37].
These symbols are defined as follows:

a) (d,Y): This is a metric space, where Y (Y := [0, 1)n ⊂
Rn, R is the set of all real numbers) is the vector space
including all possible biometric data y : (y1, ..., yn) ∈ Y,
and d : Y × Y → Rn is the corresponding distance
function. We define d(y, y′) = maxi∈{1,...,n}|yi − y′i| for
vectors y = (y1, ..., yn), y′ = (y′1, ..., y

′
n) ∈ Y.

b) γ: This is a uniform distribution of biometric data over
Y.

c) ε: This is the threshold value which belongs to R
and is determined by a security parameter k (k =
b−nlog2(2ε)c). We set that p1 is the probability that
two different users are accepted in the phase of identity
authentication, it means that two different users are
considered to be the same user. We require that this
probability p1 is negligible in k based on ε. In other
words, if the distance between two different biometric
data y and y′ is less than ε (that is d(y, y′) < ε), the
probability p1 is negligible in k.

d) Ω: This is an error distribution. If a user extracts bio-
metric data y in the phase of registration, and extracts
biometric data y′ next time, y′ follows the distribution
{e←RΩ; y′ ← y + e : y′}. We can know that e is the
“noise” of the biometric data extracted from the same user
and the error distribution Ω is independent of individual.

e) θ: This is an error parameter within [0, 1]. We can know
that if y is the biometric data extracted from a user and
e←RΩ is the “noise” of the biometric data extracted from
the same user, y+e should be the biometric data extracted
from the same user. We assume p2 is the probability
that the same user is rejected in the phase of identity
authentication, it means that a user is considered to be
two different users. We require that the probability p2 is
less than or equal to θ. That is, if d(y, y+e) ≥ ε, the
probability p2 ≤ θ.

2 Definition of Fuzzy Signature
A fuzzy signature scheme which is associated with a

fuzzy key setting FKS = ((d,Y), γ, ε,Ω, θ) includes the
following four algorithms:

a) Setup: The setup algorithm takes as input the description
of the fuzzy key setting FKS and a security parameter k (k
determines the threshold value ε of FKS), and generates
a public parameter pp.

b) KeyGen: The key generation algorithm takes as input
the public parameter pp and biometric data y ∈ Y, and
generates a verification key vk.

c) SigGen: The signature generation algorithm takes as
input a public parameter pp, biometric data y′ ∈ Y and a
data block mi, and generates the signature σi of mi.



d) V erify: The verification algorithm takes as input a public
parameter pp, a verification key vk, a data block mi and
the signature σi of mi, and returns 1 or 0 to prove the
signature σi is valid or not.

B. Group Isomorphism Based on Chinese Remainder Theorem

Let n be a natural number, and w1, . . . , wn ∈ N+ ( N+ is
the set of all positive integers) be with the same bit length,
such that

∀i ∈ {1, 2, . . . , n}, wi ≤ 1/(2ε), (1)

and
∀i 6= j ∈ {1, 2, . . . , n}, gcd(wi, wj) = 1. (2)

Set W =
∏
i∈{1,2,...,n} wi = Θ(2k), where k =

b−nlog2(2ε)c.
We assume that P1Gen is a deterministic algorithm. It takes

ε and n as input, and generates a vector w = (w1, ..., wn)
satisfying the above equations (1) and (2).

Set v mod w = (v1 mod w1, ..., vn mod wn), where v =
(v1, ..., vn) ∈ Zn and w = (w1, ..., wn) ∈ Zn (Z is the set
of all integers). We define the equivalence relation “∼” by
v1∼v2 ⇔ v1 mod w = v2 mod w for vectors v1,v2 ∈ Zn.
Let Znw = Zn/∼ be the quotient set of Zn by ∼.

We randomly choose two vectors v,w ∈ Zn , then find
a value V satisfying V mod wi = vi (i ∈ {1, 2, . . . , n}).
According to the Chinese Remainder Theorem (CRT), we
know that the value V is determined uniquely modulo W .
Therefore, we define a mapping CRTw : Znw → ZW for a
fixed w = (w1, ..., wn) ∈ Zn. It means that CRTw(v) = V ∈
ZW . Furthermore, CRT−1

w can be regarded as the “inverse”
mapping of CRTw, which is denoted by ZW → Znw .

Note that CRTw has the following homomorphism prop-
erty: For any v1,v2 ∈ Znw, the equation CRTw(v1 + v2) =
CRTw(v1) + CRTw(v2) mod W holds. CRTw is bijective
between Znw and ZW , so CRTw is an isomorphism.

C. Coding and Error Correction

Let w = (w1, ..., wn) ∈ Nn (N is the set of all natural
numbers) be the vector satisfying equations (1) and (2). Let
Rnw = Rn/∼ (R is the set of all real numbers) be the quotient
set of Rn by ∼, which is similar to the definition of Znw. Let
δ be the number satisfying δ = nwi+r ∈ R (n is an integrity
and 0 ≤ r < wi ).

Let Fw : Rn → Rnw be the following function:

Fw(y) = (w1y1, ..., wnyn) ∈ Rnw. (3)

We know that Fw(y+e) = Fw(y)+Fw(e)(modw) holds.
Thus, Fw can be regarded as a kind of linear coding.

Let Pw : Rnw → Znw be the following function:

Pw((δ1, ..., δn)) = (bδ1+0.5c , ..., bδn+0.5c). (4)

We know that if δ+0.5 ∈ R, then bδ+0.5c denotes the max-
imum integer that does not exceed δ+0.5 and can be viewed as
the round-off operation. Therefore, Pw can be viewed as a kind
of error correction. Specifically, according to equation (1), we

know that d(Fw(y)−Fw(y′)) < maxi∈{1,...,n}{wi} · ε ≤ 0.5
holds for any y,y′ ∈ Y and d(y− y′) < ε.

Therefore, for such y and y′, the following equation holds

Pw(Fw(y)− Fw(y′)) = 0. (5)

Besides, for any y ∈ Rn and x ∈ Znw, we have

Pw(y + x) = Pw(y) + x(modw). (6)

D. Linear sketch

Let FKS = ((d,Y), γ, ε,Ω, θ) be a fuzzy key setting
defined previously. We design a linear sketch scheme which
is used to code and correct the error. This scheme is similar
to the one-time pad encryption scheme. In a one-time pad
encryption scheme, a plaintext m’s ciphertext c with a key sk
is calculated as c = m + sk. The one-time pad encryption
scheme satisfied the following property. For two ciphertexts
c = m + sk and c′ = m′ + sk with the same key sk, the
“difference” 4m = m − m′ of plaintexts can be computed
by comparing c and c′. In the designed linear sketch scheme,
we make use of the above one-time pad encryption’s property.
Thus, the process of coding in the linear sketch scheme can be
viewed as the process of one-way encryption in the one-time
pad encryption scheme, which is used to code the biometric
data with a random value. And the process of correcting error
in the linear sketch scheme can be viewed as the process
of finding the “difference” in the one-time pad encryption
scheme, which is used to compute the “difference” of two
random values.

The description of linear sketch scheme is as follows:
Let w be a vector (w1, ..., wn) generated by the threshold

value ε of FKS and the dimension n of Y. Set W =∏
i∈{1,2,...,n} wi. Let T be the description of an additive group

(ZW ,+).

1) Coding(T, x,y):
Given a random value x ∈ ZW , biometric data y ∈

[0, 1)n and the description T of additive group (ZW ,+),
this algorithm computes the sketch c as follows:

c = (CRT−1
w (x) + Fw(y)) mod w, (7)

where CRT−1
w is the “inverse” mapping of CRTw and

Fw is the function of a kind of linear coding.
2) ErrorCorrection(T, c, c′):

Given the description T , the sketch c = (CRT−1
w (x)+

Fw(y)) mod w and the sketch c′ = (CRT−1
w (x′) +

Fw(y′)) mod w, this algorithm returns the difference
between x and x′ by computing Pw(c − c′) = ∆x and
CRTw(∆x) = ∆x.

Based on the properties of coding and error correc-
tion, the correctness of the above equations is presented
as follows: Pw(c − c′) = Pw(Fw(y) − Fw(y′) +
(CRT−1

w (x)− CRT−1
w (x′))) = Pw(Fw(y)− Fw(y′)) +

CRT−1
w (x)−CRT−1

w (x′) = CRT−1
w (x−x′) = ∆x since

d(y−y′) < ε then Pw(Fw(y)−Fw(y′)) = 0. In addition,
CRTw(∆x) = CRTw(CRT−1

w (x−x′)) = x−x′ = ∆x.



IV. THE MODIFIED BLS SHORT SIGNATURE (MBLSS)

To realize data integrity auditing without private key storage,
how to design a special signature satisfying the compatibility
with the linear sketch and the blockless verifiability is a key
challenge. In the following, we firstly review the BLS short
signature, and then describe the proposed signature scheme.

A. BLS Short Signature

Let G1 and G2 be two multiplicative cyclic groups with
prime order p. Let g be a generator of G1 and e : G1 ×
G1 → G2 be a bilinear map. Let H : {0, 1}∗ → G1

be a cryptographic hash function. The global parameters are
(G1, G2, p, g, e,H).

A BLS short signature scheme [40] consists of the follow-
ing three algorithms: KeyGen, SigGen and V erify. The
description of this scheme is as follows:

1) KeyGen:
The user randomly selects x ∈ Z∗p as his private key,

and generates his public key λ = gx ∈ G1.

2) SigGen:
Assume that file F is divided into s blocks

(m1,m2, ...,ms). The user generates the signature σi
of the block mi with his private key x as follows:
σi = H(mi)

x ∈ G1.

3) Verify:
The verifier checks the validity of the signature σi by

verifying the following equation:

e(σi, g) = e(H(mi), λ) (8)

If the above equation holds, then this signature σi is
correct; otherwise, it is wrong.

The correctness of the verification equation (8) can be
shown as follows:

e(σi, g) = e(H(mi)
x, g) = e(H(mi), g

x) = e(H(mi), λ).

B. The Proposed Modified BLS Short Signature

The original BLS short signature cannot be directly applied
to remote data integrity auditing without private key storage,
which faces the following challenges. Firstly, the original
BLS short signature is incompatible with the linear sketch
scheme because the signing key spaces of the two schemes are
different. Secondly, the original BLS short signature does not
support blockless verifiability, so the verifier has to download
the entire data from the cloud to verify the integrity of data. It
will incur excessive communication overhead and verification
cost in big data scenario.

To address the above challenges, we design a modified BLS
short signature named as MBLSS. The MBLSS is compatible
with the linear sketch scheme, and allows a verifier to check
the integrity of cloud data without downloading the whole data
from the cloud. We will present how to achieve the remote data
integrity auditing based on MBLSS in Section V.
1 Description of the MBLSS

In order to achieve the compatibility with the linear
sketch and the blockless verifiability, we construct MBLSS

by modifying the original BLS signature. The MBLSS is
similar to the original BLS signature, except that:

a) Generate a different order for bilinear groups. In the
original BLS signature, the order p of the bilinear groups
G1 and G2 can be any large prime satisfying the basic
security requirement. In contrast, the order p of the
bilinear groups G1 and G2 in MBLSS must be selected
as the smallest prime satisfying special condition so that
the groups can be compatible with the linear sketch.

b) Select a signing key from a different space. The signing
key is selected from Z∗p in the original BLS signature,
while it is selected from ZW in MBLSS, where W =∏
i∈{1,2,...,n} wi and wi (i ∈ {1, 2, ..., n}) is an element

of vector w.
c) Satisfy the following properties which homomorphic ver-

ifiable signature [19] meets:.
• Blockless verification: Let σi and σj be the authen-

ticators for data blocks mi,mj ∈ Z∗p respectively.
Choose two random values ri and rj . The verifier
is able to check the correctness of data block m′ =
rimi + rjmj ∈ Z∗p without knowing blocks mi and
mj .

• Non-malleability: If an adversary does not have the
private key of data owner, it cannot compute a valid
authenticator σ′ for block m′ = rimi+ rjmj ∈ Z∗p by
linearly combining σi and σj .

The details of the MBLSS scheme are as follows:
Let P1Gen denote an algorithm, which takes as input ε

and n (ε and n are the parameters of the fuzzy data setting
FKS corresponding the security parameter k), and outputs a
vector w = (w1, ..., wn) ∈ Zn (Z is the set of all integers)
satisfying the equations (1) and (2). Let P2Gen(W ) denote
an algorithm, which takes W =

∏
i∈{1,2,...,n} wi as input

and outputs p which is the smallest prime satisfying W |p−1.
Let PPMBLS be another algorithm. It takes 1k as input, run-
s the algorithms P1Gen(ε, n) and P2Gen(W ), and outputs
a description of bilinear groups PP = (G1, G2, p, g, e),
where G1 and G2 are multiplicative cyclic groups with
prime order p, g is a generator of G1 and e : G1×G1 → G2

is a bilinear map. Let u be the independent generator of G1

and H be a cryptographic hash function H : {0, 1}∗ → G1.
Let z be an element of Z∗p with order W. The global
parameters are (G1, G2, p, g, e, u,H, z).

a) KeyGen:
The user randomly picks x ∈ ZW as his private key,

and calculates λ = gz
x

as his public key.
b) AuthGen:

Assume that a file F is divided into s blocks
(m1,m2, ...,ms). The user computes a signing key x′ =
zx mod p which is used to generate the authenticator σi
of the block mi. The authenticator σi can be computed
as σi = (H(name||i) · umi)x′ , where name ∈ Z∗p is the
identifier of the file F.

c) Verify:
The verifier checks the validity of the authenticator σi

as follows :

e(σi, g) = e(H(name||i) · umi , λ) (9)



If the above equation holds, then this authenticator σi is
correct; otherwise, not.

2 Security of the MBLSS
We prove the MBLSS scheme is secure in terms of

correctness, homomorphism and unforgeability.
Theorem 1: (Correctness) Given a data block mi, its corre-

sponding authenticator σi and the related public parameters,
a verifier can verify the correctness of this data block.

Proof. Based on the properties of the bilinear map, the
correctness of equation (9) is presented as follows:

e(σi, g) = e((H(name‖i) · umi)x
′
, g)

= e((H(name‖i) · umi , gx
′
)

= e((H(name‖i) · umi , gz
x

)

= e((H(name‖i) · umi , λ).

Therefore, the verifier can verify the correctness of data
block by the above equation. As long as the block is intact,
this equation will hold.
Theorem 2: (Homomorphism) The MBLSS is a homo-

morphic signature satisfying both blockless verifiability and
non-malleability.

Proof. Given two data blocks mi,mj ∈ Z∗p and their
corresponding authenticators σi and σj , we first prove that
the MBLSS is able to achieve blockless verification, and
then show that it is also non-malleable. Let ri and rj be
two random values from Z∗p .
Blockless Verifiability. A verifier is able to check the
correctness of data block m′ = rimi + rjmj ∈ Z∗p without
knowing blocks mi and mj by verifying the correctness of
the following equation:

e(σi
riσj

rj , g) = e(H(name‖i)riH(name‖j)rj · um
′
, λ).

Based on Theorem 1, the correctness of the above equa-
tion can be proved as follows:

e(σrii σ
rj
j , g) = e(((H(name‖i) · umi)x

′
)ri

· ((H(name‖j) · umj )x
′
)rj , g)

= e((H(name‖i) · umi)ri

· (H(name‖j) · umj )rj , gx
′
)

= e((H(name‖i)ri · umiri)
· (H(name‖j)rj · umjrj ), gx

′
)

= e(H(name‖i)riH(name‖j)rj · umiri+mjrj , gz
x

)

= e(H(name‖i)riH(name‖j)rj · um
′
, λ).

If the above equation holds, the combined block m′ is
deemed to be correct and the verifier also believes that
blocks mi and mj are both correct. Thus, the MBLSS can
support blockless verification.
Non-malleability. An adversary, who does not possess
the data owner’s signing key, cannot generate the valid
authenticator σ′ = σi

ri · σjrj for the combined block
m′ = rimi + rjmj ∈ Z∗p by linearly combining σi and
σj with ri and rj . The authenticator σ′ cannot pass the

verification equation (9) in the algorithm V erify:

e(σ′, g) = e(σi
ri · σjrj , g)

= e(((H(name‖i) · umi)x
′
)ri

· ((H(name‖j) · umj )x
′
)rj , g)

= e(H(name‖i)riH(name‖j)rj · um
′
, λ)

6= e(H(name′) · um
′
, λ).

From the above equation, we can know that if the
authenticator σ′ of combined block m′ can pass the ver-
ification equation (9), then H(name′) = H(name‖i)ri ·
H(name‖j)rj . Given a value h = H(name‖i)ri ·
H(name‖j)rj , we can easily find a value name′ so that
H(name′) = h. This would contradict to the assumption
that H is a one-way hash function. Therefore, the MBLSS
is with non-malleability.

From the above analysis, we conclude that the MBLSS is
a homomorphic signature meeting the property of blockless
verifiability and non-malleability.
Theorem 3: (Unforgeability) For any adversary, it cannot

generate a valid authenticator without the signing key of the
data owner.

Proof. Assume that σ is a valid authenticator generated
by the data owner, and σ′ is a forged authenticator generated
by the adversary. From the algorithm AuthGen of the M-
BLSS, we can know that a valid authenticator σ is generated
with the data owner’s signing key x′. If the adversary cannot
obtain the signing key x′ from the public key λ, then he
cannot forge a valid authenticator σ. Therefore, the MBLSS
is unforgeable if the DL problem in G1 is computationally
infeasible.

V. THE PROPOSED DATA INTEGRITY AUDITING SCHEME
WITHOUT PRIVATE KEY STORAGE

A. Definition of Data Integrity Auditing Scheme without Pri-
vate Key Storage

A data integrity auditing scheme without private key storage
consists of the following five algorithms: Setup, KeyGen, Sign-
Gen, ProofGen and ProofVerify. Specifically, these algorithms
are described as follows:

1) Setup(1k, FKS): This algorithm takes as input a fuzzy
key setting FKS and a security parameter k. It outputs the
public parameter pp′.

2) KeyGen(pp′, y): This algorithm takes as input the public
parameter pp′ and the biometric data y ∈ Rn. It generates
pk as his public key, which including a sketch c and a
verification key vk.

3) SignGen(y′, F ) This algorithm takes as input the bio-
metric data y′ ∈ Rn and the file F. It outputs a signature
α which includes the verification key vk′, the sketch c′
and the set of authenticators Φ.

4) ProofGen(F,Φ, chal) This algorithm takes as input the
file F, the corresponding authenticator set Φ and the
auditing challenge chal. It outputs an auditing proof P
that proves the cloud indeed keeps this file.

5) ProofV erify(pk, chal, P, vk′, c′) This algorithm takes
as input the user’s public key pk, the auditing challenge



Fig. 3. An overview of data integrity auditing scheme without private key
storage

chal, the auditing proof P, the verification key vk′ and
the sketch c′. The TPA verifies the correctness of proof
P.

B. Overview of the Proposed Scheme

Our proposed data integrity auditing scheme without private
key storage is constructed based on the MBLSS and the
linear sketch. As shown in Fig. 3, our proposed data integrity
auditing scheme consists of the following three procedures:
Key Generation, Signature Generation and Audit.

Key Generation. It includes Setup and KeyGen algo-
rithms. Firstly, the public global parameter pp′ is generated
in Setup algorithm. In the KeyGen algorithm, the user A,
who wants to store his data in the cloud, extracts biometric
data y in the phase of registration. Next, this user randomly
generates a key pair (sk, vk). Finally, this user generates a
sketch c of private key sk using y, which is used to code and
correct the error of biometric data. The public key pk of our
proposed scheme includes (vk, c).

Signature Generation. It consists of the SignGen algo-
rithm. The data owner generates the signature of the file F,
and uploads this file along with its signature to the cloud.
Specifically, the data owner randomly generates a signing key
sk′ and its corresponding verification key vk′, where sk′ is
used to generate the sketch and the authenticators. Then the
data owner generates a sketch c′ of signing key sk′ using
the biometric data y′ extracted from him. He generates a
data authenticator set Φ for file F with signing key sk′. The
signature α of file F is (Φ, vk′, c′). The data owner sends
{F, α} to the cloud, and deletes them from the local storage.

Audit. The ProofGen algorithm and ProofV erify algo-
rithm are executed in this phase. In the ProofGen algorithm,
the TPA sends an auditing challenge chal to the cloud. Upon
receiving the chal, the cloud returns an auditing proof P to the
TPA. In the ProofV erify algorithm, the TPA firstly checks
the correctness of the proof P using the verification key vk′.
And then, in order to confirm the identity of the data owner,
the TPA recovers ∆sk from c and c′ by using the technique of
coding and error correction. Finally, the TPA verifies whether

the difference between vk and vk′ truly corresponds to ∆sk.
If it does, the data owner is the user A; otherwise, he is not.

C. Description of the Proposed Scheme

1) Setup(1k, FKS)
The bilinear groups PP = (G1, G2, p, g, e) of our

proposed scheme are the same as that of the MBLSS
scheme, where p is the smallest prime satisfying W |p−1,
G1 and G2 are multiplicative cyclic groups with the prime
order p, g is a generator of G1 and e : G1×G1 → G2 is
a bilinear map. Let u be the independent generator of G1

and H be a cryptographic hash function H : {0, 1}∗ →
G1. Let z be an element of Z∗p with order W. The global
parameters are (G1, G2, p, g, e, u,H, z).

2) KeyGen(pp′, y)
In the phase of registration, biometric data y =

(y1, ..., yn) ∈ Rn is extracted from the user A who wants
to use the cloud storage service. The user A randomly
selects x ∈ ZW as his private key sk, and generates
λ = gz

x

as his verification key vk. Next, the user A
generates a sketch c used to code and correct the error
of biometric data as follows:

c = (CRT−1
w (x) + Fw(y)) mod w. (10)

Publish (vk, c) as the public key pk.
3) SignGen(y′,F)

The data owner divides his outsourcing file F into s
blocks which is denoted as F = (m1, ...,ms).

In the phase of signature generation, biometric data
y′ = (y′1, ..., y

′
n) ∈ Rn is extracted from the data owner.

The data owner randomly chooses x′ ∈ ZW as his signing
key sk′, and calculates λ′ = gz

x′
as his verification key

vk′. The data owner computes the sketch c′ as follows:

c′ = (CRT−1
w (x′) + Fw(y′)) mod w. (11)

Next, the data owner generates the authenticator σi of the
data block mi with his signing key x′ as follows:

σi = (H (name||i) · umi)
zx
′

, (12)

where name ∈ Z∗p is the identifier of the file F. Let
Φ = {σi}1≤i≤s be a set of authenticators. We define
(Φ, vk′, c′) as the signature α.

Finally, the data owner sends {F, α} to the cloud, and
deletes the file F and its corresponding signature from
the local storage.

4) ProofGen(F,Φ,chal)
a) To verify the integrity of cloud data, the TPA ran-

domly selects a c-element subset I of set [1, s], and
generates a random βi ∈ Z∗p for each i ∈ I . The TPA
sends the auditing challenge chal = {i, βi}i∈I to the
cloud.

b) Upon receiving the auditing challenge, the cloud
computes a linear combination of data blocks µ =∑
i∈I miβi and an aggregated data authenticator σ =∏
i∈I σi

βi . Then, the cloud returns an auditing proof
P = {µ, σ, vk′, c′} to the TPA.



5) ProofVerify(pk, chal, P, vk′, c′)
The TPA checks whether the following equation holds.

e(σ, g) = e
(∏

i∈I
H(name||i)βi · uµ, vk′

)
(13)

If the equation (13) does not hold, then the data stored
in the cloud is corrupted; otherwise, the TPA does as
follows:

The TPA recovers ∆x from c and c′ by computing
Pw(c − c′) = ∆x and CRTw(∆x) = ∆x, which can
confirm the identity of the user.
Then, he verifies the following equation holds or not:

(vk)z∆x

= vk′ (14)

If the equation (14) holds, then the data stored in the
cloud is intact; otherwise, it is corrupted.

VI. SECURITY ANALYSIS

In this section, we prove that the proposed scheme is secure
in terms of the auditing correctness, the soundness of linear
sketch and the auditing soundness.

Theorem 4: (Auditing Correctness) When the cloud prop-
erly stores data, the proof it generates can pass the TPA’s
verification.

Proof. Given a valid proof P = {µ, σ, vk′, c′} from
the cloud, the verification equation (13) in algorithm
ProofV erify will hold. Based on the properties of bilinear
maps and Theorem 1, the correctness of equation (13) is
presented as follows:

e(σ, g) = e(
∏

i∈I
σi
βi , g)

= e((
∏

i∈I
(H(name‖i) · umi)z

x′

)βi , g)

= e(
∏

i∈I
(H(name‖i) · umi)βi , gz

x′

)

= e(
∏

i∈I
(H(name‖i)βi · u

∑
i∈I miβi , vk′)

= e(
∏

i∈I
(H(name‖i)βi · uµ, vk′)

Therefore, if the cloud properly stores the user’s data, it will
pass the TPA’s verification.

Theorem 5: (the Soundness of Linear Sketch) The data
owner can pass the verification of the TPA if the biometric data
y and y′ are both extracted from him; otherwise, he cannot
pass the TPA’s verification.

Proof. Set x′ = x + ∆x, where x, x′,∆x ∈ ZW . Let
vk = gz

x

and vk′ = gz
x′

. Assume that biometric data
y and y′ are both extracted from the data owner. Let s-
ketch c = (CRT−1

w (x) + Fw(y)) mod w and sketch c′ =
(CRT−1

w (x′) + Fw(y′)) mod w. According to coding and
error correction, we can know that if y,y′ ∈ Y are the
biometric data satisfying d(y − y′) < ε, the following two
equations Pw(Fw(y) − Fw(y′)) = 0 and Pw(y + x) =
Pw(y) + x(modw)(x ∈ Znw) hold. Based on the properties

of coding and error correction and the linear sketch, we have

Pw(c− c′) =Pw(CRT−1
w (x) + Fw(y)− (CRT−1

w (x′)+

Fw(y′)))

=Pw(CRT−1
w (x)− CRT−1

w (x′) + Fw(y)−
Fw(y′))

=Pw(CRT−1
w (x− x′) + Fw(y)− Fw(y′))

=CRT−1
w (x− x′) + Pw(Fw(y)− Fw(y′))

=CRT−1
w (x− x′)

=∆x.

Thus, CRTw(∆x) = ∆x and (vk)z∆x

= (gz
x

)z∆x

=

gz
x+∆x

= gz
x′

= vk′. It means that the data owner can pass
the verification of the TPA.

If y,y′ ∈ Y are the biometric data extracted from different
users, which means that d(y − y′) > ε and Pw(Fw(y) −
Fw(y′)) 6= 0, we have Pw(c− c′) 6= ∆x and (vk)z∆x 6= vk′.
Thus, the data owner cannot pass the TPA’s verification.

Hence, if the biometric data y and y′ are both extracted
from the data owner, the data owner can pass the verification
of the TPA; otherwise, he cannot pass the TPA’s verification.

Theorem 6: (Auditing Soundness) If the CDH assumption
holds in G1 and the signature scheme used for generating
file is existentially unforgeable, then except with negligible
probability, an untrusted cloud can never pass verification of
the TPA unless the cloud data has been preserved intact.

Proof. We will prove this theorem by employing the method
of knowledge proof [21]. If the cloud can pass the TPA’s
verification without possessing the intact data, then we can
extract the intact challenged data blocks by repeatedly inter-
acting between the knowledge extractor and the scheme. We
will accomplish our proof by a sequence of games.

Game 1. The challenger generates a signing key sk′ used
to generate authenticators and its corresponding verification
key vk′. The adversary can get the authenticators of a series
of data blocks by querying the challenger. Specifically, when
the adversary wants to query data block mi, he will submit a
query to the challenger. The challenger calculates and sends
the corresponding authenticator σi to the adversary. Then
the challenger generates and sends an auditing challenge
chal = {i, βi}i∈I to the adversary. Upon receiving the
challenge, the adversary responds the corresponding proof
P = {µ, σ, vk′, c′} to the challenger, where c′ is a sketch.

Game 2. Game 2 is the same as Game 1, with one
difference. That is the challenger maintains a list of responses
to the queries from the adversary. The challenger observes
each instance of the challenge and respond process with the
adversary. The challenger declares failure and aborts if he finds
the aggregated authenticator σ is not equal to

∏
i∈I σi

βi .
Analysis. Assume that an honest prover generates a correct

proof {µ, σ, vk′, c′}. From the correctness of our scheme, we
have:

e(σ, g) = e

(∏
i∈I

H(name‖i)
βi
· uµ, vk′

)
(15)

Assume that the adversary generates a proof {µ′, σ′, vk′, c′}
which is different from the honest prover generated. Because



the forgery is successful, we have:

e(σ′, g) = e

(∏
i∈I

H(name‖i)
βi
· uµ

′
, vk′

)
(16)

Obviously, µ 6= µ′, otherwise σ = σ′, which contradicts our
assumption that the challenger declares failure and aborts. We
define ∆µ = µ−µ′, and construct a simulator that could solve
the challenge CDH instance with this adversary as follows:

Given (g, gυ, h) ∈ G1, where υ = zx
′
, the simulator outputs

hυ . Set u = gahb, where a, b ∈ Z∗p are random values chosen
by the simulator. Meanwhile, the user’s verification key is set
as vk′ = gz

x′

= gυ .
The simulator randomly selects ri ∈ Z∗p for each i(1 ≤ i ≤

s) in the challenge, and programs the random oracle at i as

H(name‖i) = gri/(gami · hbmi) (17)

The simulator can calculate σi, since we have

H(name‖i) · umi = gri/(gami · hbmi) · umi

= gri/(gami · hbmi) · (gahb)mi

= gri/(gami · hbmi) · (gami · hbmi)
= gri

Hence, the simulator computes σi = (H(name‖i) ·
umi)z

x′

= (gri)z
x′

= (gz
x′

)ri .
When dividing equation (16) by equation (15), we can get

e(σ′/σ, g) = e(
∏s

i=1
(σ′i/σi)

βi , g)

= e(
∏s

i=1
(um

′
iβi/umiβi)z

x′

, g)

= e(u
∑s
i=1 mi

′βi−miβi , gz
x′

)

= e(u∆µ, vk′)

= e((gahb)∆µ, vk′).

So, we know that

e(σ′ · σ−1 · (vk′)−a∆µ, g) = e(h, vk′)b∆µ. (18)

From the equation (18) and vk′ = gυ , we can know that
hυ = (σ′ · σ−1 · (vk′)−a·∆µ)1/(b·∆µ). Note that the prob-
ability of game failure is the same as the probability of
b · ∆µ = 0 mod p. The probability of b · ∆µ = 0 mod p is
1/p which is negligible, because p is a large prime. Then, we
can find a solution to the CDH problem with a probability of
1− 1/p. It contradicts the assumption that the CDH problem
in G1 is computationally infeasible.

It means that if there is a non-negligible difference between
the adversary’s probabilities of success in Game 1 and Game
2, the constructed simulator can utilize the adversary to solve
the CDH problem.

Game 3. Game 3 is the same as Game 2, with one differ-
ence. The challenger still keeps and observes each instance of
the proposed auditing scheme. For one of these instances, the
challenger declares failure and aborts if there exists a linear
combination µ′ of data blocks not equal to the expected µ.

Analysis. Assume that an honest prover generates a correct
proof {µ, σ, vk′, c′}. From the correctness of the scheme, we
have e(σ, g) = e

(∏
i∈I H(name‖i) · uµ, vk′

)
. Assume that

the adversary generates a proof {µ′, σ′, vk′, c′} which is differ-
ent from that the honest prover generated. Because the forgery
is successful, we also have e(σ′, g) = e(

∏
i∈I H(name‖i)βi ·

uµ
′
, vk′). Based on the Game 2, we know that σ′ = σ. Define

∆µ = µ′ − µ. We construct a simulator that could solve
the challenge DL instance with this adversary. The detailed
process is as follows:

Given (g, h) ∈ G1, the goal of the simulator is to calculate a
value x which satisfies h = gx. Set u = gahb, where a, b ∈ Z∗p
are random values chosen by the simulator.

From the analysis of the above two verification equations,
we obtain

e(
∏

i∈I
H(name‖i)βi · uµ, vk′)

= e(σ, g)

= e(σ′, g)

= e(
∏

i∈I
H(name‖i)βi · uµ

′
, vk′)

Thus, we know that

uµ = uµ
′
,

and therefore that

1 = u∆µ = (gahb)∆µ = ga∆µ · hb∆µ.

Then the solution to the DL problem is,

h = g−
a∆µ
b∆µ = g−

a
b .

However, b is zero only with the probability 1/p, which is
negligible because p is a large prime. Then, we can find a
solution to the DL problem with a probability of 1 − 1/p,
which contradicts the assumption that the DL problem in G1

is computationally infeasible.
It means that if there exists a non-negligible difference

between the adversary’s probabilities of success in Game 2 and
Game 3, the constructed simulator can utilize the adversary to
solve the DL problem.

Note that the hardness of the CDH problem implies the
hardness of the discrete logarithm problem. Therefore, the
differences between these games defined can be ignored if
the CDH assumption in G1 holds.

Finally, we construct a knowledge extractor to extract all of
the challenged data blocks mi(i ∈ I, |i| = c). By selecting c
different coefficients βi(i ∈ I, |I| = c) to execute c times dif-
ferent challenges on the same data blocks mi(i ∈ I, |I| = c).
The knowledge extractor can get mi(i ∈ I, |I| = c) indepen-
dently linear equations in the variables mi(i ∈ I, |I| = c),
and then it can extract mi(i ∈ I, |I| = c) by solving these
equations. It means that if the cloud does not possess users’
intact data, it cannot pass the verification of the TPA.

Theorem 7: (The detectability): Our data integrity au-
diting scheme for secure cloud storage is

(
k
s , 1−

(
s−k
s

)c)
detectable if the cloud stores a file F with s data blocks
including k modified or deleted data blocks, and c data blocks
are challenged.

Proof. Let the modified or deleted block-signature pairs
be Y. Let the challenged block-signature pairs be S. Let the



TABLE II
COMPARISON ON COMPUTATION OVERHEAD OF EACH ENTITY IN OUR SCHEME AND SCHEME [21]

Scheme Cloud TPA User

Our scheme (c− 1)MulG1
+ cExpG1

+ (c+ 2)ExpG1
+ cMulG1

+ s(HashG1
+MulG1

)+
cMulZ∗p + (c− 1)AddZ∗p 2Pair + cHashG1+ 2sExpG1 + sExpZ∗p

ExpZ∗p + P + C

Scheme (c− 1)MulG1
+ cExpG1

+ (c+ 1)ExpG1
+ cMulG1

+ s(HashG1
+MulG1

)+
[21] cMulZ∗p + (c− 1)AddZ∗p 2Pair + cHashG1

2sExpG1

random variable set be X = |Y ∩S|. We use PX to denote the
probability of detecting the modified or deleted data blocks.
That is to say, if the cloud modifies or deletes k data blocks
of the file F , the cloud’s misbehavior can be detected with
probability PX by challenging c data blocks. Thus, we get

PX=P{X ≥ 1}
=1− P{X = 0}

=1− s− k
s
× s− 1− k

s− 1
× ...× s− c+ 1− k

s− c+ 1

We can have that 1 − ( s−ks )c ≤ PX ≤ 1 − ( s−c+1−k
s−c+1 )c.

Therefore, we can conclude that the proposed scheme can
detect the misbehavior of the cloud with probability at least
1 −

(
s−k
s

)c
if the cloud stores a file F with s data blocks

including k modified or deleted data blocks, and c data blocks
are challenged.

VII. PERFORMANCE EVALUATION

In this section, we first analyze the computation complexity
of our scheme, and then give the comparison between our
scheme and Shacham and Waters’s scheme [21] in terms of
computation overhead and commutation overhead. Finally, we
evaluate the performance of our scheme in experiments.

A. Performance Analysis and Comparison

We define the following notations to denote the operations
in our scheme: s is the total number of data blocks. c is the
number of challenged blocks. HashG1

, ExpG1
and MulG1

respectively denote one hashing operation, one exponentiation
operation and one multiplication operation in G1. ExpZ∗p ,
MulZ∗p and AddZ∗p respectively denote one exponentiation
operation, one multiplication operation and one addition op-
eration in Z∗p . Pair denotes one pairing operation, P denotes
one Pw function operation and C denotes one CRTw mapping
operation. |s| is the size of an element of set [1, s], |p| is the
size of an element of Z∗p , |q| is the size of an element of G1,
and |W | is the size of an element of ZW .

TABLE III
COMPARISON ON COMMUNICATION OVERHEAD IN OUR SCHEME AND

SCHEME [21]

Scheme Communication overhead Communication overhead
on the TPA side on the cloud side

Ours c · (|s|+ |p|) |p|+ 2|q|+ |W |
Scheme [21] c · (|s|+ |p|) |p|+ |q|

TABLE IV
THE COMPUTATION COMPLEXITY OF DIFFERENT ENTITIES IN DIFFERENT

PHASES

User TPA Cloud

Authenticator generation O(s) — —
Challenge generation — O(c) —

Proof generation — — O(c)
Proof verification — O(c) —

(1) Comparison. To evaluate the efficiency of our scheme,
we choose scheme [21] as a benchmark. The construction of
the scheme [21] is generally viewed as the most efficient one
among all existing data integrity auditing schemes. However,
our scheme can realize data integrity auditing without private
key storage that is impossible to be achieved in scheme
[21]. By the following comparison, we can conclude that our
scheme only adds reasonable overhead to realize data integrity
auditing without private key storage compared with the scheme
[21].

Table II gives the computation overhead’s comparison be-
tween our scheme and Shacham and Waters’ scheme [21].
In the scheme [21], to reduce the storage overhead, one data
block is divided into multiple sectors. Actually, our scheme
also can support multiple sectors. But for simplification, we
only consider that the file F is divided into s data blocks, and
do not consider that each data block is divided into l sectors.
For fairness comparison, we set l = 1 in the scheme [21].
As shown in Table II, on the user side, we can see that the
computation overhead of calculating data authenticators in the
scheme [21] is s(HashG1 +MulG1)+2sExpG1 . Our scheme
costs s(HashG1

+MulG1
)+2sExpG1

+sExpZ∗p to generate
data authenticators, which has nearly the same efficiency level
with the scheme [21] on the user side. In the phase of proof
generation, both our scheme and the scheme [21] cost the same
computation overhead on the cloud side. In the phase of proof
verification, our scheme only adds one ExpG1 , one ExpZ∗p ,
one P and one C compared with the scheme [21].

Table III presents the communication overhead’s compari-
son between our scheme and Shacham and Waters’ scheme
[21]. From Section V, we can know the communication
overhead of our scheme is mainly from the interaction be-
tween the TPA and the cloud, which consists of auditing
challenge and auditing proof. The size of an auditing challenge
chal = {i, βi}i∈I is c · (|s|+ |p|) bits. The size of an auditing
proof P = {µ, σ, vk′, c′} is |p|+2|q|+ |W | bits. Therefore, in
our scheme, the communication overhead of one auditing task



Fig. 4. The computation overhead of authenticator generation

Fig. 5. The computation overhead of the TPA in the phase of auditing

is c · |s|+(c+1) · |p|+2|q|+ |W | bits. In addition, comparing
with the scheme [21], our scheme only incurs extra |q|+ |W |
bits when executing one auditing task.

(2) Computation complexity. In Table IV, we analyze the
computation complexity of the different entities in different
phases. The computation complexity is about the number s of
data blocks and the number c of challenged blocks. As shown
in Table IV, the computation complexity of data authenticator
generation on the user side is O(s). On the TPA side, the
computation complexity of challenge generation and proof
verification are both O(c). The computation complexity of
proof generation is O(c) on the cloud side.

B. Experimental Results
In this section, we evaluate the performance of our proposed

scheme in experiments. We run these experiments on a Linux
machine with an Intel Pentium 2.70GHz processor and 4GB
memory. Our scheme is implemented by utilizing C program-
ming language with the GNU Multiple Precision Arithmetic
(GMP) Library [41] and the free Pairing-Based Cryptography
(PBC) Library [42]. We set the base field size to be 512 bits,
the size of an element in Z∗p to be 160 bits and the size of a
shared cloud file to be 20MB.

1) Computation overhead
a) Authenticator generation. In order to evaluate the

efficiency of authentication generation of our scheme,

Fig. 6. The computation overhead of the cloud in the phase of auditing

Fig. 7. The communication overhead of challenge message and proof message

we compute the authenticators for different blocks from
0 to 1000 increased by an interval of 100. Fig. 4
shows that the computation overhead of authenticator
generation linearly increases with the number of data
blocks. The running time varies from 1.5s to 12.9s.

b) Auditing. In order to evaluate the performance of
auditing in our scheme, we respectively show the time
spent on the TPA and the cloud. The experimental
results are presented in Fig. 5 and Fig. 6. In the
experiment, we choose to challenge different blocks
from 0 to 1000 increased by an interval of 100. From
Fig. 5, we have the observation that the auditing com-
putation overhead of the TPA is mainly from challenge
generation and proof verification. The running time of
challenge generation ranges from 0.038s to 0.395s. The
running time of proof verification is linear with the
number of the challenged data blocks, ranging from
0.795s to 8.685s. As shown in Fig. 6, the running time
of proof generation ranges from 0.401s to 3.793s on the
cloud side. From the above experiments, we can infer
that the auditing computation overhead of the TPA and
the cloud both linearly increases with the number of
the challenged blocks. The trade-off here is that, with
more challenged blocks, the result of integrity auditing
is more accurate, meanwhile, the auditing work gets
more cumbersome.



2) Communication overhead
We evaluate the communication overhead of the au-

diting phase in our scheme. As discussed previously, the
communication overhead is mainly from the challenge
overhead and proof overhead. The challenge chal =
{i, βi}i∈I costs c · (|s| + |p|), which has a linear rela-
tionship with the number c of the challenged blocks. The
proof P = {µ, σ, vk′, c′} costs |p|+ 2|q|+ |W |, which is
independent from the number c of the challenged blocks.
From Fig. 7, we can see that the communication overhead
of challenge message linearly increases with the number
of the challenged blocks, while the communication over-
head of proof message is constant.

VIII. CONCLUSION

In this paper, we explore how to employ fuzzy private key
to realize data integrity auditing without storing private key.
We propose the first practical data integrity auditing scheme
without private key storage for secure cloud storage. In the
proposed scheme, we utilize biometric data (e.g. fingerprint,
iris scan) as user’s fuzzy private key to achieve data integrity
auditing without private key storage. In addition, we design
a signature scheme supporting blockless verifiability and the
compatibility with the linear sketch. The formal security proof
and the performance analysis show that our proposed scheme
is provably secure and efficient.

REFERENCES

[1] H. Dewan and R. C. Hansdah, “A survey of cloud storage
facilities,” in 2011 IEEE World Congress on Services,
July 2011, pp. 224–231.

[2] K. Ren, C. Wang, and Q. Wang, “Security challenges
for the public cloud,” IEEE Internet Computing, vol. 16,
no. 1, pp. 69–73, Jan 2012.

[3] A. F. Barsoum and M. A. Hasan, “Provable multicopy
dynamic data possession in cloud computing systems,”
IEEE Transactions on Information Forensics and Secu-
rity, vol. 10, no. 3, pp. 485–497, March 2015.

[4] N. Garg and S. Bawa, “Rits-mht: Relative indexed and
time stamped merkle hash tree based data auditing
protocol for cloud computing,” Journal of Network &
Computer Applications, vol. 84, pp. 1–13, 2017.

[5] H. Jin, H. Jiang, and K. Zhou, “Dynamic and public
auditing with fair arbitration for cloud data,” IEEE Trans-
actions on Cloud Computing, vol. 13, no. 9, pp. 1–14,
2014.

[6] S. G. Worku, C. Xu, J. Zhao, and X. He, “Secure and
efficient privacy-preserving public auditing scheme for
cloud storage,” Comput. Electr. Eng., vol. 40, no. 5, pp.
1703–1713, Jul. 2014.

[7] B. Wang, B. Li, and H. Li, “Knox: privacy-preserving
auditing for shared data with large groups in the cloud,”
in International Conference on Applied Cryptography
and Network Security, 2012, pp. 507–525.

[8] B. Wang, H. Li, and M. Li, “Privacy-preserving pub-
lic auditing for shared cloud data supporting group

dynamics,” in 2013 IEEE International Conference on
Communications (ICC), June 2013, pp. 1946–1950.

[9] J. Yu, K. Ren, C. Wang, and V. Varadharajan, “Enabling
cloud storage auditing with key-exposure resistance,”
IEEE Transactions on Information Forensics and Secu-
rity, vol. 10, no. 6, pp. 1167–1179, 2015.

[10] J. Yu, K. Ren, and C. Wang, “Enabling cloud storage
auditing with verifiable outsourcing of key updates,”
IEEE Transactions on Information Forensics and Secu-
rity, vol. 11, no. 6, pp. 1362–1375, June 2016.

[11] J. Yu and H. Wang, “Strong key-exposure resilient au-
diting for secure cloud storage,” IEEE Transactions on
Information Forensics and Security, vol. 12, no. 8, pp.
1931–1940, Aug 2017.

[12] H. Wang, Q. Wu, B. Qin, and J. Domingo-Ferrer,
“Identity-based remote data possession checking in pub-
lic clouds,” IET Information Security, vol. 8, no. 2, pp.
114–121, March 2014.

[13] H. Wang, D. He, and S. Tang, “Identity-based proxy-
oriented data uploading and remote data integrity check-
ing in public cloud,” IEEE Transactions on Information
Forensics and Security, vol. 11, no. 6, pp. 1165–1176,
June 2016.

[14] W. Shen, G. Yang, J. Yu, H. Zhang, F. Kong, and
R. Hao, “Remote data possession checking with privacy-
preserving authenticators for cloud storage,” Future Gen-
eration Computer Systems, vol. 76, no. Supplement C,
pp. 136 – 145, 2017.

[15] C. Ellison and B. Schneier, “Ten risks of pki: What
you’re not being told about public key infrastructure,”
vol. 16, no. 1, 12 2000.

[16] A. K. Jain, A. Ross, and S. Prabhakar, “An introduction
to biometric recognition,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 14, no. 1, pp.
4–20, Jan 2004.

[17] S. Prabhakar, S. Pankanti, and A. K. Jain, “Biometric
recognition: security and privacy concerns,” IEEE Secu-
rity Privacy, vol. 1, no. 2, pp. 33–42, Mar 2003.

[18] A. Sahai and B. Waters, “Fuzzy identity-based encryp-
tion,” in Advances in cryptology—EUROCRYPT 2005,
ser. Lecture Notes in Comput. Sci. Springer, Berlin,
2005, vol. 3494, pp. 457–473.

[19] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kiss-
ner, Z. Peterson, and D. Song, “Provable data possession
at untrusted stores,” in Proceedings of the 14th ACM
Conference on Computer and Communications Security,
ser. CCS ’07, 2007, pp. 598–609.

[20] A. Juels and B. S. Kaliski, “Pors: Proofs of retrievability
for large files,” in Proceedings of the 14th ACM Con-
ference on Computer and Communications Security, ser.
CCS ’07, 2007, pp. 584–597.

[21] H. Shacham and B. Waters, “Compact proofs of retriev-
ability,” J. Cryptology, vol. 26, no. 3, pp. 442–483, Jul.
2013.

[22] Y. Zhu, H. Wang, Z. Hu, G. J. Ahn, H. Hu, and S. S.
Yau, “Dynamic audit services for integrity verification of
outsourced storages in clouds,” in ACM Symposium on
Applied Computing, 2011, pp. 1550–1557.



[23] M. Sookhak, A. Gani, M. K. Khan, and R. Buyya,
“Dynamic remote data auditing for securing big data
storage in cloud computing,” Information Sciences, vol.
380, pp. 101–116, 2017.

[24] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-
preserving public auditing for data storage security in
cloud computing,” in 2010 Proceedings IEEE INFO-
COM, March 2010, pp. 1–9.

[25] J. Li, L. Zhang, J. K. Liu, H. Qian, and Z. Dong,
“Privacy-preserving public auditing protocol for low-
performance end devices in cloud,” IEEE Transactions
on Information Forensics and Security, vol. 11, no. 11,
pp. 2572–2583, Nov 2016.

[26] Y. Yu, M. H. Au, G. Ateniese, X. Huang, W. Susilo,
Y. Dai, and G. Min, “Identity-based remote data integrity
checking with perfect data privacy preserving for cloud
storage,” IEEE Transactions on Information Forensics
and Security, vol. 12, no. 4, pp. 767–778, April 2017.

[27] C. Guan, K. Ren, F. Zhang, F. Kerschbaum, and J. Yu,
“Symmetric-key based proofs of retrievability supporting
public verification,” in Computer Security – ESORICS
2015. Cham: Springer International Publishing, 2015,
pp. 203–223.

[28] J. Li, X. Tan, X. Chen, D. S. Wong, and F. Xhafa, “O-
por: Enabling proof of retrievability in cloud computing
with resource-constrained devices,” IEEE Transactions
on Cloud Computing, vol. 3, no. 2, pp. 195–205, April
2015.

[29] W. Shen, J. Yu, H. Xia, H. Zhang, X. Lu, and R. Hao,
“Light-weight and privacy-preserving secure cloud audit-
ing scheme for group users via the third party medium,”
Journal of Network and Computer Applications, vol. 82,
pp. 56–64, 2017.

[30] B. Wang, B. Li, and H. Li, “Oruta: Privacy-preserving
public auditing for shared data in the cloud,” in 2012
IEEE Fifth International Conference on Cloud Comput-
ing, June 2012, pp. 295–302.

[31] G. Yang, J. Yu, W. Shen, Q. Su, Z. Fu, and R. Hao,
“Enabling public auditing for shared data in cloud storage
supporting identity privacy and traceability,” J. Syst.
Softw., vol. 113, no. C, pp. 130–139, Mar. 2016.

[32] A. Fu, S. Yu, Y. Zhang, H. Wang, and C. Huang, “Npp:
A new privacy-aware public auditing scheme for cloud
data sharing with group users,” IEEE Transactions on
Big Data, pp. 1–1, 2017.

[33] B. Wang, B. Li, and H. Li, “Panda: Public auditing for
shared data with efficient user revocation in the cloud,”
IEEE Transactions on Services Computing, vol. 8, no. 1,
pp. 92–106, Jan.-Feb. 2015.

[34] Y. Zhang, J. Yu, R. Hao, C. Wang, and K. Ren, “Enabling
efficient user revocation in identity-based cloud storage
auditing for shared big data,” IEEE Transactions on
Dependable and Secure Computing, 2018. [Online].
Available: doi:10.1109/TDSC.2018.2829880

[35] W. Shen, J. Qin, J. Yu, R. Hao, and J. Hu, “Enabling
identity-based integrity auditing and data sharing with
sensitive information hiding for secure cloud storage,”
IEEE Transactions on Information Forensics & Security,

vol. 14, no. 2, pp. 331–346.
[36] Y. Wang, Q. Wu, B. Qin, W. Shi, R. H. Deng, and J. Hu,

“Identity-based data outsourcing with comprehensive au-
diting in clouds,” IEEE Transactions on Information
Forensics and Security, vol. 12, no. 4, pp. 940–952, 2017.

[37] K. Takahashi, T. Matsuda, T. Murakami, G. Hanaoka, and
M. Nishigaki, “A signature scheme with a fuzzy private
key,” pp. 105–126, 2015.

[38] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy
extractors: How to generate strong keys from biometrics
and other noisy data,” Siam Journal on Computing,
vol. 38, no. 1, pp. 97–139, 2008.

[39] P. Yang, Z. Cao, and X. Dong, “Fuzzy identity based
signature with applications to biometric authentication,”
Comput. Electr. Eng., vol. 37, no. 4, pp. 532–540, Jul.
2011.

[40] B. Dan, B. Lynn, and H. Shacham, “Short signatures
from the weil pairing,” Journal of Cryptology, vol. 17,
no. 4, pp. 297–319, 2004.

[41] “The gnu multiple precision arithmetic library (gmp),”
http://gmplib.org/.

[42] B. Lynn, “The pairing-based cryptographic library,”
https://crypto.stanford.edu/pbc/, 2015.

Wenting Shen received the M.S. and B.S. degrees
in college of Computer Science and Technology
from Qingdao University, China, in 2017 and 2014,
respectively. She is currently a Ph.D. candidate in
School of Mathematics in Shandong University, Chi-
na. Her research interests include cloud security and
big data security.

Jing Qin is a professor in School of Mathematic-
s, Shandong University P. R. China. She received
her B.S. from Information Engineering University,
Zhengzhou, P. R. China in 1982 and Ph.D. degree
from School of Mathematics in Shandong Universi-
ty, P. R. China in 2004. Her research interests include
computational number theory, information security,
design and analysis of security about cryptologic
protocols. She has co-authored 2 books and has
published about 30 professional research papers.
Prof. Qin is a senior member of Chinese Association

for Cryptologic Research (CACR) as well as China Computer Federation
(CCF).

doi:10.1109/TDSC.2018.2829880
http://gmplib.org/.
https://crypto.stanford.edu/pbc/


Jia Yu is a professor of the College of Computer
Science and Technology at Qingdao University. He
received the M.S. and B.S. degrees in School of
Computer Science and Technology from Shandong
University in 2003 and 2000, respectively. He re-
ceived Ph. D. degree in Institute of Network Secu-
rity from Shandong University, in 2006. He was a
visiting professor with the Department of Computer
Science and Engineering, the State University of
New York at Buffalo, from Nov. 2013 to Nov.
2014. His research interests include cloud computing

security, key evolving cryptography, digital signature, and network security.

Rong Hao works in the College of Computer
Science and Technology, Qingdao University. Her
research interest is cloud computing security and
cryptography.

Jiankun Hu a full professor of cyber security,
School of Engineering and IT, University of New
South Wales, Canberra, Australia. His main research
interest is in the field of cyber security, including
biometrics security, where he has publications at top
venues including the IEEE TRANSACTIONS ON
PATTERN ANALYSIS AND MACHINE INTEL-
LIGENCE. He has served on the editorial board-
s of up to seven international journals including
the IEEE TRANSACTIONS ON INFORMATION
FORENSICS AND SECURITY.

Jixin Ma obtained his BSc and MSc of Mathematics
in 1982 and 1988, respectively, and PhD of Com-
puter Sciences in 1994. He is a Reader of Computer
Science in the Department of Computing and Infor-
mation Systems, and the Director of the Centre for
Computer and Computational Science, as well as the
Leader of Artificial Intelligence Research Group, at
University of Greenwich, United Kingdom. His main
research areas include Artificial Intelligence, Soft-
ware Engineering and Information Systems, with
special interest in Information Security..




