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Abstract 
 
An issue when using stochastic egress models is how many simulations are required to accurately 
represent the modelled scenario?  Engineers are mostly interested in a representative Total Evacuation 
Time (TET).  However, the convergence of the TET may not ensure that the full range of evacuation 
dynamics has been adequately represented.  The average total egress curve (AC) has been suggested as 
an improved measure.  Unfortunately, defining a confidence interval (CI) for the AC is problematic. 
CIs can robustly quantify the precision of many statistics and have been used to define convergence in 
egress modelling and other research fields.  This paper presents a novel application of bootstrapping, 
functional analysis measures (FAMs), and a bisection algorithm, to derive three FAM-based CIs 
representing the precision of the AC.  These CIs were tested using a theoretical model to demonstrate 
the consistency of the coverage probability, the actual percentage of CIs that contain the theoretical 
parameter, with the nominal 95% confidence level (NCL).  For two of the FAM-based CIs, it was found 
that the coverage probability was between 94.2% and 95.6% for all tested sample sizes between 10 to 
4000 simulations.  The third FAM-based CI’s coverage probability was always greater than the NCL 
and was a conservative estimate, but this presented no problems in practice.  A FAM-based CI may 
suggest if there is more or less variability in an earlier phase of the evacuation.  A convergence scheme 
based on statistical precision, CI widths, is proposed and verified.  The method can be extended to other 
statistics. 
 
Acronyms 
 
CI confidence interval 
CL confidence level 
TET total evacuation time 
MT mean TET 
SD standard deviation (of TETs) 
CDF Cumulative Density Function 
BCa Bias Corrected and accelerated (bootstrap) 
FAM functional analysis measure 
ERD Euclidean Relative Distance 
EPC Euclidean Projection Coefficient 
SC Secant Cosine 
 
Symbols 
 
a, b  egress curves (an ordered vector of agent evacuation times) 
AC  average egress curve  
(1-α)  confidence level value (expressed as a decimal) 
B  number of bootstrap resamples 
p  percentile (expressed as a decimal) 
�́�𝑝  “Hesterberg” corrected percentile 
m  number of agents/people in a simulation/experiment   
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n   sample size (generally the number of simulations or experiments) 
df   degrees of freedom (n-1) 
T-1(p, df)  the inverse CDF of Student’s t-distribution for p  
P(x)  the probability that x occurs.   
Φ(z)   the CDF of the normal distribution up to z 
Φ-1(p)  the inverse CDF of the normal distribution for p 
⌊𝑥𝑥⌋   integer floor of x  
⌈𝑥𝑥⌉   integer ceiling of x 
|𝑥𝑥|   absolute value of x 
θ   statistic of interest. e.g. MT, SD, ERD, EPC, and SC 
θ(n)   statistic of interest calculated from n values 
θ(∞)   population parameter of interest  
𝜃𝜃−𝑖𝑖  𝜃𝜃 calculated using the original n simulations barring the ith simulation. 
θ*   bootstrap statistic of interest 
𝜃𝜃𝑗𝑗∗   jth bootstrap statistic of the (unsorted) distribution of θ*  
𝜃𝜃𝑏𝑏
∗,𝑜𝑜   bth bootstrap statistic of the (ascending) ordered distribution of θ* 

Wθ  normalised width of CIθ 
∀𝑘𝑘  for all agents k = 1 to m 
 
Subscripts 
 
l  lower CI limit 
u  upper CI limit   
 
1 Introduction 
 
A stochastic approach to evacuation simulation [1, 2] is employed in many models [3-8] to reflect 
uncertainty in human behaviour [9].  If an (experimental or simulated) evacuation trial is repeated using 
the same population and the same initial conditions, it is possible that the evacuation will progress 
differently and may result in differences in total evacuation time (TET) or other statistics of interest.  In 
addition to that uncertainty there is also uncertainty related to the initial conditions where the 
distribution of agents (e.g. number of agents and starting locations) and their attributes (e.g. walking 
speeds and response times) may also cause differences between trials.  These uncertainties can be 
simulated by randomly sampling suitable distribution functions for those attributes.  A simple random 
approach is adopted in Monte Carlo egress simulation although other possible sampling methods could 
be utilised [10].       
 
Many simulations are needed to represent the range of potential behaviours which may be expected for 
a particular scenario.  However, this is set against the potentially significant computational cost of 
running a stochastic egress model which an end user would wish to minimise.  Thus, a major issue 
facing stochastic egress model users is determining when enough simulations have been performed to 
give an accurate representation of the modelled scenario and the statistics of interest.  In evacuation 
modelling literature [11-20] that examines this issue there are broadly two approaches suggested.  The 
first approach is based on running a fixed number of simulations.  The second approach is based on 
some dynamic assessment of the behaviour of the statistic(s) of interest.   
 
When the first approach is used, a wide range for the required number of simulations has been 
suggested.  For high speed train evacuation analysis, Li et al. [11] suggested that 10 simulations would 
suffice provided certain conditions were met.  For large passenger ship analysis, the International 
Maritime Organisation (IMO) recommends that a minimum of 500 simulations should be used to 
determine the 95th percentile TET [12].  They additionally stated that a lower number of simulations 
would be allowable provided a suitable convergence methodology was followed [13].  For aircraft 
evacuation analysis, Galea [14] noted that 1000 simulations could typically be utilised to determine the 
95th percentile TET.  Meacham et al. [15] utilised 2000 simulations to construct a Cumulative Density 
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Function (CDF) of the TETs for building scenarios.  There is no consensus on the number of simulations 
used and there is generally little justification for the number of simulations proposed.  The disadvantage 
of this approach is that it is unknown whether the number of simulations is sufficient to represent the 
range of behaviours that may exist.  Furthermore, the number of simulations performed could be 
excessive, for the intended purpose, which could limit the number of potential scenarios or alternative 
designs that could be explored.  This approach does have the advantage of requiring little additional 
modeller expertise but is also limited as some models may be very sensitive to the chosen number of 
simulations [16].   
 
In the second approach, additional egress simulations are performed until some indicators of 
convergence have been satisfied.  With this approach, the number of simulations performed is unknown 
a priori.  The eventual number of simulations performed is based on the behaviour of the statistics of 
interest and should ensure that sufficient, and not excessive, computation being performed.  Compared 
to running an arbitrary number of simulations this requires some expertise in determining suitable 
convergence tolerances for the scenario being run.  Two types of indicators have been proposed, the 
first type is based on confidence intervals (CIs) [21, 22] and the second type is based on examining 
successive differences in the statistics of interest with additional simulation.    
 
CI based techniques have been successively used in egress modelling [13, 20], and various other fields 
of study [23-28], to define convergence.  For large passenger ship analysis, Grandison et al. [13] 
calculate the CI of the 95th percentile TET, using a binomial distribution, and incrementally test, with 
additional simulations, the limits of the CI against a pass/fail criterion [12].  This technique was found 
to accurately determine whether a ship design had passed or failed, whilst minimising the computational 
effort required.  Furthermore, they noted that this technique could be adapted to determine convergence 
based on a required precision and that the methodology could be extended to other suitable statistics of 
interest and types of egress analysis.  A disadvantage of this method is that it can be difficult to 
determine CIs for some statistics.  However, an advantage of this scheme is that the convergence 
indicators are directly linked to the precision of the statistics of interest.   
 
A successive difference technique has been proposed by Ronchi et al. [17] and Ronchi & Nilsson [18].  
Ronchi et al. [17] define convergence (i.e. sufficient repeat simulations have been performed) when 
their five statistics of interest (MT, SD and three functional analysis measures (FAMs) of the  average 
total egress curve (AC)) were all changing by less than their specified tolerances per simulation over a 
set number of simulations.  It was suggested that these tolerances could be based on the uncertainty of 
the available safe egress time from a fire modelling analysis.  Additionally, Lovreglio et al. [19] 
proposed that those tolerances could be based on values determined from a set of repeated evacuation 
experiments when used to validate a stochastic egress model.  An advantage of the successive difference 
approach is the simplicity in calculating the convergence indicators.  However, Ronchi et al. noted that 
‘The first limitation of the method is that it uses the concepts of convergence in mean and the central 
limit theorem rather than a statistical estimation of the expected values...’.  This means that their 
convergence indicators do not directly relate to standard errors or CIs of the statistics of interest.   
 
From the previous examples, the parameter of most interest is a representative TET.  However, an 
analysis based solely on the TET may miss important details of the evacuation [16-20, 29], e.g., a set 
of egress trials could have similar representative TETs, but the individual evacuation dynamics could 
be very different.  A more detailed analysis of the evacuation can be performed by additionally 
examining the exit time of certain percentages of the agents [18, 20].  However, an even greater level 
of detail can be achieved by examining the entire agent egress curve (an ordered vector of the individual 
agent’s exit time) via FAMs [16, 17, 19, 29].  Furthermore, egress curves are a typical output from 
many evacuation models.  The convergence behaviour of the AC was used to represent behavioural 
uncertainty, the uncertainty associated with the stochastic nature of human behaviour, by Ronchi et al.  
 
CIs have been demonstrated to accurately and efficiently determine convergence for statistics of interest 
in egress modelling and other fields of study.  Ronchi et al.’s use of the AC was an important innovation 
in studying egress variability.  It is therefore desirable to extend their original method by applying CIs 
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to the AC, thereby giving a more standard statistical interpretation of behavioural uncertainty.  
However, it is not intuitively obvious how to determine the CIs for this curve and no solution has been 
previously published.  The key contribution of this paper is the development of FAM-based CIs for the 
AC (section 3) with an accurate overall confidence level. This was achieved using the novel application 
of bootstrapping (see section 2.1), FAMs (see section 2.2), and a bisection algorithm (see section 3.1).  
This addresses the first limitation of Ronchi et al.’s method and allows the benefits of the CI approach 
to convergence to be combined with the AC within a common framework.  It is also advantageous to 
use the FAMs, to form the CIs, as they are somewhat familiar to the fire and evacuation research 
communities.  FAMs were introduced to the fire safety field in 1999 [30] and the first reported use for 
evacuation was in 2012 [29].  A further contribution of this paper is the development of a convergence 
scheme.  The convergence scheme is based on the same variables used by Ronchi et al. [17], i.e. AC, 
MT, and SD, but utilises CIs. The CI for the MT is based on the standard t-distribution expression (see 
section 2) and the CI for the SD is obtained using a standard application of bootstrapping (see section 
2.1.1).  This convergence scheme will efficiently determine when all the statistics of interest have 
reached their required statistical precisions.  Utilising convergence of the AC helps to ensure that 
variability, between simulations, which is not expressed by examining TETs alone, is also captured. 
 
The CIs and the convergence scheme are tested and verified using a simple theoretical model.  Apart 
from demonstrating the correctness of the methods, that work also feeds into a discussion on how to 
determine appropriate tolerances for the FAM-based CIs of AC. 
 
2 Statistical and mathematical background 
    
This section provides a brief background on the necessary terminology and methods used in this paper. 
Initially, some standard statistical terminology will be described; this initial section can be skipped over 
by readers with a grounding in statistics.  This is followed by an overview of “bootstrapping” with some 
worked examples (section 2.1).  Finally, a summary of functional analysis, used to compare egress 
curves, is given (section 2.2).     
 
A sample statistic is the value of an estimator based on a sample from the population of results.  A 
population parameter can be considered as the value of an estimator based on the entire population of 
results.  Examples of estimators include the mean TET (MT) (eq. 1), the 95th percentile TET, and the 
standard deviation (SD) of TET.  Ideally, one would want to know the parameter but practically it is 
(generally) only possible to obtain the statistic of a sample of results and a range of potential values for 
the parameter.  The sample statistic would display variability depending on the nature of the sample 
obtained although the sample statistic tends to the value of the parameter as the size of the sample 
increases (Law of Large Numbers [22]).  
 

𝑀𝑀𝑀𝑀 = ∑ 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑛𝑛

           (1) 
  
The “expected value” of a sample statistic is the mean value of a series of infinitely repeated 
independent instances of that sample statistic with the same sample size [22].  This will equate to the 
corresponding population parameter if the estimator is unbiased.  This is the case for many estimators 
although the sample SD is slightly biased.  Whilst the standard variance bias correction has been applied 
(eq. 2), i.e. dividing by (n – 1) rather than n, there is still some residual bias.  It is reasonable to neglect 
this bias given the large scale of the variability associated with the SD compared to the small size of the 
bias and the complexity of calculating that bias.  The small bias that does exist also diminishes as the 
sample size increases. 

𝑆𝑆𝑆𝑆 = �∑ (𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖−𝑀𝑀𝑇𝑇)2𝑛𝑛
𝑖𝑖=1

(𝑛𝑛−1)          (2) 
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Fig. 1 - Example 95% Cls for population parameter MT(∞) for 50 different samples. Forty-seven (solid) 
CIs contain the population parameter and three (dashed) CIs do not contain the population parameter. 

Although it is generally impossible to exactly know the population parameter it is possible to estimate 
a range of possible values for the population parameter based on the sample of results.  This is a CI, 
which will differ between different samples but will frequently include the parameter of interest.  
Ideally, this frequency is determined by the confidence level (CL).  However, the actual frequency, 
known as the coverage probability, may differ in practice. A set of CIs for 50 different samples is 
depicted in Fig. 1.  This is illustrated for a 95% CL in Fig. 2 where the vast majority, 47 (~95%), of the 
sample CIs contain MT(∞) but 3 (~5%) of the sample CIs do not.  The superscript brackets indicate the 
number of samples used to calculate the statistic, when the number is ∞ the statistic is equivalent to the 
population parameter.  In general, only a single sample of results will be generated, although that single 
sample could contain hundreds of simulations, so only one CI will be generated per statistic of interest. 
  
The calculation of the CI for certain parameters is straightforward due to the availability of standard 
expressions.  For the MT, the CI with a 100(1-α)% CL can be calculated using eq. 3 where T-1(p, df) is 
the inverse t-distribution for percentile p with df degrees of freedom [22].  This expression assumes that 
the population SD of the TETs is unknown, which is generally the case in egress models/experiments, 
and is estimated with the sample SD.  If the original data is normally distributed, then the expression is 
valid for n > 1.  For non-normally distributed data, the expression is generally valid due to the central 
limit theorem for a larger n but is dependent on the nature of the original data distribution.  Some sources 
advocate a minimum n of 30 although for skewed data a minimum n of 40 [31] has been suggested.  It 
is further assumed that the data is independent and identically distributed.  

 

100(1 − 𝛼𝛼)% 𝐶𝐶𝐼𝐼 = ��𝑀𝑀𝑀𝑀(𝑛𝑛)+𝑀𝑀−1 �𝛼𝛼
2

,𝑛𝑛 − 1� × 𝑆𝑆𝑆𝑆(𝑛𝑛)

√𝑛𝑛
� , �𝑀𝑀𝑀𝑀(𝑛𝑛)+𝑀𝑀−1 �1 − 𝛼𝛼

2
,𝑛𝑛 − 1� × 𝑆𝑆𝑆𝑆(𝑛𝑛)

√𝑛𝑛
��             (3) 

 
In eq. 3, the CI is quoted as a lower limit and an upper limit of the population parameter value, e.g. 
150.0 with a 95% CI [135.0, 165.0].  The CI could also be quoted as the difference between the limits 
and the sample statistic, e.g. 150.0 with a 95% CI [-15.0, +15.0].  Those differences could also be quoted 
as percentages, e.g. 150.0 with a 95% CI [-10%, +10%].  If the CI is symmetric then it can be expressed 
in shortened form with a plus-minus limit, e.g. 150 ± 10% (95% CI). 
 
A CI is a trade-off between its width, which should ideally be as narrow as possible, and its CL, which 
should ideally be as high as possible.   Ideally, one would want a 100% confidence, but this leads to an 
infinitely wide CI which is not very useful.  For a statistic calculated from a fixed number of data points, 
the CI width will increase with increasing CL.  Having a very high CL will result in a very wide CI 
whilst a “low” CL with a correspondingly narrow CI is also unhelpful as there is little confidence that 
the CI contains the parameter of interest.  A 95% CL is typically chosen as it is very likely to contain 
the population parameter whilst maintaining a relatively narrow width.  When calculating the CIMT (eq. 
3) with varying CLs (see Table 1), a 99% CL gains an extra 4% in confidence but requires a 33% 
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increase in CI width compared to a 95% CL.  A higher 99.9% CL gains an extra 4.9% in confidence 
but requires a 71% increase in CI width compared to a 95% CL.   Using a lower 68% CL (equivalent to 
2 × standard error widths) reduces the CI width by 49% but there is a reduction in confidence of 27% 
compared to a 95% CL.  From eq. 3, the width (WMT) of the CIMT with a fixed CL will also tend to 
narrow with increasing n (see eq. 4). 
 

𝑊𝑊MT(𝑛𝑛) ∝ 1
√𝑛𝑛

                                                                              (4) 
 
Table 1 - Calculation of the relative widths of CIs for the mean value (eq. 3) with increasing CL for a 
sample size of 100. 

CL 68% 95% 99% 99.9% 100% 
CI width relative to 2 × standard error 1 1.98 2.63 3.39 ∞ 

 
In order to further discuss CIs, it is necessary to describe sampling distributions.  A sampling 
distribution is the probability distribution of a statistic for a fixed sample size for all the possible samples 
that could be selected [22].  For example, a set of five TETs are obtained from repeated trials and the 
statistic of interest is the mean of those TETs.  If this set of five trials is repeated, a further set of TETs 
can be obtained, and another mean of those values is calculated.  Each time the process is repeated a 
different estimate for the mean value will be obtained, see Table 2.    
 
Table 2 - An example set of samples taken from a distribution.  Each sample consists of five values.  

Sample Sample TETs Mean TET 
1 133, 127, 148, 140, 177 145 
2 161, 124, 159, 145, 155 148.8 
3 173, 147, 167, 134, 178 159.8 
… … … 
n → ∞ 129, 139, 172, 113, 116 133.8 

 
If this could be repeated a very large number of times, then it would be possible to produce a distribution 
of the sample mean values, i.e. the sampling distribution.  Assuming the TETs are normally distributed 
with an unknown population SD then it has been shown theoretically that the sampling distribution for 
the example can be represented by a t-distribution [22].  The mean of the sampling distribution is equal 
to the expected value and the population mean of the original TET distribution.  From the central limit 
theorem, the standard deviation of the sampling distribution, also known as the standard error, is the 
standard deviation of the original TET distribution divided by √n.  
 
From this sampling distribution, the interval that contains the innermost 100(1 – α)% of sample means 
can be described by eq. 5 (see Fig. 2).  
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Fig. 2 - Example sampling distribution with a mean of MT(∞) and standard deviation of SD/√n. The 
interval containing the central 100(1-α)% sample means is depicted. 

 
𝑃𝑃 ��𝑀𝑀𝑀𝑀(∞)+𝑀𝑀−1 �𝛼𝛼

2
,𝑛𝑛 − 1� × 𝑆𝑆𝑆𝑆

√𝑛𝑛
� < 𝑀𝑀𝑀𝑀(𝑛𝑛) < �𝑀𝑀𝑀𝑀(∞)+𝑀𝑀−1 �1 − 𝛼𝛼

2
,𝑛𝑛 − 1� × 𝑆𝑆𝑆𝑆

√𝑛𝑛
�� = 1 − 𝛼𝛼   (5) 

 
Equation 5 is not particularly useful as in general the value of the MT(n) is known and the MT(∞) is 
unknown.  However, eq. 5 can be algebraically recast [22] to make the MT(∞) the subject of the 
inequality leading to the probability that the MT(∞) lies within a CI with a CL of 100(1 – α)% (eq. 6).  
This is a probabilistic statement of the CI given in eq. 3.  
 
𝑃𝑃 ��𝑀𝑀𝑀𝑀(𝑛𝑛)+𝑀𝑀−1 �𝛼𝛼

2
,𝑛𝑛 − 1� × 𝑆𝑆𝑆𝑆

√𝑛𝑛
� < 𝑀𝑀𝑀𝑀(∞) < �𝑀𝑀𝑀𝑀(𝑛𝑛)+𝑀𝑀−1 �1 − 𝛼𝛼

2
, 𝑛𝑛 − 1� × 𝑆𝑆𝑆𝑆

√𝑛𝑛
�� = 1 − 𝛼𝛼      (6) 

 
For some statistics, such as the mean value (eq. 3) and the 95th percentile value [13], a theoretical 
solution exists for determining the CI.  However, for many statistics a theoretical solution may not exist 
or is difficult to derive.  For those cases, it may be possible to use bootstrapping to approximate the 
sampling distribution and hence derive the CI. 
 
2.1 Bootstrapping concepts 
 
Bootstrapping [32-36] is a widely used computational statistical technique.  The premise of 
bootstrapping is that inference about a population from sample data can be modelled by resampling the 
sample data and performing inference about a sample from resampled data.  Generally, the population 
distribution is unknown and only the sample of data is known.  Bootstrapping uses this sample of data 
as an approximation to the true population distribution.  The bootstrapping technique is applicable to 
many estimators although there are known difficulties associated with the modal value [37].  Care is 
also required when applying the technique to heavy-tailed distributions particularly those with infinite 
variance [38, 39]; this is not anticipated to be a major issue in the egress modelling context.   
 
A simple worked example, to determine the CI of the mean, follows.  In practice, bootstrapping is not 
generally used to determine the CI of a mean value due to the wide applicability of eq. 3.  The primary 
intent of this example is to demonstrate the methodology.  A set of n values are sampled from some 
unknown distribution and leads to the set of values in the “Original” row of Table 3.  In this example, 
n is set to five.  This data could be expensive to obtain, e.g. these could be TETs from a set of egress 
trials.  The mean of the original sample is 139.5.  The original sample is now resampled to create a 
bootstrap sample, which is a very inexpensive process.  Each value in the original sample has the same, 
1/n, chance of being selected.  Values are randomly copied from the original sample n times to create a 
bootstrap sample (see Table 3).  This implies that a particular value from the original sample may be 
represented once, more than once, or not at all in a bootstrap sample.  Furthermore, only values from 
the original sample can be represented in the bootstrap sample.  For example, it can be seen for bootstrap 
1 that 99.7 is represented twice and 188.5 is not represented at all and the other values are represented 
once each.  When n values have been selected, the mean value of the bootstrap sample is calculated. 
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This process is repeated B times, where B >> n, to create a bootstrap sampling distribution of the mean 
(cf. Table 2).  In this example B is set to 19.  This is a far lower number of bootstrap samples than would 
be used in practice but is used here for demonstration purposes.  
 
Table 3 - A worked example of bootstrap samples based on an original sample of five TETs. Only 
select bootstraps are listed for compactness.  

Sample Sample TETs Mean TET 
Original 134.0, 188.5, 149.5, 99.7, 126.1 139.5 

Bootstrap 1 126.1, 149.5, 99.7, 99.7, 134.0 121.8 
Bootstrap 2 188.5, 188.5, 149.5, 99.7, 99.7 145.2 

… … … 
Bootstrap 6 126.1, 188.5, 188.5, 188.5, 134.0 165.1 

…  … … 
Bootstrap 10 126.1, 188.5, 188.5, 188.5, 188.5 176.0 

… … … 
Bootstrap 15 126.1, 134.0, 99.7, 126.1, 99.7 117.1 

… … … 
Bootstrap 19 149.5, 149.5, 134.0, 126.1, 126.1 137.0 

 
The CI, with a 90% CL (the maximum CL that can be represented with 19 bootstraps), is obtained by 
taking the percentile values that bound the innermost 90% of the sampling distribution which are the 
5th and 95th percentile values.  The bth bootstrap index, of the vector of ascending ordered bootstrap 
means, representing the (100p)th percentile is given by eq. 7.   
 

𝑏𝑏 = (𝐵𝐵 + 1)𝑝𝑝                          (7) 
 
This equates to the 1st and 19th values of the ordered bootstrap sampling distribution of the mean (see 
Table 4).  The bootstrap 90% CI of the mean is [117.1, 176.0].  Using the conventional calculation (eq. 
3) the 90% CI is [108.3, 170.8].  The bootstrap CI is not particularly close to the standard approach 
although is not unreasonable given the limited sample size and small number of bootstraps.  The 
accuracy of the method significantly improves as n and B increase, and as more sophisticated methods 
are used to select the required percentiles from the bootstrap sampling distribution.   
 
Table 4 - The lower and upper ends of the ordered bootstrap sampling distribution of the mean for the 
worked example. 

Percentile  0  5 10 … 90 95 100 
Ordered Index (eq. 6) n/a 1 2 … 18 19 n/a 
Original Index n/a 15 1 … 6 10 n/a 
Mean value -∞ 117.1 121.8 … 165.1 176.0 ∞ 

 
The above worked example was repeated using a sample size of 100 values and 1999 bootstraps.  In 
this case the mean of the sample was 156.5.  The bootstrap 90% CI, [151.1, 161.5], gives a good 
approximation to the conventionally determined 90% CI (eq. 3), [151.4, 161.6], in this instance.  The 
bootstrap sampling distribution of the mean for this case is presented as a histogram in Fig. 3.  The 
bootstrap mean sampling distribution is similar in shape to a normal distribution and approximates the 
true sampling distribution.       
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Fig. 3 – Histogram of 1999 bootstrap mean TETs for the worked example. The sample size was 100. 

The simplest approach for selecting a centred CI with a 100(1 - α)% confidence level is to assume it is 
bounded by the 100(α/2)th and 100(1 – α/2)th percentile bootstrap samples.  This is the approach used 
for the worked example above.  However, this simple percentile approach has two notable problems.  
Firstly, it tends to give narrower CIs than expected when “small” sample sizes were used.  Secondly, it 
does not account for skew and bias that may exist in the samples.   
 
For the first problem, Hesterberg proposed a correction based on the normal distribution and the t-
distribution [40].  This is based on correcting the percentile limits of the bootstrap sampling distribution 
of the mean.  The “corrected” (100�́�𝑝)th percentile based on the original (100p)th percentile of sample 
size n is given by eq. 8, where Φ(z) is the CDF of the standard normal distribution function.  This 
correction always tends to make the CI more conservative but could result in an over-correction or 
insufficient correction of the required percentile dependent on the actual, but unknown, form of the 
sampling distribution.  In the event of an over-correction, the CI will be wider than it should be but 
represents a more conservative estimate.  If the CI is insufficiently corrected, then at least some 
correction is applied compared to no correction thus bringing the coverage probability of the CI closer 
to the nominal confidence level.   
 

�́�𝑝(𝑝𝑝,𝑛𝑛) = Φ�� 𝑛𝑛
𝑛𝑛−1

T−1(𝑝𝑝,𝑛𝑛 − 1)�                                 (8) 

 
Table 5 illustrates the correction (eq. 8) applied to the 5th percentile for various sample sizes.  The effect 
of the correction is significant for small n but diminishes as n increases.   
 
Table 5 - The value of the corrected 5th percentile (eq. 8) based on sample size n.  

n 10 20 30 40 100 1000 
100�́�𝑝  2.6 3.8 4.2 4.4 4.8 5.0 

 
For the second problem associated with possible skew and bias in the samples, there are a number of 
advanced bootstrapping methods for determining appropriate limits for the CI, including the Bias 
Corrected and accelerated (BCa) method [32, 33], ABC, studentized, and double bootstrap [35].  The 
BCa bootstrap was selected due to its wide range of applicability [41], its relatively straightforward 
implementation, and its comparatively low computational requirements.   
 
The BCa corrected 100(α/2)th percentile bootstrap index bl and 100(1 – α/2)th percentile bootstrap index 
bu, incorporating the small sample size correction (eq. 8), are given by eq. 9 and eq. 10 respectively, 
where ⌊𝑥𝑥⌋ is the integer floor and ⌈𝑥𝑥⌉ is the integer ceiling of x.  Equation 11 is the bias correction factor 
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where Φ-1 is the inverse CDF of the normal distribution, θ is the calculated statistic, and 𝜃𝜃𝑗𝑗∗ is the jth 
bootstrap of the distribution of θ*.  Equation 13 is the acceleration factor derived from the original 
sample data.  The CIθ is [𝜃𝜃𝑏𝑏𝑙𝑙

∗,𝑜𝑜, 𝜃𝜃𝑏𝑏𝑢𝑢
∗,𝑜𝑜] where 𝜃𝜃𝑏𝑏

∗,𝑜𝑜 is the bth bootstrap of the ordered distribution of θ*.  
 

𝑏𝑏l = �(𝐵𝐵 + 1)�́�𝑝 �Φ�𝑧𝑧0 +
𝑧𝑧0+Φ−1�𝛼𝛼

2
�

1−𝑎𝑎𝑎𝑎𝑎𝑎×�𝑧𝑧0+Φ−1�𝛼𝛼
2
��
� ,𝑛𝑛��   (9) 

 

𝑏𝑏u = �(𝐵𝐵 + 1)�́�𝑝 �Φ�𝑧𝑧0 +
𝑧𝑧0+Φ−1�1−

𝛼𝛼
2
�

1−𝑎𝑎𝑎𝑎𝑎𝑎×�𝑧𝑧0+Φ−1�1−
𝛼𝛼
2
��
� ,𝑛𝑛��                             (10) 

 
𝑧𝑧0 = Φ−1�∑ 𝑓𝑓�𝜃𝜃𝑗𝑗∗,𝜃𝜃�𝐵𝐵

𝑗𝑗=1 𝐵𝐵⁄ �                                                (11) 
 

𝑓𝑓�𝜃𝜃𝑗𝑗∗,𝜃𝜃� =  �

1 𝑖𝑖𝑓𝑓 𝜃𝜃𝑗𝑗∗ < 𝜃𝜃
1
2

 𝑖𝑖𝑓𝑓 𝜃𝜃𝑗𝑗∗ = 𝜃𝜃
 0 𝑖𝑖𝑓𝑓 𝜃𝜃𝑗𝑗∗  > 𝜃𝜃

                                                       (12) 

 

𝑎𝑎𝑎𝑎𝑎𝑎 =
∑ �𝜃𝜃�(∙)−𝜃𝜃−𝑖𝑖�

3𝑛𝑛
𝑖𝑖=1

6�∑ �𝜃𝜃�(∙)−𝜃𝜃−𝑖𝑖�
2𝑛𝑛

𝑖𝑖=1 �
1.5                            (13) 

 
𝜃𝜃−𝑖𝑖 is 𝜃𝜃 calculated using the original n simulations performed barring the ith simulation.   
 

�̅�𝜃(∙) = ∑ 𝜃𝜃−𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑛𝑛

                                                                 (14) 
 
2.1.1 Bootstrapping the CI for the SD 
 
If the TETs are normally distributed, the CISD can be determined using a chi-squared distribution with 
n-1 degrees of freedom [22].  However, in general the TETs will not be normally distributed and those 
theoretically derived CIs could be inappropriate.  The CISD is therefore determined using bootstrapping. 
 
For n simulations there are n TETs that are used to compute SD(n).  A single bootstrap SD* can be 
derived by randomly resampling, with replacement, those n TETs n times and calculating the SD of that 
bootstrap sample.  This process is repeated B times, where B >> n, and leads to a bootstrap sampling 
distribution of the SD*.  The CI of this ordered bootstrap sampling distribution of SD*,o approximates 
the CI for the true sampling distribution of SD(n).  The BCa method is used to obtain the upper and lower 
limits of the CI. 
 
The specific equations for calculating the BCa limits for the SD are obtained by substituting SD into 
eq. 9 to eq. 14 leading to eq. 15 to eq. 21. 
  

𝑧𝑧0,SD = Φ−1�∑ 𝑓𝑓�𝑆𝑆𝑆𝑆𝑗𝑗∗,𝑆𝑆𝑆𝑆(𝑛𝑛)�𝐵𝐵
𝑗𝑗=1 𝐵𝐵⁄ �                                            (15) 

                                                                                                        

𝑎𝑎𝑎𝑎𝑎𝑎SD =
∑ �𝑆𝑆𝑆𝑆����(∙)−𝑆𝑆𝑆𝑆−𝑖𝑖�

3𝑛𝑛
𝑖𝑖=1

6�∑ �𝑆𝑆𝑆𝑆����(∙)−𝑆𝑆𝑆𝑆−𝑖𝑖�
2𝑛𝑛

𝑖𝑖=1 �
1.5                                              (16) 

 

𝑆𝑆𝑆𝑆−𝑖𝑖 = �∑ (𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘−𝑀𝑀𝑇𝑇−𝑖𝑖)2𝑖𝑖−1
𝑘𝑘=1 +∑ (𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘−𝑀𝑀𝑇𝑇−𝑖𝑖)2𝑛𝑛

𝑘𝑘=𝑖𝑖+1
𝑛𝑛−2

       (17) 
 

𝑀𝑀𝑀𝑀−𝑖𝑖 = ∑ 𝑇𝑇𝑇𝑇𝑇𝑇𝑙𝑙𝑖𝑖−1
𝑙𝑙=1 +∑ 𝑇𝑇𝑇𝑇𝑇𝑇𝑙𝑙𝑛𝑛

𝑙𝑙=𝑖𝑖+1
𝑛𝑛−1

                                 (18) 
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𝑆𝑆𝑆𝑆����(∙) = ∑ 𝑆𝑆𝑆𝑆−𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑛𝑛

                                                      (19) 
 

𝑏𝑏l,SD = �(𝐵𝐵 + 1)�́�𝑝 �Φ�𝑧𝑧0,SD +
𝑧𝑧0,SD+Φ−1�𝛼𝛼

2
�

1−𝑎𝑎𝑎𝑎𝑎𝑎SD×�𝑧𝑧0,𝑆𝑆𝑆𝑆+Φ−1�𝛼𝛼
2
��
� ,𝑛𝑛��   (20) 

 

𝑏𝑏u,SD = �(𝐵𝐵 + 1)�́�𝑝 �Φ�𝑧𝑧0,SD +
𝑧𝑧0,SD+Φ−1�1−

𝛼𝛼
2
�

1−𝑎𝑎𝑎𝑎𝑎𝑎SD×�𝑧𝑧0,SD+Φ−1�1−
𝛼𝛼
2
��
� ,𝑛𝑛��                                (21) 

 
 
The CISD is [𝑆𝑆𝑆𝑆𝑏𝑏l,SD

∗,𝑜𝑜 , 𝑆𝑆𝑆𝑆𝑏𝑏u,SD
∗,𝑜𝑜 ] where the bootstrap index bl,SD is given by eq. 20 and bu,SD is given by eq. 

21.  
 
2.2 Functional Analysis 
 
The final area of mathematics used in this paper to define CIs for the AC is functional analysis, a branch 
of mathematics used to compare vectors or times series data.  An egress curve is a vector of agent egress 
times.  Unlike a scalar quantity such as the TET where the difference between two TETs is merely a 
difference in magnitude, it is less obvious how to express the difference between vectors.  The 
difference between the curves can be expressed using a set of FAMs.   
 
The FAMs compare one curve (a) against another curve (b), using different criteria, that returns a scaler 
value that meaningfully represents the similarity (or difference) between the two curves.  The egress 
curve a = {a1, ak,…., am}, where ak is the time of the kth agent to exit and am is the exit time of the last 
(mth) agent to exit; egress curve b is similarly defined.  The three FAMs used here are the Euclidean 
Relative Distance (ERD), the Euclidean Projection Coefficient (EPC), and the Secant Cosine (SC).  
These FAMs have been previously described in fire [30] and evacuation contexts [16,17,19,29] so only 
concise details, suitable for egress curves, are given here. 
 
The ERD (eq. 22) represents the “relative distance” between two curves and will be zero when the 
curves are identical and greater than zero if the curves are different.  ERD varies between zero and 
infinity with values nearer to zero implying a closer “distance” between the curves.  In the appendix it 
is shown that the ERD of two egress curves can be compared to normalised absolute difference (NAD), 
i.e. |TETa – TETb| ÷ TETb, between two TETs of those egress curves.  If the ERD is greater than the 
NAD, then it indicates there is more relative difference in the egress curves compared to the TETs; this 
suggests there may be more variability in an earlier phase of the evacuation.  If the ERD is less than the 
NAD, then there is less relative difference in the curve compared to the TETs; this suggests that there 
may be more variability at the end of the evacuation.    
 

𝐸𝐸𝐸𝐸𝑆𝑆(a,b) = �∑ (𝑎𝑎𝑘𝑘−𝑏𝑏𝑘𝑘)2𝑚𝑚
𝑘𝑘=1
∑ 𝑏𝑏𝑘𝑘

2𝑚𝑚
𝑘𝑘=1

                                                            (22) 

 
The EPC (eq. 23) is the value needed to project one curve onto another curve.  This would be one when 
the curves can be exactly “projected” on each other, which will be the case when the curves are the 
same and varies about one when not exactly projected.  EPC varies between zero and infinity, assuming 
ak ≥ 0 and bk ≥ 0 ∀𝑘𝑘, with values nearer to one implying a closer “projection” similarity between the 
curves.   
 

𝐸𝐸𝑃𝑃𝐶𝐶(a,b) = ∑ 𝑎𝑎𝑘𝑘𝑏𝑏𝑘𝑘𝑚𝑚
𝑘𝑘=1
∑ 𝑏𝑏𝑘𝑘

2𝑚𝑚
𝑘𝑘=1

                                                 (23) 

 
The SC (eq. 24, where Δxk-s = xk - xk-s and s is the step-size ≥ 1) compares the “shape” of two curves.  
The step-size s is used to vary the smoothing of the curve, where a step size of one implies no smoothing 
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and the smoothing effect increases as s increases.  SC equates to one when the curves have the same 
“shape”, which will be the case when the curves are the same.  SC varies between zero and one when 
the egress curves have different “shapes” with values nearer to one implying a closer similarity in shape.  
Egress curves monotonically increase, thus Δak-s ≥ 0 and Δbk-s ≥ 0 ∀𝑘𝑘, implying that SC(a, b) ≥ 0.  The 
Cauchy–Schwarz [42] inequality (eq. 25) implies that SC(a, b) ≤ 1.     
 

𝑆𝑆𝐶𝐶(a,b) = ∑ ∆𝑎𝑎𝑘𝑘−𝑠𝑠∆𝑏𝑏𝑘𝑘−𝑠𝑠𝑚𝑚
𝑘𝑘=1+𝑠𝑠

�∑ (∆𝑎𝑎𝑖𝑖−𝑠𝑠)2𝑚𝑚
𝑘𝑘=1+𝑠𝑠 ∑ (∆𝑏𝑏𝑘𝑘−𝑠𝑠)2𝑚𝑚

𝑘𝑘=1+𝑠𝑠

                                                (24) 

 
(∑ ∆𝑎𝑎𝑘𝑘−𝑠𝑠∆𝑏𝑏𝑘𝑘−𝑠𝑠𝑚𝑚

𝑘𝑘=1+𝑠𝑠 )2 ≤ ∑ (∆𝑎𝑎𝑘𝑘−𝑠𝑠)2𝑚𝑚
𝑘𝑘=1+𝑠𝑠 ∑ (∆𝑏𝑏𝑘𝑘−𝑠𝑠)2𝑚𝑚

𝑘𝑘=1+𝑠𝑠                                         (25) 
 
3 Development of FAM-based CIs for the AC 
 
The average egress curve AC(n) = {ac1, ack, …, acm} is calculated by averaging all n generated egress 
curves ci (eq. 26 shows the calculation for the kth component of AC(n)) from the simulations performed.  
A bootstrap average curve AC* is derived by randomly resampling, with replacement, those n generated 
curves n times, and then averaging.  This process is repeated B times and leads to a bootstrap sampling 
distribution of the average egress curve.  Unfortunately, it is difficult to directly assign a CI to the 
sampling distribution of curves.  However, it is possible to create proxies that represent the precision of 
the AC indirectly.  This can be achieved by transforming the AC sampling distribution of curves into 
usable sampling distributions of point values, via the FAMs, that can be assigned CIs.  Each 
bootstrapped average curve AC* is compared to the average egress curve AC(n) with the FAMs to create 
sampling distributions of those measures, i.e. ERD*(AC*, AC(n)), EPC*(AC*, AC(n)), and SC*(AC*, 
AC(n)).  This approximates the (generally) unknowable sampling distributions of all possible sample 
average egress curves AC(n) compared to the population (or expected) average egress curve AC(∞) using 
the FAMs, i.e., ERD(AC(n), AC(∞)), EPC(AC(n), AC(∞)), and SC(AC(n), AC(∞)).  The CIs of the FAM-
based sampling distributions represent the precision of the AC.  
 

𝑎𝑎𝑎𝑎𝑘𝑘 = ∑ 𝑎𝑎𝑖𝑖,𝑘𝑘𝑛𝑛
𝑖𝑖=1
𝑛𝑛

                                                                     (26) 
 
The ERD sampling distribution can be represented by a semi-infinite distribution between zero to 
infinity as the ERD values are greater than or equal to zero.  It is anticipated that the distribution would 
be concentrated near zero with the frequency tending to zero as the bootstrapped ERDs tend to infinity.  
When AC(∞) is unknown the best estimate of ERD*(AC(∞), AC(n)) is zero as the best estimate of AC(∞) 
is AC(n).  The 0th percentile of the ERD*,o sampling distribution is zero.  The CI is obtained by using the 
0th and 100(1 - α)th percentiles of the ordered bootstrapped values as the lower and upper limits for a 
confidence level of 100(1 - α)%.  The small sample size correction (eq. 8) is applied to the 100(1 - α)th 
percentile; this is achieved by modelling the bootstrapped ERD measures using a folded normal 
distribution from zero to infinity with the (unfolded and folded) mode at zero.  The corrected 100(1 - 
α)th percentile bootstrap index bERD of the ordered bootstrapped ERD*,o values is given by eq. 27 where 
eq. 28 and eq. 29 map the percentile from the folded distribution to the full distribution and back again. 
The CIERD is [0, 𝐸𝐸𝐸𝐸𝑆𝑆𝑏𝑏ERD

∗,𝑜𝑜 ].  
 

𝑏𝑏ERD(𝛼𝛼) = �(𝐵𝐵 + 1)𝑝𝑝folded��́�𝑝(𝑝𝑝full(1 − 𝛼𝛼),𝑛𝑛)��        (27) 
 

𝑝𝑝full(𝑝𝑝folded) = 𝑝𝑝folded+1
2

                                                             (28) 
 

𝑝𝑝folded(𝑝𝑝full) = 2𝑝𝑝full − 1                                                             (29) 
 
The SC sampling distribution can be represented by a distribution between zero and one where it is 
expected that the values will be concentrated near one and the frequency will tend to zero as the SC 
values tend to zero.  The best estimate of SC(AC(∞), AC(n)) is one and the 100th percentile of the SC 
sampling distribution is one.  The CI, with a confidence level of 100(1 - α)%, is given by the limits of 
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the corrected (100α)th and 100th percentile of the ordered bootstrapped SC*,o measures.  The corrected 
100αth percentile bootstrap index bSC is modelled, in a similar fashion to bERD, using eq. 30 where eq. 
31 and eq. 32 map the percentile from the folded distribution to the full distribution and back again.  
The CISC is [𝑆𝑆𝐶𝐶𝑏𝑏SC

∗,𝑜𝑜 , 1].    
  

𝑏𝑏SC(𝛼𝛼) = �(𝐵𝐵 + 1)𝑝𝑝folded��́�𝑝(𝑝𝑝full(𝛼𝛼),𝑛𝑛)��              (30) 
 

𝑝𝑝full(𝑝𝑝folded) = 𝑝𝑝folded
2

                                                         (31) 
 

𝑝𝑝folded(𝑝𝑝full) = 2𝑝𝑝full                                                         (32) 
 
The EPC sampling distribution will vary between zero and infinity where it is expected that the values 
will be concentrated about one and the frequency tends to zero as EPC tends to either zero or infinity.  
This can be represented by a two-tailed distribution and the CI of the ordered bootstrapped EPC 
measures is calculated using the BCa method (section 2.4).  The best estimate of EPC(AC(∞), AC(n)) is 
one.  The specific equations for calculating the BCa limits for the EPC are obtained by substituting EPC 
into eq. 9 to eq. 14 leading to eq. 33 to eq. 37.  
 

𝑧𝑧0,EPC = Φ−1�∑ 𝑓𝑓�𝐸𝐸𝑃𝑃𝐶𝐶�AC𝑗𝑗∗, AC(𝑛𝑛)�, 1�𝐵𝐵
𝑗𝑗=1 𝐵𝐵⁄ �                                (33) 

 

𝑎𝑎𝑎𝑎𝑎𝑎EPC =
∑ �𝑇𝑇𝐸𝐸𝐸𝐸������(∙)−𝑇𝑇𝐸𝐸𝐸𝐸�AC−𝑖𝑖

(𝑛𝑛),AC(𝑛𝑛)��
3

𝑛𝑛
𝑖𝑖=1

6�∑ �𝑇𝑇𝐸𝐸𝐸𝐸������(∙)−𝑇𝑇𝐸𝐸𝐸𝐸�AC−𝑖𝑖
(𝑛𝑛),AC(𝑛𝑛)��

2
𝑛𝑛
𝑖𝑖=1 �

1.5                            (34) 

 
Where AC−𝑖𝑖

(𝑛𝑛) is an average egress curve calculated using the original egress curves barring the egress 
curve from the ith simulation.  
 

𝐸𝐸𝑃𝑃𝐶𝐶������(∙) = ∑ 𝑇𝑇𝐸𝐸𝐸𝐸�AC−𝑖𝑖
𝑛𝑛 ,AC𝑛𝑛�𝑛𝑛

𝑖𝑖=1
𝑛𝑛

                                                 (35) 
 

𝑏𝑏l,EPC(𝛼𝛼) = �(𝐵𝐵 + 1)�́�𝑝 �Φ�𝑧𝑧0,EPC +
𝑧𝑧0,EPC+Φ−1�𝛼𝛼

2
�

1−𝑎𝑎𝑎𝑎𝑎𝑎EPC×�𝑧𝑧0,EPC+Φ−1�𝛼𝛼
2
��
� ,𝑛𝑛��                 (36) 

 

𝑏𝑏u,EPC(𝛼𝛼) = �(𝐵𝐵 + 1)�́�𝑝 �Φ�𝑧𝑧0,EPC +
𝑧𝑧0,EPC+Φ−1�1−

𝛼𝛼
2
�

1−𝑎𝑎𝑎𝑎𝑎𝑎EPC×�𝑧𝑧0,EPC+Φ−1�1−
𝛼𝛼
2
��
� ,𝑛𝑛��                (37) 

 
The CIEPC is given by [𝐸𝐸𝑃𝑃𝐶𝐶𝑏𝑏l,EPC

∗,𝑜𝑜 , 𝐸𝐸𝑃𝑃𝐶𝐶𝑏𝑏u,EPC
∗,𝑜𝑜 ] where bl,EPC and bu,EPC are given by eq. 36 and eq. 37 

respectively. 
 
3.1 Overall confidence level for average egress curve 
 
The precision of the AC is represented by three FAM-based CIs.  Each of these CIs has an individual 
CL of 100(1 - α)%.  These three CIs can be considered to form a triple-CI that has a more complex 
coverage probability than a single CI as it is possible that the AC(∞) may lie within zero, one, two, or 
three of the  CIs (see Fig. 4).   
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Fig. 4 Three potential triple-CI coverage probabilities where the individual ERD, EPC, and SC CLs are 
95%.  The value outside of the circles represents the case when the AC(∞) does not lie in any CI.  The 
left-hand case is when the overall CL, P(ERD ∩ EPC ∩ SC), is equivalent to the individual CLs. The 
middle case is a mixture of CI occupancies.  The right-hand case is where the overall CL is the minimum 
possible value.  

The overall confidence level is equivalent to P(ERD ∩ EPC ∩ SC), i.e. all FAM-based CIs are 
simultaneously satisfied, and is likely to be less than the individual CL.  Although it is easy to control 
the individual CLs, what is sometimes required is the ability to set the overall CL.  This is a well-known 
problem with multiple CIs and could be addressed by applying the Bonferroni correction to the 
individual CIs [43].  If the overall CL is 100(1-αoverall)% then the confidence level required for each of 
the individual CIs is given be eq. 38 where NCI is the number of CIs (three for the average egress curve).   
 

𝐶𝐶𝐶𝐶Bonferroni = 100(1− 𝛼𝛼Bonferroni)% = 100 �1 − 𝛼𝛼overall
𝑁𝑁CI

�%                      (38) 
 
However, this leads to a conservative estimate of the individual CLs, as the correction assumes the 
worst-case multi-CI probability coverage, e.g. the right-hand Venn diagram of Fig. 4, and therefore the 
CIs are potentially much wider than necessary.  When three CIs are used, an overall 95% CL 
corresponds to each CI having an individual 98.3% CL.  Fortunately, as the ERD*(AC*, AC(n)), 
EPC*(AC*, AC(n)), and SC*(AC*, AC(n)) sampling distributions are available, for the bootstrapped 
egress curves, it is possible to determine a more accurate overall confidence level.  This is achieved by 
adjusting the individual confidence level of the CIs, using the bisection algorithm below, until the 
number of AC* bootstrap curves that are simultaneously within all three FAM-based CIs matches the 
required overall CL.  
 

1. The required number (RAC) (eq. 39) of AC* curves that needs to be contained simultaneously 
by all three CIs, for an overall CL of 100(1-αoverall)%, is calculated by taking the maximum of 
the number of AC* that need to be held individually by CIERD (eq. 40), CIEPC (eq. 41), and CISC 
(eq. 42) at the overall CL. 

 
𝐸𝐸AC = max(𝑁𝑁𝐵𝐵ERD,𝑁𝑁𝐵𝐵EPC,𝑁𝑁𝐵𝐵SC)                                           (39) 

 
𝑁𝑁𝐵𝐵ERD = 𝑏𝑏ERD(𝛼𝛼overall)                                                 (40) 

 
𝑁𝑁𝐵𝐵EPC = 𝑏𝑏u,EPC(𝛼𝛼overall) − 𝑏𝑏l,EPC(𝛼𝛼overall) + 1                         (41) 

 
𝑁𝑁𝐵𝐵SC = 𝐵𝐵 − 𝑏𝑏SC(𝛼𝛼overall) + 1                                           (42) 

 
2. The lower individual confidence level (LICL) and upper individual confidence level (UICL) for 

bisection algorithm are set to eq. 43 and eq. 44 (the Bonferroni correction) respectively.  The 
actual individual CL, that satisfies the overall CL, lies between these two limits. 

 
𝐶𝐶𝐼𝐼𝐶𝐶𝐶𝐶 = 100(1 − 𝛼𝛼overall)%                                               (43) 

 
𝑈𝑈𝐼𝐼𝐶𝐶𝐶𝐶 = 100(1− 𝛼𝛼overall 3⁄ )%                                           (44) 
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3. The bisection is now performed by setting the middle individual confidence level (MICL) eq. 

45.  
 

𝑀𝑀𝐼𝐼𝐶𝐶𝐶𝐶 =  𝐿𝐿𝐿𝐿𝐸𝐸𝐿𝐿+𝑈𝑈𝐿𝐿𝐸𝐸𝐿𝐿
2

                                                             (45) 
 

4. The CI limits based on MICL, 100(1-αMICL)%, are calculated for the ERD, EPC and SC 
sampling distributions, i.e. 𝐸𝐸𝐸𝐸𝑆𝑆𝑏𝑏ERD(𝛼𝛼MICL)

∗,𝑜𝑜  (eq. 27), 𝐸𝐸𝑃𝑃𝐶𝐶𝑏𝑏l,EPC (𝛼𝛼MICL)
∗,𝑜𝑜  (eq. 36) and 

𝐸𝐸𝑃𝑃𝐶𝐶𝑏𝑏u,EPC (𝛼𝛼MICL)
∗,𝑜𝑜  (eq. 37), and 𝑆𝑆𝐶𝐶𝑏𝑏SC(𝛼𝛼MICL)

∗,𝑜𝑜  (eq. 30).   
 

5. Count the number (NAC) of AC* curves that are simultaneously contained by all three CIs with 
MICL.  This is achieved using the following pseudo code.  Note that the FAMs of 𝐀𝐀𝐀𝐀𝑗𝑗∗ 
compared to 𝐀𝐀𝐀𝐀(𝑛𝑛) are 𝐸𝐸𝐸𝐸𝑆𝑆𝑗𝑗∗, 𝐸𝐸𝑃𝑃𝐶𝐶𝑗𝑗∗ and, 𝑆𝑆𝐶𝐶𝑗𝑗∗.   

 
Set NAC to zero 
DO j = 1 to B 

IF �𝐸𝐸𝐸𝐸𝑆𝑆𝑗𝑗∗ ≤ 𝐸𝐸𝐸𝐸𝑆𝑆𝑏𝑏ERD(𝛼𝛼MICL)
∗,𝑜𝑜 � AND �𝑆𝑆𝐶𝐶𝑗𝑗∗ ≥ 𝑆𝑆𝐶𝐶𝑏𝑏SC(𝛼𝛼MICL)

∗,𝑜𝑜 �  

              AND �𝐸𝐸𝑃𝑃𝐶𝐶𝑏𝑏l,EPC (𝛼𝛼𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)
∗,𝑜𝑜 ≤ 𝐸𝐸𝑃𝑃𝐶𝐶𝑗𝑗∗ ≤ 𝐸𝐸𝑃𝑃𝐶𝐶𝑏𝑏u,EPC(𝛼𝛼MICL)

∗,𝑜𝑜 � THEN NAC = NAC + 1 
ENDIF 

ENDDO 
 

6. If (NAC > RAC) then set UICL to MICL. Otherwise set LICL = MICL. 
 
7. If the difference between UICL and LICL is less than the bisection tolerance, 0.1% is suggested, 

then the overall CL convergence has been achieved (continue to step 8).  Otherwise, the overall 
CL convergence has not been achieved (go to step 3).  

                          
8. Calculate the final CIs using the UICL by substituting αUICL into 𝐸𝐸𝐸𝐸𝑆𝑆𝑏𝑏ERD(𝛼𝛼UICL)

∗,𝑜𝑜  (eq. 27), 
𝐸𝐸𝑃𝑃𝐶𝐶𝑏𝑏l,EPC (𝛼𝛼UICL)

∗,𝑜𝑜  (eq. 36) and 𝐸𝐸𝑃𝑃𝐶𝐶𝑏𝑏u,EPC (𝛼𝛼UICL)
∗,𝑜𝑜  (eq. 37), and 𝑆𝑆𝐶𝐶𝑏𝑏SC(𝛼𝛼UICL)

∗,𝑜𝑜  (eq. 30) for an overall CL 
of 100(1-αoverall)%.  

  
4 CI convergence scheme 
 
Now that CIs have been developed for the statistics it is possible to determine convergence w.r.t. the 
estimate of the population parameters.  The CIMT is calculated using eq. 3, the CISD is calculated using 
bootstrapping (section 2.1.1), and the FAM-based CIs of the AC are calculated using the methodology 
described in section 3.  The width of a CI narrows (converges) with increasing sample size, e.g. eq. 4.  
This enables a convergent approach based on incremental testing where the number of trials can be 
progressively increased until the width of the CI is sufficiently reduced that it is less than the specified 
precision tolerance.  The convergence of the MT, the SD, and the FAMs are determined by comparing 
the normalised width (W) of the CIs against a specified tolerance (Tol) (eq. 46 to eq. 50) for a 100(1–
α)% CL. 
 

𝑊𝑊MT = 𝐸𝐸𝐿𝐿u, MT−𝐸𝐸𝐿𝐿l, MT
𝑀𝑀𝑇𝑇

=
2.𝑇𝑇−1�1−𝛼𝛼2,𝑛𝑛−1�.𝑆𝑆𝑆𝑆

𝑀𝑀𝑇𝑇√𝑛𝑛
< 𝑀𝑀𝑇𝑇𝑇𝑇MT                          (46) 

 

𝑊𝑊SD = 𝐸𝐸𝐿𝐿u, SD−𝐸𝐸𝐿𝐿l, SD
𝑆𝑆𝑆𝑆(𝑛𝑛) =

𝑆𝑆𝑆𝑆𝑏𝑏u, SD (𝛼𝛼)
∗,𝑜𝑜 − 𝑆𝑆𝑆𝑆𝑏𝑏l, SD (𝛼𝛼)

∗,𝑜𝑜

𝑆𝑆𝑆𝑆(𝑛𝑛) < 𝑀𝑀𝑇𝑇𝑇𝑇SD                   (47) 
 

𝑊𝑊ERD = 𝐶𝐶𝐼𝐼u, ERD − 𝐶𝐶𝐼𝐼0th, ERD = 𝐸𝐸𝐸𝐸𝑆𝑆𝑏𝑏ERD(𝛼𝛼)
∗,𝑜𝑜 < 𝑀𝑀𝑇𝑇𝑇𝑇ERD                       (48) 
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𝑊𝑊EPC = 𝐶𝐶𝐼𝐼u, EPC − 𝐶𝐶𝐼𝐼l, EPC = 𝐸𝐸𝑃𝑃𝐶𝐶𝑏𝑏u, EPC (𝛼𝛼)
∗,𝑜𝑜 −  𝐸𝐸𝑃𝑃𝐶𝐶𝑏𝑏l,EPC (𝛼𝛼)

∗,𝑜𝑜 < 𝑀𝑀𝑇𝑇𝑇𝑇EPC     (49) 
 

𝑊𝑊SC = 𝐶𝐶𝐼𝐼100th, SC − 𝐶𝐶𝐼𝐼l, SC = 1 − 𝑆𝑆𝐶𝐶𝑏𝑏SC (𝛼𝛼)
∗,𝑜𝑜 < 𝑀𝑀𝑇𝑇𝑇𝑇SC                           (50) 

 
 

 
Fig. 5 – CI-based convergence algorithm using the MT, SD, and FAMs of the AC. 

The convergence algorithm is depicted as a flowchart in Fig. 5.  The user needs to specify the above 
tolerances (TolMT, TolSD, TolERD, TolEPC, and TolSC) as well as the minimum number of simulations 
(MIN_SIM), the maximum number of simulations (MAX_SIM), the number of bootstrap-resamples 
(B), the CL, and the number of simulations performed between testing (K).  Convergence is determined 
when all the CI widths are less than their specified tolerances.  Convergence may not be achieved within 
the MAX_SIM simulations, in that case the MAX_SIM simulations will be performed with the final 
CIs reported.  If the user has no specific convergence requirements, then a set of values for the 
convergence attributes are suggested in Table 6.  The tolerances are discussed in section 6.    
 
Table 6 – Suggested values for the attributes of the CI convergence algorithm.   

Attribute MIN_SIM CL K B TolMT TolSD TolERD TolEPC TolSC 
Value 40+ [31] 95%  1  2000+ [32] 0.02 0.2 ½TolMT TolMT ½TolMT 
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5 Case Study 
 
A theoretical case study model, similar to Ronchi et al. [17], was used to create multiple fictitious egress 
curves of 120 agents.  The data is generated by pseudo-randomly [44] sampling a log-normal 
distribution with a mean of 12s and standard deviation of 13.4s (√180s).  A set of 120 values are 
generated {l1, …, l120} with the egress time (t) of the kth agent given by eq. 51.  Figure 6 depicts ten 
randomly generated egress curves using the case study model. 
 

𝑡𝑡𝑘𝑘 = ∑ 𝑇𝑇𝑞𝑞𝑘𝑘
𝑞𝑞=1                                                                (51)        

                                    

 
Fig. 6 – Ten randomly generated fictitious egress curves for 120 agents from the case study model. 
                                                                                      
Using the case study model has two major advantages over using simulated or real data.  Firstly, the 
generally unknowable population parameters are defined for the case study model so the methods can 
be tested and verified.  The population MT(∞) is 1440s (120×12s), as the mean of the sum is the sum of 
the means.  The population SD(∞) is 147.0s (√120√180s), as the variance of the sum is the sum of the 
variances and the standard deviation is the square root of the variance.  The exit time of the kth agent of 
AC(∞) is given by eq. 52.   
 

𝑡𝑡𝑘𝑘
(∞) = 𝑘𝑘 × 12𝑠𝑠                                                                 (52) 

 
Secondly, there is very little computational cost in generating this data allowing a vast number of curves 
to be generated in a short timeframe.  Virtually all the computational cost of the case study is incurred 
from the bootstrapping process rather than curve generation.  In practice, it is anticipated that the 
computational cost of egress simulations (curve generation) will dwarf the computational costs of the 
bootstrapping process.  In this test case study, the step size (s) used for the SC (eq. 24) is one.  This 
gives the most conservative value for the difference in shape between the curves.   
 
The testing of the CIs is performed in three parts.  The first part examines the behaviour of the CIs, 
within a single set of simulations, relative to the sample estimates of the statistics and the population 
parameters (section 5.1).  The second part examines the average behaviour of the CIs over multiple sets 
of simulations including the measured coverage probability and average CI width for a parameter at a 
specified sample size (section 5.2).  The third part examines the behaviour of the convergence scheme 
based on the CIs (section 5.3). 
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5.1 CI and error behaviour within a single set of simulations 
 
The behaviour of the statistics (MT, SD, ERD, EPC, SC) and their CIs were examined over a set of two 
hundred simulations.  This is an example set of simulations and the behaviour will not be the same 
every time but highlights the expected behaviour.  The statistics are compared to their equivalent 
population parameters and normalised leading to the true errors (ε).  The CIs are also normalised, in a 
similar fashion to ε, leading to normalised CI limits (v).   
 
The normalised error (𝜀𝜀MT) and CI limits (𝑣𝑣l,MT, 𝑣𝑣u,MT) for the MT are given by eq. 53, eq. 54, and eq. 
55. 
   

𝜀𝜀MT =  𝑀𝑀𝑇𝑇
(∞)−𝑀𝑀𝑇𝑇(𝑛𝑛)

𝑀𝑀𝑇𝑇(𝑛𝑛)                                                                       (53) 
 

𝑣𝑣l,MT =  
𝑇𝑇−1�𝛼𝛼2,𝑛𝑛−1�×𝑆𝑆𝑆𝑆(𝑛𝑛)

√𝑛𝑛
𝑀𝑀𝑇𝑇(𝑛𝑛)                                                                    (54) 

 

𝑣𝑣u,MT =  
𝑇𝑇−1��1−𝛼𝛼2�,𝑛𝑛−1�×𝑆𝑆𝑆𝑆(𝑛𝑛)

√𝑛𝑛

𝑀𝑀𝑇𝑇(𝑛𝑛)                                                                (55) 
 
The normalised error (𝜀𝜀SD) and CI limits (𝑣𝑣l,SD, 𝑣𝑣u,SD) for the SD are given by eq. 56, eq. 57, and eq. 58. 
 

𝜀𝜀SD =  𝑆𝑆𝑆𝑆
(∞)−𝑆𝑆𝑆𝑆(𝑛𝑛)

𝑆𝑆𝑆𝑆(𝑛𝑛)                                                                        (56) 
 

𝑣𝑣l,SD =  
𝑆𝑆𝑆𝑆𝑏𝑏l,SD

∗,𝑜𝑜 −𝑆𝑆𝑆𝑆(𝑛𝑛)

𝑆𝑆𝑆𝑆(𝑛𝑛)                                                                       (57) 
 

𝑣𝑣u,SD =  
𝑆𝑆𝑆𝑆𝑏𝑏u,SD

∗,𝑜𝑜 −𝑆𝑆𝑆𝑆(𝑛𝑛)

𝑆𝑆𝑆𝑆(𝑛𝑛)                                                                      (58) 
 
 
The normalised error (𝜀𝜀ERD) and CI limit (𝑣𝑣ERD) for the ERD are given by eq. 59 and eq. 60. 
 

𝜀𝜀ERD =  𝐸𝐸𝐸𝐸𝑆𝑆�𝐀𝐀𝐀𝐀(∞),𝐀𝐀𝐀𝐀(𝑛𝑛)�                                                        (59) 
 

𝑣𝑣ERD = 𝐸𝐸𝐸𝐸𝑆𝑆𝑏𝑏ERD
∗,𝑜𝑜                                                                    (60) 

 
The normalised error (𝜀𝜀EPC) and CI limits (𝑣𝑣l,EPC,𝑣𝑣u,EPC) for the EPC are given by eq. 61, eq. 62, and 
eq. 63. 

 
𝜀𝜀EPC =  𝐸𝐸𝑃𝑃𝐶𝐶�𝐀𝐀𝐀𝐀(∞),𝐀𝐀𝐀𝐀(𝑛𝑛)� − 1                                                   (61) 

 
𝑣𝑣l,EPC =  𝐸𝐸𝑃𝑃𝐶𝐶bl,EPC

∗,𝑜𝑜 − 1                                                   (62) 
 

𝑣𝑣u,EPC =  𝐸𝐸𝑃𝑃𝐶𝐶𝑏𝑏u,EPC
∗,𝑜𝑜 − 1                                                   (63) 

 
The normalised error (𝜀𝜀SC) and CI limit (𝑣𝑣SC) for the SC are given by eq. 64 and eq. 65. 

 
𝜀𝜀SC =  1 − 𝑆𝑆𝐶𝐶�𝐀𝐀𝐀𝐀(∞),𝐀𝐀𝐀𝐀(𝑛𝑛)�                                                     (64) 

 
𝑣𝑣SC =  1 − 𝑆𝑆𝐶𝐶𝑏𝑏SC

∗,𝑜𝑜                                                      (65) 
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In Fig. 7 to Fig. 11 the normalised errors and CIs are plotted for MT (Fig. 7), SD (Fig. 8), ERD (Fig. 
9), EPC (Fig. 10), and SC (Fig. 11). 

 
 

Fig. 7 – MT Error and CI behaviour over a set of 200 case study simulations. 

 
 

Fig. 8 - SD Error and CI behaviour over a set of 200 case study simulations. 

 
 

Fig. 9 - ERD Error and CI behaviour over a set of 200 case study simulations. 
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Fig. 10 – EPC Error and CI behaviour over a set of 200 case study simulations. 

 

Fig. 11 – SC Error and CI behaviour over a set of 200 case study simulations.  

In Fig. 7 to Fig. 11 it is apparent that for this set of simulations the CIs bounds the true error.  This is 
expected as the CI is an estimate interval of the population parameter, meaning that the population 
parameter is unlikely to be outside of the CI.  In Fig. 7, the SD has a significant error, ~0.1 (~10%), 
after 150 simulations, although this error is bounded by the CI.  There is no obvious relationship 
between 𝜀𝜀SD and the other error measures. 
  
There is an unexpectedly close similarity between the behaviour of 𝜀𝜀MT (Fig. 7) and the 𝜀𝜀EPC (Fig. 10), 
both errors are near zero at 50 and 100 simulations, have a similar local peak value, approximately 0.02, 
at 67 simulations, and have similar values of approximately -0.01 at 200 simulations.  There is also a 
similarity between 𝜀𝜀ERD (Fig. 9) and |𝜀𝜀MT|, both errors are near zero at 50 and 100 simulations, have a 
local peak value at 67 simulations, and have similar values of 0.01 at 200 simulations.  Similarly, the 
CI limits for EPC and ERD have a similar trend and magnitude as the corresponding CI limits of MT.  
A brief algebraic analysis of 𝜀𝜀EPC and 𝜀𝜀ERD is given in the appendix.  That analysis demonstrates that 
𝜀𝜀EPC and 𝜀𝜀ERD are approximately equivalent to 𝜀𝜀MT under certain conditions.  This is useful as the ERD 
and EPC tolerances, in the convergence scheme, can be related to the MT tolerance (see section 6).  It 
is also shown, in the appendix, that if 𝜀𝜀ERD is greater than |𝜀𝜀MT| then there is more relative difference 
exhibited between the egress curves than the difference between the TETs of those egress curves.     
 
The convergence behaviour of SC (Fig. 11) is somewhat different, and shows no obvious correlation, 
to the other statistics as the error and CI change comparatively smoothly with an increasing number of 
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simulations.  The error reduces more rapidly than the other statistics with the normalised CI less than 
0.01 after 100 simulations and less than 0.005 after 200 simulations.  The convergence behaviour 
unexpectantly appears to be 1/n while the convergence of the other variables appears to be 1/√n.  
Although the general behaviour is different to the other CIs the normalised CISC still bounds 𝜀𝜀SC.   
 
5.2 Coverage Probability and average width of CIs 
 
Ten thousand sets of simulations of size n were generated to estimate the actual coverage probability of 
the CIs and the average normalised widths (eq. 46 to eq. 50) of the CIs.  This was repeated using eight 
sample sizes (10, 20, 30, 40, 100, 400, 1000, and 4000).  The coverage probability is the percentage of 
CIs that “contain” the population parameter, and ideally this should match the confidence level of the 
CI.  For the MT and SD, the coverage probability is determined by counting the number of times the 
population value lies within the CI.  For the average egress curve, the FAMs are used to compare the 
sample average egress curve to the population average egress curve, e.g., ERD(AC(∞), AC(n)), 
EPC(AC(∞), AC(n)), and SC(AC(∞), AC(n)), and those values were checked to see if they lie within the 
CI or not.   
 
In Table 7, the coverage probability of the CIs is generally good, the CIMT and CIERD coverage 
probability nearly perfectly matching the confidence level within the error band.  The CIEPC coverage 
probability is within the error band for sample sizes of 30 or more; even at a sample size of 10 the 
discrepancy is not too great. However, the CISC coverage probability is unexpectedly higher than the 
nominal confidence level until a sample size of 4,000 is reached.  This implies that the CISC may not be 
as narrow as they could be, but at least the CI is a conservative estimate.  The CISD has the worst 
coverage probability behaviour of all the statistics but is still reasonable (>90%) with sample sizes over 
20.  Even for a small sample size of 10 the coverage probability is 85.2% and is perhaps better than no 
error estimate.  The CISD coverage probability tends to the nominal CL with increasing sample size, but 
even for small sample sizes the method is usable.  The coverage probability could perhaps be improved 
for the CISD using a double bootstrap [35], but this will result in a significant additional computational 
cost.   
 
Table 7 – CI coverage probability of MT, SD, ERD, EPC, and SC with individual 95% CLs for a range 
of sample sizes over 10,000 repetitions. 
Statistic Error 

band 
Number of Simulations 
10 20 30 40 100 400 1000 4000 

MT (95%) ±0.4% 94.5% 94.8% 95.0% 94.6% 95.1% 95.2% 95.3% 94.8% 

SD (95%) ±0.4% 85.2% 91.7% 92.4% 93.0% 93.3% 94.6% 94.7% 94.9% 

ERD (95%) ±0.4% 95.0% 94.7% 95.2% 95.6% 95.3% 94.9% 94.8% 95.0% 

EPC (95%) ±0.4% 94.2% 94.4% 95.1% 95.2% 95.1% 94.8% 95.1% 94.9% 

SC (95%) ±0.4% 100% 100% 99.9% 99.8% 99.3% 97.7% 96.1% 95.4% 

 
In Table 8, the widths of the MT, SD, ERD, and EPC CIs are approximately inversely proportional to 
the square root of the number of simulations performed. This is a typical relationship between the CI 
width and the number of simulations performed and is similarly observed for CI widths of other 
parameters [13].  The SC’s width has a different convergence behaviour and is approximately inversely 
proportional to the number of simulations performed.   
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Table 8 - Average normalised CI widths for MT, SD, ERD, EPC, and SC for eight sample sizes over 
10,000 repetitions. 

Width of normalised 
CI 

Number of simulations 
10 20 30 40 100 400 1000 4000 

WMT (95%) (eq. 46) 0.14 0.094 0.076 0.065 0.04 0.02 0.013 0.0063 
WSD (95%) (eq. 47) 0.84 0.68 0.57 0.49 0.31 0.16 0.098 0.049 
WERD (95%) (eq. 48) 0.084 0.053 0.043 0.037 0.023 0.011 0.0072 0.0036 
WEPC (95%) (eq. 49) 0.16 0.10 0.083 0.071 0.044 0.022 0.014 0.0069 
WSC (95%) (eq. 50) 0.10 0.047 0.03 0.022 0.0084 0.002 0.00077 0.00019 

 
The normalised width of the SD is notable as it is much wider than the other statistics.  For example, 
after 1,000 simulations the WSD is still about 10% of the SD, approximately ±5% error.  For 40 
simulations, the WSD is 0.49 which is equivalent to a [-19%, +30%] error at a 95% CL.  For 10 
simulations, the WSD is 0.84 is equivalent to a [-24%, +60%] error.  If an end user requires a precise 
estimate of the SD, then a high number of simulations will generally be required. 
 
When the multi-CI correction scheme (section 3.1) is used it can be seen in Table 9 that the average 
individual CL (97.6%) is significantly lower than the conservative Bonferroni correction (98.3%), but 
the overall coverage probability is still above 95%.  It should be noted that the SC coverage probability 
is much greater than its CL, thus significantly contributing to the overall coverage probability being 
over 95% below 4,000 simulations.  However, with the 4,000-simulation sized sample the overall 
coverage probability is still above 95% when the SC coverage probability is in line with the expectation 
of the computed CL.    
 
Table 9 - CI coverage probability for a range of sample sizes over 10,000 repetitions when the multi-
CI correction scheme is used for AC with an overall CL of 95%. 
 Error 

band 
Number of Simulations 
10 20 30 40 100 400 1000 4000 

Average 
individual CL  

±0.1% 97.1% 97.3% 97.4% 97.5% 97.5% 97.6% 97.6% 97.5% 

ERD ±0.3% 97.2% 97.4% 97.2% 97.4% 97.5% 97.5% 97.5% 97.5% 

EPC  ±0.3% 96.5% 97.1% 97.0% 97.5% 97.5% 97.4% 97.5% 97.5% 

SC  ±0.3% 100% 100% 100% 100% 99.9% 99.1% 98.4% 97.6% 

Overall 
coverage  

±0.4% 95.9% 96.6% 96.6% 96.7% 97.0%  96.2% 95.7% 95.2% 

 
In Table 10 the corrected widths for an overall nominal 95% CL are given.  These widths are slightly 
wider (~14%) than the widths in Table 8.  For 40 simulations, the CIERD is [0, 0.042], CIEPC is [0.958, 
1.042], and CISC is [0.975, 1] with an overall confidence level of 95%.  These could be reported as 
errors with the ERD error of 4.2%, the EPC error of ±4.2% and the SC error of 2.5%.  
 
Table 10 - Average multi-CI corrected normalised CI widths for AC at various sample sizes over 
10,000 repetitions. 

normalised CI 
width 

Number of simulations 
10 20 30 40 100 400 1000 4000 

WERD  0.094 0.061 0.049 0.042 0.026 0.013 0.0082 0.0041 
WEPC  0.18 0.12 0.096 0.082 0.051 0.025 0.016 0.0079 
WSC  0.12 0.054 0.034 0.025 0.0091 0.0021 0.00081 0.00020 

 
5.3 Convergence Testing 
 
A sample of simulations is generated until convergence was achieved for the tested statistic at the stated 
tolerance. A minimum of 40 simulations [41] were performed before testing for convergence.  This was 
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repeated 10,000 times for each measure to estimate the actual coverage probability of the CI.  For this 
case study each convergence criteria were tested in isolation, i.e., convergence is based solely on the 
tested statistic of interest.  This is a reasonable way to test the convergence as ultimately convergence 
will be dependent on a single variable as the other variables must be individually converged before the 
final convergence is determined. 
 
The results in Table 11 illustrate that the methodology can generate CIs that have an actual coverage 
close to the nominal 95% confidence level.  The theory of CIs is based on a variable CI limits with a 
set sample size.  This is somewhat different to converging to a set CI width with a variable sample size.  
Intuitively, it would be expected that the coverage probability would be close to the nominal CL and 
Ross [25] noted that the coverage probability would match the nominal CL for sufficiently large n.    
   
Table 11 – CI coverage for the convergence statistics for a range of tolerances. 

Statistic Tolerance 
  

Average Sample 
Size (st.dev) 

CI coverage 
probability 

MT 0.06 47.6 (7.6) 94.6% ± 0.4% 
0.04 101.3(15.5) 94.8% ± 0.4% 
0.02 405.5(30.6) 94.8% ± 0.4% 

SD 0.4 52.4 (19.0) 91.6% ± 0.5% 
0.2 211.5 (62.2) 93.8% ± 0.5% 
0.1 858.1 (150.3) 93.9% ± 0.5% 

ERD 0.04 40.6(2) 97.9% ± 0.3% 
0.02 122.1(17) 94.3% ± 0.5% 
0.01 484.4 (34.4) 94.4% ± 0.5% 

EPC 0.08 40.4(1.6) 93.9% ± 0.5% 
0.04 112.8(17.8) 93.5% ± 0.5% 
0.02 456.0 (34.7) 94.2% ± 0.5% 

SC 0.02 43.3(3.7) 99.8% ± 0.1% 
0.01 83.6(6.3) 99.5% ± 0.1% 

0.005 161.6(8.8) 98.7% ± 0.2% 
 
As would be anticipated from section 5.1 and 5.2, it can also be seen that as the tolerance decreases the 
number of samples required for convergence increases. This increase is approximately quadratic for all 
the measures apart from the SC. For the SC, as the tolerance decreases there is a linear increase in the 
number of samples required for convergence. 
 
6 Discussion 
 
The advantage of the convergence scheme developed here compared to Ronchi et al.’s scheme is the 
convergence is directly based on the required precision of the statistics of interest.  The most intuitive 
tolerance to set is TolMT.  It has been previously suggested that the tolerance for Ronchi et al.’s original 
method could be based on uncertainty from either a fire modelling study determining available safe 
egress time or uncertainty based on experimental egress trials [19].  Those techniques could also be 
applied to the CI based method provided those uncertainties are calculated using CIs.  In lieu of that 
type of information, a typical choice for TolMT could be 0.02, the equivalent of ± 1% error, but the 
choice depends on the user’s requirements.  However, the choice of tolerances for the other statistics 
SD, ERD, EPC and, SC are less apparent.       
 
Prescribing appropriate tolerances for the ERD, EPC and SC FAM-based CIs is problematic, but the 
case study suggests a potential way forward.  It was found that the WEPC, with a 95% confidence level, 
and WMT have a similar magnitude, WEPC is approximately 10% wider than WMT, for the same sample 
size (see Table 10) and the behaviour of the corrected CI limits of MT and EPC (see Fig. 7 and Fig. 10) 
are also similar.  It was also shown that under certain conditions the true error measured by EPC and 
MT are approximately equivalent (see appendix).  The ERD also has a behaviour and magnitude related 
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to MT under certain circumstances.  WERD is roughly half the magnitude of WMT for the same sample 
size (see Table 10) and the upper confidence limit of the ERD and MT CIs are similar in magnitude and 
trend (see Fig. 7 and Fig. 10).  It was also shown (see appendix) that the true error measured by ERD 
and MT are also equivalent under certain circumstances.  In lieu of any other requirements, it is 
reasonable to base the tolerances of the ERD and EPC CIs on the specified tolerance of MT (eq. 66 and 
eq. 67).  Although there is no obvious relationship between MT and SC convergence behaviour, it is 
also suggested that TolSC is also based on the specified tolerance of MT (eq. 68) unless the user has a 
specific requirement.     
 

𝑀𝑀𝑇𝑇𝑇𝑇EPC = 𝑀𝑀𝑇𝑇𝑇𝑇MT                                                          (66)  
    

𝑀𝑀𝑇𝑇𝑇𝑇ERD =  𝑇𝑇𝑜𝑜𝑇𝑇MT
2

                                                          (67) 
 

𝑀𝑀𝑇𝑇𝑇𝑇SC =  𝑇𝑇𝑜𝑜𝑇𝑇MT
2

                                                            (68) 
 
Setting the TolSD in relation to TolMT is not recommended.  From Table 8, even with 4000 simulations 
the average WSD is 0.049. By assuming that the TETs follow a normal distribution it can be calculated 
[22] that it would take ~10000 simulations to achieve convergence for a TolSD of 0.02.  Unless the user 
specifically requires a certain precision for the SD then it is suggested setting TolSD between 0.4 and 
0.2.   
 
There are circumstances where a user would wish to set the MT tolerance based on time, e.g. ±10s, 
TolMT,seconds = 20s.  The tolerance of the FAM-based CIs cannot be directly expressed in seconds, but 
this is not a particular problem as the TolMT,seconds is easily converted to a decimal (eq. 69).  This needs 
to be calculated at runtime as MT is generally unknown a priori.   
 

𝑀𝑀𝑇𝑇𝑇𝑇MT =  𝑇𝑇𝑜𝑜𝑇𝑇MT, seconds
𝑀𝑀𝑇𝑇

                                                         (69) 
 
In the previous case study, WEPC/2 and WERD are slightly larger than WMT/2.  As WERD is greater than 
WMT/2 then there is a greater relative variability expressed in the AC compared to the MT (see 
appendix).  This is due to the nature of the theoretical case study model.  The coefficient of variation 
(CV) of the exit time of the kth agent, for the case study model, decreases with increasing k (see eq. 70).  
Thus, the earlier exiting agents exhibit the most relative variability.  However, the actual variability of 
the kth agent, i.e. SDk, increases with increasing k. The ERD gives greater weight to larger differences 
due to the squaring term (eq. 22) leading to a small increase in WERD compared to WMT/2.  When 
performing practical egress simulations, there is potentially larger variation in the exit time of agents 
other than the last agent to exit which would be reflected in the FAM-based CIs of the AC.   
  

𝐶𝐶𝐶𝐶𝑘𝑘 = 𝑆𝑆𝑆𝑆𝑘𝑘
𝑡𝑡𝑘𝑘���

= √𝑘𝑘×180
𝑘𝑘×12

= √5
2√𝑘𝑘

                                                (70) 
 
The CI based convergence scheme has a higher computational cost than Ronchi et al.’s original method. 
This includes generating the bootstrap samples, ordering the values, and calculation of the BCa 
coefficients.  However, it is anticipated that the overall cost will be small compared to the computational 
cost of the evacuation simulations.  If bootstrapping takes a significant amount of time, relative to the 
evacuation simulations, then the algorithm can be optimised by increasing the number of simulations 
(K) performed between convergence checks.  The calculations have been ordered in the convergence 
scheme so that the most computationally expensive bootstrapping, the FAM-based CIs, are not 
calculated until the MT and SD have been deemed to have converged.  
 
The CI method also requires additional memory compared to their original method, although this is not 
expected to be a serious limitation.  The largest memory requirement is the need to store all n egress 
curves. For example, a ‘large’ problem consisting of a scenario with 100,000 agents that is repeated 
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1000 times would require less than 500MB of RAM.  This is a modest memory requirement for a 
modern computer. 
 
Although the use of CIs addresses Ronchi et al.’s first noted limitation, the other limitations they 
discussed still apply to the work performed here.  For instance, it is possible that egress curves can 
appear identical even when the dynamics of the evacuation are different.  Furthermore, differing egress 
curves compared to the AC can return the same ERD, EPC or SC measures.  The convergent behaviours 
of the FAM-based CIs of the AC are therefore imperfect proxies for ensuring all the variability in an 
egress simulation is adequately represented.  However, these measures are superior to using the 
convergence of the MT alone when trying to determine whether enough simulations have been 
performed to represent the true variability of the evacuation scenario. 
 
7 Concluding Comments 
 
Ronchi et al. [17] pioneered the use of the convergence behaviour of the AC to better represent the 
convergence of the evacuation scenario in general.  In this paper, their original approach was modified 
to use CIs.  The CI approach has been shown to give reliable convergence with reference to the estimate 
interval of the population parameters when applied to the mean TET, standard deviation of TETs and 
the AC.  The FAM-based CIs for the AC have been calculated using a novel application of 
bootstrapping, FAMs, and bisection algorithm.  Although the methods described in this paper are more 
complex than Ronchi et al.’s original convergence indicators, the resultant CIs have a more standard 
statistical interpretation than their original convergence indicators.  The choice of convergence 
tolerances is therefore more straightforward as it is just the required statistical precision of the statistics 
of interest.  The case study and algebraic study (see appendix) of the ERD and EPC true errors showed 
there can be equivalency between those errors and the error in MT. These studies  provided guidance 
for setting the tolerances of ERD and EPC.   
 
The convergence scheme is easily adapted to include other statistics of interest.  There are many more 
parameters that may be of interest, e.g. measures of congestion, that may not have a known CI.  For 
example, Smedburg [45] suggested several statistics, such as egress exit flow rates, which were 
represented by time series data; FAM-based CIs and convergence for those statistics could be 
determined using the methods described in this paper.  The calculation of the CIs and convergence 
should be implemented in software so that end users can have easy access to the technology.   
 
The CIs can also be easily applied to experimental or simulated trial data without the convergence 
scheme suggested here where the number of trials performed is limited by other criteria. 
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Appendix – Equivalency of EPC and ERD errors of the mean egress curve with the error in mean total 

evacuation time under certain conditions 
 
Under certain conditions it can be shown that the normalised errors, 𝜀𝜀EPC and 𝜀𝜀ERD, between the sample 
mean egress curve AC(n) and the population mean egress curve AC(∞), in EPC and ERD are equivalent 
to the normalised error, 𝜀𝜀MT, between the sample mean TET (MT(n)) and population mean TET (MT(∞)).  
The 𝜀𝜀MT is given by eq. 71.   
 

𝜀𝜀MT = 𝑀𝑀𝑇𝑇(∞)−𝑀𝑀𝑇𝑇(𝑛𝑛)

𝑀𝑀𝑇𝑇(𝑛𝑛)                                                        (71) 
 
The 𝜀𝜀EPC can be expressed as eq. 72.  
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𝜀𝜀EPC = 𝐸𝐸𝑃𝑃𝐶𝐶�𝐀𝐀𝐀𝐀(∞),𝐀𝐀𝐀𝐀(𝒏𝒏)� − 1 =
�∑ 𝑎𝑎𝑎𝑎𝑘𝑘

(∞)𝑎𝑎𝑎𝑎𝑘𝑘
(𝑛𝑛)𝑚𝑚

𝑘𝑘=1 �

�∑ 𝑎𝑎𝑎𝑎𝑘𝑘
(𝑛𝑛)𝑎𝑎𝑎𝑎𝑘𝑘

(𝑛𝑛)𝑚𝑚
𝑘𝑘=1 �

− 1                  (72) 

 
Substituting 𝑎𝑎𝑎𝑎𝑘𝑘

(∞) with 𝛾𝛾𝑘𝑘𝑀𝑀𝑀𝑀(∞) and 𝑎𝑎𝑎𝑎𝑘𝑘
(𝑛𝑛) with 𝜆𝜆𝑘𝑘𝑀𝑀𝑀𝑀(𝑛𝑛) into eq. 72 leads to eq. 73.  Note that acm ≡ 

MT. 

𝜀𝜀EPC = �∑ 𝛾𝛾𝑘𝑘𝑚𝑚
𝑘𝑘=1 𝑀𝑀𝑇𝑇(∞)𝜆𝜆𝑘𝑘𝑀𝑀𝑇𝑇(𝑛𝑛)�

�∑ �𝜆𝜆𝑘𝑘𝑀𝑀𝑇𝑇(𝑛𝑛)�
2𝑚𝑚

𝑘𝑘=1 �
− 1                                          (73) 

 
Simplifying eq. 73 leads to eq. 74. 
  

𝜀𝜀EPC =
��∑ 𝛾𝛾𝑘𝑘𝜆𝜆𝑘𝑘𝑚𝑚−1

𝑘𝑘=1 �+1�𝑀𝑀𝑇𝑇(∞)

��∑ 𝜆𝜆𝑘𝑘
2𝑚𝑚−1

𝑘𝑘=1 �+1�𝑀𝑀𝑇𝑇(𝑛𝑛) − 1                                             (74) 

 
When eq. 75 is satisfied then 𝜀𝜀EPC will be approximately equal to 𝜀𝜀MT (eq. 76). 

 
��∑ 𝛾𝛾𝑘𝑘𝜆𝜆𝑘𝑘𝑚𝑚−1

𝑘𝑘=1 �+ 1� ≈ ��∑ 𝜆𝜆𝑘𝑘2𝑚𝑚−1
𝑘𝑘=1 �+ 1�                                          (75) 

 
𝜀𝜀EPC ≈

𝑀𝑀𝑇𝑇(∞)

𝑀𝑀𝑇𝑇(𝑛𝑛) − 1 = 𝑀𝑀𝑇𝑇(∞)−𝑀𝑀𝑇𝑇(𝑛𝑛)

𝑀𝑀𝑇𝑇(𝑛𝑛) = 𝜀𝜀MT                                  (76) 
 
There are two specific examples, of when eq. 75 is satisfied, provided here.  The first example is when 
eq. 77 is satisfied.  The second example is when both eq. 78 and eq. 79 are satisfied. 

𝛾𝛾𝑘𝑘 ≈ 𝜆𝜆𝑘𝑘 ∀𝑘𝑘                                                                (77) 
 

∑ 𝛾𝛾𝑘𝑘𝜆𝜆𝑘𝑘𝑚𝑚−1
𝑘𝑘=1 ≪ 1                                                             (78) 

 
∑ 𝜆𝜆𝑘𝑘2𝑚𝑚−1
𝑘𝑘=1 ≪ 1                                                             (79) 

 
 
The 𝜀𝜀ERD (eq. 80) can be expressed as eq. 81.  
 

𝜀𝜀ERD = 𝐸𝐸𝐸𝐸𝑆𝑆�𝐀𝐀𝐀𝐀(∞),𝐀𝐀𝐀𝐀(𝒏𝒏)� = �
∑ �𝑎𝑎𝑎𝑎𝑘𝑘

(∞)−𝑎𝑎𝑎𝑎𝑘𝑘
(𝑛𝑛)�

2𝑚𝑚
𝑘𝑘=1

∑ �𝑎𝑎𝑎𝑎𝑘𝑘
(𝑛𝑛)�

2𝑚𝑚
𝑘𝑘=1

                          (80) 

 

𝜀𝜀ERD = �
�∑ �𝑎𝑎𝑎𝑎𝑘𝑘

(∞)−𝑎𝑎𝑎𝑎𝑘𝑘
(𝑛𝑛)�

2𝑚𝑚−1
𝑘𝑘=1 �+�𝑀𝑀𝑇𝑇(∞)−𝑀𝑀𝑇𝑇(𝑛𝑛)�

2

�∑ �𝑎𝑎𝑎𝑎𝑘𝑘
(𝑛𝑛)�

2𝑚𝑚−1
𝑘𝑘=1 �+�𝑀𝑀𝑇𝑇(𝑛𝑛)�

2                              (81) 

 
Two examples of approximate equivalency of 𝜀𝜀ERD and 𝜀𝜀MT (eq. 82) are given here.  The first example 
occurs when eq. 83 is true (note: eq. 84).  The simplest example of eq. 83 being satisfied is when eq. 85 
is true.  The second example is when both eq. 86 and eq. 87 are true.  
 

𝜀𝜀ERD ≈ �𝑀𝑀𝑇𝑇
(∞)−𝑀𝑀𝑇𝑇(𝑛𝑛)

𝑀𝑀𝑇𝑇(𝑛𝑛) � = |𝜀𝜀MT|                           (82) 
 

∑ �𝑎𝑎𝑎𝑎𝑘𝑘
(∞)−𝑎𝑎𝑎𝑎𝑘𝑘

(𝑛𝑛)�
2𝑚𝑚−1

𝑘𝑘=1

∑ �𝑎𝑎𝑎𝑎𝑘𝑘
(𝑛𝑛)�

2𝑚𝑚−1
𝑘𝑘=1

≈ �𝑀𝑀𝑇𝑇(∞)−𝑀𝑀𝑇𝑇(𝑛𝑛)�
2

�𝑀𝑀𝑇𝑇(𝑛𝑛)�
2                                      (83) 

 
𝑥𝑥
𝑦𝑦
≡ 𝜖𝜖𝑥𝑥

𝜖𝜖𝑦𝑦
≡ 𝑥𝑥+𝜖𝜖𝑥𝑥

𝑦𝑦+𝜖𝜖𝑦𝑦
= 𝑥𝑥(1+𝜖𝜖)

𝑦𝑦(1+𝜖𝜖)                                             (84) 



27 
 

 
�𝑎𝑎𝑎𝑎𝑘𝑘

(∞)−𝑎𝑎𝑎𝑎𝑘𝑘
(𝑛𝑛)�

𝑎𝑎𝑎𝑎𝑘𝑘
(𝑛𝑛) ≈ �𝑀𝑀𝑇𝑇(∞)−𝑀𝑀𝑇𝑇(𝑛𝑛)�

𝑀𝑀𝑇𝑇(𝑛𝑛) ∀𝑘𝑘                                    (85) 

 

�∑ �𝑎𝑎𝑎𝑎𝑘𝑘
(∞) − 𝑎𝑎𝑎𝑎𝑘𝑘

(𝑛𝑛)�
2

𝑚𝑚−1
𝑘𝑘=1 � ≪ �𝑀𝑀𝑀𝑀(∞) −𝑀𝑀𝑀𝑀(𝑛𝑛)�2                        (86) 

 

�∑ �𝑎𝑎𝑎𝑎𝑘𝑘
(𝑛𝑛)�

2
𝑚𝑚−1
𝑘𝑘=1 � ≪ �𝑀𝑀𝑀𝑀(𝑛𝑛)�2                                        (87) 

 
Figure 12 depicts two sets of contrived egress curves with their errors reported in Table 12.  The first 
set of curves satisfy both eq. 77 and eq. 85 and all the errors are equal (0.2).  The second set of curves 
satisfy eq. 78 and eq. 79 and, eq. 86 and eq. 87 and 𝜀𝜀ERD and 𝜀𝜀EPC are approximately equal to 𝜀𝜀MT (0.19 
≈ 0.2).  
 
Table 12 – MT, EPC and ERD Error for two sets of contrived curves (Fig. 11). The values 
demonstrate the equivalency of the error measures under certain conditions.  

Set of curves 𝜀𝜀MT 𝜀𝜀ERD 𝜀𝜀EPC 
1 0.2 0.2 0.2 
2 0.2 0.19 0.19 

 

 
Fig. 12 – Two sets of contrived curves that demonstrate the approximate equivalency of 𝜀𝜀ERD, 𝜀𝜀EPC and 
𝜀𝜀MT.  MT(n) is 627s for both sample AC(n) curves and MT(∞)

 is 752s for both population AC(∞) curves. 

By extending the analysis of the ERD relationship it can also be seen, from eq. 81, that if eq. 88 is true 
then 𝜀𝜀ERD will be greater than |𝜀𝜀𝑀𝑀𝑇𝑇|, indicating there is more relative difference in the rest of the egress 
curve compared to the TET.  One specific circumstance of this occurs when eq. 89 is true.  Similarly, 
if eq. 90 is true then 𝜀𝜀ERD will be less than |𝜀𝜀𝑀𝑀𝑇𝑇|, showing there is less relative difference in the rest of 
the egress curve compared to the TET.  One specific circumstance of this occurs when eq. 91 is true. 

∑ �𝑎𝑎𝑎𝑎𝑘𝑘
(∞)−𝑎𝑎𝑎𝑎𝑘𝑘

(𝑛𝑛)�
2𝑚𝑚−1

𝑘𝑘=1

∑ �𝑎𝑎𝑎𝑎𝑘𝑘
(𝑛𝑛)�

2𝑚𝑚−1
𝑘𝑘=1

> �𝑀𝑀𝑇𝑇(∞)−𝑀𝑀𝑇𝑇(𝑛𝑛)�
2

�𝑀𝑀𝑇𝑇(𝑛𝑛)�
2                                      (88) 
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�𝑎𝑎𝑎𝑎𝑘𝑘
(∞)−𝑎𝑎𝑎𝑎𝑘𝑘

(𝑛𝑛)�

𝑎𝑎𝑎𝑎𝑘𝑘
(𝑛𝑛) > �𝑀𝑀𝑇𝑇(∞)−𝑀𝑀𝑇𝑇(𝑛𝑛)�
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