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Abstract. An issue when using stochastic egress models is how many simulations are
required to accurately represent the modelled scenario? Engineers are mostly interested

in a representative Total Evacuation Time (TET). However, the convergence of the
TET may not ensure that the full range of evacuation dynamics has been adequately
represented. The average total egress curve (AC) has been suggested as an improved

measure. Unfortunately, defining a confidence interval (CI) for the AC is problem-
atic. CIs can robustly quantify the precision of many statistics and have been used to
define convergence in egress modelling and other research fields. This paper presents

a novel application of bootstrapping, functional analysis measures (FAMs), and a
bisection algorithm, to derive three FAM-based CIs representing the precision of the
AC. These CIs were tested using a theoretical model to demonstrate the consistency
of the coverage probability, the actual percentage of CIs that contain the theoretical

parameter, with the nominal 95% confidence level (NCL). For two of the FAM-
based CIs, it was found that the coverage probability was between 94.2% and 95.6%
for all tested sample sizes between 10 and 4000 simulations. The third FAM-based

CI’s coverage probability was always greater than the NCL and was a conservative
estimate, but this presented no problems in practice. A FAM-based CI may suggest if
there is more or less variability in an earlier phase of the evacuation. A convergence

scheme based on statistical precision, CI widths, is proposed and verified. The
method can be extended to other statistics.

Keywords: Convergence criteria, Evacuation modelling, Bootstrapping, Functional analysis, Confidence

interval

Abbreviations

CI Confidence interval

CL Confidence level

TET Total evacuation time

MT Mean TET

SD Standard deviation (of TETs)

CDF Cumulative Density Function

BCa Bias Corrected and accelerated (bootstrap)

FAM Functional analysis measure
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ERD Euclidean Relative Distance

EPC Euclidean Projection Coefficient

SC Secant Cosine

List of Symbols

a, b Egress curves (an ordered vector of agent evacuation times)

AC Average egress curve

(1 - a) Confidence level value (expressed as a decimal)

B Number of bootstrap resamples

p Percentile (expressed as a decimal)

�p ‘‘Hesterberg’’ corrected percentile

m Number of agents/people in a simulation/experiment

n Sample size (generally the number of simulations or experiments)

df Degrees of freedom (n - 1)

T-1(p, df) The inverse CDF of Student’s t-distribution for p

P(x) The probability that x occurs

U(z) The CDF of the normal distribution up to z

U-1(p) The inverse CDF of the normal distribution for p

bxc Integer floor of x

dxe Integer ceiling of x

xj j Absolute value of x

h Statistic of interest. e.g. MT, SD, ERD, EPC, and SC

h(n) Statistic of interest calculated from n values

h(¥) Population parameter of interest

h�i h calculated using the original n simulations barring the ith simulation

h* Bootstrap statistic of interest

h�j jth bootstrap statistic of the (unsorted) distribution of h*

h�;ob bth bootstrap statistic of the (ascending) ordered distribution of h*

Wh Normalised width of CIh
8k For all agents k = 1 to m

Subscripts

l Lower CI limit

u Upper CI limit

1. Introduction

A stochastic approach to evacuation simulation [1, 2] is employed in many models
[3–8] to reflect uncertainty in human behaviour [9]. If an (experimental or simu-
lated) evacuation trial is repeated using the same population and the same initial
conditions, it is possible that the evacuation will progress differently and may
result in differences in total evacuation time (TET) or other statistics of interest.
In addition to that uncertainty there is also uncertainty related to the initial con-
ditions where the distribution of agents (e.g. number of agents and starting loca-
tions) and their attributes (e.g. walking speeds and response times) may also cause
differences between trials. These uncertainties can be simulated by randomly sam-
pling suitable distribution functions for those attributes. A simple random
approach is adopted in Monte Carlo egress simulation although other possible
sampling methods could be utilised [10].
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Many simulations are needed to represent the range of potential behaviours
which may be expected for a particular scenario. However, this is set against the
potentially significant computational cost of running a stochastic egress model
which an end user would wish to minimise. Thus, a major issue facing stochastic
egress model users is determining when enough simulations have been performed
to give an accurate representation of the modelled scenario and the statistics of
interest. In evacuation modelling literature [11–20] that examines this issue there
are broadly two approaches suggested. The first approach is based on running a
fixed number of simulations. The second approach is based on some dynamic
assessment of the behaviour of the statistic(s) of interest.

When the first approach is used, a wide range for the required number of simu-
lations has been suggested. For high speed train evacuation analysis, Li et al. [11]
suggested that 10 simulations would suffice provided certain conditions were met.
For large passenger ship analysis, the International Maritime Organisation (IMO)
recommends that a minimum of 500 simulations should be used to determine the
95th percentile TET [12]. They additionally stated that a lower number of simula-
tions would be allowable provided a suitable convergence methodology was fol-
lowed [13]. For aircraft evacuation analysis, Galea [14] noted that 1000
simulations could typically be utilised to determine the 95th percentile TET.
Meacham et al. [15] utilised 2000 simulations to construct a Cumulative Density
Function (CDF) of the TETs for building scenarios. There is no consensus on the
number of simulations used and there is generally little justification for the num-
ber of simulations proposed. The disadvantage of this approach is that it is
unknown whether the number of simulations is sufficient to represent the range of
behaviours that may exist. Furthermore, the number of simulations performed
could be excessive, for the intended purpose, which could limit the number of
potential scenarios or alternative designs that could be explored. This approach
does have the advantage of requiring little additional modeller expertise but is
also limited as some models may be very sensitive to the chosen number of simu-
lations [16].

In the second approach, additional egress simulations are performed until some
indicators of convergence have been satisfied. With this approach, the number of
simulations performed is unknown a priori. The eventual number of simulations
performed is based on the behaviour of the statistics of interest and should ensure
that sufficient, and not excessive, computation being performed. Compared to
running an arbitrary number of simulations this requires some expertise in deter-
mining suitable convergence tolerances for the scenario being run. Two types of
indicators have been proposed, the first type is based on confidence intervals (CIs)
[21, 22] and the second type is based on examining successive differences in the
statistics of interest with additional simulation.

CI based techniques have been successively used in egress modelling [13, 20],
and various other fields of study [23–28], to define convergence. For large passen-
ger ship analysis, Grandison et al. [13] calculate the CI of the 95th percentile
TET, using a binomial distribution, and incrementally test, with additional simu-
lations, the limits of the CI against a pass/fail criterion [12]. This technique was
found to accurately determine whether a ship design had passed or failed, whilst
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minimising the computational effort required. Furthermore, they noted that this
technique could be adapted to determine convergence based on a required preci-
sion and that the methodology could be extended to other suitable statistics of
interest and types of egress analysis. A disadvantage of this method is that it can
be difficult to determine CIs for some statistics. However, an advantage of this
scheme is that the convergence indicators are directly linked to the precision of
the statistics of interest.

A successive difference technique has been proposed by Ronchi et al. [17] and
Ronchi and Nilsson [18]. Ronchi et al. [17] define convergence (i.e. sufficient
repeat simulations have been performed) when their five statistics of interest (MT,
SD and three functional analysis measures (FAMs) of the average total egress
curve (AC)) were all changing by less than their specified tolerances per simulation
over a set number of simulations. It was suggested that these tolerances could be
based on the uncertainty of the available safe egress time from a fire modelling
analysis. Additionally, Lovreglio et al. [19] proposed that those tolerances could
be based on values determined from a set of repeated evacuation experiments
when used to validate a stochastic egress model. An advantage of the successive
difference approach is the simplicity in calculating the convergence indicators.
However, Ronchi et al. noted that ‘The first limitation of the method is that it
uses the concepts of convergence in mean and the central limit theorem rather
than a statistical estimation of the expected values…’. This means that their con-
vergence indicators do not directly relate to standard errors or CIs of the statistics
of interest.

From the previous examples, the parameter of most interest is a representative
TET. However, an analysis based solely on the TET may miss important details
of the evacuation [16–20, 29], e.g., a set of egress trials could have similar repre-
sentative TETs, but the individual evacuation dynamics could be very different. A
more detailed analysis of the evacuation can be performed by additionally exam-
ining the exit time of certain percentages of the agents [18, 20]. However, an even
greater level of detail can be achieved by examining the entire agent egress curve
(an ordered vector of the individual agent’s exit time) via FAMs [16, 17, 19, 29].
Furthermore, egress curves are a typical output from many evacuation models.
The convergence behaviour of the AC was used to represent behavioural uncer-
tainty, the uncertainty associated with the stochastic nature of human behaviour,
by Ronchi et al.

CIs have been demonstrated to accurately and efficiently determine convergence
for statistics of interest in egress modelling and other fields of study. Ronchi
et al.’s use of the AC was an important innovation in studying egress variability.
It is therefore desirable to extend their original method by applying CIs to the
AC, thereby giving a more standard statistical interpretation of behavioural uncer-
tainty. However, it is not intuitively obvious how to determine the CIs for this
curve and no solution has been previously published. The key contribution of this
paper is the development of FAM-based CIs for the AC (Sect. 3) with an accurate
overall confidence level. This was achieved using the novel application of boot-
strapping (see Sect. 2.1), FAMs (see Sect. 2.2), and a bisection algorithm (see
Sect. 3.1). This addresses the first limitation of Ronchi et al.’s method and allows
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the benefits of the CI approach to convergence to be combined with the AC

within a common framework. It is also advantageous to use the FAMs, to form
the CIs, as they are somewhat familiar to the fire and evacuation research com-
munities. FAMs were introduced to the fire safety field in 1999 [30] and the first
reported use for evacuation was in 2012 [29]. A further contribution of this paper
is the development of a convergence scheme. The convergence scheme is based on
the same variables used by Ronchi et al. [17], i.e. AC, MT, and SD, but utilises
CIs. The CI for the MT is based on the standard t-distribution expression (see
Sect. 2) and the CI for the SD is obtained using a standard application of boot-
strapping (see Sect. 2.1.1). This convergence scheme will efficiently determine when
all the statistics of interest have reached their required statistical precisions. Utilis-
ing convergence of the AC helps to ensure that variability, between simulations,
which is not expressed by examining TETs alone, is also captured.

The CIs and the convergence scheme are tested and verified using a simple the-
oretical model. Apart from demonstrating the correctness of the methods, that
work also feeds into a discussion on how to determine appropriate tolerances for
the FAM-based CIs of AC.

2. Statistical and Mathematical Background

This section provides a brief background on the necessary terminology and meth-
ods used in this paper. Initially, some standard statistical terminology will be
described; this initial section can be skipped over by readers with a grounding in
statistics. This is followed by an overview of ‘‘bootstrapping’’ with some worked
examples (Sect. 2.1). Finally, a summary of functional analysis, used to compare
egress curves, is given (Sect. 2.2).

A sample statistic is the value of an estimator based on a sample from the pop-
ulation of results. A population parameter can be considered as the value of an es-
timator based on the entire population of results. Examples of estimators include
the mean TET (MT) (Eq. 1), the 95th percentile TET, and the standard deviation
(SD) of TET. Ideally, one would want to know the parameter but practically it is
(generally) only possible to obtain the statistic of a sample of results and a range
of potential values for the parameter. The sample statistic would display variabil-
ity depending on the nature of the sample obtained although the sample statistic
tends to the value of the parameter as the size of the sample increases (Law of
Large Numbers [22]).

MT ¼
Pn

i¼1 TETi
n

ð1Þ

The ‘‘expected value’’ of a sample statistic is the mean value of a series of infi-
nitely repeated independent instances of that sample statistic with the same sample
size [22]. This will equate to the corresponding population parameter if the estima-
tor is unbiased. This is the case for many estimators although the sample SD is
slightly biased. Whilst the standard variance bias correction has been applied
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(Eq. 2), i.e. dividing by (n - 1) rather than n, there is still some residual bias. It is
reasonable to neglect this bias given the large scale of the variability associated
with the SD compared to the small size of the bias and the complexity of calculat-
ing that bias. The small bias that does exist also diminishes as the sample size
increases.

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 TETi �MTð Þ2

n� 1ð Þ

s

ð2Þ

Although it is generally impossible to exactly know the population parameter it is
possible to estimate a range of possible values for the population parameter based
on the sample of results. This is a CI, which will differ between different samples
but will frequently include the parameter of interest. Ideally, this frequency is
determined by the confidence level (CL). However, the actual frequency, known as
the coverage probability, may differ in practice. A set of CIs for 50 different sam-
ples is depicted in Fig. 1. This is illustrated for a 95% CL in Fig. 2 where the vast
majority, 47 (� 95%), of the sample CIs contain MT(¥) but 3 (� 5%) of the sam-
ple CIs do not. The superscript brackets indicate the number of samples used to
calculate the statistic, when the number is ¥ the statistic is equivalent to the popu-
lation parameter. In general, only a single sample of results will be generated,
although that single sample could contain hundreds of simulations, so only one
CI will be generated per statistic of interest.

The calculation of the CI for certain parameters is straightforward due to the
availability of standard expressions. For the MT, the CI with a 100(1 - a)% CL
can be calculated using Eq. 3 where T-1(p, df) is the inverse t-distribution for per-
centile p with df degrees of freedom [22]. This expression assumes that the popula-
tion SD of the TETs is unknown, which is generally the case in egress

Figure 1. Example 95% Cls for population parameter MT(¥) for 50
different samples. Forty-seven (solid) CIs contain the population
parameter and three (dashed) CIs do not contain the population
parameter.
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models/experiments, and is estimated with the sample SD. If the original data is
normally distributed, then the expression is valid for n > 1. For non-normally
distributed data, the expression is generally valid due to the central limit theorem
for a larger n but is dependent on the nature of the original data distribution.
Some sources advocate a minimum n of 30 although for skewed data a minimum
n of 40 [31] has been suggested. It is further assumed that the data is independent
and identically distributed.

100 1� að Þ%CI

¼ MT nð Þ þ T�1 a
2
; n� 1

� �
� SD nð Þ

ffiffiffi
n

p
� �

; MT nð Þ þ T�1 1� a
2
; n� 1

� �
� SD nð Þ

ffiffiffi
n

p
� �� �

ð3Þ

In Eq. 3, the CI is quoted as a lower limit and an upper limit of the population
parameter value, e.g. 150.0 with a 95% CI [135.0, 165.0]. The CI could also be
quoted as the difference between the limits and the sample statistic, e.g. 150.0 with
a 95% CI [- 15.0, + 15.0]. Those differences could also be quoted as percentages,
e.g. 150.0 with a 95% CI [- 10%, + 10%]. If the CI is symmetric then it can be
expressed in shortened form with a plus-minus limit, e.g. 150 ± 10% (95% CI).

A CI is a trade-off between its width, which should ideally be as narrow as pos-
sible, and its CL, which should ideally be as high as possible. Ideally, one would
want a 100% confidence, but this leads to an infinitely wide CI which is not very
useful. For a statistic calculated from a fixed number of data points, the CI width
will increase with increasing CL. Having a very high CL will result in a very wide
CI whilst a ‘‘low’’ CL with a correspondingly narrow CI is also unhelpful as there
is little confidence that the CI contains the parameter of interest. A 95% CL is
typically chosen as it is very likely to contain the population parameter whilst
maintaining a relatively narrow width. When calculating the CIMT (Eq. 3) with
varying CLs (see Table 1), a 99% CL gains an extra 4% in confidence but
requires a 33% increase in CI width compared to a 95% CL. A higher 99.9% CL
gains an extra 4.9% in confidence but requires a 71% increase in CI width com-
pared to a 95% CL. Using a lower 68% CL (equivalent to 2 9 standard error
widths) reduces the CI width by 49% but there is a reduction in confidence of

Figure 2. Example sampling distribution with a mean of MT(¥) and
standard deviation of SD/�n. The interval containing the central
100(1 2 a)% sample means is depicted.
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27% compared to a 95% CL. From Eq. 3, the width (WMT) of the CIMT with a
fixed CL will also tend to narrow with increasing n (see Eq. 4).

WMT nð Þ / 1
ffiffiffi
n

p ð4Þ

In order to further discuss CIs, it is necessary to describe sampling distributions. A
sampling distribution is the probability distribution of a statistic for a fixed sample
size for all the possible samples that could be selected [22]. For example, a set of
five TETs are obtained from repeated trials and the statistic of interest is the
mean of those TETs. If this set of five trials is repeated, a further set of TETs can
be obtained, and another mean of those values is calculated. Each time the pro-
cess is repeated a different estimate for the mean value will be obtained, see
Table 2.

If this could be repeated a very large number of times, then it would be possible
to produce a distribution of the sample mean values, i.e. the sampling distribu-
tion. Assuming the TETs are normally distributed with an unknown population
SD then it has been shown theoretically that the sampling distribution for the
example can be represented by a t-distribution [22]. The mean of the sampling dis-
tribution is equal to the expected value and the population mean of the original
TET distribution. From the central limit theorem, the standard deviation of the
sampling distribution, also known as the standard error, is the standard deviation
of the original TET distribution divided by �n.

From this sampling distribution, the interval that contains the innermost
100(1 - a)% of sample means can be described by Eq. 5 (see Fig. 2).

P MT 1ð Þ þ T�1 a
2
; n� 1

� �
� SD

ffiffiffi
n

p
	 


<MT nð Þ < MT 1ð Þ þ T�1 1� a
2
; n� 1

� �
� SD

ffiffiffi
n

p
	 
� �

¼ 1� a

ð5Þ

Equation 5 is not particularly useful as in general the value of the MT(n) is known
and the MT(¥) is unknown. However, Eq. 5 can be algebraically recast [22] to
make the MT(¥) the subject of the inequality leading to the probability that the
MT(¥) lies within a CI with a CL of 100(1 - a)% (Eq. 6). This is a probabilistic
statement of the CI given in Eq. 3.

Table 1
Calculation of the Relative Widths of CIs for the Mean Value (Eq. 3)
with Increasing CL for a Sample Size of 100

CL 68% 95% 99% 99.9% 100%

CI width relative to 2 9 standard error 1 1.98 2.63 3.39 ¥

2144 Fire Technology 2020



P MT nð Þ þ T�1 a
2
; n� 1

� �
� SD

ffiffiffi
n

p
	 


<MT 1ð Þ < MT nð Þ þ T�1 1� a
2
; n� 1

� �
� SD

ffiffiffi
n

p
	 
� �

¼ 1� a

ð6Þ

For some statistics, such as the mean value (Eq. 3) and the 95th percentile value
[13], a theoretical solution exists for determining the CI. However, for many
statistics a theoretical solution may not exist or is difficult to derive. For those
cases, it may be possible to use bootstrapping to approximate the sampling distri-
bution and hence derive the CI.

2.1. Bootstrapping Concepts

Bootstrapping [32–36] is a widely used computational statistical technique. The
premise of bootstrapping is that inference about a population from sample data
can be modelled by resampling the sample data and performing inference about a
sample from resampled data. Generally, the population distribution is unknown
and only the sample of data is known. Bootstrapping uses this sample of data as
an approximation to the true population distribution. The bootstrapping tech-
nique is applicable to many estimators although there are known difficulties asso-
ciated with the modal value [37]. Care is also required when applying the
technique to heavy-tailed distributions particularly those with infinite variance [38,
39]; this is not anticipated to be a major issue in the egress modelling context.

A simple worked example, to determine the CI of the mean, follows. In prac-
tice, bootstrapping is not generally used to determine the CI of a mean value due
to the wide applicability of Eq. 3. The primary intent of this example is to demon-
strate the methodology. A set of n values are sampled from some unknown distri-
bution and leads to the set of values in the ‘‘Original’’ row of Table 3. In this
example, n is set to five. This data could be expensive to obtain, e.g. these could
be TETs from a set of egress trials. The mean of the original sample is 139.5. The
original sample is now resampled to create a bootstrap sample, which is a very
inexpensive process. Each value in the original sample has the same, 1/n, chance
of being selected. Values are randomly copied from the original sample n times to

Table 2
An Example Set of Samples Taken from a Distribution. Each Sample
Consists of Five Values

Sample Sample TETs Mean TET

1 133, 127, 148, 140, 177 145

2 161, 124, 159, 145, 155 148.8

3 173, 147, 167, 134, 178 159.8

… … …
n fi ¥ 129, 139, 172, 113, 116 133.8
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create a bootstrap sample (see Table 3). This implies that a particular value from
the original sample may be represented once, more than once, or not at all in a
bootstrap sample. Furthermore, only values from the original sample can be rep-
resented in the bootstrap sample. For example, it can be seen for bootstrap 1 that
99.7 is represented twice and 188.5 is not represented at all and the other values
are represented once each. When n values have been selected, the mean value of
the bootstrap sample is calculated. This process is repeated B times, where B � n,
to create a bootstrap sampling distribution of the mean (cf. Table 2). In this exam-
ple B is set to 19. This is a far lower number of bootstrap samples than would be
used in practice but is used here for demonstration purposes.

The CI, with a 90% CL (the maximum CL that can be represented with 19
bootstraps), is obtained by taking the percentile values that bound the innermost
90% of the sampling distribution which are the 5th and 95th percentile values.
The bth bootstrap index, of the vector of ascending ordered bootstrap means, rep-
resenting the (100p)th percentile is given by Eq. 7.

b ¼ Bþ 1ð Þp ð7Þ

This equates to the 1st and 19th values of the ordered bootstrap sampling distri-
bution of the mean (see Table 4). The bootstrap 90% CI of the mean is [117.1,
176.0]. Using the conventional calculation (Eq. 3) the 90% CI is [108.3, 170.8].
The bootstrap CI is not particularly close to the standard approach although is
not unreasonable given the limited sample size and small number of bootstraps.
The accuracy of the method significantly improves as n and B increase, and as
more sophisticated methods are used to select the required percentiles from the
bootstrap sampling distribution.

The above worked example was repeated using a sample size of 100 values and
1999 bootstraps. In this case the mean of the sample was 156.5. The bootstrap

Table 3
A Worked Example of Bootstrap Samples Based on an Original
Sample of Five TETs

Sample Sample TETs Mean TET

Original 134.0, 188.5, 149.5, 99.7, 126.1 139.5

Bootstrap 1 126.1, 149.5, 99.7, 99.7, 134.0 121.8

Bootstrap 2 188.5, 188.5, 149.5, 99.7, 99.7 145.2

… … …
Bootstrap 6 126.1, 188.5, 188.5, 188.5, 134.0 165.1

… … …
Bootstrap 10 126.1, 188.5, 188.5, 188.5, 188.5 176.0

… … …
Bootstrap 15 126.1, 134.0, 99.7, 126.1, 99.7 117.1

… … …
Bootstrap 19 149.5, 149.5, 134.0, 126.1, 126.1 137.0

Only select bootstraps are listed for compactness
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90% CI, [151.1, 161.5], gives a good approximation to the conventionally deter-
mined 90% CI (Eq. 3), [151.4, 161.6], in this instance. The bootstrap sampling dis-
tribution of the mean for this case is presented as a histogram in Fig. 3. The
bootstrap mean sampling distribution is similar in shape to a normal distribution
and approximates the true sampling distribution.

The simplest approach for selecting a centred CI with a 100(1 - a)% confi-
dence level is to assume it is bounded by the 100(a/2)th and 100(1 - a/2)th per-
centile bootstrap samples. This is the approach used for the worked example
above. However, this simple percentile approach has two notable problems.
Firstly, it tends to give narrower CIs than expected when ‘‘small’’ sample sizes
were used. Secondly, it does not account for skew and bias that may exist in the
samples.

For the first problem, Hesterberg proposed a correction based on the normal
distribution and the t-distribution [40]. This is based on correcting the percentile
limits of the bootstrap sampling distribution of the mean. The ‘‘corrected’’
(100�p)th percentile based on the original (100p)th percentile of sample size n is
given by Eq. 8, where U(z) is the CDF of the standard normal distribution func-

Table 4
The Lower and Upper Ends of the Ordered Bootstrap Sampling
Distribution of the Mean for the Worked Example

Percentile 0 5 10 … 90 95 100

Ordered index (Eq. 7) n/a 1 2 … 18 19 n/a

Original index n/a 15 1 … 6 10 n/a

Mean value - ¥ 117.1 121.8 … 165.1 176.0 ¥

Figure 3. Histogram of 1999 bootstrap mean TETs for the worked
example. The sample size was 100.
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tion. This correction always tends to make the CI more conservative but could
result in an over-correction or insufficient correction of the required percentile
dependent on the actual, but unknown, form of the sampling distribution. In the
event of an over-correction, the CI will be wider than it should be but represents
a more conservative estimate. If the CI is insufficiently corrected, then at least
some correction is applied compared to no correction thus bringing the coverage
probability of the CI closer to the nominal confidence level.

�p p; nð Þ ¼ U

ffiffiffiffiffiffiffiffiffiffiffi
n

n� 1

r

T�1 p; n� 1ð Þ
� �

ð8Þ

Table 5 illustrates the correction (Eq. 8) applied to the 5th percentile for various
sample sizes. The effect of the correction is significant for small n but diminishes
as n increases.

For the second problem associated with possible skew and bias in the samples,
there are a number of advanced bootstrapping methods for determining appropri-
ate limits for the CI, including the Bias Corrected and accelerated (BCa) method
[32, 33], ABC, studentized, and double bootstrap [35]. The BCa bootstrap was
selected due to its wide range of applicability [41], its relatively straightforward
implementation, and its comparatively low computational requirements.

The BCa corrected 100(a/2)th percentile bootstrap index bl and 100(1 - a/2)th
percentile bootstrap index bu, incorporating the small sample size correction
(Eq. 8), are given by Eqs. 9 and 10 respectively, where bxc is the integer floor and
dxe is the integer ceiling of x. Equation 11 is the bias correction factor where U-1

is the inverse CDF of the normal distribution, h is the calculated statistic, and h�j
is the jth bootstrap of the distribution of h*. Equation 13 is the acceleration factor

derived from the original sample data. The CIh is [h�;obl
, h�;obu

] where h�;ob is the bth

bootstrap of the ordered distribution of h*.

bl ¼ Bþ 1ð Þ�p U z0 þ
z0 þ U�1 a

2

� �

1� acc� z0 þ U�1 a
2

� �� �

 !

; n

 !$ %

ð9Þ

bu ¼ Bþ 1ð Þ�p U z0 þ
z0 þ U�1 1� a

2

� �

1� acc� z0 þ U�1 1� a
2

� �� �

 !

; n

 !& ’

ð10Þ

Table 5
The Value of the Corrected 5th Percentile (Eq. 8) Based on Sample
Size n

n 10 20 30 40 100 1000

100�p 2.6 3.8 4.2 4.4 4.8 5.0
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z0 ¼ U�1
XB

j¼1

f h�j ; h
� �

=B

 !

ð11Þ

f h�j ; h
� �

¼
1 if h�j < h
1
2 if h�j ¼ h
0 if h�j > h

8
<

:
ð12Þ

acc ¼
Pn

i¼1
�h �ð Þ � h�i
� �3

6
Pn

i¼1
�h �ð Þ � h�i
� �2

h i1:5 ð13Þ

h�i is h calculated using the original n simulations performed barring the ith simu-
lation.

�h �ð Þ ¼
Pn

i¼1 h�i

n
ð14Þ

2.1.1. Bootstrapping the CI for the SD If the TETs are normally distributed, the
CISD can be determined using a Chi squared distribution with n - 1 degrees of
freedom [22]. However, in general the TETs will not be normally distributed and
those theoretically derived CIs could be inappropriate. The CISD is therefore
determined using bootstrapping.

For n simulations there are n TETs that are used to compute SD(n). A single
bootstrap SD* can be derived by randomly resampling, with replacement, those n
TETs n times and calculating the SD of that bootstrap sample. This process is
repeated B times, where B � n, and leads to a bootstrap sampling distribution of
the SD*. The CI of this ordered bootstrap sampling distribution of SD*,o approxi-
mates the CI for the true sampling distribution of SD(n). The BCa method is used
to obtain the upper and lower limits of the CI.

The specific equations for calculating the BCa limits for the SD are obtained by
substituting SD into Eqs. 9–14 leading to Eqs. 15–21.

z0;SD ¼ U�1
XB

j¼1

f SD�
j ; SD

nð Þ
� �

=B

 !

ð15Þ

accSD ¼
Pn

i¼1 SD �ð Þ � SD�i
� �3

6
Pn

i¼1 SD �ð Þ � SD�i
� �2

h i1:5 ð16Þ
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SD�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pi�1

k¼1 TETk �MT�ið Þ2þ
Pn

k¼iþ1 TETk �MT�ið Þ2

n� 2

s

ð17Þ

MT�i ¼
Pi�1

l¼1 TETl þ
Pn

l¼iþ1 TETl
n� 1

ð18Þ

SD �ð Þ ¼
Pn

i¼1 SD�i

n
ð19Þ

bl;SD ¼ Bþ 1ð Þ�p U z0;SD þ
z0;SD þ U�1 a

2

� �

1� accSD � z0;SD þ U�1 a
2

� �� �

 !

; n

 !$ %

ð20Þ

bu;SD ¼ Bþ 1ð Þ�p U z0;SD þ
z0;SD þ U�1 1� a

2

� �

1� accSD � z0;SD þ U�1 1� a
2

� �� �

 !

; n

 !& ’

ð21Þ

The CISD is [SD�;o
bl;SD

, SD�;o
bu;SD

] where the bootstrap index bl,SD is given by Eq. 20

and bu,SD is given by Eq. 21.

2.2. Functional Analysis

The final area of mathematics used in this paper to define CIs for the AC is func-
tional analysis, a branch of mathematics used to compare vectors or times series
data. An egress curve is a vector of agent egress times. Unlike a scalar quantity
such as the TET where the difference between two TETs is merely a difference in
magnitude, it is less obvious how to express the difference between vectors. The
difference between the curves can be expressed using a set of FAMs.

The FAMs compare one curve (a) against another curve (b), using different cri-
teria, that returns a scaler value that meaningfully represents the similarity (or dif-
ference) between the two curves. The egress curve a = {a1, ak,…., am}, where ak is
the time of the kth agent to exit and am is the exit time of the last (mth) agent to
exit; egress curve b is similarly defined. The three FAMs used here are the Eucli-
dean Relative Distance (ERD), the Euclidean Projection Coefficient (EPC), and
the Secant Cosine (SC). These FAMs have been previously described in fire [30]
and evacuation contexts [16, 17, 19, 29] so only concise details, suitable for egress
curves, are given here.

The ERD (Eq. 22) represents the ‘‘relative distance’’ between two curves and
will be zero when the curves are identical and greater than zero if the curves are
different. ERD varies between zero and infinity with values nearer to zero imply-
ing a closer ‘‘distance’’ between the curves. In the appendix it is shown that the
ERD of two egress curves can be compared to normalised absolute difference
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(NAD), i.e. |TETa - TETb| ‚ TETb, between two TETs of those egress curves. If
the ERD is greater than the NAD, then it indicates there is more relative differ-
ence in the egress curves compared to the TETs; this suggests there may be more
variability in an earlier phase of the evacuation. If the ERD is less than the NAD,
then there is less relative difference in the curve compared to the TETs; this sug-
gests that there may be more variability at the end of the evacuation.

ERD a; bð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k¼1 ak � bkð Þ2
Pm

k¼1 b
2
k

s

ð22Þ

The EPC (Eq. 23) is the value needed to project one curve onto another curve.
This would be one when the curves can be exactly ‘‘projected’’ on each other,
which will be the case when the curves are the same and varies about one when
not exactly projected. EPC varies between zero and infinity, assuming ak ‡ 0 and
bk ‡ 0 8k, with values nearer to one implying a closer ‘‘projection’’ similarity
between the curves.

EPC a; bð Þ ¼
Pm

k¼1 akbkPm
k¼1 b

2
k

ð23Þ

The SC (Eq. 24, where Dxk-s= xk- xk-s and s is the step-size ‡ 1) compares the
‘‘shape’’ of two curves. The step-size s is used to vary the smoothing of the curve,
where a step size of one implies no smoothing and the smoothing effect increases
as s increases. SC equates to one when the curves have the same ‘‘shape’’, which
will be the case when the curves are the same. SC varies between zero and one
when the egress curves have different ‘‘shapes’’ with values nearer to one implying
a closer similarity in shape. Egress curves monotonically increase, thus Dak-s ‡ 0
and Dbk-s ‡ 0 8k, implying that SC(a, b) ‡ 0. The Cauchy–Schwarz [42] inequality
(Eq. 25) implies that SC(a, b) £ 1.

SC a; bð Þ ¼
Pm

k¼1þs Dak�sDbk�s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

k¼1þs Dai�sð Þ2
Pm

k¼1þs Dbk�sð Þ2
q ð24Þ

Xm

k¼1þs

Dak�sDbk�s

 !2

�
Xm

k¼1þs

Dak�sð Þ2
Xm

k¼1þs

Dbk�sð Þ2 ð25Þ

3. Development of FAM-Based CIs for the AC

The average egress curve AC(n) = {ac1, ack, …, acm} is calculated by averaging all
n generated egress curves ci (Eq. 26 shows the calculation for the kth component
of AC(n)) from the simulations performed. A bootstrap average curve AC* is
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derived by randomly resampling, with replacement, those n generated curves n
times, and then averaging. This process is repeated B times and leads to a boot-
strap sampling distribution of the average egress curve. Unfortunately, it is diffi-
cult to directly assign a CI to the sampling distribution of curves. However, it is
possible to create proxies that represent the precision of the AC indirectly. This
can be achieved by transforming the AC sampling distribution of curves into
usable sampling distributions of point values, via the FAMs, that can be assigned
CIs. Each bootstrapped average curve AC* is compared to the average egress
curve AC(n) with the FAMs to create sampling distributions of those measures, i.e.
ERD*(AC*, AC(n)), EPC*(AC*, AC(n)), and SC*(AC*, AC(n)). This approximates
the (generally) unknowable sampling distributions of all possible sample average
egress curves AC(n) compared to the population (or expected) average egress curve
AC(¥) using the FAMs, i.e., ERD(AC(n), AC(¥)), EPC(AC(n), AC(¥)), and
SC(AC(n), AC(¥)). The CIs of the FAM-based sampling distributions represent the
precision of the AC.

ack ¼
Pn

i¼1 ci;k
n

ð26Þ

The ERD sampling distribution can be represented by a semi-infinite distribution
between zero to infinity as the ERD values are greater than or equal to zero. It is
anticipated that the distribution would be concentrated near zero with the fre-
quency tending to zero as the bootstrapped ERDs tend to infinity. When AC(¥) is
unknown the best estimate of ERD*(AC(¥), AC(n)) is zero as the best estimate of
AC(¥) is AC(n). The 0th percentile of the ERD*,o sampling distribution is zero. The
CI is obtained by using the 0th and 100(1-a)th percentiles of the ordered boot-
strapped values as the lower and upper limits for a confidence level of 100(1-
a)%. The small sample size correction (Eq. 8) is applied to the 100(1-a)th per-
centile; this is achieved by modelling the bootstrapped ERD measures using a fol-
ded normal distribution from zero to infinity with the (unfolded and folded) mode
at zero. The corrected 100(1-a)th percentile bootstrap index bERD of the ordered
bootstrapped ERD*,o values is given by Eq. 27 where Eqs. 28 and 29 map the per-
centile from the folded distribution to the full distribution and back again. The

CIERD is [0, ERD�;o
bERD

].

bERD að Þ ¼ Bþ 1ð Þpfolded �p pfull 1� að Þ; nð Þð Þd e ð27Þ

pfull pfoldedð Þ ¼ pfolded þ 1

2
ð28Þ

pfolded pfullð Þ ¼ 2pfull � 1 ð29Þ

The SC sampling distribution can be represented by a distribution between zero and
one where it is expected that the values will be concentrated near one and the fre-
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quency will tend to zero as the SC values tend to zero. The best estimate of
SC(AC(¥), AC(n)) is one and the 100th percentile of the SC sampling distribution is
one. The CI, with a confidence level of 100(1-a)%, is given by the limits of the cor-
rected (100a)th and 100th percentile of the ordered bootstrapped SC*,o measures.
The corrected 100ath percentile bootstrap index bSC is modelled, in a similar fash-
ion to bERD, using Eq. 30 where Eqs. 31 and 32 map the percentile from the folded

distribution to the full distribution and back again. The CISC is [SC�;o
bSC

, 1].

bSC að Þ ¼ Bþ 1ð Þpfolded �p pfull að Þ; nð Þð Þb c ð30Þ

pfull pfoldedð Þ ¼ pfolded
2

ð31Þ

pfolded pfullð Þ ¼ 2pfull ð32Þ

The EPC sampling distribution will vary between zero and infinity where it is
expected that the values will be concentrated about one and the frequency tends
to zero as EPC tends to either zero or infinity. This can be represented by a two-
tailed distribution and the CI of the ordered bootstrapped EPC measures is calcu-
lated using the BCa method (Sect. 2.4). The best estimate of EPC(AC(¥), AC(n)) is
one. The specific equations for calculating the BCa limits for the EPC are
obtained by substituting EPC into Eqs. 9–14 leading to Eqs. 33–37.

z0;EPC ¼ U�1
XB

j¼1

f EPC AC�
j ;AC

nð Þ
� �

; 1
� �

=B

 !

ð33Þ

accEPC ¼
Pn

i¼1 EPC �ð Þ � EPC AC
nð Þ
�i ;AC

nð Þ
� �� �3

6
Pn

i¼1 EPC �ð Þ � EPC AC
nð Þ
�i ;AC

nð Þ
� �� �2

� �1:5 ð34Þ

where AC
nð Þ
�i is an average egress curve calculated using the original egress curves

barring the egress curve from the ith simulation.

EPC �ð Þ ¼
Pn

i¼1 EPC AC
ðnÞ
�i ;AC

ðnÞ
� �

n
ð35Þ

bl;EPC að Þ ¼ Bþ 1ð Þ�p U z0;EPC þ
z0;EPC þ U�1 a

2

� �

1� accEPC � z0;EPC þ U�1 a
2

� �� �

 !

; n

 !$ %

ð36Þ
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bu;EPC að Þ ¼ Bþ 1ð Þ�p U z0;EPC þ
z0;EPC þ U�1 1� a

2

� �

1� accEPC � z0;EPC þ U�1 1� a
2

� �� �

 !

; n

 !& ’

ð37Þ

The CIEPC is given by [EPC�;o
bl;EPC

, EPC�;o
bu;EPC

] where bl,EPC and bu,EPC are given by

Eqs. 36 and 37 respectively.

3.1. Overall Confidence Level for the Average Egress Curve

The precision of the AC is represented by three FAM-based CIs. Each of these
CIs has an individual CL of 100(1-a)%. These three CIs can be considered to
form a triple-CI that has a more complex coverage probability than a single CI as
it is possible that the AC(¥) may lie within zero, one, two, or three of the CIs (see
Fig. 4).

The overall confidence level is equivalent to P(ERD \ EPC \ SC), i.e. all
FAM-based CIs are simultaneously satisfied, and is likely to be less than the indi-
vidual CL. Although it is easy to control the individual CLs, what is sometimes
required is the ability to set the overall CL. This is a well-known problem with
multiple CIs and could be addressed by applying the Bonferroni correction to the
individual CIs [43]. If the overall CL is 100(1 - aoverall)% then the confidence
level required for each of the individual CIs is given be Eq. 38 where NCI is the
number of CIs (three for the average egress curve).

CLBonferroni ¼ 100 1� aBonferronið Þ% ¼ 100 1� aoverall
NCI

� �

% ð38Þ

Figure 4. Three potential triple-CI coverage probabilities where the
individual ERD, EPC, and SC CLs are 95%. The value outside of the
circles represents the case when the AC(¥) does not lie in any CI. The
left-hand case is when the overall CL, P(ERD \ EPC \ SC), is equivalent
to the individual CLs. The middle case is a mixture of CI occupancies.
The right-hand case is where the overall CL is the minimum possible
value.
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However, this leads to a conservative estimate of the individual CLs, as the cor-
rection assumes the worst-case multi-CI probability coverage, e.g. the right-hand
Venn diagram of Fig. 4, and therefore the CIs are potentially much wider than
necessary. When three CIs are used, an overall 95% CL corresponds to each CI
having an individual 98.3% CL. Fortunately, as the ERD*(AC*, AC(n)),
EPC*(AC*, AC(n)), and SC*(AC*, AC(n)) sampling distributions are available, for
the bootstrapped egress curves, it is possible to determine a more accurate overall
confidence level. This is achieved by adjusting the individual confidence level of
the CIs, using the bisection algorithm below, until the number of AC

* bootstrap
curves that are simultaneously within all three FAM-based CIs matches the
required overall CL.

1. The required number (RAC) (Eq. 39) of AC
* curves that needs to be contained

simultaneously by all three CIs, for an overall CL of 100(1 - aoverall)%, is cal-
culated by taking the maximum of the number of AC* that need to be held
individually by CIERD (Eq. 40), CIEPC (Eq. 41), and CISC (Eq. 42) at the over-
all CL.

RAC ¼ max NBERD;NBEPC;NBSCð Þ ð39Þ

NBERD ¼ bERD aoverallð Þ ð40Þ

NBEPC ¼ bu;EPC aoverallð Þ � bl;EPC aoverallð Þ þ 1 ð41Þ

NBSC ¼ B� bSC aoverallð Þ þ 1 ð42Þ

2. The lower individual confidence level (LICL) and upper individual confidence
level (UICL) for bisection algorithm are set to Eqs. 43 and 44 (the Bonferroni
correction) respectively. The actual individual CL, that satisfies the overall CL,
lies between these two limits.

LICL ¼ 100 1� aoverallð Þ% ð43Þ

UICL ¼ 100 1� aoverall=3ð Þ% ð44Þ

3. The bisection is now performed by setting the middle individual confidence
level (MICL) Eq. 45.

MICL ¼ LICLþ UICL
2

ð45Þ
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4. The CI limits based on MICL, 100(1 - aMICL)%, are calculated for the ERD,
EPC and SC sampling distributions, i.e. ERD�;o

bERD aMICLð Þ (Eq. 27), EPC�;o
bl;EPC aMICLð Þ

(Eq. 36) and EPC�;o
bu;EPC aMICLð Þ (Eq. 37), and SC�;o

bSC aMICLð Þ (Eq. 30).
5. Count the number (NAC) of AC* curves that are simultaneously contained by

all three CIs with MICL. This is achieved using the following pseudo code.
Note that the FAMs of AC�

j compared to AC nð Þ are ERD�
j , EPC

�
j and, SC�

j .

SetNAC to zero

DO j ¼ 1 toB

IF ERD�
j � ERD�;o

bERD aMICLð Þ

� �
AND SC�

j 	 SC�;o
bSC aMICLð Þ

� �

AND EPC�;o
bl;EPC aMICLð Þ � EPC�

j � EPC�;o
bu;EPC aMICLð Þ

� �
THENNAC ¼ NAC þ 1

ENDIF

ENDDO

6. If (NAC > RAC) then set UICL to MICL. Otherwise set LICL = MICL.
7. If the difference between UICL and LICL is less than the bisection tolerance,

0.1% is suggested, then the overall CL convergence has been achieved (con-
tinue to step 8). Otherwise, the overall CL convergence has not been achieved
(go to step 3).

8. Calculate the final CIs using the UICL by substituting aUICL into ERD�;o
bERD aUICLð Þ

(Eq. 27), EPC�;o
bl;EPC aUICLð Þ (Eq. 36) and EPC�;o

bu;EPC aUICLð Þ (Eq. 37), and SC�;o
bSC aUICLð Þ

(Eq. 30) for an overall CL of 100(1 - aoverall)%.

4. CI Convergence Scheme

Now that CIs have been developed for the statistics it is possible to determine
convergence w.r.t. the estimate of the population parameters. The CIMT is calcu-
lated using Eq. 3, the CISD is calculated using bootstrapping (Sect. 2.1.1), and the
FAM-based CIs of the AC are calculated using the methodology described in
Sect. 3. The width of a CI narrows (converges) with increasing sample size, e.g.
Eq. 4. This enables a convergent approach based on incremental testing where the
number of trials can be progressively increased until the width of the CI is suffi-
ciently reduced that it is less than the specified precision tolerance. The conver-
gence of the MT, the SD, and the FAMs are determined by comparing the
normalised width (W) of the CIs against a specified tolerance (Tol) (Eqs. 46–50)
for a 100(1 - a)% CL.
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WMT ¼ CIu;MT � CIl;MT

MT
¼

2 � T�1 1� a
2 ; n� 1

� �
� SD

MT
ffiffiffi
n

p <TolMT ð46Þ

WSD ¼ CIu;SD � CIl;SD
SD nð Þ ¼

SD�;o
bu;SD að Þ � SD�;o

bl;SD að Þ

SD nð Þ <TolSD ð47Þ

WERD ¼ CIu;ERD � CI0th;ERD ¼ ERD�;o
bERD að Þ <TolERD ð48Þ

WEPC ¼ CIu;EPC � CIl;EPC ¼ EPC�;o
bu;EPC að Þ � EPC�;o

bl;EPC að Þ <TolEPC ð49Þ

WSC ¼ CI100th;SC � CIl;SC ¼ 1� SC�;o
bSC að Þ <TolSC ð50Þ

The convergence algorithm is depicted as a flowchart in Fig. 5. The user needs to
specify the above tolerances (TolMT, TolSD, TolERD, TolEPC, and TolSC) as well as
the minimum number of simulations (MIN_SIM), the maximum number of simu-
lations (MAX_SIM), the number of bootstrap-resamples (B), the CL, and the
number of simulations performed between testing (K). Convergence is determined
when all the CI widths are less than their specified tolerances. Convergence may
not be achieved within the MAX_SIM simulations, in that case the MAX_SIM
simulations will be performed with the final CIs reported. If the user has no speci-
fic convergence requirements, then a set of values for the convergence attributes
are suggested in Table 6. The tolerances are discussed in Sect. 6.

5. Case Study

A theoretical case study model, similar to Ronchi et al. [17], was used to create
multiple fictitious egress curves of 120 agents. The data is generated by pseudo-
randomly [44] sampling a log-normal distribution with a mean of 12 s and stan-
dard deviation of 13.4 s (�180 s). A set of 120 values are generated {l1, …, l120}
with the egress time (t) of the kth agent given by Eq. 51. Figure 6 depicts ten ran-
domly generated egress curves using the case study model.

tk ¼
Xk

q¼1

lq ð51Þ

Using the case study model has two major advantages over using simulated or
real data. Firstly, the generally unknowable population parameters are defined for
the case study model so the methods can be tested and verified. The population
MT(¥) is 1440 s (120 9 12 s), as the mean of the sum is the sum of the means.
The population SD(¥) is 147.0 s (�120�180 s), as the variance of the sum is the
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sum of the variances and the standard deviation is the square root of the variance.
The exit time of the kth agent of AC(¥) is given by Eq. 52.

t 1ð Þ
k ¼ k � 12s ð52Þ

Figure 5. CI-based convergence algorithm using the MT, SD, and
FAMs of the AC.
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Secondly, there is very little computational cost in generating this data allowing a
vast number of curves to be generated in a short timeframe. Virtually all the com-
putational cost of the case study is incurred from the bootstrapping process rather
than curve generation. In practice, it is anticipated that the computational cost of
egress simulations (curve generation) will dwarf the computational costs of the
bootstrapping process. In this test case study, the step size (s) used for the SC
(Eq. 24) is one. This gives the most conservative value for the difference in shape
between the curves.

The testing of the CIs is performed in three parts. The first part examines the
behaviour of the CIs, within a single set of simulations, relative to the sample esti-
mates of the statistics and the population parameters (Sect. 5.1). The second part
examines the average behaviour of the CIs over multiple sets of simulations
including the measured coverage probability and average CI width for a parame-
ter at a specified sample size (Sect. 5.2). The third part examines the behaviour of
the convergence scheme based on the CIs (Sect. 5.3).

Table 6
Suggested Values for the Attributes of the CI Convergence Algorithm

Attribute MIN_SIM CL K B TolMT TolSD TolERD TolEPC TolSC

Value 40 + [31] 95% 1 2000 + [32] 0.02 0.2 ½TolMT TolMT ½TolMT

Figure 6. Ten randomly generated fictitious egress curves for 120
agents from the case study model.
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5.1. CI and Error Behaviour within a Single Set of Simulations

The behaviour of the statistics (MT, SD, ERD, EPC, SC) and their CIs were
examined over a set of two hundred simulations. This is an example set of simula-
tions and the behaviour will not be the same every time but highlights the expec-
ted behaviour. The statistics are compared to their equivalent population
parameters and normalised leading to the true errors (e). The CIs are also nor-
malised, in a similar fashion to e, leading to normalised CI limits (v).

The normalised error (eMT) and CI limits (vl;MT, vu;MT) for the MT are given by
Eqs. 53, 54, and 55.

eMT ¼ MT 1ð Þ �MT nð Þ

MT nð Þ ð53Þ

vl;MT ¼
T�1 a

2 ; n� 1
� �

� SD nð Þffiffi
n

p

MT nð Þ ð54Þ

vu;MT ¼
T�1 1� a

2

� �
; n� 1

� �
� SD nð Þffiffi

n
p

MT nð Þ ð55Þ

The normalised error (eSD) and CI limits (vl;SD; vu;SD) for the SD are given by

Eqs. 56, 57, and 58.

eSD ¼ SD 1ð Þ � SD nð Þ

SD nð Þ ð56Þ

vl;SD ¼
SD�;o

bl;SD
� SD nð Þ

SD nð Þ ð57Þ

vu;SD ¼
SD�;o

bu;SD
� SD nð Þ

SD nð Þ ð58Þ

The normalised error (eERD) and CI limit (vERD) for the ERD are given by
Eqs. 59 and 60.

eERD ¼ ERD AC 1ð Þ;AC nð Þ
� �

ð59Þ

vERD ¼ ERD�;o
bERD

ð60Þ

2160 Fire Technology 2020



The normalised error (eEPC) and CI limits (vl;EPC; vu;EPC) for the EPC are given by

Eqs. 61, 62, and 63.

eEPC ¼ EPC AC 1ð Þ;AC nð Þ
� �

� 1 ð61Þ

vl;EPC ¼ EPC�;o
bl;EPC

� 1 ð62Þ

vu;EPC ¼ EPC�;o
bu;EPC

� 1 ð63Þ

The normalised error (eSC) and CI limit (vSC) for the SC are given by Eqs. 64 and
65.

eSC ¼ 1� SC AC 1ð Þ;AC nð Þ
� �

ð64Þ

vSC ¼ 1� SC�;o
bSC

ð65Þ

In Figs. 7, 8, 9, 10 and 11 the normalised errors and CIs are plotted for MT
(Fig. 7), SD (Fig. 8), ERD (Fig. 9), EPC (Fig. 10), and SC (Fig. 11).

In Figs. 7, 8, 9, 10 and 11 it is apparent that for this set of simulations the CIs
bounds the true error. This is expected as the CI is an estimate interval of the

Figure 7. MT error and CI behaviour over a set of 200 case study
simulations.
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population parameter, meaning that the population parameter is unlikely to be
outside of the CI. In Fig. 7, the SD has a significant error, � 0.1 (� 10%), after
150 simulations, although this error is bounded by the CI. There is no obvious
relationship between eSD and the other error measures.

Figure 8. SD error and CI behaviour over a set of 200 case study
simulations.

Figure 9. ERD error and CI behaviour over a set of 200 case study
simulations.
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There is an unexpectedly close similarity between the behaviour of eMT (Fig. 7)
and the eEPC (Fig. 10), both errors are near zero at 50 and 100 simulations, have a
similar local peak value, approximately 0.02, at 67 simulations, and have similar
values of approximately - 0.01 at 200 simulations. There is also a similarity

Figure 10. EPC error and CI behaviour over a set of 200 case study
simulations.

Figure 11. SC error and CI behaviour over a set of 200 case study
simulations.
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between eERD (Fig. 9) and eMTj j, both errors are near zero at 50 and 100 simula-
tions, have a local peak value at 67 simulations, and have similar values of 0.01 at
200 simulations. Similarly, the CI limits for EPC and ERD have a similar trend
and magnitude as the corresponding CI limits of MT. A brief algebraic analysis of
eEPC and eERD is given in the appendix. That analysis demonstrates that eEPC and
eERD are approximately equivalent to eMT under certain conditions. This is useful
as the ERD and EPC tolerances, in the convergence scheme, can be related to the
MT tolerance (see Sect. 6). It is also shown, in the appendix, that if eERD is
greater than eMTj j then there is more relative difference exhibited between the
egress curves than the difference between the TETs of those egress curves.

The convergence behaviour of SC (Fig. 11) is somewhat different, and shows no
obvious correlation, to the other statistics as the error and CI change compara-
tively smoothly with an increasing number of simulations. The error reduces more
rapidly than the other statistics with the normalised CI less than 0.01 after 100
simulations and less than 0.005 after 200 simulations. The convergence behaviour
unexpectantly appears to be 1/n while the convergence of the other variables
appears to be 1/�n. Although the general behaviour is different to the other CIs
the normalised CISC still bounds eSC.

5.2. Coverage Probability and Average Width of CIs

Ten thousand sets of simulations of size n were generated to estimate the actual
coverage probability of the CIs and the average normalised widths (Eqs. 46–50) of
the CIs. This was repeated using eight sample sizes (10, 20, 30, 40, 100, 400, 1000,
and 4000). The coverage probability is the percentage of CIs that ‘‘contain’’ the
population parameter, and ideally this should match the confidence level of the
CI. For the MT and SD, the coverage probability is determined by counting the
number of times the population value lies within the CI. For the average egress
curve, the FAMs are used to compare the sample average egress curve to the pop-
ulation average egress curve, e.g., ERD(AC(¥), AC(n)), EPC(AC(¥), AC(n)), and
SC(AC(¥), AC(n)), and those values were checked to see if they lie within the CI or
not.

In Table 7, the coverage probability of the CIs is generally good, the CIMT and
CIERD coverage probability nearly perfectly matching the confidence level within
the error band. The CIEPC coverage probability is within the error band for sam-
ple sizes of 30 or more; even at a sample size of 10 the discrepancy is not too
great. However, the CISC coverage probability is unexpectedly higher than the
nominal confidence level until a sample size of 4000 is reached. This implies that
the CISC may not be as narrow as they could be, but at least the CI is a conserva-
tive estimate. The CISD has the worst coverage probability behaviour of all the
statistics but is still reasonable (> 90%) with sample sizes over 20. Even for a
small sample size of 10 the coverage probability is 85.2% and is perhaps better
than no error estimate. The CISD coverage probability tends to the nominal CL
with increasing sample size, but even for small sample sizes the method is usable.
The coverage probability could perhaps be improved for the CISD using a double
bootstrap [35], but this will result in a significant additional computational cost.
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In Table 8, the widths of the MT, SD, ERD, and EPC CIs are approximately
inversely proportional to the square root of the number of simulations performed.
This is a typical relationship between the CI width and the number of simulations
performed and is similarly observed for CI widths of other parameters [13]. The
SC’s width has a different convergence behaviour and is approximately inversely
proportional to the number of simulations performed.

The normalised width of the SD is notable as it is much wider than the other
statistics. For example, after 1000 simulations the WSD is still about 10% of the
SD, approximately ± 5% error. For 40 simulations, the WSD is 0.49 which is
equivalent to a [- 19%, + 30%] error at a 95% CL. For 10 simulations, the
WSD is 0.84 is equivalent to a [- 24%, + 60%] error. If an end user requires a
precise estimate of the SD, then a high number of simulations will generally be
required.

When the multi-CI correction scheme (Sect. 3.1) is used it can be seen in
Table 9 that the average individual CL (97.6%) is significantly lower than the
conservative Bonferroni correction (98.3%), but the overall coverage probability is

Table 7
CI Coverage Probability of MT, SD, ERD, EPC, and SC with Individual
95% CLs for a Range of Sample Sizes Over 10,000 Repetitions

Statistic

Error band

(%)

Number of simulations

10

(%)

20

(%)

30

(%)

40

(%)

100

(%)

400

(%)

1000

(%)

4000

(%)

MT (95%) ± 0.4 94.5 94.8 95.0 94.6 95.1 95.2 95.3 94.8

SD (95%) ± 0.4 85.2 91.7 92.4 93.0 93.3 94.6 94.7 94.9

ERD

(95%)

± 0.4 95.0 94.7 95.2 95.6 95.3 94.9 94.8 95.0

EPC

(95%)

± 0.4 94.2 94.4 95.1 95.2 95.1 94.8 95.1 94.9

SC (95%) ± 0.4 100 100 99.9 99.8 99.3 97.7 96.1 95.4

Table 8
Average Normalised CI Widths for MT, SD, ERD, EPC, and SC for Eight
Sample Sizes Over 10,000 Repetitions

Width of normalised CI

Number of simulations

10 20 30 40 100 400 1000 4000

WMT (95%) (Eq. 46) 0.14 0.094 0.076 0.065 0.04 0.02 0.013 0.0063

WSD (95%) (Eq. 47) 0.84 0.68 0.57 0.49 0.31 0.16 0.098 0.049

WERD (95%) (Eq. 48) 0.084 0.053 0.043 0.037 0.023 0.011 0.0072 0.0036

WEPC (95%) (Eq. 49) 0.16 0.10 0.083 0.071 0.044 0.022 0.014 0.0069

WSC (95%) (Eq. 50) 0.10 0.047 0.03 0.022 0.0084 0.002 0.00077 0.00019
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still above 95%. It should be noted that the SC coverage probability is much
greater than its CL, thus significantly contributing to the overall coverage proba-
bility being over 95% below 4000 simulations. However, with the 4000-simulation
sized sample the overall coverage probability is still above 95% when the SC cov-
erage probability is in line with the expectation of the computed CL.

In Table 10 the corrected widths for an overall nominal 95% CL are given.
These widths are slightly wider (� 14%) than the widths in Table 8. For 40 simu-
lations, the CIERD is [0, 0.042], CIEPC is [0.958, 1.042], and CISC is [0.975, 1] with
an overall confidence level of 95%. These could be reported as errors with the
ERD error of 4.2%, the EPC error of ± 4.2% and the SC error of 2.5%.

5.3. Convergence Testing

A sample of simulations is generated until convergence was achieved for the tested
statistic at the stated tolerance. A minimum of 40 simulations [41] were performed
before testing for convergence. This was repeated 10,000 times for each measure
to estimate the actual coverage probability of the CI. For this case study each
convergence criteria were tested in isolation, i.e., convergence is based solely on
the tested statistic of interest. This is a reasonable way to test the convergence as
ultimately convergence will be dependent on a single variable as the other vari-
ables must be individually converged before the final convergence is determined.

The results in Table 11 illustrate that the methodology can generate CIs that
have an actual coverage close to the nominal 95% confidence level. The theory of
CIs is based on a variable CI limits with a set sample size. This is somewhat dif-
ferent to converging to a set CI width with a variable sample size. Intuitively, it
would be expected that the coverage probability would be close to the nominal
CL and Ross [25] noted that the coverage probability would match the nominal
CL for sufficiently large n.

As would be anticipated from Sects. 5.1 and 5.2, it can also be seen that as the
tolerance decreases the number of samples required for convergence increases.
This increase is approximately quadratic for all the measures apart from the SC.
For the SC, as the tolerance decreases there is a linear increase in the number of
samples required for convergence.

Table 10
Average Multi-CI Corrected Normalised CI Widths for AC at Various
Sample Sizes Over 10,000 Repetitions

Normalised CI width

Number of simulations

10 20 30 40 100 400 1000 4000

WERD 0.094 0.061 0.049 0.042 0.026 0.013 0.0082 0.0041

WEPC 0.18 0.12 0.096 0.082 0.051 0.025 0.016 0.0079

WSC 0.12 0.054 0.034 0.025 0.0091 0.0021 0.00081 0.00020
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6. Discussion

The advantage of the convergence scheme developed here compared to Ronchi
et al.’s scheme is the convergence is directly based on the required precision of the
statistics of interest. The most intuitive tolerance to set is TolMT. It has been pre-
viously suggested that the tolerance for Ronchi et al.’s original method could be
based on uncertainty from either a fire modelling study determining available safe
egress time or uncertainty based on experimental egress trials [19]. Those tech-
niques could also be applied to the CI based method provided those uncertainties
are calculated using CIs. In lieu of that type of information, a typical choice for
TolMT could be 0.02, the equivalent of ± 1% error, but the choice depends on the
user’s requirements. However, the choice of tolerances for the other statistics SD,
ERD, EPC and, SC are less apparent.

Prescribing appropriate tolerances for the ERD, EPC and SC FAM-based CIs
is problematic, but the case study suggests a potential way forward. It was found
that the WEPC, with a 95% confidence level, and WMT have a similar magnitude,
WEPC is approximately 10% wider than WMT, for the same sample size (see
Table 10) and the behaviour of the corrected CI limits of MT and EPC (see
Figs. 7 and 10) are also similar. It was also shown that under certain conditions
the true error measured by EPC and MT are approximately equivalent (see
appendix). The ERD also has a behaviour and magnitude related to MT under
certain circumstances. WERD is roughly half the magnitude of WMT for the same
sample size (see Table 10) and the upper confidence limit of the ERD and MT
CIs are similar in magnitude and trend (see Figs. 7 and 10). It was also shown
(see appendix) that the true error measured by ERD and MT are also equivalent
under certain circumstances. In lieu of any other requirements, it is reasonable to

Table 11
CI Coverage for the Convergence Statistics for a Range of Tolerances

Statistic Tolerance Average sample size (SD) CI coverage probability

MT 0.06 47.6 (7.6) 94.6% ± 0.4%

0.04 101.3 (15.5) 94.8% ± 0.4%

0.02 405.5 (30.6) 94.8% ± 0.4%

SD 0.4 52.4 (19.0) 91.6% ± 0.5%

0.2 211.5 (62.2) 93.8% ± 0.5%

0.1 858.1 (150.3) 93.9% ± 0.5%

ERD 0.04 40.6 (2) 97.9% ± 0.3%

0.02 122.1 (17) 94.3% ± 0.5%

0.01 484.4 (34.4) 94.4% ± 0.5%

EPC 0.08 40.4 (1.6) 93.9% ± 0.5%

0.04 112.8 (17.8) 93.5% ± 0.5%

0.02 456.0 (34.7) 94.2% ± 0.5%

SC 0.02 43.3 (3.7) 99.8% ± 0.1%

0.01 83.6 (6.3) 99.5% ± 0.1%

0.005 161.6 (8.8) 98.7% ± 0.2%
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base the tolerances of the ERD and EPC CIs on the specified tolerance of MT
(Eqs. 66 and 67). Although there is no obvious relationship between MT and SC
convergence behaviour, it is also suggested that TolSC is also based on the speci-
fied tolerance of MT (Eq. 68) unless the user has a specific requirement.

TolEPC ¼ TolMT ð66Þ

TolERD ¼ TolMT

2
ð67Þ

TolSC ¼ TolMT

2
ð68Þ

Setting the TolSD in relation to TolMT is not recommended. From Table 8, even
with 4000 simulations the average WSD is 0.049. By assuming that the TETs fol-
low a normal distribution it can be calculated [22] that it would take � 10,000
simulations to achieve convergence for a TolSD of 0.02. Unless the user specifically
requires a certain precision for the SD then it is suggested setting TolSD between
0.4 and 0.2.

There are circumstances where a user would wish to set the MT tolerance based
on time, e.g. ± 10 s, TolMT,seconds = 20 s. The tolerance of the FAM-based CIs
cannot be directly expressed in seconds, but this is not a particular problem as the
TolMT,seconds is easily converted to a decimal (Eq. 69). This needs to be calculated
at runtime as MT is generally unknown a priori.

TolMT ¼ TolMT;seconds

MT
ð69Þ

In the previous case study, WEPC/2 and WERD are slightly larger than WMT/2. As
WERD is greater than WMT/2 then there is a greater relative variability expressed
in the AC compared to the MT (see appendix). This is due to the nature of the
theoretical case study model. The coefficient of variation (CV) of the exit time of
the kth agent, for the case study model, decreases with increasing k (see Eq. 70).
Thus, the earlier exiting agents exhibit the most relative variability. However, the
actual variability of the kth agent, i.e. SDk, increases with increasing k. The ERD
gives greater weight to larger differences due to the squaring term (Eq. 22) leading
to a small increase in WERD compared to WMT/2. When performing practical
egress simulations, there is potentially larger variation in the exit time of agents
other than the last agent to exit which would be reflected in the FAM-based CIs
of the AC.

CVk ¼
SDk

�tk
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � 180

p

k � 12
¼

ffiffiffi
5

p

2
ffiffiffi
k

p ð70Þ
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The CI based convergence scheme has a higher computational cost than Ronchi
et al.’s original method. This includes generating the bootstrap samples, ordering
the values, and calculation of the BCa coefficients. However, it is anticipated that
the overall cost will be small compared to the computational cost of the evacua-
tion simulations. If bootstrapping takes a significant amount of time, relative to
the evacuation simulations, then the algorithm can be optimised by increasing the
number of simulations (K) performed between convergence checks. The calcula-
tions have been ordered in the convergence scheme so that the most computation-
ally expensive bootstrapping, the FAM-based CIs, are not calculated until the MT
and SD have been deemed to have converged.

The CI method also requires additional memory compared to their original
method, although this is not expected to be a serious limitation. The largest mem-
ory requirement is the need to store all n egress curves. For example, a ‘large’
problem consisting of a scenario with 100,000 agents that is repeated 1000 times
would require less than 500 MB of RAM. This is a modest memory requirement
for a modern computer.

Although the use of CIs addresses Ronchi et al.’s first noted limitation, the
other limitations they discussed still apply to the work performed here. For
instance, it is possible that egress curves can appear identical even when the
dynamics of the evacuation are different. Furthermore, differing egress curves
compared to the AC can return the same ERD, EPC or SC measures. The conver-
gent behaviours of the FAM-based CIs of the AC are therefore imperfect proxies
for ensuring all the variability in an egress simulation is adequately represented.
However, these measures are superior to using the convergence of the MT alone
when trying to determine whether enough simulations have been performed to
represent the true variability of the evacuation scenario.

7. Concluding Comments

Ronchi et al. [17] pioneered the use of the convergence behaviour of the AC to
better represent the convergence of the evacuation scenario in general. In this
paper, their original approach was modified to use CIs. The CI approach has been
shown to give reliable convergence with reference to the estimate interval of the
population parameters when applied to the mean TET, standard deviation of
TETs and the AC. The FAM-based CIs for the AC have been calculated using a
novel application of bootstrapping, FAMs, and bisection algorithm. Although the
methods described in this paper are more complex than Ronchi et al.’s original
convergence indicators, the resultant CIs have a more standard statistical interpre-
tation than their original convergence indicators. The choice of convergence toler-
ances is therefore more straightforward as it is just the required statistical
precision of the statistics of interest. The case study and algebraic study (see
appendix) of the ERD and EPC true errors showed there can be equivalency
between those errors and the error in MT. These studies provided guidance for
setting the tolerances of ERD and EPC.
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The convergence scheme is easily adapted to include other statistics of interest.
There are many more parameters that may be of interest, e.g. measures of conges-
tion, that may not have a known CI. For example, Smedburg [45] suggested sev-
eral statistics, such as egress exit flow rates, which were represented by time series
data; FAM-based CIs and convergence for those statistics could be determined
using the methods described in this paper. The calculation of the CIs and conver-
gence should be implemented in software so that end users can have easy access
to the technology.

The CIs can also be easily applied to experimental or simulated trial data with-
out the convergence scheme suggested here where the number of trials performed
is limited by other criteria.
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Appendix: Equivalency of EPC and ERD Errors of the Mean
Egress Curve with the Error in Mean Total Evacuation
Time Under Certain Conditions

Under certain conditions it can be shown that the normalised errors, eEPC and
eERD, between the sample mean egress curve AC(n) and the population mean
egress curve AC(¥), in EPC and ERD are equivalent to the normalised error, eMT,
between the sample mean TET (MT(n)) and population mean TET (MT(¥)). The
eMT is given by Eq. 71.

eMT ¼ MT 1ð Þ �MT nð Þ

MT nð Þ ð71Þ
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The eEPC can be expressed as Eq. 72.

eEPC ¼ EPC AC 1ð Þ;AC nð Þ
� �

� 1 ¼
Pm

k¼1 ac
1ð Þ
k ac nð Þ

k

� �

Pm
k¼1 ac

nð Þ
k ac nð Þ

k

� � � 1 ð72Þ

Substituting ac 1ð Þ
k with ckMT 1ð Þ and ac nð Þ

k with kkMT nð Þ into Eq. 72 leads to

Eq. 73. Note that acm ” MT.

eEPC ¼
Pm

k¼1 ckMT 1ð ÞkkMT nð Þ� �

Pm
k¼1 kkMT nð Þð Þ2

� � � 1 ð73Þ

Simplifying Eq. 73 leads to Eq. 74.

eEPC ¼
Pm�1

k¼1 ckkk
� �

þ 1
� �

MT 1ð Þ

Pm�1
k¼1 k2k

� �
þ 1

� �
MT nð Þ

� 1 ð74Þ

When Eq. 75 is satisfied then eEPC will be approximately equal to eMT (Eq. 76).

Xm�1

k¼1

ckkk

 !

þ 1

 !



Xm�1

k¼1

k2k

 !

þ 1

 !

ð75Þ

eEPC 
 MT 1ð Þ

MT nð Þ � 1 ¼ MT 1ð Þ �MT nð Þ

MT nð Þ ¼ eMT ð76Þ

There are two specific examples, of when Eq. 75 is satisfied, provided here. The
first example is when Eq. 77 is satisfied. The second example is when both Eqs. 78
and 79 are satisfied.

ck 
 kk8k ð77Þ

Xm�1

k¼1

ckkk � 1 ð78Þ

Xm�1

k¼1

k2k � 1 ð79Þ

The eERD (Eq. 80) can be expressed as Eq. 81.
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eERD ¼ ERD AC 1ð Þ;AC nð Þ
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm

k¼1 ac 1ð Þ
k � ac nð Þ

k

� �2

Pm
k¼1 ac nð Þ

k

� �2

v
u
u
u
u
t ð80Þ

eERD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm�1

k¼1 ac 1ð Þ
k � ac nð Þ

k

� �2
� �

þ MT 1ð Þ �MT nð Þð Þ2

Pm�1
k¼1 ac nð Þ

k

� �2
� �

þ MT nð Þð Þ2

v
u
u
u
u
u
t

ð81Þ

Two examples of approximate equivalency of eERD and eMT (Eq. 82) are given
here. The first example occurs when Eq. 83 is true (note: Eq. 84). The simplest
example of Eq. 83 being satisfied is when Eq. 85 is true. The second example is
when both Eqs. 86 and 87 are true.

eERD 
 MT 1ð Þ �MT nð Þ

MT nð Þ

















 ¼ eMTj j ð82Þ

Pm�1
k¼1 ac 1ð Þ

k � ac nð Þ
k

� �2

Pm�1
k¼1 ac nð Þ

k

� �2 

MT 1ð Þ �MT nð Þ� �2

MT nð Þð Þ2
ð83Þ

x
y
� �x

�y
� xþ �x

y þ �y
¼ x 1þ �ð Þ

y 1þ �ð Þ ð84Þ

ac 1ð Þ
k � ac nð Þ

k















ac nð Þ
k



MT 1ð Þ �MT nð Þ









MT nð Þ 8k ð85Þ

Xm�1

k¼1

ac 1ð Þ
k � ac nð Þ

k

� �2
 !

� MT 1ð Þ �MT nð Þ
� �2

ð86Þ

Xm�1

k¼1

ac nð Þ
k

� �2
 !

� MT nð Þ
� �2

ð87Þ

Figure 12 depicts two sets of contrived egress curves with their errors reported in
Table 12. The first set of curves satisfy both Eqs. 77 and 85 and all the errors are
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equal (0.2). The second set of curves satisfy Eqs. 78 and 79 and, Eqs. 86 and 87
and eERD and eEPC are approximately equal to eMT (0.19 
 0.2).

By extending the analysis of the ERD relationship it can also be seen, from
Eq. 81, that if Eq. 88 is true then eERD will be greater than eMTj j, indicating there
is more relative difference in the rest of the egress curve compared to the TET.
One specific circumstance of this occurs when Eq. 89 is true. Similarly, if Eq. 90 is
true then eERD will be less than eMTj j, showing there is less relative difference in
the rest of the egress curve compared to the TET. One specific circumstance of
this occurs when Eq. 91 is true.

Figure 12. Two sets of contrived curves that demonstrate the
approximate equivalency of eERD, eEPC and eMT. MT(n) is 627 s for both
sample AC(n) curves and MT(¥) is 752 s for both population AC(¥)

curves.

Table 12
MT, EPC and ERD Error for Two Sets of Contrived Curves (Fig. 11). The
Values Demonstrate the Equivalency of the Error Measures Under
Certain Conditions

Set of curves eMT eERD eEPC

1 0.2 0.2 0.2

2 0.2 0.19 0.19
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