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Abstract 

Ecuador is facing several threats to its food and water security, with over a tenth of its 
population currently undernourished and living in poverty. As a response, its government is 
incorporating new patterns of land use and developing regional water infrastructure to cope 
with the related challenges. In this study, we assess to what point these efforts contribute to 
integrated water and food security in the country. We investigated the period 2004-2013 in 
the most productive agricultural region - the Guayas river basin district (GRBD) - and 
analysed the impacts of different scenarios of agricultural change on local water security. Our 
approach integrates MuSIASEM (Multi-Scale Integrated Analysis of Societal and Ecosystem 
Metabolism) with the hydrological SWAT model. Freshwater allocation is evaluated within 
all the water cycle from its source (natural systems) to the final users (societal systems). 
Water security is assessed spatiotemporally in terms of water stress for the population living 
in poverty. Water productivity is obtained in relation to agricultural production and nutrition. 
The multi-scale analysis shows that whereas at national level the median annual streamflow 
has a similar magnitude than rainfall stored in soil, these two parameters differ 
spatiotemporally at subbasin level. The study finds the greatest challenges in achieving water 
security is the south-east and central part of the GRBD, due to water scarcity and a larger 
population living in poverty. However, these areas are also simultaneously, where the 
greatest crop water productivity is found. We conclude that food production for both 
domestic consumption and market-oriented exports can be increased while meeting 
ecosystem water demands in all the GRBD regions except for the east. Our integration of 
methods provide a better approach to inform integrated land and water management and is 
relevant for academics, practitioners and policymakers alike. 
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Agricultural development in Ecuador: a compromise between water and food 2 

security? 3 

1. Introduction  4 

Ecuador faces an important food security challenge, where approximately two million 5 

people - 11% of its population - are undernourished (FAO, 2017). In response, the 6 

government has implemented a legal reform that enshrines food sovereignty in its 7 

Constitution (República del Ecuador, 2008) following the principles of the National 8 

[Development] Plan for Good Living1 –NPGL– (SENPLADES, 2013). The NPGL 9 

principles were incorporated into the Food Sovereignty Regime Organic Law of 2009, 10 

which sought to avoid further monocultures and provides support for local farmers in the 11 

country. It has resulted in a raise of public investment in agriculture from $93 million to 12 

$268 million in the period 2003-2009 (Nehring, 2012). Despite legal efforts, public 13 

investment has not achieved local food security. On the contrary, it resulted in an increase 14 

in food production for export – a similar trend to other Latin American countries (Falconí et 15 

al., 2017).  16 

The country has a large water endowment (average runoff of 1,275 mm), but it also 17 

presents an unequal distribution of water throughout regions and dry-wet seasons 18 

(CISPDR, 2014). A number of studies assess the physical and social drivers of Ecuador’s 19 

water allocation within the water cycle. These include the effects of land use change 20 

(Espinosa and Rivera, 2016) and climate change (Molina et al., 2015) over freshwater 21 

provision or the contribution of paramo and aquifers retention capacity to baseflow 22 

(Guzmán et al., 2015). Research has also addressed the role of water user organisations in 23 

water management (Hoogesteger, 2013) and how institutional reforms strengthen water 24 

rights (Cremers et al., 2005) of local irrigation communities. Those studies focus mainly on 25 

small (i.e., <500 km2) highland catchments from the Andean region, but to date and to the 26 

                                                           
1 The National Plan for Good Living (Plan del Buen Vivir) comes out at four-year intervals (2009–2013 
followed by 2013-2017). It is based on the indigenous Quechua concept of Sumak Kawsay (Buen Vivir) - a 
social paradigm - with objectives to ‘better the quality of life of the population, develop their capacities and 
potential’. 
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best of our knowledge there are no detailed spatiotemporal assessments of Ecuador that 27 

cover the distribution of available water resources, land use distribution (including irrigated 28 

areas) and their assigned water demand. More importantly, there are no studies on the areas 29 

with larger population densities of people living in poverty and where the most valuable 30 

crops are produced. 31 

Distribution of available water resources will also likely be affected by future political 32 

decisions, related to changes in agricultural land patterns and water infrastructure, to ensure 33 

local and global food demand. The National Hydraulic Plan (period 2014-2035) and the 34 

National Plan for Irrigation and Drainage foresee an increase of the irrigated area by 53% 35 

(from 941,000 to 1,443,000 ha) (MAGAP, 2013) and the existing reservoir volume by 90% 36 

(from 7,690 hm3 to 14,672 hm3) (CISPDR, 2014), showing a strong connection between 37 

food and water security. Thus, for successful implementation over time, both agricultural 38 

development and water resource management must be coherent. 39 

Integrated Land and Water Resources Management (ILWRM) is a scientific approach that 40 

highlights the connections between land and water management with the purpose of 41 

strengthen their interaction (Falkenmark et al., 2014). ILWRM builds on Integrated Water 42 

Management principles, but it provides a further step to environmental evaluations due to 43 

the considerations of water-land interactions at the local level (ibid). Indeed, local issues 44 

are more tractable because  the systems co-exist in space (de Loë and Patterson, 2017). 45 

Despite the scientific consensus on the usefulness of the approach, ILWRM has had limited 46 

practical applications by water practitioners and lacks explicit consideration on 47 

environmental policies and development plans. For example, in Europe, the Water 48 

Framework Directive does not mention the relevance and effects of land use changes and 49 

practices on available water resources, which has resulted in a disconnection between 50 

agricultural and water policy objectives (Cabello and Madrid, 2014). Moreover, certain 51 

agricultural policy measures also determine land use management practices with effects on 52 

water allocation (Salmoral et al., 2017). This has also been the case in Ecuador, where 53 

national development plans, aim to increase food provision by including additional irrigated 54 

areas and changing crop patterns distributions, but there is no evaluation on the 55 

implications of such decisions on local water resources.  56 
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We focus on the Guayas river basin district (GRBD), as it is central to Ecuadorian water 57 

and food security.  The study aims to answer the following questions: 1) What are the water 58 

needs for food security in the GRBD? 2) How does food security and the related 59 

agricultural development affect water security? The paper is organized as follows. Section 60 

2 describes the selected case study and the ILWRM method, which combines MuSIASEM 61 

(Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism) (Giampietro et 62 

al., 2009) and the hydrological model SWAT (Soil and Water Assessment Tool) (Arnold et 63 

al., 1998). The applied indicators for food and water security links and water productivities 64 

are described and scenarios towards water and food security aims presented. Section 3 65 

shows the main results, also including an evaluation of water and food security changes 66 

under the proposed scenarios. Section 4 discusses the relevance of our method and obtained 67 

multi-level results, and highlights the pressures on local water resources as well as the 68 

related implications of national development strategies for water and food security.  69 

2. Materials and methods  70 

2.1. The Guayas river basin district  71 

The Guayas river basin district (GRBD) has a land area of 44,532 km2 (i.e., 16% of the 72 

country surface) and provides water resources for about 6 million inhabitants (i.e., 40% of 73 

the national population (INEC, 2015)). In 2010, the GRBD contained 380,840 ha irrigated 74 

land, which holds 57% of the national agricultural irrigated area (CISPDR, 2014; CISPDR, 75 

2015). The GRBD is a humid tropical system comprising a rainy season from December to 76 

May and a wet one for the remaining months. There are precipitation variations from the 77 

north (2,900-3,100 mm) to the south (300-700 mm) (CISPDR, 2015).  The GRBD contains 78 

the largest share of the national agricultural area for the region’s most significant crops i.e., 79 

rice (96%), banana (68%), sugar cane (97%), corn (55%) , coffee (33%) and palm oil  80 

(19%)  (MAGAP, 2015) (Fig. 1; Table A1).  81 
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 82 

Fig. 1. Location of the Guayas river basin district. Main land use classifications and irrigated areas 83 

are shown.  84 

 85 

2.2. Studying the water metabolism within ILWRM 86 

ILWRM analyses face an important ‘issue of scale’ (Cumming et al., 2006) because joint 87 

water-land analyses require the simultaneous adoption of different spatial-temporal scales. 88 

These differences are marked by water and land dynamics, with differing cycles and 89 

geographical boundaries. To address these factors this study assesses the water metabolism 90 

of socio-ecological systems from an ILWRM perspective using MuSIASEM (Giampietro et 91 

al., 2009).  92 

MuSIASEM is a very powerful framework for the analysis of water use and its resulting 93 

impacts (Madrid-López et al., 2014; Madrid et al., 2013; Serrano-Tovar et al., 2014). 94 

However, it needs to be adapted to soil and land use dynamics for its application to 95 

ILWRM. Fig. 2 shows a chart that summarizes the adaptation and how the water 96 

metabolism of socio-ecosystems is conceptualized. The upper part connects the flows of 97 

water that reach the land surface and are available at the ecosystem level with those water 98 

flows used for food production. The lower level shows the structural organization of each 99 

system and the factors that transform them: climate change, ecosystem water requirements 100 

and food provision. Policy making is an important part of the metabolism, as it guides the 101 

biophysical flows that and has a direct influence over water and food security. Current 102 
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policy goals have been used in the analysis to build scenarios. They are further developed 103 

in Section 2.5. 104 

 105 

Fig. 2. The water metabolism of the food socio-ecosystem of the Guayas river basin district. 106 

Adapted from (Madrid-López and Giampietro, 2015).  107 

 108 

2.3. MuSIASEM-SWAT integration 109 

In this study, MuSIASEM serves as a framework in which (1971) Georgescu-Roegen’s  110 

‘flow’ and ‘fund’ concepts are used to structure the analysis. Funds refer to the components 111 

of the socio-ecosystems, which must be maintained (trees, people, river patterns, etc.) In 112 

general terms, a specific analytical tool is chosen according to the type of flow to be 113 

studied. The results of this analysis are contextualized with a study of the fund elements. As 114 

this study focuses on a river basin district, we use the hydrological model SWAT (Arnold 115 

et al., 1998). SWAT is able to simulate ecosystem water funds and societal water flows and 116 

integrate different spatiotemporal levels of water-land links. The model presents the 117 

capacity to combine hydrological components with a plant growth module, which is 118 

essential for the assessment of agricultural production in our study. However, it fails to tell 119 

the story behind those flows, thus the fund description of MuSIASEM is used for their 120 

contextualization. 121 
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We use SWAT parameters as proxies for the estimation of five different water metabolism 122 

semantic categories2, as presented in Madrid-Lopez and Giampietro (2014) (Table 1):  123 

• Ecosystem water funds refer to the natural runoff (Rnat) and soil water storage 124 

(SWSecosystems) patterns. Rnat and SWSecosystems are calculated following Salmoral et al. 125 

(2017).  126 

• Ecosystem water flows refers to the water demand from terrestrial and aquatic 127 

ecosystems for their proper functioning.  128 

• Societal available water (SAW) is the amount of water that can be used by society 129 

taking into account constraints of ecosystem water demands and available 130 

infrastructure.  131 

• Gross water appropriation (GWA) includes the consumptive (i.e., evaporation, 132 

transpiration, integration into a product, or release into a different drainage basin or 133 

the sea) and non-consumptive (i.e., water used for cooling or polluted water) water 134 

used for human activities.  135 

• Net water use (NWU) considers only consumptive water that has actually been used 136 

(excluding losses). 137 

We perform a monthly step analysis during the period 2004-2013 for each subbasin 138 

generated by SWAT. The outputs are later summarized by the total river basin district and 139 

at yearly steps. The detailed information required to run SWAT, design the model and 140 

evaluate its performance is included in the Supplemental Material.  141 

 142 

Table 1. Water metabolism semantic categories adapted from Madrid-Lopez and Giampietro (2014) 143 

and the proxies estimated with SWAT. 144 

Water 
function 

Water metabolism 
category 

Water types SWAT parameter 

Fund Ecosystem water  

Natural runoff (Rnat) Streamflow without human abstractions  

Soil water storage 
(SWSecosystems) 

At annual step: evapotranspiration without 
irrigation practices 
At monthly step: sum of the soil moisture and 
effective precipitation at the beginning of each 
month 

Flow 
 

Ecosystem water  
Environmental flow 
requirements (EFR) 

River flow left to the aquatic ecosystems 

Evapotranspiration Evapotranspiration from terrestrial ecosystems 

                                                           
2 More details in Supplemental Material 
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from the environment 

Fund 

Societal 
available 
water 
(SAW) 

Blue water 
(SAWblue) 

Available streamflow 
(Rnat – EFR) 

Water yield without human abstractions minus 
environmental flow requirements. It only 
considers surface water connected to active 
shallow aquifer. 

Reservoirs (STres)                                           Water stored in reservoirs 

Green 
water 
(SAWgreen) 

Soil water storage for 
human purposes 
(SWShuman) 

At annual step: evapotranspiration without 
irrigation practices for croplands and pasturelands 
At monthly step: sum of the soil moisture and 
effective precipitation at the beginning of each 
month for croplands and pasturelands 

Flow 

Gross water 
appropriation (GWA)  

Households water 
abstractions 

Gross water withdrawn 

Industry water 
abstractions 

Gross water withdrawn 

Surface water 
evaporation 
 

Evaporation losses from surface water bodies 

Agricultural irrigation 
water abstractions (1) 

Gross irrigation from surface water and reservoir 
sources 

Agricultural soil water 
flows  

Evapotranspiration in agricultural areas, 
excluding irrigation  

Net water 
use 
(NWU)  

Blue water 
(NWUblue) 

Households water 
consumption 

Net water withdrawn 

Industry water 
consumption 

Net water withdrawn 

Surface water 
evaporation 

Evaporation losses from surface water bodies 

Agricultural irrigation 
water consumption(1)(2) 

Net irrigation from surface water and reservoir 
sources 
 

Green 
water 
(NWUgreen) 

Agricultural soil water 
flows(2) 

Evapotranspiration in agricultural areas, 
excluding irrigation source 

(1) It does not consider losses during water distribution 145 
(2) Part of the water consumed for local agricultural production will be exported in the form of 146 

virtual water 147 

2.4. Evaluating food and water security links and water productivities  148 

The evaluation of food and water security has been assessed with three different 149 

approaches3: 150 

• Water security can be framed focusing on quantity and availability of water 151 

(Rodrigues et al., 2014), which in the end is also related to food security to meet 152 

agricultural needs (Cook and Bakker, 2012).  Blue flow/fund shows the water stress 153 

                                                           
3 See Supplementary Material for more details regarding methods and data used. 
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by subbasin s and month m and is quantified as a ratio of water consumed to water 154 

available: 155 

 156 

����	����/��
��,� =
�������	

�������	
                              [1] 157 

Where,  NWUblue: net water use in streamflow (volume time-1); SAWblue: 158 

societal available water in streamflow (volume time-1) 159 

Similarly, green flow/fund: 160 

����
	����/��
��,� =
��������	

���
                              [2] 161 

Where, NWUgreen: agricultural soil water consumption from rainfall source 162 

(volume time-1); SWS: soil water storage (volume time-1) 163 

NWUblue and SAWblue are calculated as the sum of the flows and funds for all subbasins 164 

upstream of the subbasin under study. In contrast, NWUgreen and SWS only refer per 165 

subbasin.  166 

• Blue water security is also evaluated with a weighted population under poverty by 167 

the volume of unavailable water per unit of drainage area (Poverty water unsecure 168 

s,m, in inhabitants m3/m2), when net blue water use exceeds societal available water: 169 

 170 

����� !	�" ��	�
#�$����,� =
��%��" &�
'()*+,- × (	012345*		 −	781345*	)

��"&
"��	"��"
 

if NWUblue > SAWblue 171 

 [3] 172 

Where,  population poverty: population under poverty for each drainage area; 173 

drainage area: sum of the total upstream subbasin area for each 174 

under study (m2) 175 

In the GRBD a total 3,681,472 inhabitants are considered to be living in poverty 176 

(INEC, 2011; CISPDR, 2015).  177 

• Crop water productivity (CWP in kg/m3) and crop water nutrition (CWN, kcal/L) 178 

assess the level of food production in relation to water consumption, including both 179 
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blue and green water. These are calculated at subbasin level and annual resolution in 180 

dry matter content for croplands and pasture. Crops production is first converted 181 

into the main food product applying extraction coefficients and later to kcal.  182 

 183 

 184 

2.5. Scenarios towards water and food security aims 185 

Four scenarios evaluate the implications on local water resources and food provision by 186 

2035 due to changes on water infrastructure and agricultural land uses (Table A6)4. 187 

“Irrigation”: Development of new water infrastructure under current crop patterns 188 

This scenario exclusively shows the planned expansion of irrigated areas (from 413,420 to 189 

814,900 ha) and reservoir storage capacity (from 8,625 to 12,332 hm3) according to the 190 

GRBD Hydraulic Plan. The crop distribution area is the same as in the baseline scenario 191 

(Fig. 1).  192 

In the following scenarios, the irrigated areas, storage capacity and water transfers are kept 193 

the same as in Irrigation. The only condition that changes is crop distributions.  194 

“Exports”: Crop pattern changes supporting international exports 195 

Crop pattern changes are justified by the enthusiasm for international exports. Between 196 

2013 and 2035 coffee, cocoa and palm oil areas are annually increased by 1% and the 197 

reforested areas by 2%, according to the existing agricultural and reforestation programs. 198 

To meet this expansion, pasture land and natural herbaceous vegetation are reduced by 199 

170,283 and 2,090 ha, respectively. 200 

“Sovereignty”: Crop pattern changes towards food sovereignty aims 201 

This scenario promotes agricultural production and consumption within the country. Sugar 202 

cane, soya and yellow corn are selected towards food sovereignty aims, since these are the 203 

main products that Ecuador currently imports. They are increased with an annual growth 204 

rate of 1.6%, 2.2% and 2.2%, respectively. To allow this crop pattern change, a total area of 205 

                                                           
4 More details about data and methods applied are available in the Supplemental Material. 
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171,470 ha is reduced, including mainly pasture land, followed by natural herbaceous 206 

vegetation, white corn and bush areas. 207 

“Mix” : Promotion of both international exports and food sovereignty aims 208 

The last scenario assesses the overall changes from Scenarios 2 and 3, supported by the 209 

idea that a mix from previous scenarios might be the most plausible future option. 210 

3. Results  211 

3.1. The water metabolism of the GRBD 212 

The annual median ecosystem blue water fund during the study period (31,793 hm3 - i.e., 213 

714 mm) is slightly larger than the green water fund (30,553 hm3 – i.e., 686 mm). At 214 

subbasin level both streamflow (between 90 and 1,960 mm) and soil water (between 60 to 215 

1030 mm) funds differ spatially (Fig. A2). At the societal level, streamflow availability is 216 

reduced to meet environmental flow requirements, but the presence of reservoirs provide an 217 

additional median annual volume of 5,375 hm3. The agricultural character of the river basin 218 

district is shown by the dominance of freshwater water flows for agricultural production. 219 

Agricultural production allocates 75% and 64% of the blue and green net water use, 220 

respectively. The GRBD is water self-sufficient in food trade because it exports in the 221 

international market more virtual water (4,345 hm3) than it imports (1,064 hm3). However, 222 

the exports depend on a greater extent to blue water, which comprises 30% of virtual water 223 

exports, whereas blue virtual water imports only make up 10% (Fig. 3). 224 
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 225 

Fig. 3. Links between the water metabolism of ecosystems and society in the GRBD. Annual 226 

median values in hm3 for the period 2004-2013.  227 

The south-east of the basin is where the largest annual net blue water use (i.e., NWUblue) 228 

occurs (> 200 mm). In those subbasins irrigation comprises more than 98% of the NWUblue, 229 

except for subbasin 31 where 50% of the water consumption refers to urban demand to 230 

supply Guayas city. Subbasins with the greatest NWUgreen (i.e., >800 mm) are located in the 231 

centre and north (Fig. 4). The values of these green water flows are shaped by existing land 232 

use distribution, and also by climatic conditions and capacity of soils to store water.  233 
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 234 

Fig. 4. Blue (left) and green (right) net water use (mm) by subbasin as annual median values for the 235 

period 2004-2013. Pie charts show the proportion of main water users. 236 

 237 

3.2. Water stress and population under poverty 238 

At subbasin and monthly steps, some regions appear as blue water unsecure due to water 239 

scarce conditions. NWUblue exceeds the available blue water for human purposes (i.e., 240 

SAWblue) in the south east, central and upper parts (Fig. 5). Blue flow/fund takes values > 1 241 

upstream Angas, Cañar, Macul dam and Quevedo monitoring stations. There are also cases 242 

(i.e., Babahoyo, Chimbo and Macul dam stations) when even the monthly SAWblue shows 243 

negative values (Fig. 5), which means that available streamflow and water stored in 244 

reservoirs cannot cover the environmental flow requirements (Table A7). In contrast, Daule 245 

Peripa and Vince reservoirs, located at the north-west and central part, allow water savings 246 

during the wet period to maintain water demand downstream (i.e., Daule II and Vince 247 

stations). 248 

Green flow/fund has the smallest values (i.e., < 0.6) for all subbasins between February and 249 

April, which coincides with the rainy season. October and November, is when green 250 

flow/fund > 0.6 occurs mostly for subbasins located in the centre of the GRBD, whereas in 251 
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July, it occurs for subbasins located in the northwest (Fig. A4). This is probably explained 252 

by different precipitation distribution in the study area. 253 

 254 

Fig. 5. Median (p50) and 10th percentile (p10) of monthly societal available water (SAWblue) and net 255 

blue water use (NWUblue) during the study period 2004-2013 for upstream drainage areas.  256 

Poverty water unsecure (inhabitants m3/m2) weights the total population living in poverty 257 

by the volume of unsecure blue water per drainage area. East GRBD is where most times 258 

NWUblue exceeds the existing fund for human purposes (grey subbasins in Fig. 6). Poverty 259 

water unsecure shows monthly median values larger than 1,000 inhabitants m3/m2 upstream 260 

Babahoyo station, Chimbo station and subbasin 38 (Fig. 6). The population under poverty 261 

and blue water stress differs greatly from year and month depending on the climatic years 262 

(i.e., from zero to a maximum of 1,260,317 inhabitants) (Table A8). Median monthly 263 

values of poverty water unsecure ranges from 2,057 (February) to 7,522 (September) 264 

inhabitants m3/m2, considering all the affected areas. A total population of 1,200,996 265 

inhabitants and 51% GRBD’s area is under monthly blue water stress (unsecure volume of 266 

blue water from 39 to 142 hm3) (Table A9).   267 

 268 
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 269 

Fig. 6. Population under poverty and unsecure blue water per drainage area (Poverty water 270 

unsecure, in inhabitants m3/m2). The dots refer to the sum of all the upstream population, 271 

unavailable water and area. 272 

3.3. Food vs water security 273 

In the GRBD, 28.9 x 10^13 kcal (including pastures) are produced as median annual values 274 

for the study period, 31% allocated for crops for exports and the remaining for food 275 

sovereignty crops. Regarding blue water, crops for exports account for 53% of the gross 276 

water appropriation, whereas sovereignty crops allocate 47%. For green water, the 277 

magnitude of sovereignty crops goes up to 72% of the total green water consumption 278 

(Table 2).  279 
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 280 

Table 2. Summary of median annual values of water metabolism variables by crops for exports or 281 

food sovereignty purposes. 282 

  
Area (ha) 

Yield in dry 
weight (t/ha) 

Kcal 
supplied 

Gross blue 
water flow 

(hm3) 

Net blue 
water flow 

(hm3) 

Green water 
flow  
(hm3) 

Crop water 
productivity 

(kg/m3) 

Crop water 
nutrition 
(kcal/L) 

Exports 

Total 666,470 2.7 8.90E+12 3,140 1,550 5,400 0.26 1.28 

Banana 167,870 8.9 7.80E+12 1,960 990 1,370 0.63 3.31 

Cocoa 408,250 0.3 6.30E+11 1,180 560 3,280 0.03 0.16 

Coffee 38,640 0.2 0 0 0 310 0.02 0 

Oil palm 51,710 4 4.80E+11 0 0 440 0.48 1.1 

Sovereignty 

Total 2,307,960 3.5 2.00E+13 2,730 1,340 14,100 0.52 1.3 

Total (without 
pastures) 

1,227,870 3.4 1.90E+13 2,430 1,190 6,480 0.55 2.48 

Pasture 1,080,090 3.6 7.60E+11 300 140 7,620 0.5 0.1 

Rice 370,010 3.3 5.30E+12 1,070 540 2,390 0.41 1.81 

Soy 52,860 1.2 1.20E+11 20 10 100 0.56 1.04 

Sugar cane 147,270 13.8 1.30E+13 1,120 530 980 1.34 8.58 

White corn 262,010 0.4 5.00E+11 90 40 1,620 0.07 0.3 

Yellow corn 395,730 2 5.10E+11 120 70 1,390 0.54 0.35 

 283 

The most efficient areas for food production in terms of water consumption (i.e., greater 284 

CWP, in kg/m3) are mostly found in the centre and south east, with median values from 285 

0.41 to 2.85 kg m-3 (Fig. 7a). High pasture yields generate high CWP in some subbasins 286 

(e.g., subbasin 18). Larger CWP also takes place in subbasins with a dominant presence of 287 

sugar cane and banana (e.g., subbasins 23 and 27). In contrast, subbasins within the Andean 288 

region have the lowest CWP with values below 0.1 kg m-3 (Fig. 7a).  289 

In terms of nutritional value, as expected, those subbasins with irrigation can produce larger 290 

quantities of kcal too (i.e. greater CWN, in kcal/L). CWN shows a similar geographic 291 

distribution as CWP. However, some differences are found due to the existing crops 292 

patterns per subbasin and caloric content of the food product they provide (Fig. 7b). For 293 

instance, subbasins 42 and 43 has a median of 0.45 and 0.34 kg m-3 CWP, respectively, but 294 

the median CWN is 8.3 and 6.3 kcal/L. This is due to the existence of sugarcane in 10% of 295 

each subbasin area, which shows both a high crop yield and caloric content (387 kcal/100 296 

grams).   297 
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Fig. 7. a) Crop water productivity (kg m-3) and b) crop water nutrition (kcal L-1) as median values 298 

per subbasin for the period 2004-2013. The water typologies (soil water and streamflow) are also 299 

shown. 300 

3.4. Water and food security changes under 2035 scenarios 301 

In the proposed scenarios, annual median values of societal available blue water (SAWblue) 302 

(i.e., natural runoff - environmental flow requirements + reservoir storage) decreased in 303 

comparison to Baseline (from 17,940 in Baseline to 16,130 hm3 in Mix). Available 304 

streamflow decreased from 12,565 in Baseline to 8,460 hm3 in Mix, but this decrease is 305 

offset by providing water from reservoirs.  Gross (net) irrigation raises from 5,890 (2,895) 306 

in Baseline to 10,165 hm3 (6,135) in Mix. In contrast, agricultural green water consumption 307 

declines from 19,660 (Baseline) to 18,505 hm3 (Exports) (Table A10).  308 

The scenarios show a decrease in NWUblue in relation to existing SAWblue, as additional 309 

reservoirs can mitigate water stress that was occurring in some regions in Baseline. Blue 310 

flow/fund is reduced from Baseline to proposed scenarios into values < 1 in Macul dam, 311 

Chimbo, Babahoyo and Cañar (Fig. 8 for median values and Fig. A5 for 90th percentile). 312 

Moreover, with the proposed scenarios, no negative SAWblue takes place as in baseline 313 

scenario (Table A7), meaning that available streamflow and water stored in reservoirs can 314 

meet the required environmental flow requirements, as long as  adequate management of 315 

water release from reservoirs is carried out. Nevertheless, upstream Chimbo station still 316 

faces water security issues due to water stress in the proposed scenarios. About 95 hm3 317 
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reservoir capacity have been added in Chimbo’s upstream subbasins, but blue water stress 318 

has worsened due to increased irrigation.  319 

 320 

Fig. 8. Changes between Baseline, Irrigation, Exports and Sovereignty scenarios for median 321 

monthly blue flow/fund for selected drainage areas. Median values do not include negative blue 322 

flow/fund occurred during baseline scenario. See Fig. 5 for location of drainage areas. The number 323 

in the headings refer to the subbasin outlet number of each drainage area. 324 

 325 

Considering the entire GRBD, the largest increase on agricultural production occurs in the 326 

Irrigation scenario, which is related to the weight that pasture production provides to the 327 

total agricultural production, also reflected in the greatest CWP in the Irrigation scenario 328 

(0.55 kg/m3). However, the greatest amount of kcal is produced in the Sovereignty and Mix 329 

scenarios, mainly due to   sugar cane, soya and corn. Both scenarios also show the greatest 330 

CWN (1.47 kcal/L in Sovereignty and 1.48 kcal/L in Mix) (Table A10). At the subbasin 331 

level, CWP increases in 31 out of 45 subbasins in Irrigation, whereas in the Exports, 332 

scenario only 23 subbasins increment their CWP. Sovereignty shows the largest number of 333 

subbasins increasing their CWP with a total of 36 subbasins out of 45, related to the change 334 

of crop patterns. In contrast, all subbasins increase their CWN. The largest changes take 335 
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place in Sovereignty and Mix, where 11 out of 45 subbasins increase the annual median 336 

CWN by more than 2 kcal/L (Fig. 9).  337 

 338 

Fig. 9. Changes on median values for crop water productivity (kg/m3) and crop water nutrition 339 

(kcal/L) between the proposed scenarios and baseline scenario.  340 

4. Discussion  341 

4.1. The novelty of water metabolism for assessing water and food security  342 

Within hydrological research, there are many evaluations on the different components of 343 

the water cycle (e.g., runoff generation, groundwater recharge, evapotranspiration) and a 344 

vast experience in hydrological planning on the allocation of flowing blue water resources. 345 

However, approaches that are able to consider in more detail the current links between 346 

natural and societal water systems are needed, like the one addressed here. A multi-level 347 

visualization to work towards ILWRM approaches is relevant to understand the overall 348 

view (from the natural system to final users) of water allocation, considering both 349 

streamflow and rainfall stored in the soil. In the GRBD, within the ecosystem water budget, 350 

annual streamflow water availability exceeds 1.04 times soil water, which coincides with 351 

the 1.05 ratio that has been found in similar subtropical humid conditions (Chen et al., 352 

2016). In contrast, under drier climate conditions, such as in the Mediterranean climate, this 353 
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value can drop to 0.3 (Salmoral et al., 2017), with this ratio depending on the capacity of 354 

soils to store rainfall. 355 

In the GRBD and period under study, green water (as median annual value) comprises the 356 

largest water consumption with 29% of the annual precipitation, in comparison to the net 357 

blue water with 6% annual precipitation. The high rainfall and runoff generation in some 358 

regions of the GRBD accounts for green water consumption values below the 55-60% 359 

global estimations, whereas the presence of irrigation makes blue water consumption above 360 

the 1% global average of precipitation (Vanham, 2015). Agriculture is the largest  water 361 

consuming sector, demanding 64% and 75% of the green and net blue water flows, 362 

respectively, showing blue water consumption values slightly below the global average of 363 

80-87% (Hoekstra and Mekonnen, 2012; ibid). The detailed evaluation of blue and green 364 

water flows indicates the dependence on climatic, soil and anthropogenic conditions as well 365 

as the relevance of assessing both flows in water and food security evaluations (Veettil and 366 

Mishra, 2016). 367 

The GRBD can be considered rich in blue water resources, however, these are 368 

spatiotemporally unevenly distributed (i.e., annual median values from 90 to 1,960 mm) 369 

making it difficult to meet societal water demand under sustainable boundaries throughout 370 

the study area. Our water metabolism approach -  with the application of flow/fund ratios - 371 

applies a bottom-up process of defining water boundaries at the watershed level 372 

(Rockström et al., 2014). It  adds value to existing river basin scale studies (Steffen et al., 373 

2015) due to the detailed spatiotemporal assessment of water impacts which occur at more 374 

local levels. Our method also shows the value of identifying those populations not 375 

achieving water security as well as accounting upstream blue water available to 376 

downstream users, as previous global studies have also done (Green et al., 2015). In the 377 

GRBD, the greater number of people living under water unsecure conditions are located in 378 

the east of the river basin district. This is the area where the central and regional 379 

governments will require to put more efforts - in the future - to meet both water and food 380 

security for local livelihoods.  381 

Some authors claim that the key for resolving the water-food dilemma is a focus on having 382 

more nutritional value per drop of water consumed (Rockström et al., 2014), which we 383 
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addressed with the application of crop water productivity indicators (i.e., CWP and CWN). 384 

In the GRBD, the increasing order for the CWN is: coffee < pasture < cocoa <white corn < 385 

yellow corn < soy < palm oil < rice < banana < sugar cane, ranging from 0 to 8.6 kcal/L 386 

(Table 2). However, what needs to be highlighted is that the largest crop water 387 

productivities are found in subbasins that are water scarce and with a large proportion of 388 

the population living in poverty. In contrast, the lowest productivities are found in the 389 

lower populated Andean region due to the lower yields produced under harsh climatic 390 

conditions. Besides the uneven biophysical conditions in the GRBD, differences in crop 391 

water productivities would also be related to the types of irrigators and their purpose. The 392 

aims of indigenous farmers located in the Andean region are mainly for local markets and 393 

self-sufficiency. Whereas, farmers located close to the coast largely produce for national 394 

consumption and exports e.g., rice, and banana. The latter are associated with agricultural 395 

producers associations that give them greater access to national and international markets 396 

(Gaybor et al., 2008). 397 

4.2. Understanding agricultural water management findings 398 

A general concern in irrigation water management is to reduce pressures on local water 399 

resources. Consumptive water savings can be achieved when increasing irrigation systems 400 

efficiency, as featured in the National Irrigation Plan in Ecuador, which calls for irrigation 401 

technology and system efficiency. At field level, blue water withdrawal (i.e., gross water 402 

volume) can be reduced with modernized irrigation systems, which helps to redistribute 403 

water between sectors (e.g., agriculture, households, ecosystems), but at catchment level 404 

consumptive water (i.e., net irrigation) savings do not take place. Even an increase in blue 405 

water consumption can occur with higher irrigation systems efficiency, if additional areas 406 

are converted into irrigation (Olen et al., 2016) and/or crop patterns change to more water 407 

consuming crops (Rodríguez-Díaz et al., 2011) - and with a related added energy demand 408 

from ‘technified’ irrigation systems (ibid; Perez Neira, 2016). ` 409 

The study finds that agricultural soil water consumption declines from the baseline to 410 

proposed scenarios, because an appropriate irrigation dose has not taken place in relation to 411 

crop water requirements. Under auto-irrigation management, SWAT can be set up to a 412 

specific irrigation amount when the crop reaches a certain limit of water stress, but this 413 
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amount must remain consistent, depending on the level of water stress. This leads to: 1) 414 

blue water percolation losses, when more irrigation water is applied to what the plant can 415 

transpire, and 2) rainfall losses after the irrigation event, because the soil cannot store more 416 

water or be used later by the plant. On the field, similar situations can occur. For instance, 417 

when land is converted from rainfed to irrigated conditions, crop yield will increase due to 418 

a steady application of water throughout the crop development. However, not following an 419 

adequate soil water balance and applying an appropriate irrigation dose at a given moment 420 

can lead to scarce or excess of irrigation. In the end, appropriate crop irrigation schedules 421 

can help farmers to understand crop water requirements and irrigate accordingly. To date in 422 

Ecuador, there is still an inadequate water management for irrigation (Espinosa and Rivera, 423 

2016). 424 

4.3. Implications of Ecuadorian national development on food and water security  425 

This study demonstrates how water security is driven not only by agro-climatic and 426 

geophysical conditions, but also by policy decisions about land use and food security. Food 427 

sovereignty in Ecuador is a national issue that has gained centrality in the political debate 428 

(Giunta, 2014), but not every nation can be food sovereign because of restrictions imposed 429 

by limited arable land, irrigation water and other resources (e.g., energy, fertilizers), 430 

particularly in geographically small countries. Thus trade is necessary to overcome 431 

ecological, climatic and other location specificities that make up crop division of global 432 

production (Agarwal, 2014). In the country, international trade plays a key role on food 433 

security, because of scarcity in specific commodities for the Nation’s requirements (e.g. 434 

wheat mainly supplied from international trade for broilers feed in Ecuador). In the GRBD, 435 

we see that that the region can be water self-sufficient for agricultural production and 436 

related food trade. The GRBD exports more virtual water than imports, although exports 437 

embed a larger proportion of blue water resources than imports (i.e., 30% blue water in 438 

exports against 10% blue water in imports). Nevertheless, the role of primary products 439 

exports in the national economy is shown with their significant share of the Ecuadorian 440 

GDP; 24% in 2013 (Latorre et al., 2015), particularly relevant in the production of cocoa, 441 

bananas and coffee (Burnett and Murphy, 2014).  442 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

22 

 

In Ecuador future irrigation plans will support both local food supply and international 443 

exports. Scenarios designed in this study can guide and complement future agricultural and 444 

water management decisions, towards achieving water and food security. Currently in the 445 

GRBD, about 28.7 million kcal are produced, as annual median values for the study period. 446 

In our scenarios, total kcal production is increased with the inclusion of new irrigated areas. 447 

Nevertheless, the scenarios with the largest total kcal production are Sovereignty and Mix, 448 

where more kcal for local consumption also take place. In both scenarios, the area of crops 449 

for exports (e.g., banana) and pasture reduces, whereas the area of crops that contribute to 450 

local consumption (e.g., yellow corn, sugar cane and soya) increases. Another scenario that 451 

could increase total food provision in Ecuador is one offered by Knoke et al. (2013). They 452 

propose shrinking existing pasture areas in Ecuador to facilitate an increase in cropland 453 

area, while total pasture area could still increase through the re-cultivation of abandoned 454 

grazing lands.  455 

The planned state driven development of new irrigated areas and crop patterns will 456 

influence distribution of available water resources, as illustrated in the scenarios. SAWblue in 457 

the proposed scenarios decreases in comparison to the baseline, which is partially offset by 458 

a greater reservoir management capacity during dry seasons. The planned reservoirs 459 

development will help to alleviate water scarce conditions, as long as all reservoirs can be 460 

build (and properly) managed, and their construction not be constrained by an unstable 461 

national economy. However, additional reservoir development and irrigated areas do not 462 

mean that all farmers will have access to land and water. Development of additional 463 

reservoirs is managed by the state, but canalization from new infrastructures to final users 464 

has not been considered and there is no a plan to date of how these new infrastructures will 465 

reach the final end users. There is a risk that development of new irrigated areas might put 466 

the country in a similar situation to that during 80-90’s, when public irrigation systems 467 

were created, but only a small part of the population, with better economic and social 468 

position, could get access to it (personal communication, 2015). 469 

5. Conclusions 470 

Achieving food security is part of the Ecuadorian political debate and influences decisions 471 

around land use and water management. This study provides a detailed spatiotemporal 472 
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assessment of freshwater resources, and related water security indicators for agricultural 473 

production. The importance of catchment approaches is highlighted for balancing human 474 

and nature water requirements, and how feasibility of agricultural development needs to 475 

address impacts on local water security. Agricultural production allocates the largest 476 

freshwater share with 75% and 64% of net blue and green water flows, respectively, and 477 

the GRBD can be considered as water self-sufficient in food trade due to the positive 478 

virtual water exports (4,345 hm3) and imports (1,064 hm3) balance. Nevertheless, a total 479 

population of 1,200,996 inhabitants and 51% GRBD’s area is under blue water stress, and 480 

the study finds water security as a challenge due to the combination of scarce water 481 

conditions and population under poverty in the south east and central part of the GRBD. It 482 

is in this part of the river basin district, where at the same time, the greatest annual crop 483 

water productivity (0.41 - 2.85 kg m-3) and crop water nutrition (1.9 – 8.35 kcal/L) are 484 

found. The study also provides a first step towards creating agricultural scenarios in 485 

Ecuador for water and food provisioning and can aid in meeting the country’s water and 486 

food security goals, providing alternatives that lessen the impacts for land and water use. 487 

The scenarios reveal that food provision, towards local food consumption or exports 488 

market-oriented, can be increased and ecosystem water demand still be met, with the 489 

exception of the east of the GRBD. 490 

Future research could build on our study and further consider other drivers that will affect 491 

both water and food security, including demographic changes, droughts (Vicente-Serrano et 492 

al., 2016), flooding events (Hallegatte et al., 2013), and existing climatic trends (Morán-493 

Tejeda et al., 2015).  Moreover, this research could be extended to perform water-for-494 

energy assessments with the consideration of hydropower development in Ecuador. A 495 

comparison of the seasonal effects of water-for-food on hydropower production versus the 496 

effects of reservoir management on food production could allow this study to provide 497 

additional insights to policy makers regarding their proposed national development 498 

strategies, including the recent projects on multi-purpose reservoirs. Finally, the flexibility 499 

of the methodology adopted in this study may be applicable to a worldwide scale with an 500 

integration of the water metabolism approach to global hydrological and crop growth 501 

models. Insights from the study can extend beyond academia to practitioners and 502 

policymakers in water and land management beyond our case study. Ultimately, the 503 
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provided alternatives to promote integrated land and water management in Ecuador can aid 504 

towards meeting the country’s future water and food security needs.  505 

 506 
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Highlights 

 
• Ecuador is facing important changes on agricultural land and reservoirs development 
• In the Guayas river basin district, agriculture is the main consumer of blue and green 

water  
• Eastern Guayas will increase food production at the expense of ecosystem water 

supply  
• Water security is challenged in areas with scarce water and population in poverty 

 


