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ABSTRACT The increasing demand for services performed by Unmanned Aerial Vehicles (UAVs) requires
the simulation of Unmanned Aircraft System Traffic Management (UTM) systems. In particular, Pre-Flight
Conflict Detection and Resolution (CDR) methods need to scale to future demand levels and generate
conflict-free paths for a potentially large number of UAVs before actual takeoff. However, few studies
have examined realistic scenarios and the requirements for the UTM system. In this paper, we focus on
the Sendai 2030 model case, a realistic projection of UAV usage for deliveries in one area in Japan. This
model case considers up to 21,000 requests for Unmanned Aircraft Systems (UAS) operations over a
13 hour service time, and thus poses a challenge for the Pre-Flight CDR methods. Therefore, we propose
an airspace reservation method based on 4DT (3D plus time Trajectories) and map the Pre-Flight CDR
problem to a Multi-Agent Path Finding (MAPF) problem. We study first-come first-served (FCFS) and
‘‘batch’’ processing of UAS operation requests, and compare the throughput of those methods. We analyze
the air traffic topology of deliveries by UAVs, and discuss several metrics to better understand the complexity
of air traffic in the Sendai model case.

INDEX TERMS Unmanned aircraft system traffic management (UTM), pre-flight conflict detection and
resolution (CDR), multi-agent path finding (MAPF), air traffic complexity metrics.

I. INTRODUCTION
With the emerging use of Unmanned Aerial Vehicles (UAVs)
for operations such as goods delivery, surveillance, search
and rescue, and agricultural monitoring, the low-altitude air
traffic is expected to grow significantly in the coming years
[1], [2]. Several independent UAS (Unmanned Aircraft
System) Service Providers (UASSPs) will support UAS
Operators to task UAVs with limited capacities to execute a
variety of tasks. In particular, commercial delivery by UAVs
is expected to become a widespread service. Any ‘conflict’
[3], i.e., possibility of collision between UAVs, must be
avoided. Therefore, an Unmanned Aircraft Systems Traffic
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Management (UTM) system [1], [4] has to incorporate Con-
flict Detection and Resolution (CDR) methods.

Proposed UTM concepts have a multi-layered architec-
ture [2] similar to Air Traffic Management (ATM) [3]. For
this purpose, the International Civil Aviation Organization’s
(ICAO) Global Air TrafficManagement Operational Concept
[5] defines different conflict management or ‘redundancy’
layers. These layers can be separated in three categories (see
Fig. 1). Each of these distinct layers are applied during the
different phases of a UAV operation processing, before the
UAV takes off (strategic separation), and then during its actual
flight (tactical separation) [5]:
• Pre-Flight CDR methods aim to provide conflict-free
paths for all UAVs before their actual takeoff.

• In-Flight CDR methods ensure separation provision for
the flight paths of all UAVs during flight, to account
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FIGURE 1. Conflict management layers in UTM and ATM.

for dynamic events such as bad weather, emergency
operations, and so on.

• Collision Avoidance methods, such as Sense and Avoid,
are considered as a final fail-safe and are based on
sensing technology onboard a UAV.

However, unlike ATM, the conception of a comprehensive
UTM system is still under discussion. First concepts of oper-
ations have been released by NASA [1], yet the design and
the integration of CDR methods into the UTM system needs
more investigation. While many Sense and Avoid and In-
Flight CDRmethods have been recently proposed and studied
[6]–[11], Pre-Flight CDR methods remain mostly unex-
plored. Therefore, this paper will focus on Pre-Flight CDR
methods and their evaluation.

In Pre-Flight CDR, which is equivalent to Strategic Con-
flict Management in ATM as represented in Fig. 1, the con-
flict detection and resolution process occurs before the given
UAVs take off and fly their scheduled flight path. Therefore,
in this paper, we only consider planned flight paths for UAVs
and not UAVs flying in real time. Hence, Pre-Flight CDR
does not include any real time considerations, i.e., surveil-
lance issues and data communication from UAVs. These con-
siderations belong to the In-Flight CDR phase which occurs
after the Pre-Flight CDR phase, once UAVs take off and fly
their flight plan. In In-Flight CDR, real-time requirements
are important to effectively provide conflict detection and
resolution maneuvers by In-Flight CDR methods in case of
unexpected changes to the flight trajectories.

In [12], we proposed to model the Pre-Flight CDR problem
as a Multi-Agent Path Finding (MAPF) problem. In MAPF,
agents must avoid collisions while following paths with given
waypoints in space and time from given start locations to goal
locations. However, the standardMAPF setting is limited and
not directly applicable to the UTM domain. For instance,
the standard formulation describes a ‘‘one-shot’’ problem,
where all agents start simultaneously and all have a distinct
pair of start and goal locations. It also assumes homogeneous
agents that all have the same size, are contained inside cells
of the given grid map, and all move by one cell at each time
step. So we included heterogeneous agents and ongoing UAV
operations processing in the formulation of the MAPF prob-
lem. In this paper, in addition to the extension of the MAPF

model formulation to Pre-Flight CDR, we conduct a deeper
investigation into the Sendai model case and formulate a set
ofmetrics to analyze the complexity of low-altitude air traffic.

This paper makes the following main contributions.

• We analyze the necessity for advanced Pre-Flight CDR
methods in future UTM systems. This necessity is moti-
vated by the characteristics of the Sendai 2030 model
case and an empirical comparison of 3D and 4DT (3D
plus time Trajectories) airspace reservation methods.

• We present new results regarding the throughput of first-
come first-served (FCFS) and ‘‘batch’’ processing based
methods for Pre-Flight CDR.

• We characterize and analyze the UAV traffic topology
for deliveries by UAVs and suggest several metrics to
understand the complexity of air traffic in our model
case.

The rest of the paper is structured as follows. Section II
presents related works. Section III motivates the importance
of advanced Pre-Flight CDR methods. Then, Section IV
formulates the Pre-Flight CDR problem as MAPF problem.
Section V analyzes the UAV traffic topology of our model
case. Section VI introduces our set of metrics to assess air
traffic complexity. Section VII explains our simulations and
their experimental results. Section VIII summarizes and con-
cludes the paper.

II. RELATED WORKS
A. CONFLICT DETECTION AND RESOLUTION METHODS
AND METRICS
In the ATM domain, extensive studies have been conducted
for the conception and integration of CDR methods to all
safety layers [3]. Differently, since UAVs have distinct capa-
bilities, there are different challenges in the design of a UTM
architecture. Following NASA’s initiative [4], there currently
exist several studies and works on the conception of a UTM
system to enable the safe integration of UAVs in low-altitude
shared airspace. Most of these works address the integration
of In-Flight CDR methods [7], [11] or Sense and Avoid
methods [6], [13], [14].

[2] introduce a multi-layered architecture based on a
taxonomy for CDR, but they mainly address the concep-
tion of the In-Flight phase [15], which is assessed through
Monte Carlo simulations. Also, the conception and evaluation
of In-Flight CDR methods with simulations based on real
world scenarios is discussed in [10], [11]. [16] introduce 4DT
(3D plus time Trajectories) into UAV trajectory modeling,
and they focus on the uncertainties and technical errors in
UAV navigation. However, none of these works have pre-
sented practical methods to proactively de-conflict UAV traf-
fic before the UAVs take off, i.e., Pre-Flight CDR methods.

By contrast, high altitude air traffic is already well ana-
lyzed, and ATM systems have been deployed for years [17].
In the evaluation of ATM systems, a variety of metrics have
been proposed to characterize the complexity of air traffic.
However, due to the presence of air traffic controllers and
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FIGURE 2. Flowchart of the different steps from operation request submission to delivery. (1) Operations requests are submitted by each independent
UASSP; (2) Conflicts between all operations are solved in the Pre-Flight CDR phase which is the focus of this paper; (3) When en-route, conflicts between
flying UAVs can be solved with In-Flight CDR in case of dynamic events occurring; (4) A UAV reaches its delivery location, and returns to its hub afterwards.

pilots, these studies mostly rely on human workload as one
of the defining factors of traffic complexity [18]–[20].

However, in theUTMcontext, newmetricsmust be defined
to meet the challenges of increased automation and new
traffic patterns. Studies on the predicted low-altitude air traf-
fic are very recent. In particular, [21] proposed metrics to
assess the density of the predicted low-altitude air traffic in
Paris. Nevertheless, their study is focusing only on the In-
Flight CDR situation. Further, their simulation scenarios are
randomized traffic patterns that do not realistically represent
the situation of deliveries by UAVs.

B. MULTI-AGENT PATH FINDING
The Multi-Agent Path Finding (MAPF) problem has been
mainly studied without real world deployment consider-
ations, with many works proposing approaches to solve
instances for 2D video game benchmarks [22], [23]. In the
MAPF setting, agents located in a graph must move accord-
ing to the given graph representation to their goal locations
without colliding with each other for each move. However,
new directions were established recently to handle complex
real-world scenarios, such as robot path finding in Amazon
Robotics warehouses [24], [25]. Here, agents are split into
groups and a set of tasks is given to each group [26], [27]. The
objective is to allocate tasks to each agent while providing
conflict-free paths.

[24] introduce a decentralized approach and focus on
ongoing task allocation. In the UTM context, we assume that
every agent is assigned a given start and goal location. So,
we do not consider the task allocation process in our work.

[28] also propose an online version of MAPF solvers,
where agents can replan their paths to solve conflicts when
new agents appear. In our context, we do not allow replanning
of previously generated paths in the pre-flight phase for prac-
tical reasons, i.e., UAS operations that are accepted cannot be
modified anymore, and since UAVs may belong to different
UASSPs, this would potentially impact several UASSPs.

III. THE NEED FOR ADVANCED PRE-FLIGHT CONFLICT
DETECTION AND RESOLUTION METHODS
UAS Operators will use UAS Service Providers (UASSPs)
to integrate UAS operations into low-altitude airspace, which

is shared among several independent UASSPs. Unlike the
human-centered ATM system, the UTM system is an auto-
mated system that must ensure conflict-free paths for a large
number of UAVs, with the steps depicted in Fig. 2, UAVs will
be tasked to perform deliveries anytime during a day.

To demonstrate the need for advanced Pre-Flight CDR
methods, we first introduce the Sendai 2030 model case as
a realistic scenario of future deliveries by UAVs and the
representations considered in our study. Then, we motivate
the necessity of Trajectory BasedOperations (TBO) to handle
the expected scale of UAS operations requests.

A. SENDAI 2030 MODEL CASE
This section describes the Sendai 2030 model case, which is
based on a study that aims to project UAV service demand
in 2030 in Sendai, Japan. The study was conducted by a
consulting company, as part of the NEDO UTM Project,
a large-scale governmental project on designing, simulating
and specifying the UTM system.

The dimensions of the considered area in the given region
are of 14.35 km×17.10 km. The study specifies that UAVs
are allowed to fly between 90 m and 150 m, relative to the
elevation of the terrain, hence, there is a 60 m altitude range.

The scenarios considered by this study are delivery ser-
vices provided by UAVs that fly from hubs locations to
designated service locations. The study considers three major
logistics companies (hereby anonymized as A, B and C, see
Table 1) that provide deliveries of goods such as mail and
package delivery, as well as a RedCross blood center Dwhich
collects blood samples between medical centers.

The different hubs locations are set by the study consid-
ering the expected demand in the area. The assignment of
the service locations is assumed to be done independently by
UAS Operators within a given service radius around a hub.

Figure 3 depicts positions of hubs and their associated
service area with a different color for each company.

We distinguish two types of deliveries (see Table 1 for
concrete values derived from the study of the consulting
firm).

• Hub-to-Home: deliveries performed from hubs to ser-
vice locations (homes) located within a given service
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FIGURE 3. Map of Sendai, Japan, including candidate hub locations and
service areas (circles). The white and red icons indicate the hub locations
for Hub-to-Hub operations for company C and D respectively.

TABLE 1. Parameters in the Sendai 2030 model case.

radius. Inside these areas, we fix the minimum flight
path length to 300 m.

• Hub-to-Hub: deliveries performed between given pairs
of hubs only.

The study estimates that, by 2030, the UAVs performing
these delivery services will be able to carry up to 5.5 kg of
payload, fly at 23 m/s maximum horizontal speed, ascend at
10 m/s and descend at 3 m/s. The expected operation time is
27 minutes.

In this study, one day of delivery service represents
13 hours, from 8 am to 9 pm. According to customers’
demand in the region, weight of deliveries, and expected
capabilities of UAVs, the study estimated that there is a
total demand of up to 13,910 operations per day in normal
season and up to 21,235 operations per day in busy season
considering the given companies altogether.1

In this paper, we assume that each of the given companies
uses its own UASSP.

B. MAP AND UAV REPRESENTATION
The representation of our space is a 3D grid map composed
of cells with 30 meters edge length. Thus, according to the

1UAS reliability and risk assessment safetywere not included in the survey
provided by the consulting firm.

FIGURE 4. The different layers considered in the accumulated radius r for
each UAV.

Sendai model case area dimensions, we consider a 3D grid
map of dimensions 478×570 cells, which is delimited in alti-
tude by a 2 cells range (60 m range) relative to the elevation.
The positions of static obstacles, i.e., blocked cells, is fixed
according to the given elevation map of the region and there
are 41 distinct no-fly zones fixed by the study.

We consider quadcopter UAVs that have holonomic
motion, and can move in any direction at any time, or hover.
In CDR, each UAV is conceived as a sphere of ‘‘total’’
radius r , which is composed of several layers as shown
in Fig. 4 and Eq. 2, including the physical size of the
UAV BodyRadius, the UAV navigation system error NSE
(i.e. uncertainty in actual position), UAVflight technical error
FTE (i.e. uncertainty in deviation from straight line of flight),
and the separation minimum SeparationMinimum defined by
the UTM regulator. As in ATM, these parameters relate to
operational risk [29].

Constructor =BodyRadius+ NSE + FTE (1)

r =Constructor+0.5 · SeparationMinimum (2)

Although we do not consider the precise kinematics to
model each UAV trajectory, our simulations are hereby
informed by real-world data provided by the study. The
study provided different existing UAVs specs in the Sendai
2030 Model Case such as wind stability, range, payload,
and autonomy. The reliability of these parameters has been
tested in real world experiments with experimental flight
tests. With these real-world data, we determined the different
accumulated radii values r for each considered UAV, and thus
we hereby consider values ranging from 15 m to 30 m.

C. CDR ASSESSMENT
Next, we want to estimate the number of conflicts that would
have to be handled by an In-Flight CDR method, if no Pre-
Flight CDR is applied.

Each agent is represented by a sphere of given radius ri, and
a center position pi. To avoid a conflict, we need to prevent
any violation of the minimum separation distance between
two agents ai and aj, i.e., the sum of their respective radii,
ri + rj. Hence, we define the following constraint to ensure
there is no conflict:

∀t, dist(pi(t), pj(t)) > ri + rj (3)

The following study calculates the frequency of conflicts in
the Sendai 2030 model case, assuming no conflict resolution
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TABLE 2. Number of conflicts in two instances of simulating deliveries in
the Sendai 2030 model case.

is applied. We assume that each UAV has a total radius set to
30 m. Table 2 shows that a high number of conflicts occur for
different numbers of operations submitted during a 13 hours
service day, assuming no CDR methods are applied. Figure 5
visualizes the distribution of conflicts for a simulated instance
of 19,573 operations submitted during one day.

We observe that more than 80% of the reported conflicts
occur ‘‘enroute’’ (during flight), i.e., at least 50 m away
from the takeoff/landing location or delivery location. Hence,
an In-Flight CDR method would need to be frequently acti-
vated to handle the conflicts. Therefore, Pre-Flight CDR
methods are an important ‘‘redundancy’’ layer to ensure the
safety of the airspace.

Moreover, we analyzed the number of UAVs involved in
the same conflict, from two to four UAVs (see Table 2). The
majority of conflicts involve two UAVs, which can be seen as
simple case of pairwise resolution. However, there is a non
negligible number of 3-way and even 4-way conflicts, which
would require more complex resolution methods.

D. TRAJECTORY BASED OPERATIONS CONCEPT
In the new generation of ATM systems, the concept of Trajec-
tory BasedOperations (TBO) is expected to be deployed [30].
TBO consists of a coordination of four dimensional (3D plus
time) trajectory (4DT) predictions and executions, whereby
an aerial vehicle must follow given waypoints in space and
time. With this ‘‘strategic 4D trajectory de-confliction’’ [30],
TBO is expected to reduce air traffic complexity, by reducing
the number of conflicts to be solved tactically, i.e. during
flight, and its efficiency has been assessed independently in
recent works [31], [32].

Similarly, in the proposed strategic deconfliction phase for
UTM, our Pre-Flight CDR method solves conflicts between
operations before the associated UAVs take off.

We hereby assume that Pre-Flight CDR is performed by
a central entity which receives the operations of multiple
UAS Service Providers (UASSPs). Since the Pre-Flight CDR
process occurs before the given UAVs take off, whereby
conflicts are predicted and resolved relying on 4DT, surveil-
lance functions are not included in this phase as UAVs are
not actually flying in this step. Once the predicted conflicts
are solved, the central entity communicates the modified 4D
trajectories to the UASSPs, which transmit the flight plans
to their respective UAS Operators. In the Pre-Flight CDR

FIGURE 5. Visualization of the distribution of conflicts in the Sendai
2030 model case. Brighter points have more conflicts.

phase the efficiency of the communication medium is not
critical, and we hereby assume that communication is done
via Internet as described by NASA UTM [33].

In the conception of the pre-flight phase for an UTM
system, we will assess the efficiency of the 4DT paradigm in
comparison to simpler options such as the use of 3D trajectory
reservation.

Figure 6 shows the concept of 4DT and 3D conflict detec-
tion (CD).With 3D trajectory reservation, the entire trajectory
of each UAV is considered as a spatial obstacle for other
operations during its entire flight duration.

Next, we assess the effectiveness and practicality of the
use of 4DT and 3D trajectory reservation in terms of the
number of UAS operations rejected, which is an important
practical consideration for the UTM system (see Fig. 7). We
hereby use a simple first-come first-served (FCFS) approach,
implemented by the Cooperative A* (CA*) algorithm [34],
to plan all UAS operation requests in the simulations. Con-
sidering a 1 hour time window in normal and busy season
in the Sendai 2030 model case, the percentage of rejected
operations is significantly higher when using 3D trajectory
reservation than 4DT in both CD (no resolution) and CDR
cases, as the reserved trajectories occupy more space in an
inefficientmanner as there is not necessarily an actual conflict
as shown in Fig.6 a).
4DT CD is also impractical as it rejects almost 50% of the

operations, and the UASOperator has to resubmit every other
UAS operation. In contrast, 4DT CDR presents a very low
rejection rate, whereby we observed that most of the rejected
operations are due to conflicts that occur close to hubs.

IV. PRE-FLIGHT CDR AS A MAPF PROBLEM
First, we define the Multi-Agent Path Finding (MAPF) prob-
lem for Pre-Flight CDR. Then we discuss strategies to handle
ongoing processing of UAV operation requests.
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FIGURE 6. Examples of conflict detection (CD) in 2D for clarity of the representation: a) in 3D, in this example, UAV1 and
UAV2 flight paths intersect spatially but there is no actual conflict, and the entire flight path of UAV1 is considered as an
obstacle for UAV2; b) in 4DT, in this example, an actual conflict is detected between UAV1 and UAV2 flight paths in 4DT,
as UAV1 and UAV2 cannot be at the same location at the same time.

FIGURE 7. Percentage of rejected UAS operations for each airspace
reservation method.

A. PRE-FLIGHT CDR PROBLEM MODEL
A MAPF problem can be extended to a Pre-flight CDR
problem as follows: An instance of our problem is composed
of N operations O = {O1, . . . ,ON }, which are performed by
agents (UAVs), and an undirected graph G = (V ,E), which
is a 26-neighbor cubic grid allowing diagonal moves. Agents
can ‘move’ along an edge of G or can ‘wait’ on a vertex ofG.
An agent ai assigned to perform Oi is characterized by:

• A radius ri: as in Sect. III-A;
• A speed spi: the given speed of ai is considered uniform
on the whole path. In the UTM context, this would be a
constraint to ensure conflict-free paths generation [16];

• A start si and goal gi location: an operation Oi is com-
posed of a pair of paths, an outbound path and a return
path. The outbound path leads from a hub location si
to a delivery location gi, and the return path is assumed
to be symmetrical to the outbound path. We assume a
fixed duration δi for the duration between when a UAV
lands to deliver some good and start returning to its hub
location;

• A start time tsi > 0: the time at which the operation must
start, hence when the agent takes off.

In the UTM context, we define the altitude constraints for
any given point in space of coordinates (x, y, z) and which
belongs to the path of an operation as:

elev(x, y)+ altmin ≤ z ≤ elev(x, y)+ altmax (4)

With elevation(x, y) the elevation value of the point of coor-
dinates (x, y) in a path, and altmin and altmax the fixed altitude
bounds.

Moreover, since each agent’s delivery operation includes
an outbound path and a return path, we must ensure that the
precedence relation between the outbound path and the return
path is satisfied.

In the UTM context, low-altitude airspace is often seen
as a common resource shared among cooperative agents that
would accept any deviation from their initial path to minimize
the overall air traffic. Thus, the objective we hereby adopt
remains the same as in standard MAPF, i.e., to minimize the
sum of individual costs: min

∑
Oi∈O Ti, with Ti the total cost

of the operation Oi, which is the total distance or the total
duration of an operation. A solution consists of conflict-free
paths for all N operations such that no violation of minimum
separation occurs.

Unlike high altitude airplanes, UAVs come in a wide
variety of different sizes, speeds, kinematics and so on. We
consider ‘‘heterogeneous’’ UAVs with different sizes and
speeds, whereby speeds range from 15m/s to 18m/s and sizes
range from 15m to 30m. Here, we only consider quadcopters
which are holonomic agents, and thus can directly follow any
given trajectory without particular motion constraints. Hence,
the precise integration of kinematics is not in the scope of this
paper. To address heterogeneous agents, our conflict detec-
tion process based on the computation of a Time To Collision
(TTC) [12], [35] allows to accurately detect conflicts between
UAVs of different sizes and speeds by considering their 4D
trajectories. We incorporated geometrical computations [12],
[35] into A*-based MAPF solvers such as Enhanced Con-
flict Based Search (ECBS) and Cooperative A*. Moreover,
in the conflict detection step, we apply a spatio-temporal
pruning to filter out operations that may not overlap in flight
times or may not intersect spatially.

As described in Section I, in the Pre-Flight CDR phase,
the conflict detection computations are performed consider-
ing the whole flight plans of UAVs before takeoff. Thus, there
are no real time requirements for the computations of conflict
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detection in Pre-Flight CDR, unlike In-Flight CDR methods
where such computing issue would be critical.

B. ONGOING PROCESSING OF UAS OPERATION
REQUESTS
With the steps depicted in Fig. 2, UAVs in the Sendai
2030 model case are tasked to perform deliveries anytime
during the day. This requires ongoing processing of UAS
operation requests.

We present two strategies to process incoming requests for
UAV operation: (1) first-come first-served (FCFS) processing
and (2) batch processing. For FCFS processing, we adapt
the Cooperative A* algorithm [34]. For batch processing,
we adapt the Enhanced Conflict Based Search (ECBS) algo-
rithm [36], which is a state-of-the-art MAPF solver.

FCFS Processing with Cooperative A*: A simple baseline
approach commonly adopted in traffic management is
the use of first-come first-served (FCFS) processing.
Here, every time an operation is submitted, it is pro-
cessed in the order of arrival, while previously processed
operations are considered as spatio-temporal obstacles
for later operations. This is equivalent to the concept
of the Cooperative A* method that uses a reservation
table for each given agent planned in order [34]. This
type of approach is proven to be unbounded sub-optimal
(the solution cost can be very far from the optimal) and
incomplete (a solution might not be found even though
it exists).

Batch Processing with ECBS Algorithm: Batch process-
ing has been shown useful in domains such as in data
processing [37].
Let us assume our problem starts with an empty airspace
and a first MAPF instance contains a set of UAS oper-
ations. So, the first MAPF instance is always a ‘‘one-
shot’’ instance. Then, while the agents execute their
generated plan, a new set of UAS operations appears
that might be in conflict with the already accepted UAS
operations. We refer to each given set of UAS operations
as a batch Bi that contains a certain number of delivery
operations.
Hence, two types of conflicts can occur for an agent from
a later batch. It can be in conflict with another operation
(1) from the previous batch or (2) from the same batch.

(1) Since we assume that previously accepted operations
cannot be modified, we consider the paths of these
operations as spatio-temporal obstacles. So, a first
step of detecting and solving these type of conflicts is
performed, and the existing spatio-temporal obstacles
are considered when replanning for conflicts in (2).

(2) ECBS considers conflicts between agents of the same
batch and solves conflicts between them.

ECBS is complete and suboptimal within a fixed bound
w with respect to the sum of individual costs. More
details on the functioning of the algorithm can be found
in [36].

V. UAV TRAFFIC TOPOLOGY ANALYSIS
To understand the difficulty of Pre-Flight CDR encoded as
a MAPF problem, we need to characterize the properties of
our space. [23] note that evaluating the complexity of some
MAPF instance is not straightforward.

Our environment is a 3D space where agents can change
altitude while satisfying elevation constraints. The static
obstacles, i.e. no-fly zones, have an occupancy of 1% of the
total flyable volume of the area, but are concentrated in a
smaller area of the region.

Further, we estimate that the average occupancy by UAVs
at anytime is about 0.3% of the total flyable space, assuming a
total separation radius of 22 m. Even though this percentage
might seem quite low, the proportion of UAVs in the total
flyable volume is not a sufficient metric to indicate whether
an instance is dense or not. As depicted in Fig. 3, many
operations are concentrated in a smaller area of the region,
and the major part of the considered space is practically
empty.

Our situation is different from standard MAPF problems
with ground vehicles that can consider a high number of static
obstacles but less agents. In particular, we can distinguish
two types of ground traffic situations commonly used in the
literature, notably in the MAPF field:

• Uniform random instances. In these instances, agents
are positioned randomly in the space to produce var-
ious encounter situations. This relates to Monte Carlo
simulations which aim to validate a given method by
stressing the simulation conditions in repeatedly gen-
erated random samples. Thus, these instances are not
meant to reflect a realistic traffic situation, but are rather
a method to assess the robustness of CDR techniques.
While evaluating the performance of such techniques
in these conditions is important, it is also paramount
to study and analyze realistic traffic scenarios. To the
best of our knowledge, we are the first to propose an
analysis of realistic UAV traffic patterns. In particular,
for delivery use cases, the traffic topology has a specific
pattern that we hereby describe unlike Monte Carlo
random patterns.

• Amazon warehouses. In this instance, automated ground
robots are tasked to navigate to inventory pods andmove
them from their storage locations to packing stations.
Thus, a ‘‘corridor-like’’ traffic is induced, where agents
move in limited directions in a cluttered environment.

In these 2D scenarios, the number of agents are limited
and mostly uniformly distributed in space. Grids range from
8×8 to 100×100 cells for largest simulated warehouses, and
the number of agents depend on the size of the warehouse that
can range from just ten to a few hundreds [25], [27].

In the case of UAV air traffic, knowing the number of
vehicles in the same area alone conveys only partial infor-
mation on the complexity of air traffic. For example, the two
patterns in Fig. 9a) have the same number of agents, but the
different traffic patterns lead to an organized traffic flow with
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FIGURE 8. Schematic topology of UAVs’ paths topology in our delivery
scenario.

FIGURE 9. a) Different traffic patterns with same number of agents;
b) Possible conflicts configurations.

no conflicts in one case (‘‘Stream’’), and to a conflict-laden
situation in the other one (‘‘Uniform random’’).

Our scenario is also different from the existing benchmark
scenarios for MAPF in terms of agent movement. Our use
case induces a specific path topology, where UAVs are flying
from the same hub location to several given service locations,
as shown in Fig. 8. Thus, for each hub, we can observe a
‘‘flower-like’’ traffic pattern, where UAVs are concentrated
around the same hub location, which can be a source of
several conflicts.

Several hubs can have their service area overlap with
each other. Therefore, we can distinguish different configu-
rations of conflicts which can occur in our context, as shown
in Fig. 9b). A head-on conflict can occur while one UAV is
departing from a hub and another UAV is returning to the
same hub. A cross conflict can occur when two UAVs of
the same hub are tasked in intersecting paths or when the
service areas of two hubs overlap, thus allowing paths to
cross. A pursuit conflict can occur when two UAVs, either
from the same hub or from two close hubs, are going in
similar directions but each has a different speed.

VI. AIR TRAFFIC COMPLEXITY METRICS
The complexity and the understanding of the air traffic is
fundamental for the evaluation of any manned or unmanned
air traffic management system. Therefore, we describe
several metrics to characterize the air traffic complexity. [21]
describe metrics that rely on proximity measures between

UAVs in a limited setting. Instead, we propose a richer set
of metrics in the context of Pre-Flight CDR.

A. NUMBER OF UAVS IN THE AIR
We can first distinguish two metrics regarding the number of
UAVs in the air: (1) the average number of UAVs in the air
during a given time interval (e.g. 1 h), and (2) the average
number of UAVs that are flying simultaneously at any time.
Both can be seen as a first simple indicator of air traffic
complexity.

B. PROXIMITY MEASURES
As previously stated, measuring the number of UAVs in the
air only provides partial information on an instance complex-
ity. Quantifying the interactions between UAVs allows for a
more accurate understanding of whether an instance is more
complex than another as depicted in Fig. 9. If no UAV has to
change its nominal path then the complexity is low, while on
the other hand, if UAVs have to constantly avoid each other,
then the complexity is high. Thus, an important indicator that
we hereby propose is tomeasure the proximity betweenUAVs
to indicate their interactions.

[21] proposes to compute airspace density metrics by
randomly selecting a UAV and computing its proximity to
others at that given time step. This method aims to evaluate
how frequent a UAV would have to apply the given In-Flight
CDR mechanism. Their study relies on a large number of
samples.

For the pre-flight case, we propose a different methodol-
ogy, which does not take random snapshots. It is deterministic
as we take into account the flight paths of all given UAVs.
We describe and quantify how close UAVs move toward
each other. These metrics indicate (1) how close the closest
UAV is on average, and (2) how many UAVs are in the
immediate vicinity of a UAV on average [21]. In Pre-Flight
CDR, the paths are entirely projected in 4D before all UAVs
depart, i.e., we already assume conflict-free paths.
Average Minimum Closing Time: This indicates how

close a UAV ever gets to another UAV. For each UAV,
also called ‘‘ownship’’, we compute the time of the
closest point of approach tCPA between the ownship and
the other UAVs, and we average over all ownships:

tCPA =
(pi(t)− pj(t))(vi − vj)

|vi − vj|2
(5)

with vi and vj the velocities, and pi and pj positions for
UAVs i and j at each time step t .

Average Number of Close UAVs: For each ownship, we
count the number of UAVs that have a closing time of
less than 15 seconds of the ownship during its entire
flight path. It indicates the number of UAVs that the
given ownship gets close to during its flight. The 15 sec-
ond proximity threshold is based on [21] as a reference
value for different types of aircrafts.

Average Number of Close UAVs per Time Step: For each
ownship, we divide the previous metric by the duration
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of its flight. This provides an estimate of the number of
UAVs that the given ownship gets close to, at anytime.

C. NUMBER OF CONFLICTS AND MODIFIED
TRAJECTORIES
First, the number of conflicts detected in a scenario is an
important indicator of the complexity of air traffic. The larger
the number of conflicts, the more difficult it is to compute
new paths that satisfy all safety constraints. Note that for
batch processing, we distinguish two types of conflicts (see
Sect. IV-B). For clarity, this metric will only count the number
of conflicts detected within the same batch (i.e., high level
nodes in ECBS).

Second, we count the number of UAS operations that had
to be replanned, thusmodified from their originally submitted
(nominal) flight paths, whereby one trajectory might need
modification to solve multiple conflicts. Note that this mea-
sure also includes paths that were only modified because of
conflicts with previously accepted operations considered as
spatio-temporal obstacles.

VII. SIMULATION EXPERIMENTS
In this section, we describe our simulation experiments.

• We compare the throughput of UAS operations of
‘‘batch’’ processing with ECBS to FCFS (first-come
first-served) processing with Cooperative A* (CA*).

• We estimate the complexity of air traffic in the Sendai
2030 model case with our proposed metrics.

All approaches are implemented in Java and run on a
3.2GHz Intel Core i7-8700 desktop with 16 GB RAM. For
each experiment, we generated 30 different instances.

In the Sendai 2030 model case study, the frequency
of deliveries is assumed as uniformly distributed over the
13 hours service time frame. The study does not specify when
the delivery requests occur. However, we can assume ‘‘peak’’
times with large amounts of service requests.

A. COMPARISON OF THROUGHPUT OF UAS OPERATIONS
WITH FCFS VERSUS BATCH PROCESSING
Figure 10 shows that batch processing with our adapted
ECBS leads to a higher throughput, that is the number of
operations processed during a fixed time interval, on average
than FCFS approach based on CA*, assuming peak times
with a large number of submitted operations. On the other
hand, if UAS operation requests are sparse, FCFS would be
more practical than having to wait for a batch to fill up.

B. RESULTS FOR AIR TRAFFIC COMPLEXITY METRICS
In this section, we present the results for air traffic complexity
metrics described in Sect. VI.

1) NUMBER OF UAVS IN THE AIR
First, we estimate from the Sendai 2030 model case that
the average number of UAVs flying in the airspace within
a 1 hour time interval is 1070 UAVs in normal season and

FIGURE 10. Comparison of average throughput between FCFS and Batch
processing for peak times in Sendai 2030 model case.

1633 UAVs in busy season. Second, the average number of
UAVs simultaneously flying at any time is estimated to be
about 200 UAVs. Table 3 compares our Sendai 2030 model
case to the Airbus Paris model case.

2) PROXIMITY MEASURES
The average minimum closing time becomes smaller than
15 seconds for more than 500 submitted UAS operations (see
Table 4). This indicates that from this amount of submitted
operations, all UAVs tend to fly closer to each other on
average, and thus the traffic can be considered as dense given
this threshold. The values for average number of close UAVs
indicate that for 500 UAS operations submitted, a UAV flies
at proximity of an average of 4 others during its entire flight
path, and as expected the number of encounters increases
with the number of operations. Taking into account the total
duration of a flight, a UAV gets close to less than 1 other
UAV on average at all times with respect to the 15 seconds
threshold.

3) NUMBER OF CONFLICTS AND MODIFIED TRAJECTORIES
We start with the results on the number of conflicts. In
the simulations, our adapted ECBS algorithm was used
to de-conflict operations, and without loss of generaliza-
tion, no previously accepted operations are considered. The
UASSPs are the ones considered for each company from
Sect. III-A, hence there are 4 UASSPs.
In these experiments, we aim to analyze the spatial distri-

bution of conflicts, first, betweenUASSPswhich have several
hubs, then, between the different hubs without distinction of
UASSP.

Figure 11a and Fig. 11b show that conflicts mostly occur
between UAVs starting from the same hub (Inter-Hub), and
thus same UASSP (Inter-UASSP). This result suggests that a
‘‘localized’’ use of a Pre-Flight CDRmethod on each UASSP
level could reduce the computational effort to de-conflict
UAS operations across independent UASSPs.

Table 5 shows the results for the number of modified
UAS operation trajectories. First, we observe that around
50% UAS operations on average are involved in at least one
conflict, so that their nominal flight path had to be modified.
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TABLE 3. Comparison of the features in Paris case study [21] and Sendai 2030 model case.

FIGURE 11. Distribution of conflicts.

TABLE 4. Results for the proximity metrics in the Sendai 2030 model case.

TABLE 5. Proportion of paths modified and number of conflicts (high
level nodes expanded in ECBS).

This information can be seen as one indicator of air traffic
complexity. Second, the results for ECBS and CA* are almost
identical.

VIII. CONCLUSION
The development of a UTM (Unmanned Aircraft System
Traffic Management) system is required to safely integrate

UAVs in low-altitude airspace. UAS Operators task UAVs
for different applications, such as surveillance, delivery, etc.,
and use UAS Service Providers (UASSPs) to avoid conflicts
(possible collisions) with other UAVs. In other words, there
are several independent UASSPs that share the same airspace.
To avoid conflicts within one UASSP or between different
UASSPs, Pre-Flight CDR (Conflict Detection and Resolu-
tion) methods play an important role in supporting the safe
and efficient use of airspace. The Pre-Flight CDR phase is
entirely performed before UAVs take off by considering their
submitted flight plans. In this paper, we presented a novel
framework for Pre-Flight CDR which is an essential phase in
the conception of a UTM system. However, there exists little
experience on the actual demand and properties of UAS oper-
ations in a realistic scenario. Therefore, we studied the Sendai
2030model case, which was created by a consulting company
to understand the demand for UAV deliveries in 2030. The
demand reported in the study suggests that conflicts between
UAVs would be very frequent and scalable CDR methods
need to be developed.

Therefore, we worked on advanced methods for Pre-
Flight CDR [12], [38] and In-Flight CDR [11]. Specifically,
we mapped the Pre-Flight CDR problem to a MAPF (Multi-
Agent Path Finding) problem, and use Enhanced Conflict
Based Search (ECBS) to solve the MAPF problem. Our
solution is based on the concept of Trajectory Based Oper-
ations, where each UAS operation is seen as a 4DT (3D plus
time Trajectory), and UAVs become space-time obstacles
for other UAVs. This concept was compared to the simpler

VOLUME 7, 2019 170235



F. Ho et al.: Pre-Flight CDR for UAV Integration in Shared Airspace: Sendai 2030 Model Case

3D concept, where each UAS operation reserves the entire
airspace needed to execute the operation. The results indicate
that a simple 3D is not practical as a large number of UAS
operation requests would have to be rejected.

Since we focus on deliveries by UAVs scenarios, it is
important to understand the difference between our MAPF
formulated problem and other MAPF problems. Occupancy
by static obstacles in the Sendai model case is very low
compared to other 2D problem instances. However, themodel
case has specific properties such as altitude constraints based
on elevation and the delivery scenario induces a specific
‘‘flower-like’’ air traffic pattern, which is not seen in other
MAPF instances.

Therefore, we defined several general metrics to study air
traffic complexity, including the number of UAVs in the air,
proximity measures, and the number of conflicts. At this
moment, the results are hard to interpret, as comparable data
is not, or only sparsely, available [21]. Our simulations also
showed a localization of the conflicts within UASSPs in
particular areas of the region.

We also compared two types of processing incoming UAS
operation requests: first-come first-served (FCFS) process-
ing versus ‘‘batch’’ processing. Although the FCFS concept
seems obvious and fair, we could show that batch processing
leads to higher throughput in peak times with a large number
of UAS operation requests.

In our future work, we also plan to address scenarios
distinct from the Sendai model case with different traffic
patterns. Moreover, we plan to study the impact of a more
structured air traffic with the definition of corridors.

We hope that our work on Pre-Flight Conflict Detection
and Resolution can contribute to a better understanding of the
management of future UAV traffic systems.
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