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ABSTRACT 

The hydrothermal formation of mineral products from a mixture of amber container glass and 

aluminium waste (Al:Si = 1) in 4 M NaOH(aq) or 4 M KOH(aq) at 100 °C was monitored at 1, 

3 and 10 days by X-ray diffraction analysis with Rietveld refinement, Fourier transform 

infrared spectroscopy and scanning electron microscopy with energy dispersive X-ray 

analysis. In NaOH(aq), at 1, 3 and 10 days, respectively, 48%, 55% and 63% of the glass 

crystallised to form hydroxysodalite (HS) and hydroxycancrinite (HC) with minor 

proportions of katoite and tobermorite. The partial successive transformation of HS to HC 

was also observed with time. The initial rates of dissolution of the glass and formation of the 

principal zeolite K-F and secondary katoite phases were considerably slower in KOH(aq); 

although, the subsequent development of the products was greater than that in NaOH(aq). The 

zeolite K-F product achieved only 5% crystallinity within the first day which then increased 

markedly to 60% and 78% at 3 and 10 days, respectively. Despite the incomplete conversion 

of amber glass into crystalline zeolitic phases, the uptake capacities of the 10-day 

feldspathoid and zeolite K-F products for Pb2+ (4.3 and 4.5 meq g-1, respectively) and Zn2+ 

(3.9 and 4.1 meq g-1, respectively) ions compared favourably with those of many other 

zeolites and waste-derived inorganic sorbents reported in the literature.  
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1. Introduction 

 

 The manufacture of soda-lime-silica container glass for bottled beverages is an 

energy-intensive process with a relatively high carbon footprint [1-3]. The average primary 

energy consumption for container glass produced from 50% recycled cullet is currently 

estimated to be 5.15 MJ kg-1 and a carbon footprint of 150-761 kgCO2e per 1,000 litres of 

beverage is associated with the lifecycle of glass bottles [1-3]. Partial replacement of recycled 

cullet in the glass-making process reduces both energy requirement and unwanted emissions, 

although the potential to recycle coloured container glass is limited by various technical, 

economic and societal factors [4]. For example, effective collection, separation and 

subsequent recycling of green and amber soda-lime-silica glass bottles are essentially 

restricted to regions with established beer- and wine-making industries.   

 The major oxide constituents of flint and coloured soda-lime-silica container glasses 

are SiO2 (70-75 wt%), Na2O (13-17 wt%) and CaO (5-10 wt%) with minor oxide components 

(Al 2O3, MgO, and K2O) below 5 wt% and trace oxides (e.g. Fe2O3, SO3 and Cr2O3) below 0.5 

wt% [5,6]. In this respect, surplus coloured container glass represents a consistent source of 

reactive silica with negligible concentrations of potentially hazardous elements in comparison 

with other silicate-bearing wastes such as incineration ashes and slags [7-9].  

 Recently, a range of initiatives to convert waste container glass into value-added 

materials such as ceramics, geopolymers, ion-exchangers, sorbents and catalysts has been 

reported in the literature [6-15]. In particular, the synthesis of zeolites and feldspathoids from 

waste container glass is of current relevance as these 3-D microporous aluminosilicate 

framework materials find wide application in separation and adsorption technology, soil 

fertilisation and conditioning, animal feed, construction and catalysis [6-9,15]. Typically, 

stoichiometric additions of an aluminium-bearing reagent are combined with ground waste 
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glass which is then subjected to hydrothermal processing under alkaline conditions to 

produce an assemblage of zeolitic phases. To date, various mixtures of synthetic sodalite, 

cancrinite, analcime (analcite), faujasite (zeolite X), gismondine (zeolite P), edingtonite 

(zeolite F) and zeolite A structures have been prepared from container glass using convection 

and microwave heating [6-9,15]. Phase-pure zeolite products are rarely formed from 

particulate waste materials in the absence of preconditioning stages (to remove unwanted 

species and/or produce an homogeneous precursor gel) and templating molecules or 

nucleating agents [6-9,15]. Phase-pure zeolites are required in some biomedical, chemical 

and separation processes, although mixtures of impure zeolitic phases are often suitable for 

many industrial and agricultural applications.  

 Sodalite and cancrinite are naturally occurring feldspathoid minerals that have 

different structural frameworks, although share the same chemical formula, 

Na(Al6Si6O24).2NaX.6H2O, where X can be various anions [16]. Their industrial significance 

in adsorption and separation processes arises from their high ion-exchange capacities and 

ultramicroporosities. Sodalite and cancrinite are common target phases for the recycling of 

calcium-bearing aluminosilicate industrial wastes as, unlike many zeolitic materials, they 

tolerate the substitution of two Na+ ions for one Ca2+ ion during synthesis [6,17].  

Zeolite K-F (K2Al 2Si3O10.xH2O) is a synthetic analogue of edingtonite 

(BaAl2Si3O10.4H2O), first reported in the 1950s and subsequently prepared from colloidal 

silica [18], kaolin [19], K-feldspar [20] and incineration ashes of rice husk [21], coal [22] and 

paper sludge [23]. Current interest in the facile and economical synthesis of zeolite K-F arises 

from its applications in soil fertilisation and conditioning [19-23].  

The present study explores the potential of waste amber container glass to be used as 

a feedstock (in combination with waste aluminium foil) for the hydrothermal synthesis of a 

mixture of feldspathoids (hydroxysodalite and hydroxycancrinite) in NaOH(aq) and zeolite K-
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F in KOH(aq) at 100 °C. The phase evolution and crystallinity of the hydrothermal reaction 

products were monitored at 1, 3 and 10 days by powder X-ray diffraction analysis (XRD). 

The reaction products were also characterised by Fourier transform infrared spectroscopy 

(FTIR), 29Si and 27Al magic angle spinning nuclear magnetic resonance spectroscopy (MAS 

NMR) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis 

(EDX). The uptakes of Pb2+ and Zn2+ ions by the 10-day feldspathoid and zeolite K-F 

products were evaluated by batch sorption and compared with those of other waste-derived 

sorbents and ion-exchangers.  
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2. Materials and methods 

 

2.1 Preparation of feldspathoid and zeolite products 

 

 Discarded amber soda-lime-silica glass beer bottles and aluminium foil were 

recovered from the municipal waste stream in Chatham, Kent, UK. The bottles were rinsed 

with water to remove paper labels and ground in a ball mill to pass 125 µm. Quantitative 

analysis of the amber glass (Table 1) was obtained by X-ray fluorescence spectroscopy at the 

Materials Research Institute, Sheffield Hallam University, Sheffield, UK. All other reagents 

were purchased from Sigma-Aldrich, UK, and were used without further purification or 

modification. 

 

Table 1. Oxide and elemental compositions of amber container glass. 

Oxide component Mass (%) Mole (%) Element Mass (%) Mole (%) 

SiO2 70.82 71.33 Si 33.11 24.53 

Na2O 13.75 13.43 Na 10.20 9.23 

CaO 10.03 10.82 Ca 7.17 3.72 

Al 2O3 2.21 1.31 Al 1.17 0.90 

MgO 1.42 2.13 Mg 0.86 0.73 

K2O 0.87 0.56 K 0.72 0.38 

Fe2O3 0.43 0.16 Fe 0.30 0.11 

SO3 0.31 0.23 S 0.12 0.08 

Cr2O3 0.04 0.02 Cr 0.03 0.01 

- - - O 46.36 60.28 

Total 99.9 100 Total 100 100 
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 The mixed hydroxysodalite and hydroxycancrinite feldspathoid products were 

prepared by modifying the method described in reference 6. In each case, a solution 

containing 0.90 g of waste aluminium foil dissolved in 15 cm3 of 4M NaOH(aq) was contacted 

with 3.0 g of ground amber glass and the resulting mixture was heated at 100 °C in an 

hermetically sealed 150 cm3 PTFE reaction vessel. These proportions of amber glass and 

aluminium foil were selected to provide equimolar quantities of silicon and aluminium in the 

reaction mixture (i.e. 0.035 mol) as the molar Al:Si ratio of the target feldspathoid products is 

1:1. Samples N-1, N-3 and N-10 were prepared in triplicate by heating the mixture for 1, 3 

and 10 days, respectively. Zeolite K-F was prepared similarly by heating 3.0 g of ground 

amber glass with a solution containing 0.90 g of waste aluminium foil dissolved in 15 cm3 of 

4M KOH(aq) at 100 °C. Samples K-1, K-3 and K-10 were prepared in triplicate for 1, 3 and 10 

days, respectively. All hydrothermal reaction products were recovered by gravitational 

filtration, washed with deionised water to pH 8, dried to constant mass in air at 40 °C and 

stored in air-tight polypropylene containers prior to analysis.  

 

2.2 Characterisation of feldspathoid and zeolite products 

 

 The hydrothermal reaction products were analysed by powder XRD using a Bruker 

D8 diffractometer with Cu Kα = 1.5406 Å, a step size of 0.019° in the 2θ range from 2 to 60 ° 

and a measuring time of 1 s per step. The degree of crystallinity of the samples was estimated 

from the ratio of the area of the crystalline peaks to the total area of the pattern using Bruker 

EVA version 5.1 software. The weight fractions of the crystalline phases were obtained by 

Rietveld refinement using Bruker TOPAS version 5.0 software [24].  FTIR spectra were 

acquired using a Perkin Elmer Spectrum Two spectrometer between 500 and 2000 cm-1 

wavenumbers, with 10 scans at a resolution of 4 cm-1. Secondary electron images of the 
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products were obtained from uncoated samples attached to carbon tabs on an Hitachi SU8030 

scanning electron microscope with an accelerating voltage of 1 kV. EDX data were collected 

in quintuplicate from areas of 100 µm2 using a JEOL JSM-5410 LV electron microscope with 

an Oxford Instruments X-MaxN EDX detector in low vacuum mode with an accelerating 

voltage of 8 kV. The specific surface areas of the ground amber glass and hydrothermal 

reaction products were obtained by nitrogen gas sorption analysis via the BET method using 

a Micromeritics Gemini VII gas sorption analyser [25]. Prior to gas sorption, the samples 

were degassed overnight at 40 °C under flowing nitrogen. BET isotherms were collected in 

triplicate for each sample. MAS NMR spectra of the amber container glass, sample N-10 and 

sample K-10 were collected on a JEOL JNM-ECX 300 MHz spectrometer. Single pulse 29Si 

MAS NMR spectra were obtained with a pulse delay of 60 s, an acquisition time of 0.02048 s 

and a minimum of 20 000 scans. Single pulse 27Al MAS NMR spectra were obtained with a 

pulse delay of 0.5 s, an acquisition time of 0.01024 s and 7000 scans. 29Si and 27Al chemical 

shifts were referenced to tetramethylsilane (TMS) and the aluminium hexaquo ion 

[Al(H 2O)6]
3+, respectively. The common notation used to interpret the 29Si MAS NMR 

spectra and to describe the local silicate environments in the amber glass and hydrothermal 

products is such that the symbol Q represents one SiO4
4- tetrahedron and the superscript, n, 

denotes the number of other Q units to which it is bonded via Si-O-Si linkages. For example, 

a midchain SiO4
4- unit linked to two other SiO4

4- units is represented as Q2, and a branching 

SiO4
4- unit linked to two other SiO4

4- units and one AlO4
5- unit is denoted by Q3(1Al).  

 

2.3 Uptake of Pb2+ and Zn2+ ions by feldspathoid and zeolite products 

 

 The removal of Pb2+ and Zn2+ from aqueous solutions by the N-10 and K-10 products 

was determined by single metal batch sorption experiments. In each case, 0.10 g of N-10 or 
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K-10 were contacted with 0.2 dm3 of metal nitrate solution at a concentration of 0.5 mmol 

dm-3 with respect to the metal ion in a screw-capped polypropylene bottle at 25 ºC. After 24 

h, the supernatant liquors were recovered by centrifugation at 1500 g for 5 min and analysed 

by inductively coupled plasma spectroscopy (ICP) using a TJA Iris simultaneous ICP-OES 

spectrophotometer. Each experiment was carried out in triplicate.  
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3. Results and discussion 

 

3.1 Characterisation of feldspathoid products 

 

 Powder XRD patterns of the ground amber container glass (ACG) and feldspathoid 

products prepared in 4 M NaOH(aq) at 100 °C for 1, 3 and 10 days (viz. N-1, N-3 and N-10, 

respectively) are shown in Fig. 1. The compositions of the feldspathoid products and 

identifying powder diffraction file (PDF) numbers of the principal hydroxysodalite and 

hydroxycancrinite (Na4(AlSiO4)3(OH).H2O) phases and the secondary katoite 

(Ca3Al 2(SiO4)(OH)8) and tobermorite (Ca5Si6O16(OH)2.4H2O) phases are listed in Table 2. 

XRD analysis demonstrates that, within 1 day under the selected reaction conditions, 

approximately 48% of the amorphous glass phase is transformed into crystalline products 

(Table 2, Fig.2). The rate of development of the crystalline phases subsequently slows such 

that the extents of conversion of the glass are 55 and 63% after 3 and 10 days, respectively; 

and a modest increase in the yield of solid product from 4.9 to 5.6 g is observed between 1 

and 10 days.  

 Feldspathoid minerals are thermodynamically metastable phases whose formation 

obeys the Ostwald Law of Successive Transformations under hydrothermal conditions [26]. 

They are precipitated from solid parent materials in alkaline media by a dissolution, 

nucleation and growth mechanism during which a series of transitory intermediate phases is 

formed over time. In this study, the initial major product is hydroxysodalite, a proportion of 

which subsequently converts to hydroxycancrinite as the phase assemblage evolves (Fig. 2, 

Table 2). Similarly, previous research also reports the sequential transformation of sodalite to 

cancrinite during the hydrothermal treatment of kaolinite-rich clay in alkaline media and as 

by-products in the Bayer process [16,17].  
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Fig. 1. XRD patters of waste amber container glass (ACG) and hydrothermal products 

synthesised for 1, 3 and 10 days in NaOH(aq) (viz. N-1, N-3, N-10) and KOH(aq) 

(viz. K-1, K-3, K-10) at 100 °C.  Key: ◊ - zeolite K-F; * - katoite; ◌ - hydroxysodalite; 

□ - hydroxycancrinite; ∆ - tobermorite. 
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The hydrogarnet, katoite, is consistently present among the reaction products at 

approximately 6 wt% throughout the hydrothermal treatment of the amber glass, and the 

layer-lattice inosilicate phase, tobermorite, also develops as the reaction proceeds (Fig. 2, 

Table 2). These calcium aluminosilicate phases arise from a stoichiometric excess of calcium 

in the glass feedstock with respect to the maximum possible substitution of Ca2+ for Na+ in 

the feldspathoid phases.  

 

Table 2. Compositions and surface areas of hydrothermal feldspar and zeolite K-F products.  

Phase N-1 N-3 N-10 

Hydroxysodalite (PDF 073-5303) (wt%) 29.19 ± 1.25 25.71 ± 0.52 26.15 ± 2.62 

Hydroxycancrinite (PDF 046-1457) (wt%) 11.22 ± 0.98 14.37 ± 0.73 19.58 ± 1.77 

Katoite (PDF 077-1713) (wt%) 6.65 ± 0.39 5.58 ± 0.22 6.16 ± 0.03 

Tobermorite (PDF 006-0005) (wt%) 0.43 ± 0.40 9.63 ± 1.97 10.69 ± 1.17 

Weighted profile R-factor (Rwp) 7.7 8.0 8.9 

Goodness of fit (GOF) 2.5 2.6 3.0 

Crystallinity (%) 47.5 ± 3.0  55.4 ± 1.9 62.6 ± 1.8 

Yield (g) 4.92 ± 0.09 5.37 ± 0.07 5.57 ± 0.03 

Specific surface area (m2 g-1) 1.59 ± 0.15 2.01 ± 0.05 3.26 ± 0.03 

Phase K-1 K-3 K-10 

Zeolite K-F (PDF 025-0619) (wt%) 3.71 ± 0.33 49.39 ± 0.09 63.61 ± 0.13 

Katoite (PDF 084-0917) (wt%) 1.69 ± 0.33 10.96 ± 0.09 14.34 ± 0.13 

Weighted profile R-factor (Rwp) 3.2 10.3 14.3 

Goodness of fit (GOF) 1.0 2.9 4.0 

Crystallinity (%) 5.4 ± 0.3 60.4 ± 0.4 78.0 ± 0.6 

Yield (g) 2.09 ± 0.18 4.01 ± 0.11 6.45 ± 0.02 

Specific surface area (m2 g-1) 2.70 ± 0.02 1.49 ± 0.03 1.84 ± 0.09 
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Fig. 2. Phase compositions of the hydrothermal feldspathoid and zeolite K-F products 

synthesised for 1, 3 and 10 days in NaOH(aq) and KOH(aq), respectively. 

 

 FTIR spectra of the amber container glass and feldspathoid products are given in Fig. 

3. The spectrum of the amber glass comprises a broad medium intensity signal at 775 cm-1 

which is assigned to symmetrical Si-O-Si stretching vibrations and a very broad strong 

asymmetrical combination band centred around 1000 cm-1 arising from antisymmetric 

stretching of the polymerised Si-O-Si system and non-bridging Si-O- groups within the 

amorphous silicate network of the glass [27].  
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Fig. 3. FTIR spectra of amber container glass (ACG) and hydrothermal products synthesised 

for 1, 3 and 10 days in NaOH(aq) (viz. N-1, N-3, N-10) and KOH(aq) (viz. K-1, K-3, K-10). 

 

 The FTIR spectra of the feldspathoid products (Fig. 3) exhibit characteristic vibrations 

of the aluminosilicate frameworks of hydroxysodalite and hydroxycancrinite [16,28]. 

Antisymmetric stretching of the Si(Al)-O-Si frameworks gives rise to an intense broad 

combination band circa 960 cm-1 [16,28]. The narrowing of this main antisymmetric 

framework stretching band observed for the feldspar products relative to that of the amber 

glass denotes the increasing structural organisation within the hydroxysodalite and 

hydroxycancrinite lattices in comparison with the amorphous nature of the parent material. 
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Weaker, poorly resolved bands at 687, 661, 624 and 555 cm-1 are assigned to various 

characteristic O-Si(Al)-O bending modes and the shoulder at 725 cm-1 is attributed to 

symmetrical stretching vibrations of the feldspathoid lattices [16,28]. Scissor bending 

vibrations of adsorbed molecular water and hydroxyl groups appear at approximately 1645 

cm-1 and calcite gives rise to bands at 1450 and 870 cm-1 which intensify with reaction time. 

Calcite commonly forms by atmospheric carbonation of calcium-bearing materials under 

alkaline conditions. In this case, calcite is not evident in the corresponding XRD patterns 

(Fig. 1) which indicates that it is too poorly crystalline and/or not in sufficient abundance to 

be detected by this technique. Discrete signals arising from katoite and tobermorite are not 

apparent in the FTIR spectra of the feldspathoid products as these are obscured by the various 

lattice vibrations of the principal hydroxysodalite and hydroxycancrinite phases (Fig. 3).  

  The 29Si MAS NMR spectra of the ground amber container glass and feldspathoid 

product after hydrothermal synthesis for 10 days (N-10) are shown in Fig. 4. The spectrum of 

the parent amber glass displays a very broad asymmetrical signal with maximum intensity at 

approximately -94 ppm which is consistent with a range of amorphous Q2-Q4 silicate units 

comprising a predominance of Q3 species. This spectrum closely resembles those reported in 

the literature for soda-lime-silica container glass of similar composition [29,30].  

 The 29Si MAS NMR spectrum of the 10-day feldspathoid product comprises an 

asymmetrical signal at -88 ppm principally arising from the Q4(4Al) sites in hydroxysodalite 

and hydroxycancrinite [31,32]. This is in agreement with the expected chemical shift for a 1:1 

ratio of alternating SiO4 and AlO4 units within a framework lattice [31,32]. It should be noted 

that the framework structures of feldspathoids are governed by Lowenstein’s rule which 

forbids the formation of direct Al-O-Al bonds and limits the maximum possible Al:Si ratio to 

unity.  
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Fig. 4. 29Si MAS NMR spectra of amber container glass (ACG) and hydrothermal products 

synthesised for 10 days in NaOH(aq) (N-10) and KOH(aq) (K-10), respectively. 

 

The principal Q4(4Al) resonance from the feldspathoids (Fig. 4) is superposed over a 

weaker very broad signal arising from residual parent glass and possibly also from an 

amorphous geopolymeric aluminosilicate gel phase that may have formed during 

hydrothermal processing [15]. The upfield shoulder at -80 ppm is assigned to the silicate 

centres in katoite that are linked with four octahedrally coordinated aluminate units [33]; and 

signals arising from the Q2, Q2(1Al) and Q3 species of tobermorite are obscured by the 

resonances of the feldspathoid and amorphous phases. In this instance, no spectral 
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deconvolution was attempted owing to the poor definition of the signal arising from the 

amorphous material and the inability to accurately predict the positions and relative 

intensities of the individual signals of the poorly crystalline tobermorite phase.  

 

 

Fig. 5. 27Al MAS NMR spectra of amber container glass (ACG) and hydrothermal products 

synthesised for 10 days in NaOH(aq) (N-10) and KOH(aq) (K-10), respectively. 

  

27Al MAS NMR spectroscopy is used to discriminate among different aluminium 

coordination environments in inorganic solids [34]. Tetrahedrally coordinated aluminium 

units give rise to signals in the approximate chemical shift range of 100 to 50 ppm; and 

octahedral aluminium resonates between 20 and -10 ppm [34]. The 27Al MAS NMR spectrum 
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of the amber container glass is shown in Fig. 5 and comprises one very broad resonance of 

maximum intensity at ~54 ppm that is assigned to the highly disordered tetrahedral 

aluminium species within the amorphous glass network. The tetrahedral aluminium 

environments of the feldspathoid phases of the 10-day hydrothermal product, N-10, give rise 

to the asymmetrical signal centred at 61.9 ppm (Fig. 5) [31,32]; and the shoulder at 66.5 ppm 

is attributed to AlO4
5- units substituted into the silicate chains of tobermorite [35]. The 

presence of katoite is denoted by the octahedral aluminate resonance at 13.5 ppm [33].  

 

 

Fig. 6. Secondary electron SEM images of hydrothermal feldspathoid products synthesised 

for 1, 3 and 10 days in NaOH(aq) (viz. N-1, N-3 and N-10, respectively) 

 

Scanning electron microscopy (Fig. 6) indicated that the feldspathoid products are 

granular materials with the majority of particles in the size range 50 - 300 µm. The surfaces 
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of the particles are populated with the characteristic bevelled ball-of-wool morphologies of 

hydroxysodalite which are interspersed with lath-like crystals of hydroxycancrinite (Fig. 6). 

Globular, botryoidal deposits also feature on the surface of the 1-day samples which 

disappear within 3 days and are a considered to be an early aluminosilicate gel precursor to 

the hydroxysodalite phase. Additional SEM images are provided in the supplementary 

information to further illustrate the morphologies of the hydration products. The BET 

external surface area of the ground amber glass was initially below 0.5 m2 g-1 (i.e. below the 

measurement limit of the instrument) and steadily increased to 3.3 m2 g-1 after 10 days of 

hydrothermal processing in sodium hydroxide solution (Table 2). It should be noted that, the 

BET surface area measurements made in this study refer exclusively to the external surfaces 

of the samples. Under the selected degassing and analysis conditions, retained water and the 

failure of nitrogen to effectively penetrate the ultramicropores of the feldspathoids prevent 

the measurement of the internal surface area and porosity [36].  

The molar elemental compositions of the feldspathoid products were determined by 

EDX analysis and are listed in Table 3. The initial Al:Si ratio of the parent amber glass,  

determined by XRF to be 1:27 (Table 1), is seen to increase dramatically to 1:0.87 (Table 3) 

within 1 day of hydrothermal processing which demonstrates considerable dissolution of the 

glass and formation of the more Al-rich products. Equimolar quantities of Al and Si were 

initially present in the reaction mixture, yet the Al:Si ratio of the products is consistently 

greater than unity at all times indicating that a significant proportion of silicate species are 

partitioned in the reaction liquor. Similarly, an increase in initial Na:Si ratio of the amber 

glass from 1:2.7 (Table 1) to 1:0.79 in the 1-day hydrothermal product is also indicative of 

the extensive dissolution of the glass and precipitation of the more Na-rich product phases. 

The trace element constituents of the amber glass, potassium, iron, sulphur and chromium, 
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were not detected by EDX analysis in any of the hydrothermal reaction products indicating 

that they are present below 0.01 mol% if at all. 

 

Table 3. Molar elemental compositions of feldspathoid and zeolite K-F hydrothermal 

products synthesised for 1, 3 and 10 days in NaOH(aq) and in KOH(aq). Standard deviations of 

the mean values are given in brackets. 

Sample Si 
(mol%) 

Al 
(mol%) 

K 
(mol%) 

Ca 
(mol%) 

Na 
(mol%) 

Mg 
(mol%) 

C 
(mol%) 

O 
(mol%) 

         
N-1 7.30 

(0.33) 
8.37 
(0.38) 

below 
detection 

1.13 
(0.15) 

9.30 
(0.67) 

0.32 
(0.15) 

2.15 
(0.23) 

71.45 
(0.64) 

         
N-3 8.12 

(0.38) 
8.58 
(0.56) 

below 
detection 

0.73 
(0.19) 

8.88 
(0.19) 

0.22 
(0.08) 

1.85 
(0.30) 

72.10 
(1.10) 

         
N-10 6.83 

(0.74) 
7.85 
(0.67) 

below 
detection 

1.13 
(0.21) 

10.63 
(0.76) 

0.25 
(0.14) 

2.40 
(0.54) 

70.95 
(0.81) 

         
K-1 14.78 

(0.93) 
3.08 
(1.68) 

1.83 
(1.16) 

2.83 
(0.57) 

3.88 
(0.80) 

0.53 
(0.08) 

2.52 
(0.23) 

70.45 
(2.13) 

         
K-3 9.88 

(0.81) 
9.00 
(1.31) 

8.46 
(1.99) 

1.52 
(0.32) 

0.90 
(0.51) 

0.38 
(0.08) 

2.74 
(0.56) 

67.18 
(2.62) 

         
K10 8.28 

(0.33) 
9.22 
(0.37) 

10.28 
(1.13) 

0.85 
(0.27) 

0.50 
(0.06) 

0.27 
(0.10) 

3.03 
(0.24) 

67.62 
(1.46) 

 

The observed increase in the molar oxygen content of the hydrothermal feldspathoid 

products (>70 mol%) relative to that of the amber glass (~60 mol%) is attributed to the 

presence of water and hydroxyl ions in the products (since hydrogen atoms are not detected 

by EDX analysis). Carbon is present within the feldspathoid products in the form of trace 

quantities of calcite; although, it should be noted that carbon is overrepresented in the EDX 

analyses of these samples owing to the contribution from the carbon tabs on which they were 

mounted.  
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3.2 Characterisation of zeolite K-F products 

 

 Powder XRD patterns of the zeolite K-F products prepared in 4 M KOH(aq) at 100 °C 

for 1, 3 and 10 days (respectively, K-1, K-3 and K-10) are compared with that of the parent 

amber glass in Fig. 1. The compositions of the zeolite K-F products are listed in Table 2 and 

the evolution of the phase assemblage is plotted in Fig. 2. Under the selected reaction 

conditions, the initial development of the two product phases, zeolite K-F and katoite, is slow 

with only ~5% crystallinity having been achieved within the first 24 h. The reaction rate then 

markedly increases to give a product of ~60% crystallinity at 3 days and subsequently slows 

again such that the final 10-day product is 78% crystalline. The total yield of solid product 

increases from 2.1 g to 6.5 g between 1 and 10 days. 

Other researchers have also observed that the initial crystallisation of K-zeolites from 

paper sludge ash and coal fly ash is slower than that of Na-zeolites [37]. In comparison with 

the abundant research undertaken to synthesise Na-zeolites from various waste materials in 

NaOH(aq), literature on the production of K-zeolites is relatively sparse with only one report, 

to date, describing the hydrothermal processing of soda-lime-silica glass in KOH(aq) [15]. In 

this study, Terzano et al. [15] report that 25 wt% zeolite K-F and a minor unidentified phase 

were produced from a mixture of 8 g of flint container glass and 0.5 g of aluminium alloy 

(from soda cans) in 80 cm3 of 5 M KOH(aq) at 90 °C for 7 days [15]. The superior yield of 

zeolite K-F (49 wt% at 3 days) observed in the present study was obtained by increasing the 

Al:Si ratio of the reaction composition to unity and by raising the temperature by 10 °C.  

Previous studies on the hydrothermal processing of K-feldspar-CaO-KOH-H2O 

mixtures have demonstrated that the stability of zeolite K-F is favoured above 95 °C at 

KOH(aq) concentrations in the range 4 - 5 M, and that a wide range of additional temperature-

dependent calcium aluminosilicate phases arise if calcium ions are present in stoichiometric 
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excess [20,38]. Since zeolite K-F can accommodate little to no calcium ions during 

formation, in the present study, an Al:Si ratio of 1:1 was selected rather than the target 2:3 

stoichiometric Al:Si ratio of zeolite K-F in order to provide additional aluminium for reaction 

with ‘unwanted’ calcium ions from the parent glass to form katoite. Under the selected 

reaction conditions, the results indicate that after the initial slow dissolution of the glass and 

low yield of products within the first 24 h, the concomitant precipitation of katoite helps to 

drive the formation of zeolite K-F which significantly improves the yield at 3 and 10 days. 

FTIR spectra of the zeolite K-F products are compared with that of the amber 

container glass in Fig. 3. The very broad band of the antisymmetric stretching of the Si-O-Si 

network in the glass persists in the spectrum of the 1-day product over which is superimposed 

a sharper signal from the O-Si(Al)-O stretching vibrations of the zeolite K-F lattice with 

maximum intensity at ~985 cm-1 [21,27]. The medium broad band arising from symmetrical 

Si-O-Si stretching vibrations of the glass is also present in this spectrum at 775 cm-1 and a 

broad signal appears at 610 cm-1 from the zig-zag modes of the 8-membered ring subunits of 

zeolite K-F [27]. As the reaction proceeds, the antisymmetric stretching of the Si-O-Si 

polymer system of the glass is successively replaced by the lattice stretching of zeolite K-F 

which is centred at 965 cm-1. Symmetrical Si-O-Al lattice vibrations develop at 665 cm-1 and 

the zig-zagging of the 8-membered rings subsequently differentiates into two individual 

bands at 610 and 570 cm-1 [21]. A framework O-Si(Al)-O bending mode also gives rise to a 

signal at 527 cm-1. Discrete signals arising from katoite are not observed in the FTIR spectra 

as they are obscured by the various vibrational modes of the zeolite K-F lattice. Broad low 

intensity signals of the stretching and bending modes of water and hydroxyl groups at 1648 

cm-1 are present in the spectra of all of the hydrothermal zeolite K-F products.  

 The formation of the principal crystalline zeolite K-F phase is confirmed by the 

symmetrical Q4(4Al) resonance at ~-86 ppm in the 29Si MAS NMR spectrum of the 10-day 
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product (Fig. 4) [39]; and the poorly resolved upfield shoulder at ~-81 ppm arises from the 

silicate centres in the minor katoite phase [33]. Likewise, the resonance at 61.8 ppm in the 

27Al MAS NMR spectrum of the 10-day product (Fig. 5) is characteristic of the tetrahedral 

aluminium environment in zeolite K-F [39] and the signal at 13.9 ppm is assigned to the 

octahedrally coordinated aluminium centres in katoite [33].  

 Scanning electron microscopy indicated that the zeolite K-F products principally 

consist of bimodally distributed granular particles in the approximate size ranges 5 - 10 µm 

and 50 - 200 µm (Fig. 7); the former arising from nucleation and growth in solution, and the 

latter by direct precipitation and growth on the surface of the parent glass particles.  

 

 

Fig. 7. Secondary electron SEM images of hydrothermal zeolite K-F products synthesised for 

1, 3 and 10 days in KOH(aq) (viz. K-1, K-3 and K-10, respectively) 
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 Initial 1-day hydration products appear as textured distorted spherical bundles which 

are distributed across, but do not wholly cover, the surface of the glass. Similar aggregated 

spherical bundles are also found as discrete <10 µm grains. These poorly defined spheres are 

thought to be an aluminosilicate gel precursor to the zeolite K-F phase. Within 3 days, sub-

micron tetragonal crystals of zeolite K-F are seen to entirely populate the surfaces of the 

grains among which are dispersed occasional hexagonal plates of katoite and some remaining 

distorted spheres. As the reaction progresses, crystalline products incompletely fill the 

lacunae created by the continuing dissolution of the glass to produce porous hierarchical 

structures and the tetragonal zeolite K-F crystals continue to grow to between 2 and 5 µm in 

length by 10 days. More detailed SEM micrographs of the zeolite K-F hydration products are 

provided in the supplementary information.  

 The BET surface area of the zeolite K-F products initially increases from below the 

measurable limit of 0.5 m2 g-1 for the ground parent glass to 2.7 m2 g-1 within 1 day, as the 

first hydration products appear (Table 2). The surface area then decreases by 3 days (to ~1.5 

m2 g-1) as the zeolite K-F and katoite phases develop and subsequently increases again with 

the ongoing dissolution of the glass and growth of the crystalline products (to ~1.8 m2 g-1 at 

10 days). As previously mentioned, in this case, only the external surface area is expressed in 

these measurements as nitrogen molecules are unable to probe the interior of the zeolite K-F 

micropores without undertaking bespoke degassing and adsorption-desorption regimes [36].  

 The molar elemental compositions of the zeolite K-F products are listed in Table 3. 

The partial dissolution of the parent glass and formation of the early hydration products after 

1 day are demonstrated by the concomitant increases in the molar ratios of Al:Si (from 1:27 

to 1:4.8) and K:Si (from 1:65 to 1:8.1) (Tables 1 and 3). These ratios subsequently increase 

further at 3 and 10 days, as the dissolution of the glass continues and the zeolite K-F and 

katoite phases develop. Likewise, the successive reduction in Na:(Si+Al) ratio from 1:2.8 for 
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the initial glass to 1:35 after 10 days is also associated with the conversion of the glass into 

the crystalline products that do not favour the accommodation of sodium ions. However, 

residual sodium ions are likely to persist in the amorphous aluminosilicate gel phase observed 

by SEM (Fig. 7) and also in any remaining unreacted glass.  

 

3.3 Uptake of Pb2+ and Zn2+ ions by the feldspathoid and zeolite K-F products 

 

Divalent lead and zinc ions are among the most commonly occurring heavy metals in 

industrial wastewater and have accordingly been selected as model contaminants to evaluate 

the sorptive properties of the feldspathoid and zeolite K-F products [40]. The uptakes of Pb2+ 

and Zn2+ ions by the 10-day feldspathoid and zeolite K-F products from single metal ion 

solutions during batch sorption are compared with those of other waste-derived inorganic 

sorbents in Table 4 [11,41-49]. Natural, synthetic and waste-derived zeolites commonly 

exhibit cation exchange capacities (CECs) between 1 and 5 meq g-1 [15,50], and in the 

present study the observed uptakes of Pb2+ (4.3 and 4.5 meq g-1 for N-10 and K-10, 

respectively) and Zn2+ (3.9 and 4.1 meq g-1 for N-10 and K-10, respectively) fall within the 

expected range. Despite the incomplete conversion of amber glass into zeolitic phases, the 

uptake capacities of the N-10 and K-10 products for Pb2+ and Zn2+ ions appear towards the 

top end of the anticipated CEC range for zeolites and are generally greater than those of many 

other waste-derived inorganic sorbents reported in the literature (Table 4) [11,41-50]. The 

superior sorption capacities are attributed to the high Al:Si ratios of the feldspathoid and 

zeolite K-F phases which confer the aluminosilicate frameworks with increased anionic 

charge, polarity and hydrophilicity [50]. The greater sorption capacity of the feldspathoid and 

zeolite K-F products for Pb2+ over Zn2+ is attributed to the smaller hydrated radius of former 

ion (0.401 nm for Pb2+ and 0.430 nm for Zn2+). This phenomenon has similarly been 
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observed in other studies where cations with smaller hydrated radii are absorbed more rapidly 

and in greater quantity by microporous low-silica zeolites [51-53].  

   

Table 4. Uptakes of Pb2+ and Zn2+ by hydrothermal reaction products N-10 and K-10 

and by other waste-derived inorganic sorbents 

Sample 
 
 

Pb2+-uptake  
(mmol g-1) 

Pb2+-uptake  
(mg g-1) 

Zn2+-uptake  
(mmol g-1) 

Zn2+-uptake  
(mg g-1) 

Ref. 

N-10 2.17 ± 0.80 450 ± 166 1.95 ± 0.10 128 ± 7 - 

K-10 2.27 ± 0.72 470 ± 149 2.06 ± 0.10 135 ± 7 - 

Rice husk ash - 129 - - [41] 

Blast furnace sludge - 79.87 - 9.25 [42] 

Red mud - 64.79 - 12.59 [43] 

Concrete fines - 37 - 33 [44] 

Zeolite NaP1 (fly ash) - 266.4 -  [45] 

Zeolite NaP1 (fly ash) -  - 94.4 [46] 

Sodalite (fly ash) - 157.2 - - [47] 

Cancrinite (fly ash) 2.530 - 1.154 - [48] 

Tobermorite - 467 - - [11] 

Geopolymer (fly ash) - 166.55 - - [49] 

 

General applications of the low-silica zeolites include the removal of metal ions from 

aqueous waste streams, and in this respect, the container glass-derived feldspathoids are 

attractive candidate sorbents owing to their competitive CECs. Zeolite K-F synthesised from 

the hydrothermal treatment of K-feldspar is currently proposed as an alternative slow-release 

agricultural fertiliser to address the predicted shortage in potash [20,38]. The concomitant 

release of K+ ions and uptake of toxic metal ions such as Pb2+ indicates that zeolite K-F may 

also find application in soil remediation processes.  
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3.4 Waste container glass for the synthesis of feldspathoid and zeolite phases 

 

 For the past three decades, increasing efforts have been made to prepare zeolites and 

other technologically significant silicate minerals from a wide range of high-volume 

industrial, agricultural and municipal waste streams [4,6-15,18,21-23,30,37,39,41-49,54,55]. 

The current global market for synthetic zeolites is estimated to be 5.2 billion USD per annum 

[55] and the potential use of waste materials represents significant reductions in energy, 

natural resources, cost, waste disposal and unwanted emissions.  

A current SWOT analysis to determine the Strengths, Weaknesses, Opportunities, and 

Threats of producing zeolite A from waste resources, highlights the need to develop ‘one-pot’ 

synthesis strategies as multi-stage processes are time-consuming and costly [55]. In this 

respect, container glass is an attractive feedstock for the one-pot hydrothermal synthesis of 

zeolites, as additional pre-conditioning and processing stages are optional, rather than 

necessary, and could be implemented on a value-added basis.  

To date, simple one-pot hydrothermal methods have been used to prepare various 

mixtures of sodalite, cancrinite, analcime, zeolite X, zeolite NaP1 and zeolite A from ground 

container glass combined with numerous aluminium sources in sodium hydroxide solution 

[6-9,15,56-58]. Under these conditions, the presence of 5-10 wt% of CaO in the glass limits 

the development of framework silicate phases that do not tolerate the incorporation of Ca2+ 

ions during formation [6]. This tends to favour the small pore feldspathoid zeolites (e.g. 

sodalite, cancrinite and analcime) that can readily accommodate charge-balancing labile Ca2+ 

ions during crystallisation, and also gives rise to other minor hydrated calcium 

aluminosilicate phases such as tobermorite and katoite, as has been observed in the present 

study [6,7,15].  
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As previously mentioned, reports of the direct synthesis of zeolites from fine chemical 

reagents and waste materials in KOH(aq) [18-23] are considerably fewer in number than those 

of Na-zeolites, with only one study on the hydrothermal conditioning of container glass in 

KOH(aq) [15]. Nonetheless, the kinetics of zeolitisation of paper sludge ash and coal fly ash in 

KOH(aq) are unanimously reported to be slower than those in NaOH(aq) with respect to both 

the dissolution of the parent glassy phases and also the nucleation and growth of the products 

[23,36,59]. The findings of the present study similarly indicate that the dissolution of the 

soda-lime-silica glass and the initial precipitation of the zeolite product in KOH(aq) are 

considerably slower than those observed in NaOH(aq). However, after 1 day, the subsequent 

development of zeolite K-F was greater than that of the feldspathoids and ultimately resulted 

in products of higher yield and crystallinity within 3 and 10 days (Table 2, Fig. 2).  

One potential strategy to improve the kinetics and yield of zeolite K-F from container 

glass may be to employ a reaction medium comprising a two-component mixture of alkali 

metal hydroxides rather than pure KOH(aq). Previously, using this approach, Wajima and 

Munaka [23] were able to enhance the formation of zeolite K-F from paper sludge ash in a 

binary solution of 3 M KOH(aq) and 1M LiOH(aq) rather than in 4 M KOH(aq) alone. 

Microwave synthesis is also a promising option for the rapid zeolitisation of container glass. 

Majdinasab et al. [8] have recently demonstrated that microwave synthesis can be used to 

drastically reduce reaction time for the synthesis of various zeolite mixtures from pulverised 

container glass and sodium aluminate in NaOH(aq). Similarly, the rapid microwave synthesis 

of zeolite K-F from rice husk ash has been documented [21] and this technique may also be 

applicable to the efficient synthesis of this zeolite from waste container glass.  
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4. Conclusions 

  

This study has confirmed that feldspathoids (hydroxysodalite and hydroxycancrinite) and 

zeolite K-F can be prepared by one-pot hydrothermal synthesis from a mixture of amber 

container glass and aluminium waste (Al:Si = 1) at 100 °C in 4 M NaOH(aq) and 4 M KOH(aq), 

respectively. A mixture of hydroxysodalite (HS) and hydroxycancrinite (HC) with minor 

proportions of katoite and tobermorite formed in NaOH(aq) and the subsequent partial 

conversion of HS to HC was observed between 1 and 10 days. The initial rates of dissolution 

of the glass and precipitation of the major zeolite K-F and minor katoite phases were 

considerably slower in KOH(aq); although, within 10 days the crystallinity of the zeolite K-F 

sample (78%) was superior to that of the feldspathoid product (63%). Despite the incomplete 

conversion of amber glass into crystalline zeolitic phases, the uptake capacities of the 10-day 

feldspathoid and zeolite K-F products for Pb2+ and Zn2+ ions compared favourably with those 

of other waste-derived inorganic sorbents reported in the literature. Waste coloured container 

glass is a particularly attractive feedstock for the facile one-pot synthesis of feldspathoids and 

zeolites as, unlike many industrial silicate-bearing wastes, it does not require pre-treatment 

for activation or removal of hazardous components.  
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