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Abstract 

Metabonomics, also known as metabolomics, is concerned with the study of metabolite profiles in 

humans, animals, plants and other systems in order to assess their health or other status and their 

responses to experimental interventions. Metabonomics is thus widely used in disease diagnosis and 

in understanding responses to therapies such as drug administration. Pharmacometabonomics, also 

known as pharmacometabolomics, is a related methodology but with a prognostic as opposed to 

diagnostic thrust. Pharmacometabonomics aims to predict drug effects including efficacy, safety, 

metabolism and pharmacokinetics, prior to drug administration, via an analysis of pre-dose 

metabolite profiles. This article will review the development of pharmacometabonomics as a new 

field of science that has much promise in helping to deliver more effective personalised medicine, a 

major goal of 21st century healthcare. 

 

Introduction 

Metabolic profiling of biological fluids has a long history going back hundreds, if not thousands, of 

years, to simple methods for detecting sweet-tasting urine as a biomarker for diabetes. (Burt and 

Nandal 2016; Lindon and Wilson 2016) The science of metabolic profiling developed rapidly in the 

1980s as huge advances were made in the power and sensitivity of the nuclear magnetic resonance 

(NMR) spectroscopy and mass spectrometry (MS) detection technologies used in most metabolic 

profiling studies. Then in the late 1990s the sciences of metabonomics and metabolomics were 
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named and defined. Metabonomics was defined in an interventional i.e. experimental paradigm by 

the groups of Jeremy Nicholson and Jeremy Everett at Birkbeck College/ Imperial College and 

Pfizer respectively as “the quantitative measurement of the multiparametric metabolic response of 

living systems to pathophysiological stimuli or genetic modification.”(Lindon et al. 2000) The 

alternative term metabolomics was defined in an observational fashion a few years later by Fiehn as 

“a comprehensive analysis in which all the metabolites of a biological system are identified and 

quantified”. (Fiehn 2002) The two terms are now used inter-operatively in spite of the stark 

differences between the definitions. The blanket term metabolic profiling is also used 

interchangeably with both terms. (Ed. Lindon 2019; Lindon et al. 2007) 

Metabonomics has many uses in the clinical arena including studies of: disease mechanisms and 

biomarkers, disease diagnosis, detection of inborn errors of metabolism, the effects of therapeutic 

interventions on patients, drug metabolism, drug efficacy and drug safety.(Ed. Lindon 2019; Lindon 

et al. 2007) The experiments are typically performed using NMR and MS technologies to detect and 

identify large numbers of metabolites in biological fluids such as urine, blood plasma, sweat, 

cerebrospinal fluid, tears etc., but occasionally in body tissues as well. The metabolites detected in 

these metabonomics experiments are derived from a variety of sources including human endogenous, 

non-human endogenous (mainly the microbiome) and exogenous (external) sources including food, 

drink, drugs and the exposome.(Wild 2012) The phenotype of an organism is dictated by both the 

metabolites and the proteins that it contains and these may derive from many sources (Figure 1). 

 

Figure 1. The metabolites and proteins found in the human body may originate from inside the body (endogenous) or 

from various sources outside (exogenous). The pathway from gene to product is shown for the human endogenous 

metabolites and proteins, and the origins of non-human endogenous and exogenous metabolites and proteins are given. 

human	
endogenous	

non-human	
endogenous

environmental	
exogenous

human	
endogenous	

non-human	
endogenous

environmental	
exogenous

metabonome

proteome bacteriome
post-

translational	
modification

	

transcriptome mycome food transcriptome 	 food

epigenome virome drugs epigenome microbiome drugs

genome parasitome exposome genome parasitome

metabolites proteins:	functional	and	structural



Everett	 Pharmacometabonomics:	Handbook	of	Experimental	Pharmacology	100	 Page	3	

Metabonomics experiments are typically conducted in an interventional or a diagnostic paradigm. 

Differences in metabolite profiles following an experimental intervention such as drug treatment 

could be used to interpret the biological and biochemical effects of that treatment. In some cases, the 

intervention will produce a simple change, such as the reduction or increase in the concentration of 

one or a small number of key metabolites: these metabolites would thus be biomarkers for the effects 

of that intervention. In other cases, the intervention may produce widespread changes in the 

concentrations of a large number of metabolites and multivariate statistical analysis methods such as 

principal components analysis (PCA) can be used to simplify the data analysis and visualise the 

changes in metabolite space (Figure 2a). In this “event interpretation” mode of metabonomics, the 

changes from pre-intervention (open circles) to post-intervention metabolic state (black squares) are 

interpreted in relation to the nature of the intervention applied. Another typical use of metabonomics 

is to distinguish between different groups of subjects, e.g. patients with a disease, such as liver 

failure (orange squares), compared to age- and gender-matched healthy human controls (green 

circles, Figure 2b). In fact, the diagnostic paradigm of metabonomics is equivalent to the 

interventional paradigm if one considers that the intervention could be, for example, the presence or 

absence of a disease.  

 

Figure 2. Schematic	representations	of	the	outcomes	from	the	two	key	experimental	approaches	to	metabolic	

phenotyping,	based	on	multivariate	analysis	e.g.	principal	components	scores,	of	the	metabolic	profiles	of	a	

number	of	individuals	and	showing	the	first	two	components	(factor	1	and	factor	2).	Each	square	or	circle	

represents	an	individual	subject	in	the	study.	a)	metabonomics	approach	1	(effect	of	intervention),	where	open	

circles	represent	pre-intervention	biofluid	metabolic	spectral	profiles,	and	black	squares	represent	post-

intervention	metabolic	profiles	in	the	same	individuals,	where	some	metabolic	perturbation	has	occurred.	The	

arrows	indicate	the	metabolic	trajectory	that	each	individual	underwent	across	metabolic	hyperspace	as	a	

consequence	of	the	intervention;	b)	metabonomics	approach	2:	diagnosis.	The	metabolite	profiles	of	patients	with	

a	disease	(orange	squares)	are	distinct	from	those	of	healthy	controls	(green	circles)	and	thus	a	diagnosis	can	be	

made;	c)	the	predictive	or	prognostic	approach.	The	difference	in	the	pre-intervention	metabolic	profiles	of	two	

sub-groups	of	subjects	(white	circles	v	grey	circles)	allows	prediction	of	different	post-intervention	states	for	
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these	sub	groups	(red	and	blue	squares	respectively).	For	pharmacometabonomics,	the	intervention	will	be	drug	

treatment	and	the	prediction	will	be	of	drug	PK,	metabolism,	efficacy	or	toxicity. 

The technologies with which metabonomics experiments are conducted are important. There are two 

main technologies in use for metabolite detection and identification in biological fluids and 

tissues/tissue extracts today: mass spectrometry (MS), usually hyphenated together with a separation 

technology such as HPLC, UPLC, GC or CE, and NMR spectroscopy.(Ed. Lindon 2019; Lindon et 

al. 2007; Markley et al. 2017; Nicholson et al. 2016; Wehrens and Salek 2019; Wilson et al.) Good 

protocols and guides for conducting the experiments by MS(Chen et al. 2016; Scalbert et al. 2009) or 

NMR(Beckonert et al. 2007; Gowda and Raftery 2017) and good methodologies for identifying the 

metabolites by MS (Kind and Fiehn 2010; Watson 2013) or NMR(Dona et al. 2016; Markley et al. 

2017) are available. 

Metabonomics experiments typically analyse the concentrations of metabolites before and after an 

intervention (Figure 2a). Modern NMR spectrometers are capable of accurately quantifying the 

biofluid concentrations of dozens to hundreds of metabolites in a few minutes (Figure 3). 

 

Figure 3. The 600 MHz 1H NMR spectrum of the urine of a control, male C57BL/6 mouse together with expansions of 

two low frequency regions, demonstrating the large number of metabolites that can be detected. The identities of some 

key metabolites are given: 2OIV, 2-oxoisovalerate; 3M2OV, 3-methyl-2-oxovalerate; all, allantoin, cr, creatine; crn, 

creatinine; eth, ethanol; lac, lactate; DMA, dimethylamine; hipp, hippurate; MA, methylamine; succ, succinate; TMA, 
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trimethylamine; TSP, trimethylsilylpropionate-d4 (the chemical shift and quantification reference); UP, 

ureidopropionate; water, the residual signal after water suppression.  

A comparison of the attributes of MS and NMR for conducting metabonomics experiments is given 

in Table 1. Although far more studies are reported using MS-based detection (see Table 2 below), 

there is currently a trend to the increasing use of NMR due to its greater stability, ease of automation  

and reliability, which are increasingly important when dealing with large sample number studies, 

often the case in a clinical setting. 

Table 1. The attributes and capabilities of mass spectrometry and NMR spectroscopy in 

metabonomics experiments. 

NMR spectroscopy mass spectrometry 

• powerful structure elucidation capability for 

small molecules in solution giving information 

on molecular structure, isomerism, 

conformations and dynamics 

 

• powerful structure analysis capability to 

generate metabolite mass and molecular 

fragment information together with molecular 

formulae at high resolution 

 

• relatively insensitive, but sensitivity improved 

recently with digital spectrometers, 

cryoprobes and low volume probes 

 

• highly sensitive 

• instrumentation expensive but per sample cost 

relatively low 

 

• instrumentation relatively inexpensive but 

running costs high and isotopically-labelled 

reference standards for quantitation can be 

expensive 

• absolute quantitative measurements and no 

reference standard required when used with 

ERETIC technology(Bharti and Roy 2012) 

 

• not absolutely quantitative in absence of 

specific reference standards, but has relative 

quantification capability 

 

• highly stable as no contact between sample 

and spectrometer 

• little effect of history on data 

• suitable for large-scale experiments on 

hundreds to thousands of samples in full 

automation 

 

• relatively unstable, and may have detector gain 

changes with large sample numbers 

• column and spectrometer performance can be 

affected by history 

• large sample number runs are difficult due to 

challenges of maintaining instrument stability 

 

• minimal sample preparation and direct 

analysis of biological samples 

• generally requires a chromatographic 

separation step prior to MS analysis 
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 • gas chromatographic (GC) analysis requires 

metabolite derivatisation in order to obtain 

metabolite volatilisation 

 

• one set of unique signals for each isomer of 

each metabolite 

• soft ionisation mass spectra may be 

complicated by multiple adduct formation with 

multiple spectra for different metal ion and 

solvent adducts observed for each metabolite 

• GC-MS analyses may be complicated by 

formation of multiple derivatives 

 

• completely non-destructive technique: 

samples can be stored and re-analysed 

 

• sample destroyed in analysis 

 

Metabonomics experiments can however be conducted not just by measuring metabolite 

concentrations or levels. Metabolite concentration trajectories through time, metabolite entropies and 

metabolite correlations or networks can also be measured (Figure 4) and these can often give 

additional information relative to that obtained from simple concentration measurements before and 

after an intervention.(Everett et al. 2019) 
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Figure	4.	A	schematic	representation	of	the	four	principal	approaches	to	the	measurement	of	metabonomic	data:	

via	(a)	metabolite	levels,	(b)	trajectories,	(c)	entropies	or	(d)	correlations/dependencies.	In	Box	(a),	the	

concentrations	of	5	different	metabolites	M1	to	M5	in	one	normal	individual	(white	circles)	are	superimposed	on	

a	chart	that	represents	the	normal	population	distribution	of	metabolite	concentrations.	Symbols	μ	and	σ	are	the	

mean	and	standard	deviations	of	the	concentrations	of	the	metabolites	for	that	population	and	with	normal	

distribution.	In	Box	b,	we	see	the	trajectories	of	the	concentrations	over	time	for	the	same	5	metabolites	M1	to	

M5	in	one	individual	subjected	to	an	intervention	of	some	kind.	The	time	course	of	the	metabolic	trajectory	moves	

from	left	to	right	in	each	metabolite	column	and	is	represented	by	circles,	whose	shading	gets	lighter	over	time.	

Arrows	connect	the	time	points	for	metabolite	M1	but	others	are	omitted	for	clarity.	It	can	be	seen	that	as	a	result	

of	the	challenge,	the	levels	of	some	metabolites	(M1,	M2	and	M5)	undergo	positive	and	negative	excursions	from	

the	normal	population	values,	whereas	other	metabolites	are	less	affected.	In	Box	(c),	the	metabolic	entropies	of	a	

cohort	of	four	individuals	that	have	been	subjected	to	a	challenge	are	represented.	The	metabolite	concentration	

for	each	individual	is	colored	differently	(red,	blue,	yellow	and	green	circles	represent	individuals	1,	2,	3	and	4	

respectively).	It	can	be	seen	that	in	this	cohort	there	is	high	metabolic	entropy	for	metabolite	M3	(metabolite	

concentrations	are	distributed	across	a	very	wide	range	of	values/	configurational	states	following	the	

intervention)	and	significant	disturbances	in	the	metabolite	concentrations	for	M4	and	M5,	but	much	lower	

metabolic	entropy	or	disorder,	for	metabolites,	M1,	M2,	M4	and	M5.	In	Box	(d),	the	metabolite	correlations	seen	

for	5	metabolites	(M1	to	M5)	in	4	human	subjects	(red,	blue,	yellow	and	green	circles	represent	individuals	1,	2,	3	

and	4	respectively)	are	shown	following	an	intervention.	The	intervention	causes	a	significant	increase	in	the	

concentrations	of	metabolite	M1	for	all	four	subjects	(white	vertical	arrows),	although	to	differing	degrees.	The	
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same	pattern	of	disturbance	is	seen	for	metabolite	M3	in	all	four	subjects.	It	is	clear	that	the	concentrations	of	

metabolites	M1	and	M3	are	correlated,	with	the	excursions	from	the	mean	greatest	for	the	yellow	and	blue	

subjects.	By	contrast	the	concentrations	of	metabolites	M4	and	M5	are	anti-correlated	with	those	of	M1	and	M3.	It	

could	be	inferred	from	the	correlations	of	the	concentrations	of	these	metabolites	that	they	may	be	in	the	same	or	

a	related	biochemical	pathway.	The	levels	of	metabolite	M2	are	relatively	undisturbed.	

Metabonomics experiments are sometimes categorised as to whether they are targeted or 

untargeted.(Wishart 2016) In the targeted experiments, a selected group of metabolites is analysed, 

often quantifying the metabolite concentrations relative to an authentic reference standard. In the 

untargeted experiments, an unbiased approach is used and all the metabolites detected above the 

sensitivity threshold of the technology employed are analysed. Given the current lack of knowledge 

of mammalian biology and the complexities of genome – microbiome interactions, adopting a 

targeted approach to metabonomics is only recommended when there is a well-understood biological 

hypothesis regarding the subjects and the intervention of the experiment. Many surprising and 

important discoveries are to be made by untargeted methods because our understanding of 

mammalian biology is so primitive. 

Metabonomics experiments can be conducted on a wide variety of sample types including biological 

fluids such as urine, blood plasma, cerebrospinal fluid, breath condensate, joint fluids etc.(Lindon et 

al. 2007) The choice of sample will influence the sort of information that the experiments can 

provide. Analysis of breath condensates will provide information on the large number of volatile, 

low molecular weight compounds in exchange with lung tissue, whereas the analysis of blood 

plasma will provide information on low molecular weight metabolites including sugars, organic 

acids and amino acids, together with macromolecular compounds such as proteins, glycoproteins and 

lipoproteins. The analysis of urine (Emwas et al. 2015) can be advantageous: it contains a wide 

variety of metabolites including amines, organic acids, amino acids and sugars and, in mammals, 

reports on both endogenous mammalian and endogenous microbial metabolites, mammalian - 

microbial co-metabolites and exogenous metabolites. When the metabolism of a mammal such as a 

human is perturbed by disease or perhaps the effects of another intervention, such as drug treatment, 

the metabolic control systems will try to re-establish homeostasis. This will frequently occur by the 

elimination of unwanted metabolites via the urine, leaving the plasma less affected, thus giving the 

opportunity to identify the nature of the metabolic perturbation. Frequently, changes to the status of 

the gut microbiome can be detected by the observation of metabolic perturbations in urine samples. 
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Although most metabonomics experiments are diagnostic or interventional in mode, some 

experiments can be prognostic; that is, the metabolite patterns observed can be used to predict future 

events. The rest of this chapter will be devoted to prognostic metabonomics. 

 

Discovery of Pharmacometabonomics  

A high degree of ‘biological variation’ i.e. widely varying results, was often observed in early drug 

metabolism and drug safety studies in Beecham Pharmaceuticals and Pfizer R & D in the 1980s and 

1990s. The causes of this variance were unknown but could lead to widely disparate results, 

sometimes to the extent that doubts were raised as to whether the drug in question had been dosed 

properly. Pfizer and Imperial College had established a panomics study of early drug safety signals 

in the 1990s. At a collaboration meeting in Amboise, France on 18th October 2000, the topic of 

widely varying safety data on galactosamine and isoniazid was discussed. The notion emerged from 

the meeting that the metabolic phenotype of the animals prior to dosing was influencing differential 

responses to the drug post-dose. A series of experiments was designed to test this notion and the 

concept of pharmacometabonomics was born.  

The first key experiment was to test the hypothesis that pre-dose rat metabolite profiles could predict 

post-dose drug metabolism and safety for the common analgesic paracetamol, also known as 

acetaminophen.(Clayton et al. 2006) A dose of 600 mg/kg was administered to 65 Sprague-Dawley 

rats and urine samples were collected both pre- and post-dosing and then analysed by 600 MHz 1H 

NMR spectroscopy. A validated, superised projection to latent structure (PLS) model showed a 

statistically significant correlation between pre-dose urine metabolite concentrations and the post-

dose ratio of the metabolite paracetamol glucuronide (G) to the parent drug paracetamol (P, Figure 

5). 
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Figure 5: the molecular structures of paracetamol (P) and its major metabolites. 

In addition, unbiased principal components analysis (PCA) of the pre-dose urine 1H NMR spectra 

showed a partial separation between the mean liver histopathology score (MHS) and principal 

component 2 (PC2) of the data (Figure 6).  

 

Figure 6: a plot of paracetamol liver toxicity as measured by the mean liver histopathology score (MHS) against principal 

component 2 (PC2) of the pre-dose urine NMR spectral data. A partial class separation is observed. Each point 

represents a single rat and is colour-coded by its histology class with increasing degree of liver pathology: class 1 is 

green (minimal / no pathology), class 2 is blue (intermediate pathology), class 3 is red (significant pathology). Figure 

reproduced from Nature Publishing Group (Clayton et al. 2006)	

In addition a Mann-Whitney U-test showed the statistical significance of the separation of the pre-

dose NMR data for rats in class 1 (minimal/ no liver pathology) and class 3 (significant liver 

pathology) with p = 0.002. The pre-dose levels of taurine were negatively correlated with the post-

dose degree of liver pathology, consistent with taurine’s known role in protecting against 
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paracetamol toxicity.(Waters et al. 2001) The taurine levels may have reflected the availability of 

inorganic sulphate to individual rats. Inorganic sulphate is needed for the biosynthesis of both taurine 

and for the paracetamol-sulphating agent phosphoadenosine phosphosulfate (PAPS). Consistent with 

this, rats with a high degree of liver necrosis showed a low degree of paracetamol 

sulphation.(Clayton et al. 2006) 

Thus it was clearly demonstrated that pre-dose metabolite profiles could enable the prediction of 

post-dose effects including drug metabolism and toxicity. This is pharmacometabonomics, which 

was defined as ‘the prediction of the outcome (for example, efficacy or toxicity) of a drug or 

xenobiotic intervention in an individual based on a mathematical model of pre-intervention 

metabolite signatures’’.(Clayton et al. 2006) Pharmacometabonomics is a prognostic or predictive 

methodology, in contrast to the diagnostic mode of metabonomics and it is the metabolic equivalent 

of pharmacogenomics, which is the use of genetic information to predict drug effects in advance of 

dosing.(Salari et al. 2012) 

The initial success of pharmacometabonomics experiments in animals prompted the question of 

whether the method would work in humans. A Pfizer / Imperial College research team therefore set 

up an experiment to test the hypothesis that pre-dose urine metabolite profiles could predict post-

dose drug metabolism, again in the analgesic paracetamol. A normal clinical dose of paracetamol 

(two 500 mg tablets with water) was administered to 100, normal male volunteers in March and 

April 2003. Urine samples were collected both pre-dose and 0-3 and 3-6 hours post-dose and these 

were analysed by both 600 MHz 1H NMR spectroscopy  (Figure 7) and UPLC-MS.(Clayton et al. 

2009) 
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Figure 7: 600 MHz 1H NMR spectra of the urines of volunteers taking a 1 g oral dose of paracetamol. A. spectrum of 

pre-dose urine of volunteer 1 together with expansions of the aromatic and lower frequency regions. B. 0-3 hour post-
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dose urine spectrum of volunteer 1. C and D: the corresponding pre-dose and post-dose urine spectra of volunteer 2 

respectively. Key to NMR signal numbers: 1, creatinine; 2, hippurate; 3, phenylacetylglutamine; 4, unknown metabolite; 

5, citrate; 6, cluster of signals from N-acetyl groups from paracetamol-related compounds that resolves into 7, 8 and 9 on 

expansion; 7, paracetamol sulfate; 8, paracetamol glucuronide; 9, other paracetamol-related compounds. Reproduced 

with permission from PNAS (Clayton et al. 2009) 

The pre-dose 1H NMR spectrum of volunteer 1 (Figure 7A) showed signals from microbial 

metabolites such as hippurate (2) and human metabolites such as citrate (5) in addition to an 

unknown metabolite (4) with a singlet methyl signal at ca 2.35 ppm and second-order aromatic 

doublet signals between ca 7.2 and 7.3 ppm. This volunteer excreted more paracetamol glucuronide 

metabolite (8) than paracetamol sulphate (7) as is clear in the 1H NMR spectrum of the 0-3 hour 

post-dose urine (Figure 7B) where both methyl group singlet and second-order aromatic doublet 

signals for these metabolites are clearly visible. By contrast, volunteer 2 excreted no visible quantity 

of unknown metabolite 4 pre-dose but excreted a much higher ratio of paracetamol sulphate (7) to 

glucuronide (8) post-dose (Figure 7 C and D). 

Analysis of the remaining urinary 1H NMR data showed that this pattern was present across all of the 

volunteers (Figure 8).  

 

Figure 8: the urinary ratio of paracetamol sulphate (S) to paracetamol glucuronide (G) excreted 0 - 3 hours post-dose 

plotted against the pre-dose ratio of metabolite 4 normalised to creatinine. Reproduced with permission from 

PNAS.(Clayton et al. 2009) 

It is clear from Figure 8 that when the pre-dose ratio of metabolite 4 normalised to creatinine is 

greater than 0.06, then the post-dose paracetamol sulphate (S) to paracetamol glucuronide (G) ratio is 

always less than 0.8. The same pattern was found when the 3-6 hour post-dose urines were analysed. 

4
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Mann-Whitney U tests in conjunction with a Bonferroni correction to counter the effects of multiple 

hypothesis testing showed that the association of high metabolite 4 to creatinine ratios with low S/G 

ratios was statistically significant for both the 0-3 hour (p = 0.0001) and 3-6 hour (p = 0.00012) post-

dose urines. With a Bonferroni correction of 100, the p value for statistical significance is 0.0005 

instead of 0.05.(Broadhurst and Kell 2006) 

Thus, it was clear that there was a statistically significant correlation, between the presence of 

metabolite 4 at high levels pre-dose and diminished paracetamol sulphate (S) to paracetamol 

glucuronide (G) ratios post-dose. It therefore became important to identify unknown metabolite 4. 

Metabolite 4 possesses a singlet, three proton signal at ca 2.35 ppm indicating the presence of a 

methyl group attached to an sp2 carbon on the basis of its chemical shift. The metabolite also 

possessed two, second-order aromatic doublet signals of two hydrogens each, indicating that 

metabolite 4 had a methyl group attached to a benzene ring with a substituent para to the methyl 

group. Metabolite 4 was identified as 4-cresolsulphate (HMDB11635)(Wishart et al. 2018) by both 

unambiguous chemical synthesis and spiking and by enzymatic desulphation to 4-cresol in situ 

(Figure 9).(Clayton et al. 2009) 

 

Figure 9: the molecular structures of 4-cresol and paracetamol and their corresponding sulphate metabolites. 

The revelation that 4-cresolsulphate was a biomarker that, at least in part, could enable the prediction 

of the metabolic fate of paracetamol in humans was a surprise. 4-Cresolsulphate is made in humans 

by the sulphation of 4-cresol, itself a product of gut bacteria, particularly Chlostridia species. Thus 
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the human metabolism of the widely used analgesic paracetamol (acetaminophen) is at least in part 

under the control of gut bacterial metabolites. The influence of the gut microbiome on drug 

properties was not widely recognised at this time and this paper helped to highlight these important 

effects.(Wilson 2009) 

The reason for the relationship between 4-cresol and paracetamol metabolism is evident from an 

inspection of Figure 9. The molecular structures of 4-cresol and paracetamol are quite similar and 

both are sulphated by the same sulphotransferases, particularly SULT1A1. In humans, as opposed to 

rodents, 4-cresol is metabolised almost exclusively by sulphation with no significant 

glucuronidation. However, this sulphation requires the sulphate donor cofactor 3-phosphoadenosine 

5-phosphosulfate (PAPS) and its supply is limited in humans.(Gamage et al. 2006) Therefore in a 

human with a high 4-cresol burden due to their gut microbiome, a significant amount of PAPS is 

used in 4-cresol sulphation and a challenge to the body of that person of a large dose of a drug such 

as paracetamol, requiring sulphation, results in the body turning to the alternative elimination 

pathway of glucuronidation and the consequent decreased S/G metabolite ratios. Note that these 

findings have implications for all drugs metabolised by sulphation and implications also for 

endogenous metabolism involving sulphation. (Clayton et al. 2009) Finally, it is worth noting that a 

number of diseases including childhood autism, childhood hyperactivity and Parkinson’s disease are 

associated with increased 4-cresolsulphate levels or altered S/G ratios after paracetamol 

administration and it is therefore likely that there is a microbiome influence on these disease 

states.(Clayton et al. 2009) 

 

Recent Developments in Pharmacometabonomics and the Delivery of Personalised Medicine 

The prediction of paracetamol metabolism and safety described above represented the first definitive 

demonstration of pharmacometabonomics. Since that study was published (Clayton et al. 2006) 

numerous other studies have emerged demonstrating the ability of pharmacometabonomics 

methodologies to predict drug pharmacokinetics, metabolism, efficacy and safety in animals and 

humans.(Burt and Nandal 2016; Everett 2016; Everett et al. 2016; Everett et al. 2013) These studies 

are important because they promise a new way to help deliver personalised medicine, which is a key 

objective of 21st century healthcare.(Nicholson et al. 2016; Nicholson et al. 2011) The aim of 

personalised medicine is to select treatments that provide optimal efficacy with minimal toxicity or 

side effects for a given patient group, rather than giving the same standard treatment to all patients 

regardless of outcomes. It is a sobering fact that many drugs are ineffective or even unsafe in a high 
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percentage of patients. It has been estimated that in the USA in 1994, over 2 million patients had 

serious adverse drug reactions (ADRs), resulting in hospitalisation, disability or, in 106,000 cases, 

death. (Lazarou et al. 1998) A more recent study put the cost of ADRs to the US economy in the 

range $30 billion to $100 billion per year. Thus the need to be able to prescribe medicines that are 

both effective and also safe for patients is clear. 

Pharmacogenomics i.e. the use of patient genetic information to predict drug effects has been 

important in enabling the development of personalised medicine in some areas, especially in the 

prediction of the effects of ‘drug metabolising’ enzymes such as cytochrome P450s on drug efficacy 

and safety.(Lee et al. 2014) However, in many complex, multi-factorial diseases, the use of 

pharmacogenomics information has had more limited success.(Pirmohamed 2014) Given the impact 

of environmental factors on drug effects, such as the status of the gut microbiome (Clayton et al. 

2009), and the impact of drug-drug interactions, especially in phenoconversion,(Shah and Smith 

2015) it is not surprising that human pharmacogenomics studies have encountered challenges in 

progressing from success in the laboratory to success in clinical practice.(Pirmohamed 2014) It is 

therefore encouraging that metabolic studies in the form of pharmacometabonomics can assist in the 

prediction of drug effects and with the implementation of personalised medicine. We will review 

progress in this area in the remainder of this chapter. 

Table 2 provides an overview of the key pharmacometabonomics and predictive metabonomics 

studies that we are aware of, using the keywords pharmacometabonomics and 

pharmacometabolomics in PubMed. However, the list is unlikely to be exhaustive, as some authors 

do not put these terms in either the title or keyword list. In addition, there are a minority of authors 

who are using the term pharmacometabonomics or pharmacometabonomics to describe diagnostic 

metabonomics experiments with no prognostic elements. 

Table 2: A list of pharmacometabonomics studies from 2006 to 2019, sorted by study type and date 

order 

#	
study and reference species metabolite 

profiling 
technology 

 prediction of pharmaco-kinetics (PK)   

1 prediction of tacrolimus PK in healthy volunteers (Phapale 
et al. 2010)  

human LC-MS 

2 prediction of pharmacokinetics of triptolide (Liu et al. 
2012) 

rat GC-MS 

3 prediction of atorvastatin pharmacokinetics in healthy human GC-MS 
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volunteers (Huang et al. 2015) 

4 prediction of methotrexate clearance in patients with 
lymphoid malignancies (Kienana et al. 2016) 

human GC-MS 

5 prediction of midazolam clearance in female volunteers 
(Shin et al. 2016) 

human GC-MS 

6 pharmacometabonomic prediction of busulphan clearance 
in hematopoietic stem cell transplant recipients (Navarro et 
al. 2016) 

human LC-MS 

7 prediction of Intravenous Busulfan Clearance by 
Endogenous Plasma Biomarkers Using Global 
Pharmacometabolomics (Lin et al. 2016) 

human LC-MS 

8 prediction of busulphan AUC in hematopoietic stem cell 
transplantation patients (Kim et al. 2017) 

human LC-MS 

9 prediction of d4-cholic acid pharmacokinetics (Zhang et al. 
2017b) 

rat LC-MS 

10 integrated use of pharmacometabonomics and 
pharmacogenomics to predict the pharmacokinetics of a 
novel transient receptor potential vanilloid type 1 (TRPV1) 
antagonist(Oh et al. 2018) 

human LC-MS 

11 prediction of zonisamide pharmacokinetics parameters in 
volunteers (Martinez-Avila et al. 2018a; Martinez-Avila et 
al. 2018b)  

human LC-MS 

12 prediction of methylphenidate PK in healthy volunteers 
(Kaddurah-Daouk et al. 2018) 

human LC-MS 

13 prediction of midazolam clearance in male volunteers (Lee 
et al. 2019) 

human GC-MS 

    

 prediction of drug metabolism   

1 prediction of paracetamol/acetaminophen metabolism 
(Clayton et al. 2006) 

** first demonstration of pharmacometabonomics 

rat NMR 

2 prediction of metabolism of paracetamol / acetaminophen 
in human volunteers (Clayton et al. 2009) 

** first demonstration of pharmacometabonomics in 
humans 

human NMR 

3 prediction of CYP3A4 induction in volunteer twins 
(Rahmioglu et al. 2011) 

human NMR 

4 prediction of CYP3A activity in healthy volunteers (Shin 
et al. 2013) 

human GC-MS 

5 prediction of Losartan metabolism in healthy volunteers 
(He et al. 2018) 

human NMR and  

LC-MS 

6 prediction of methylphenidate (Ritalin [for ADHD]) 
metabolism in healthy genotyped volunteers (Kaddurah-
Daouk et al. 2018) 

human LC-MS 
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 prediction of drug efficacy   

1 prediction of simvastatin efficacy in patients on the 
Cholesterol and Pharmacogenomics study (Kaddurah-
Daouk et al. 2010; Trupp et al. 2012) 

human TLC plus GC 
and GC-MS 

2 prediction of chemotherapy efficacy in breast cancer 
patients (Stebbing et al. 2012) 

human NMR 

3 prediction of citalopram/ escitalopram response in patients 
with major depressive disorder (MDD) (Ji et al. 2011) 

** first demonstration of pharmacometabonomics-
informed pharmacogenomics approach to personalised 
medicine 

See also (Abo et al. 2012) and (Gupta et al. 2016)  

human GC-MS and 
LC-ECA (LC-
electrochemic
al coulometric 
array 
detection) 

4 prediction of sertraline and placebo responses in patients 
with MDD (Kaddurah-Daouk et al. 2011), (Kaddurah-
Daouk et al. 2013) and (Zhu et al. 2013) 

human LC-ECA and 
GC-MS 

5 prediction of efficacy of anti-psychotics in schizophrenia 
patients (Condray et al. 2011) 

human LC-ECA 

6 prediction of response to aspirin in healthy volunteers 
(Ellero-Simatos et al. 2014; Lewis et al. 2013; Yerges-
Armstrong et al. 2013) 

human LC-MS and 
GC-MS 

7 prediction of efficacy with anti-TNF therapies in 
rheumatoid arthritis (Kapoor et al. 2013) 

human NMR 

8 prediction of thiopurine-S-methyltransferase phenotype in 
Estonian volunteers (Karas-Kuzelicki et al. 2014) 

human HPLC 

9 prediction of efficacy of L-carnitine therapy for patients 
with sepsic shock (Evans et al. 2019; Puskarich et al. 2018; 
Puskarich et al. 2015) 

human NMR and LC-
MS 

10 prediction of acamprosate treatment outcomes in alcohol-
dependent patients (Nam et al. 2015) 

human LC-MS 

11 prediction of blood pressure lowering in hypertensive 
patients treated with atenolol and hydrochlorothiazide 
(Rotroff et al. 2015) 

human GC-MS 

12 prediction of response in lung cancer patients (Hao et al. 
2016a) 

human NMR and GC-
MS 

13 prediction of patient response to trastuzumab-paclitaxel 
neoadjuvant therapy in HER-2 positive breast cancer 
(Miolo et al. 2016) 

human LC-MS 

14 prediction of patient response in SSRI treatment of major 
depressive disorder (Gupta et al. 2016) 

human LC-ECA 

15 prediction of Clopidogrel high on treatment platelet 
reactivity (HTPR) in CAD patients [NMR] (Amin et al. 
2017) 

human NMR 

16 prediction of chemosensitivity of treatment of AML 
patients with cytarabine and anthracycline (Tan et al. 
2017) 

human LC-MS 

17 prediction of efficacy in pancreatic ductal adenocarcinoma 
patients receiving gemcitabine  (Phua et al. 2017) 

human GC-TOFMS 
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18 prediction of blood pressure lowering by 
hydrochlorothiazide [lipidomics and pharmacogenomics] 
(Shahin et al. 2017)  

human  

19 prediction of efficacy of gemcitabine and carboplatin 
treatment of metastatic breast cancer patients (Jiang et al. 
2018) 

human NMR 

20 prediction of gemcitabine efficacy in pancreatic ductal 
adenocarcinoma patients (Phua et al. 2018) 

human GC-MS 

21 prediction of response to metformin treatment in early 
T2DM patients (Park et al. 2018) 

human GC-MS 

22 prediction of efficacy of propranolol in reducing hepatic  
venous  pressure  gradient (HPVG) in patients with liver 
cirrhosis (Reverter et al. 2019) 

human LC-MS 

23 prediction of efficacy of meglumine antimonite efficacy if 
patients with cutaneous Leishmaniasis (Alejandro Vargas 
et al. 2019) 

human LC-MS 

24 QUASI-prediction of dexamethasone steroid treatment 
efficacy in pre-term infants with respiratory syndrome 
(Cao et al. 2019) 

human GC-TOF-MS 

25 prediction of warfarin efficacy in atrial fibrillation patients 
(Bawadikji et al. 2019) 

human NMR 

    

 prediction of adverse events   

1 prediction of toxicity from paracetamol/acetaminophen 
dosing (Clayton et al. 2006) 

** first demonstration of pharmacometabonomics 

rat NMR 

2 prediction of weight gain in breast cancer patients 
undergoing chemotherapy (Keun et al. 2009) 

** first demonstration of pharmacometabonomics in 
patients 

human NMR 

3 prediction of onset of diabetes in rats administered with 
streptozotocin (Li et al. 2007) 

rat GC-MS 

4 prediction of liver injury markers in patients treated with 
ximelagatran  (Andersson et al. 2009) 

human NMR, GC-MS 
and LC-MS 

5 prediction of toxicity of paracetamol / acetaminophen 
(‘early-onset pharmacometabonomics’) (Winnike et al. 
2010) 

human NMR 

6 prediction of nephrotoxicity of cisplatin (Kwon et al. 
2011) 

rat NMR 

7 prediction of toxicity in patients with inoperable colorectal 
cancer treated with capecitabine (Backshall et al. 2011) 

human NMR 

8 prediction of toxicity of isoniazid in rats (Cunningham et 
al. 2012) 

rat NMR 

9 prediction of hyperglycaemia in Caucasian hypertensive 
patients on the PEAR study with atenolol (Weng et al. 
2016)  

human LC-MS 



Everett	 Pharmacometabonomics:	Handbook	of	Experimental	Pharmacology	100	 Page	20	

10 prediction of variability in response to galactosamine 
treatment (Coen et al. 2012) 

rat NMR 

11 prediction of hyperglycaemia in Caucasian hypertensive 
patients on the PEAR study with atenolol (de Oliveira et 
al. 2016) 

human GC-TOF-MS 
and genomics 

12 prediction of toxicity from lipopolysaccharide treatment in 
rats (Dai et al. 2016) 

rat LC-MS and 
GC-MS 

13 prediction of ‘high on treatment platelet reactivity 
(HTPR)’ in patients on clopidogrel anti-platelet therapy to 
prevent stent thrombosis in urine (Amin et al. 2017) 

human NMR 

14 prediction of nephrotoxicity of cisplatin in rats (Zhang et 
al. 2017a) 

rat GC-MS and 
LC-MS 

15 prediction of ‘high on treatment platelet reactivity 
(HTPR)’ in patients on clopidogrel anti-platelet therapy to 
prevent stent thrombosis in plasma (Amin et al. 2018) 

human NMR 

16 prediction of peripheral neuropathy in breast cancer 
patients treated with Paclitaxel (Sun et al. 2018) 

human NMR 

17 prediction of irinotecan gastrointestinal toxicity (Gao et al. 
2019) 

rat GC-MS and 
LC-MS 

    

 predictive metabonomics   

1 prediction of developing diabetes (Wang et al. 2011) 

** first predictive metabonomics study 

Human LC-MS 

2 prediction of pre-diabetes (Wang-Sattler et al. 2012) Human LC-MS and 
flow-injection 
analysis-MS 

3 prediction of renal function recovery after relief of 
obstructive uropathy (Dong et al. 2013) 

Human  NMR 

4 prediction of all-cause death (Fischer et al. 2014) Human NMR 

5 prediction of stroke recurrence after transient ischemic 
attack (Jove et al. 2015) 

Human LC-MS 

6 prediction of breast cancer risk (Bro et al. 2015) Human NMR 

7 prediction of preeclampsia and gestational hypertension 
(Austdal et al. 2015) 

Human NMR 

8 prediction of development of obesity (Ni et al. 2015) Human LC-MS 

9 prediction of 1-year outcome in subarachnoid haemorrhage 
(Sjoberg et al. 2015) 

Human GC-MS 

10 prediction of survival of lung cancer patients undergoing 
treatment (Hao et al. 2016a, b) 

Human GC-MS and 
NMR 

11 a predictive metabolic signature for the transition from 
gestational diabetes to type 2 diabetes (Allalou et al. 2016)  

Human GC-MS and 
LC-MS 

12 prediction of survival of patients with decompensated 
cirrhosis s 2016 

(McPhail et al. 2016) 

Human NMR and LC-
MS 
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13 prediction of postoperative hypoxaemia (Maltesen et al. 
2016) 

Human  NMR 

14 prediction of ALS clinical progression (Blasco et al. 2018) Human LC-MS 

15 prediction of all-cause death (Deelan and al 2019) Human NMR 

 

Footnotes:  

1) significant studies are highlighted with double asterisks in blue **  

2) some studies have several publications associated with them  

3) the table is unlikely to be exhaustive due to the different keywords used for some studies 

 

It can be seen from Table 2 that there are 13 studies dealing with the prediction of drug 

pharmacokinetics, 6 on prediction of drug metabolism, 25 on prediction of drug efficacy, 17 on 

prediction of adverse events and a further 15 predictive metabonomics studies where the prediction 

is based on an intervention other than drug administration. Thus we have at least 61 

pharmacometabonomics studies in the literature to date. Of these 61 pharmacometabonomics and 15 

predictive metabonomics studies, 65 were conducted in humans and 11 in the rat.  

The development of pharmacometabonomics has been significant over the past 10 years especially. 

Several reviews of the field have already appeared, (Burt and Nandal 2016; Everett 2016) so in the 

remainder of this chapter, we will focus on recent developments in the four key areas of prediction of 

drug pharmacokinetics, metabolism efficacy and safety. 

Prediction of Drug Pharmacokinetics (PK) 

The prediction of drug PK is especially important in situations where the therapeutic index (TI) of a 

drug is relatively low and also variable. Inappropriately high drug doses may lead to adverse effects 

in individual patients. The group of Rima Kaddurah-DaouK et al used LC-MS methodologies to 

measure correlations between baseline plasma lipids of healthy volunteers and the PK of 

methylphenidate, trade name Ritalin.(Kaddurah-Daouk et al. 2018) 
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methylphenidate, Ritalin 

The phosphatidylcholine PC(38:5) was negatively correlated with the drug AUC and the blood 

plasma Cmax values and the ceramide Cer(d18:1/24:1) was positively correlated with the plasma half-

life of the drug metabolite ritalinic acid. Carboxylesterase 1(CES1) metabolises methylphenidate and 

other drugs such as cocaine and heroin via amide and ester bond hydrolysis. It was suggested that 

CES1 has a role in lipid metabolism and that the findings could be used for the prediction of the PK 

not only of methylphenidate, but other drugs metabolised by CES1. (Kaddurah-Daouk et al. 2018) 

Differences in cytochrome P450 3A activities are a major source of variability in patient drug 

responses. Lee et al developed a model for the prediction of CYP3A activity in the presence of 

inhibitors and inducers that was able to predict the clearance of midazolam with r2 = 0.75.(Lee et al. 

2019) GC and GC-MS methodology was used in a targeted fashion to measure the concentrations of 

a small number of endogenous steroids in human volunteer urine and plasma samples.  

midazolam 

These data were amalgamated together with CYP3A5 genotype information to develop a model for 

the prediction of midazolam clearance. It was concluded that use of the model could be valuable for 

predicting CYP3A activities generally in drug development but that further validation was required. 

Prediction of Drug Metabolism 

He et al have shown that pre-dose profiling by NMR spectroscopy of volunteer blood plasma could 

allow prediction of some metabolic and PK characteristics of losartan and its metabolite 

EXP3174.(He et al. 2018) 
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losartan   

 

carboxylosartan, E3174 

 

Losartan and its bioactive metabolite EXP3174 show a large degree of inter-individual differences in 

blood plasma concentrations that impact upon efficacy and safety. He et al showed that pre-dose 

LDL/VLDL, lactate, citrate, creatine and glucose concentrations were positively correlated with, and 

HDL, creatinine, choline, glycine and phosphorylcholine concentrations were negatively correlated 

with the ratio of AUCs of EXP3174 and losartan. Pre-dose LDL/VLDL, lactate and glucose 

concentrations were positively correlated with, and choline, citrate concentrations were negatively 

correlated with the ratio of Cmax values of EXP3174 and losartan. The switch of citrate from 

positively correlating with the ratio of AUCs to negatively correlating with the ratio of Cmax values 

of EXP3174 and losartan was not commented upon. However, as Table 2 in the paper shows that the 

FDR value for citrate in the pathway analysis was 0.64 i.e. a > 60% chance of a false discovery, then 

perhaps that switch is not surprising. Simple formulae involving creatinine and lactate and also 

choline and glucose were derived for calculating the ratios of the AUCs and the Cmax values of 

EXP3174 and losartan respectively. (He et al. 2018) 

Prediction of Drug Efficacy 

NMR spectroscopy of blood plasma was used to show a discrimination between atrial fibrillation 

patients on warfarin treatment that had stable versus unstable blood thickness. However, the study 
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was not able to demonstrate any such discrimination for patients who were newly treated with 

warfarin and it was concluded that further studies were required. (Bawadikji et al. 2019) 

warfarin 
 

Park and co-workers used GC-MS analysis of urine metabolites in early-phase type 2 diabetes 

mellitus (T2DM) patients to show that baseline levels of citrate and hippurate were significantly 

different for responders and non-responders to metformin treatment. (Park et al. 2018) 

metformin 

The response to treatment was assessed on the basis of changes in glycated haemoglobin A1c 

(HbA1c) levels from baseline. Pre-dose levels of myo-inositol were also marginally significantly 

different between these groups. This study was seen to be important in the context of developing 

personalised medicine, given the significant global burden of T2DM and the variability of patient 

response to treatment with metformin, a key medicine for treatment of the disease.  

Prediction of Drug Safety 

Paclitaxel (brand name Taxol) is a natural product widely used in the treatment of breast cancer. 

However, its usage is limited by many side effects including the development of peripheral 

neuropathy, which causes treatment delays or discontinuation in about one quarter of the patients. 

(Sun et al. 2018)  
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paclitaxel, HMDB0015360, (Wishart et al. 2018) 

 

The group of Sun et al used an NMR spectroscopic approach to show that pre-treatment levels of 

blood histidine, phenylalanine and threonine were inversely associated with maximal change in the 

peripheral neuropathy index CIPN8. (Sun et al. 2018) This work promises to inform personalised 

medicine approaches to the selection of patients for treatment who will not suffer peripheral pain 

side effects. 

Colorectal cancer is commonly treated with the topoisomerase I inhibitor, irinotecan. 

 

irinotecan (HMDB14900, (Wishart et al. 2018) 
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However, several adverse effects are associated with its use, including gastrointestinal toxicity 

(delayed onset diarrhoea) and myelosuppression. Gao et al used untargeted GC-MS and LC-MS as 

well as other targeted metabonomics methods to analyse biofluids from rats treated with the drug. 

(Gao et al. 2019) OPLS-DA analysis of pre-dose serum metabolites showed a significant 

discrimination between sensitive rats displaying adverse drug side effects and non-sensitive rats. The 

bile acids cholic acid, deoxycholic acid and glycocholic acid together with phenylalanine were 

predictors for late-onset diarrhoea. The ketogenic amino acids phenylalanine, lysine and tryptophan 

were predictive of myelosuppression.(Gao et al. 2019) 

Not pharmacometabonomics! 

One issue that readers should be aware of is that many studies purporting to be 

pharmacometabonomics studies are merely metabonomics studies of the effects of drugs and nothing 

to do with predicting the effects of drug treatment. This growing confusion in the literature is to be 

regretted and resisted.(Balashova et al. 2018; Kaddurah-Daouk et al. 2015)  

 

Prediction of Interventions other than Drug Treatment: Predictive Metabonomics 

In the original discovery of pharmacometabonomics, it was envisaged that the methodology would 

work for interventions other than drug treatment, such as diet changes, physical exercise or even just 

the passage of time.(Clayton et al. 2006)  This type of experiment is termed predictive metabonomics 

rather than pharmacometabonomics. Indeed, pharmacometabonomics is one member of the broader 

class of predictive metabonomics experiments, where the intervention is drug treatment. Predictive 

metabonomics has been defined as ‘the prediction of the outcome of an intervention in an individual 

based on a mathematical model of pre-intervention metabolite signatures’ (Everett 2015) We will 

now illustrate the application of this prognostic methodology with some recent examples (see Table 

2 for a fuller listing). 

Pulmonary dysfunction resulting in hypoxaemia is a common complication following cardiac 

surgery. No predictive biomarkers are available to help identify patients that might suffer from this 

disease, which is characterised by low partial pressure of oxygen in arterial blood (PaO2). Maltesen 

et al used 1H NMR spectroscopy to study blood serum taken from the pulmonary artery and left 

atrium of 47 coronary artery bypass graft patients, 16 hours after weaning off their cardiopulmonary 

bypass.(Maltesen et al. 2016) At day three post-operation, 32 patients had developed hypoxaemia. It 
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was found that levels of carnitine, arachidonic and eicosapentaenoic acid, glycoprotein, citrate, 

phenylalanine, glycine, plasmalogen, and lysophosphocholine (Lyso-PC) were the most significant 

in the prediction of day 3 hypoxaemia from day 1 serum analysis. The concentrations of several of 

these metabolites were found to be individually correlated to day 3, PaO2 levels. Thus predictive 

metabonomics methods are capable of prognosing later adverse effects of surgery well before any 

clinical sign. The results are promising in terms of targeting further treatments to affected patients 

and also directing research for new drugs to treat this disease on the basis of the perturbed metabolic 

pathways discovered.  

Estimating mortality risk in ageing patients is important for decisions on treatment options. Current 

methods of mortality prediction are limited and some of the parameters, including systolic blood 

pressure and total cholesterol show opposite trends in the elderly compared with middle-aged 

people.(Deelan and al 2019) A predictive method based on metabolite profiles would find great 

clinical utility. Fischer and co-workers used 1H NMR spectroscopy of the plasma of 9,842 

individuals (randomly sampled from the Estonian Biobank) to elucidate that albumin, glycoprotein 

acetyls, citrate and the mean diameter of VLDL particles are associated with all-cause and cause-

specific (cardiovascular and cancer) mortality.(Fischer et al. 2014) The group of Deelan et al 

recently published the results of a much larger study of 44,168 individuals, 5,512 of who died during 

follow-up, using 1H NMR spectroscopy of EDTA plasma and serum. (Deelan and al 2019) A set of 

14 metabolic biomarkers was found to independently associate with all-cause mortality. A mortality 

score based on gender and these 14 biomarkers led to an improved risk prediction compared to the 

conventional risk score. The biomarkers included albumin, glycoprotein acetyls and mean diameter 

of VLDL particles, as found by Fischer, but also included acetoacetate, glucose and a number of 

amino acids.  It was concluded that predictive metabonomics methods could be used in the future to 

guide patient care, if further validated in other clinical settings.(Deelan and al 2019) 

 

Conclusions 

Metabonomics and predictive metabonomics, including pharmacometabonomics, are starting to have 

an impact on biomedical and medical research, and in the future it is expected that these technologies 

will be widely used for both diagnostic and prognostic applications in real clinical settings. 

Metabolic profiling will be used synergistically with genomic analyses to assist in the delivery of 

personalised medicine. The approach of metabolite profiling, as opposed to genetic analysis, benefits 

hugely from the fact that it is a systems biology approach that integrates both genetic and 



Everett	 Pharmacometabonomics:	Handbook	of	Experimental	Pharmacology	100	 Page	28	

environmental information and gives insights into the real-time status of a subject, as opposed to 

information on genetic risk factors that may not develop into a disease phenotype. In this context it is 

encouraging to see the work done by the groups of Kaddurah-Daouk and Weinshilboum on the 

development of pharmacometabonomics-led pharmacogenomics. (Ji et al. 2011; Neavin et al. 2016) 

The advent of large biobanks and the development of phenome centres such as those in London, 

Singapore and Birmingham, amongst others, gives the opportunity for very large-scale clinical 

studies that will undoubtedly lead to new insights into patient treatments in many disease areas. The 

great stability and automation capabilities of NMR spectroscopy as a metabolite detection 

technology are well matched to the task of analysing these huge numbers of samples, as was seen 

above in the work of Deelan and co-workers on all-cause mortality prediction.(Deelan and al 2019)  

One major area that still needs much attention is metabolite identification. This is a significant 

challenge for both NMR- and MS-based technologies and in spite of the many advances in both 

areas in recent years, it is still the fact that most metabolites detected in most untargeted 

metabonomics experiments are unidentified. Progress on this issue promises to enable much more 

comprehensive biochemical insights into complex organisms including humans and their diseases. 

The future for the use of metabolic profiling in clinical pharmacology and medicine in general is 

very bright. 
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Glossary 

term meaning 

area under the curve 
(AUC) 

the integral over time of the concentration of a drug in blood 
plasma: a measure of the exposure of a patient to the drug 

capillary electrophoresis 
(CE) 

an electrophoretic separation methodology based on 
molecular charge and mobility that can be hyphenated to mass 
spectrometry 

Cmax the maximal blood plasma concentration achieved by a drug 

diagnosis the characterisation of an organism, disease state, phenotype 
or response to an intervention 

exposome the cumulative array of exogenous chemicals present in the 
environment of an organism such as a human, from the womb 
to death, that can interact with and influence that organism’s 
metabolism and physiology 

FDR, false discovery rate a parameter used in multivariate statistical analysis to show 
the probability of a false discovery via making multiple 
comparisons e.g. FDR = 0.1 means up to 10% of metabolites 
discovered as statistically significantly discriminating will 
actually be false discoveries: the normal p value is inadequate 
to cover for this 

GC gas chromatography: a powerful method for the separation of 
volatile compounds. For use in metabonomics, pre-
derivatisation of metabolites is required in order to achieve 
volatility 

HDL high density lipoprotein 

HPLC high performance liquid chromatography: a powerful 
analytical separation technology  often hyphenated with mass 
spectrometry 

LDL low density lipoprotein 

metabolic entropy the degree of disorder of metabolite concentrations in an 
individual or in a group of subjects 

metabolic phenotype multicomponent metabolic characteristics that result from the 
cumulative interactions of genetic variation, gene products 
and environmental exposures and that can be related directly 
to disease risks and therapeutic responses: also known as the 
metabotype 

metabolic trajectory the changes in metabolite concentrations over time in 
response to an intervention 

metabolite a compound in a biological matrix of an organism that is 
produced in that organism by an enzymatic pathway 
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metabolomics metabolic profiling defined in an observational fashion as ‘a 
comprehensive analysis in which all the metabolites of a 
biological system are identified and quantified’ 

metabolome the full set of metabolites within, or that can be secreted from, 
a biological system such as a cell type or tissue 

metabonome the full set of metabolites contained within an organism i.e. 
the sum of all the metabolomes 

metabonomics metabolic profiling defined in an experimental fashion as ‘the 
quantitative measurement of the multiparametric metabolic 
response of living systems to pathophysiological stimuli or 
genetic modification’ 

metabotype a probabilistic, multiparametric description of an organism in 
a given physiological state based on analysis of its cell types, 
biofluids and tissues: see metabolic phenotype   

microbiome the collection of microorganisms present both in and on an 
organism, in a variety of environmental niches 

MS mass spectrometry: a sensitive analytical methodology for the 
detection and characterisation of metabolites in biological 
matrices 

multivariate analysis: 
MVA 

multivariate (statistical) analysis: a method for the analysis of 
multiple variables in an experiment or observation at a time 
and the simplification of the analysis problem by reduction of 
the large number of initial variables to a small number of key 
factors 

NMR spectroscopy nuclear magnetic resonance spectroscopy: the most powerful 
method for molecular structure identification in solution, 
including metabolites in biological fluids 

OPLS-DA orthogonal projection to latent structures with discriminant 
analysis: a supervised (and therefore potentially biased) 
approach to multivariate data analysis with the aim of finding 
metabolites that are statistically significantly discriminating 
between two groups e.g. responders and non-responders, and 
which also discards metabolite variations that are orthogonal 
to the group discrimination 

panomics the strategy of understanding a biological system, such as a 
disease state, by a combined use of e.g. genomics, 
transcriptomics, proteomics and metabonomics, so as to 
obtain much more information than from studying the system 
with a single technology 

personalised medicine the use of genomic, molecular and clinical information to 
select treatments or medicines that are more likely to be both 
effective and safe for that patient: also known as precision 
medicine or stratified medicine 
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pharmacogenomics  the prediction of the effects of a drug on the basis of 
individual genetic profiles  

pharmacokinetics (PK) the  measurement of the time course of the absorption, 
distribution, metabolism and excretion of a drug 

pharmacometabolomics  this term is used synonymously with pharmacometabonomics 
(see below), but is sometimes erroneously used to describe 
the investigation of the effects of a drug on an organism: this 
is just diagnostic metabonomics 

pharmacometabonomics  the prediction of the effects of a drug on the basis of a 
mathematical model of pre-dose metabolite profiles 

phenotype the quantitative or qualitative measurement of specific 
parameters or traits that characterise individual functional 
biological classes or groups 

predictive metabolic 
phenotyping or predictive 
metabonomics 

the prediction of the outcome of an intervention in an 
individual based on a mathematical model of pre-intervention 
metabolite profiles. The intervention could be a change in 
diet, exercise, the passage of time, surgical treatment etc. 
Pharmacometabonomics is one case of predictive 
metabonomics, which covers the prognosis of any 
intervention 

principal components 
analysis (PCA) 

an unsupervised (and therefore unbiased) multivariate 
statistical method for analysing high dimensional data, such 
as spectral data from metabonomics experiments. The PCA 
effects a drastic dimensionality reduction and transformation 
so that new principal components readily display the variance 
present in the dataset and therefore patterns in the data like 
clusters or groupings can be readily discerned and outliers 
identified 

prognosis the prediction of disease onset, disease outcome or the 
outcome of an intervention such as drug treatment 

T2DM type 2 diabetes mellitus 

therapeutic index (TI) the TI measures the the ratio of the effective dose of a drug 
for 50% of patients (expressed as ED50) to the toxic dose 
expressed as the TD50. Usually a minimal TI of 10 is required 
in drug development: some companies will aim for a more 
conservative TI of 30 

UPLC ultra-performance liquid chromatography: a more efficient 
and effective form of HPLC using smaller column packings 
and higher pressures 

VLDL very low density lipoprotein 
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