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Abstract.4
We analytically solve the two dimensional, nine-velocity, lattice Boltzmann model in planar channel flow and5

determine its deviatoric stress tensor. The shear component of its stress takes the expected Navier-Stokes form but6
the tangential component contains second order in Knudsen number contributions that one finds in solutions to the7
Burnett equations. Boundary conditions that neglect this Burnett contribution cause spurious grid-scale oscillations8
in the computed stress field within the computational domain. A moment-based boundary condition which considers9
the non–zero deviatoric stress is analysed and shown to completely eliminate the spurious oscillations seen in solu-10
tions using other boundary conditions. The analysis offers an explanation of previously reported optimal relaxation11
times in terms of the recurrence relation for the tangential stress and gives them an interpretation in terms of compact12
finite difference schemes.13
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The lattice Boltzmann equation (LBE) is a numerical algorithm derived from a velocity–16
space truncation of Boltzmann’s equation for monatomic gases [23]. Despite being an algo-17
rithm that computes at each discrete point in space and time a discrete velocity distribution18
function it is primarily used to numerically solve the Navier-Stokes equations, the variables19
of which are obtained from moments of the distribution functions. The kinetic heritage of the20
LBE has encouraged boundary conditions for the algorithm to be formulated in terms of this21
particle basis, where the unknown distribution functions are usually found by “bounce–back”22
[11, 25] - a reversal in the velocity distribution functions that hit a boundary - or an adaptation23
of Maxwell’s combination of diffuse and specular reflection [32] to a discrete velocity space.24
Bounce-back methods have been successful extended to complex geometries of engineer-25
ing importance where physical boundaries are not necessarily aligned with lattice gridpoints,26
usually by combining them with spatial interpolations to ensure macroscopic conditions on27
the velocity are satisfied [5, 13, 48, 52]. Diffuse boundary conditions were first applied to28
discrete velocity Boltzmann models by Broadwell [6] and studied in detail by Gatignol [15]29
before being discussed in terms of the lattice Boltzmann method [2]. Another popular method30
is “non–equilibrium bounce–back” [53] which, unlike bounce-back and Maxwell-Broadwell31
conditions, explicitly imposes a macroscopic wall velocity condition.32

The supposed simplicity of “particle-based” boundary conditions is often regarded as one33
of the LBE’s major advantages over traditional (macroscopic) numerical methods, yet it has34
been a source of much debate. This is due, in part at least, to the indirect approach of using35
a discrete kinetic–based model to solve the hydrodynamic flow equations: on the one hand,36
boundary conditions are needed for the particle velocity distribution functions; while on the37
other, accurate solutions of the macroscopic flow variables are usually sought. Moreover, the38
flow behaviour in the vicinity of solid boundaries is considerably different in kinetic flows39
compared with hydrodynamic flows when the Knudsen number (Kn) is appreciable. For40
example, kinetic theory can accurately predict the Knudsen layer in the slip–flow regime -41
an O(Kn)-wide boundary layer in the vicinity of the wall [7, 41] - whereas Navier–Stokes42
theory cannot [21]. The lattice Boltzmann equation with either bounce–back or Maxwell-43
Broadwell conditions usually predicts a non–vanishing fluid velocity at wall boundaries. This44
apparent slip - sometimes presumed to be a kinetic effect - has stimulating much interest in45
the applicability of the LBE - primarily a hydrodynamic flow solver - to the rarefied flow46
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regime, but equally as much controversy [2, 50, 29, 44, 43, 38, 37, 25, 46].47
The numerical and physical nature of the lattice Boltzmann equation can be elucidated48

with simple, analytically tractable, flows from which we can obtain exact solutions. He et al.49
[25] analytically solved the D2Q9 BGK lattice Boltzmann equation for the velocity field in50
planar channel flow. They showed that the LBE reduces in this flow to a three-term recur-51
rence relation for the flow velocity, the solution of which is a perfect parabolic profile, as in52
Poiseuille flow, with a constant numerical (artificial) slip velocity, Us, that is determined by53
the boundary conditions. More specifically, the position where the tangential velocity van-54
ishes only asymptotically coincides with the point halfway between grid points; its precise55
location depending on the kinematic viscosity. The general form of the solution is valid for56
all boundary conditions and all Knudsen numbers, and hence one concludes that the D2Q957
lattice Boltzmann equation does not predict kinetic effects in the velocity field. We remark58
briefly that the numerical slip velocity stems from the particles moving tangentially along the59
wall and will be present in any boundary condition implementation that does not fully ac-60
count for them. Complications from so–called ‘grazing’ molecules have been known to exist61
in discrete kinetic theory for some time [15],62

The D2Q9 numerical slip may be eliminated with two relaxation time (TRT) models63
provided the so-called “magic relation” between the relaxation times for the odd and even64
moments is satisfied, Λ = 3/16 [16, 18, 10, 34, 46]. d’Humieres and Ginzburg [10] anal-65
ysed the lattice Boltzmann recurrence equation with two relaxation times in steady flows and66
showed also that the numerical errors and stability of the algorithm are controlled by the67
product of odd and even relaxation times, rather than on each individually. Thus the “magic68
parameter” Λ is more than just a fix for the slip artefact in a simple flow. Unfortunately, the69
choice of Λ which eliminates the numerical–slip does not coincide with the most stable or70
apparently optimal set of relaxation times [17, 10, 26, 12].71

The inability of the D2Q9 LBE to predict Knudsen boundary layers in the velocity field72
does not preclude more subtle kinetic effects. In classical kinetic theory one can obtain the73
Burnett equations from the Chapman-Enskog expansion atO(Kn2) with a fixed Mach (Ma)74
number [8, 14] and equations of Grad–type are obtained from a Hermite polynomial closure75
[20]. Neither the Burnett nor Grad 13 equations (which are both formally of second order76
in Knudsen number) can capture kinetic boundary layers in the velocity field, but rarefaction77
effects manifest themselves in these models as an O(Kn2) (or O(τ2)) contribution to higher78
moments [42]. Interestingly, Yudisiawan [49] observed some kinetic effects in the stress field79
of the D2Q9 discrete Boltzmann model: solutions of the truncated PDE moment system sug-80
gested a non zero tangential stress in planar (force–driven) Poiseuille flow; something which81
is characteristic of Burnett and non–Newtonian behaviour. More recently, Dellar [9] took in-82
spiration from [27] and [45] and showed the constitutive equation for stress embedded within83
the moments of the D2Q9 discrete Boltzmann equations is not that of the Navier-Stokes equa-84
tions and resembles the upper convected Maxwell model for viscoelasticity. Reis [36] also85
noticed that that the LBE predicted non-Newtonian behaviour in the stress field and used86
the work of Dellar [9] to develo suitable boundary conditions for the tangential component87
of stress. Although Yong and Luo [47] showed that the D2Q9 lattice Boltzmann equation88
predicts the Newtonian viscous stress tensor with second order accuracy, their calculations89
assume a diffusive scaling where the timestep is proportional to the square of the grid spac-90
ing, ∆t ∝ ∆x2. This suppresses acoustic behaviour and kinetic effects at O(τ2).91

The kinetic or non-Newtonian effects that appear to be embedded in the lattice Boltz-92
mann equation can manifest near the boundaries, as well as in the flow, implying that bound-93
ary conditions for the LBE may need to be informed of the O(τ2) terms in the stress. Most94
existing lattice Boltzmann implementations of boundary conditions do not have the freedom95
to do this, as will be discussed in Section 2. An exception is the moment-based method of96
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Bennett [3]. Most existing work using this approach assumes the stress is of Navier-Stokes97
form [36, 37, 1, 22, 33], which may be inconsistent with the underlying PDE moment system,98
but this can be adjusted. Reis [36] showed numerically that the Navier-Stokes assumption in99
the boundary conditions causes spurious oscillations in the tangential component of the de-100
viatoric stress and proposed a consistent constraint, but no further analysis of the algorithm101
was provided.102

In this article we take the view that the lattice Boltzmann equation is a direct space-time103
discretisation of the discrete velocity Boltzmann equation with a truncated (closed) moment104
PDE system, and is thus computing solutions to this moment system. The moment system105
has embedded within it a non-Newtonian constitutive equation for the deviatoric stress. We106
hypothesise that standard local lattice Boltzmann boundary conditions that prescribe hydro-107
dynamic conditions but do not fully account for the stress embedded within the moments are108
inconsistent with the underlying PDE and produce spurious oscillations in the numerical so-109
lutions to simple flows. We build on the work of He et al. [25],D’Humieres and Ginzburg110
[10], Dellar [9], and Reis [36], and solve the BGK and TRT lattice Boltzmann equation an-111
alytically for the three components of the stress tensor in force driven Poiseuille flow in an112
infinitely long channel (no inflow/outflow conditions). This allows us to see precisely how113
the LBE is behaving and illuminates some physical and numerical aspects of the algorithm.114
That is, we determine what stress the LBE is computing, the stencil it uses to compute it, the115
role of the relaxation times on the numerics, and the consistency of boundary conditions. The116
remainder of this article is organised as follows. Section 1 discusses the discrete Boltzmann117
PDE and the lattice Boltzmann implementation. Section 2 reviews commonly used boundary118
conditions and reveals their inconsistencies with the Boltzmann stress. In Section 3 we obtain119
the analytical solution of the lattice Boltzmann stress field in planar channel flow and discuss120
the Burnett boundary condition in Section 4. The significance of two-relaxation-time models121
is addressed in Section 5 and concluding remarks are made in Section 6.122

1. The discrete Boltzmann equation and its moment PDE system. The discrete Boltz-123
mann equation124

(1.1)
∂fi
∂t

+ ξi · ∇fi = −1

τ

(
fi − f (0)

i

)
+ Si,125

describes the spatial and temporal evolution of the distribution of particles in a monatomic126
gas with velocity restricted to a discrete, finite, set. For the remainder of this article we focus127
our attention on the D2Q9 lattice [35] shown in Figure 1. The left hand side of equation (1.1)128
models the advection of fi with discrete velocity ξi and defines a linear, constant coefficient,129
hyperbolic, system of equations with characteristic velocities equal to ξi. Boundary condi-130
tions should supply values of fi along these characteristics and into the domain. The first term131
on the right hand side is algebraic and approximates the repeated action of particle collisions,132

which is an assumed relaxation to the local equilibria f (0)
i with a single relaxation time τ133

(BGK operator). The source term Si can account for an additional body force. Macroscopic134
quantities are defined through the discrete moments of fi. The first six of these correspond to135
the hydrodynamic quantities of density (a scalar), momentum (a vector), and the symmetric136
moment flux tensor,137

(1.2) ρ =
∑
i

fi, ρuα =
∑
i

fiξα, Παβ =
∑
i

fiξαξβ ,138

where the Greek subscripts refer to the Cartesian coordinates of space. The 9 dimensional139
particle velocity basis permits 9 independent moments. The remaining three are often called140
kinetic moments, but for the D2Q9 model they may also be dubbed “ghost” moments since141
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they do not have a direct physical interpretation:142

(1.3) Qxxy =
∑
i

fiξ
2
ixξiy, Qxyy =

∑
i

fiξixξ
2
iy, Rxxyy =

∑
i

fiξ
2
ixξ

2
iy.143

The most commonly used equilibria f (0)
i are given by [35, 23]144

(1.4) f
(0)
i = wiρ

(
1 +

ξi · u
c2s

+
(ξi · u)

2

2c4s
− |u|

2

2c2s

)
,145

where the sound speed cs and weights wi are constants. The D2Q9 discrete velocity set is146
defined by147

(1.5) ξi =


(0, 0), i = 0,

(cosαi, sinαi) c, i = 1, 2, 3, 4,
√

2 (cosαi, sinαi) c, i = 5, 6, 7, 8,

148

where αi = (i− 1)π/2 for i = 1, . . . , 4 and αi = (i− 5)π/2 + π/4 for i = 4, . . . , 8 and the149
weights are150

(1.6) wi =


4/9, i = 0,

1/9, i = 1, 2, 3, 4,

1/36, i = 5, 6, 7, 8.

151

These wi and ξi correspond to a 5th-order Gauss–Hermite quadrature [23, 39]. In these152

units, cs = 1/
√

3. The first three moments of f (0)
i give the mass and momentum, i.e. they are153

conserved under collisions:154

(1.7)
∑
i

f
(0)
i =

∑
i

fi = ρ,
∑
i

f
(0)
i ξα =

∑
i

fiξα = ρuα,155

and the equilibrium momentum flux tensor is156

(1.8) Π
(0)
αβ =

∑
i

f
(0)
i ξαξβ = c2sρδαβ + ρuαuβ ,157

where the first term on the right–hand side is an ideal equation of state for the (thermody-158
namic) pressure. The three remaining equilibrium moments are159

(1.9) Q(0)
xxy = c2sρuy, Q(0)

xyy = c2sρux, R(0)
xxyy = c4sρ+ c2sρ

(
u2
x + u2

y

)
.160

1.1. Constitutive equation from the discrete Boltzmann equation. Taking successive161
moments of the discrete Boltzmann equation (1.1) leads to a truncated system of partial dif-162
ferential equations. If we ignore the force term Si for the time being (this will be addressed163
in Section 1.2), the zeroth, first and second order moment equations correspond to the mathe-164
matical statements of mass and momentum conservation, and the evolution of the momentum165
flux, respectively:166

∂ρ

∂t
+∇ · ρu = 0,(1.10)167

∂ρu

∂t
+∇ ·ΠΠΠ = 0,(1.11)168

∂ΠΠΠ

∂t
+∇ ·Q = −1

τ

(
Π−Π(0)

)
.(1.12)169
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FIG. 1. (colour online) The nine particle propagation velocities ξ0, . . . , ξ8 in the D2Q9 integer lattice.

The macroscopic equations of motion are most commonly obtained from the Boltzmann170
equation using the Chapman–Enskog expansion [8], which seeks solutions which vary slowly171
over timescales much longer than the collision time τ . Alternatively, one may obtain an172
equation for the stress deviator T = ΠΠΠ(0)−ΠΠΠ from Maxwell’s equations of transfer by taking173
moments with respect to the peculiar velocity ci = ξi−u [27]. The left hand side of equation174
(1.12) becomes175

∂tΠαβ + ∂γQαβγ = ∂t

(
Π

(0)
αβ − Tαβ

)
176

+ ∂γ [Qαβγ + uα (Pδβγ − Tβγ) + uβ (Pδγα − Tγα)177

+ uγ (Pδαβ − Tαβ) + ρuαuβuγ ] ,(1.13)178

where Qαβγ =
∑
i ficiαciβciγ and P = ρ/3 is the pressure. We use the conservation179

equations for mass (1.10) and momentum (1.11) to evaluate the temporal derivative,180

(1.14) ∂t (ρuαuβ) = −uα∂γ
(

Π
(0)
βγ − Tβγ

)
− uβ∂γ

(
Π(0)
αγ − Tαγ

)
+ uαuβ∂γ (ρuγ) .181

The equilibrium part of the third order moment with respect to the peculiar velocity is182

Q(0)
αβγ ∝ O(Ma3).183

If we assume Qαβγ ≈ Q(0)
αβγ , which is justifiable with a suitable collision operator that has184

a short relaxation time for Q then we find the evolution equation of the deviatoric stress Tαβ185
from equation (1.12):186

(1.15) Tαβ + τ

[
∂tTαβ + uγ∂γTαβ + Tαγ

∂uβ
∂γ

+ Tβγ
∂uα
∂γ

]
= τθρ

(
∂uα
∂β

+
∂uβ
∂α

)
,187

where we have neglected terms of orderO(Ma2) (and the Mach numberMa = |u|/cs � 1).188
For the case of steady unidirectional channel flow, which is the primary focus of the remainder189
of this article, the three components of equation (1.15) simplify to190

(1.16) Txx = −2µτ (u′x)
2
, Txy = µu′x, Tyy = 0,191

where µ = ρν = ρτc2s is the dynamic viscosity and primes denote differentiation with respect192
to y.193
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Equation (1.16) highlights the behaviour of the deviatoric stress found from the D2Q9194

discrete Boltzmann equation. At first order in Knudsen number (or τ ), Txx = T
(0)
xx = 0,195

giving the isothermal Navier–Stokes equations, but at the next order (the Burnett level) the196
tangential component of T is proportional to the square of the shear rate.197

1.2. Lattice Boltzmann implementation. Equation (1.1) may be fully discretised by198
integrating along a characteristic for time ∆t:199

(1.17) fi(x + ξi∆t, t+ ∆t)− fi(x, t) =

∫ ∆t

0

Ci(x+ ξis, t+ s)ds,200

where Ci represents the collision operator and body force on the right-hand side of (1.1).201
Approximating the right hand side of (1.17) using the trapezoidal rule gives202

(1.18) fi(x+ξi∆t, t+ ∆t)−fi(x, t) =
∆t

2

(
Ci(x+ξi∆t, t+ ∆t)+Ci(x, t)

)
+O

(
∆t3

)
.203

Equation (1.18) is a second order accurate but implicit system of algebraic equations, since204
Ci depends on fi through ρ and u. For an explicit algorithm we follow He et al. [24] and205
introduce the change of variables206

(1.19) f i (x, t) = fi (x, t) +
∆t

2τ

(
fi (x, t)− f (0)

i (x, t)
)
− ∆t

2
Si (x, t) .207

The lattice Boltzmann equation for f i at the new timestep is208
(1.20)

f i(x + ξi∆t, t+ ∆t)− f i(x, t) = − ∆t

τ + ∆t/2

(
f i(x, t)− f

(0)
i (x, t)

)
+

τ∆t

τ + ∆t/2
Si.209

The source term Si included to introduce a body force F to the flow is required to fulfil210
the following moment conditions:211

(1.21)
∑
i

Si = 0,
∑
i

Siξα = Fα,
∑
i

Siξαξα = Fαuβ + uαFβ .212

The first constraint in (1.21) is a statement of mass conservation and the second accounts for213
an additional acceleration. The third condition ensures F does not appear in equation (1.15).214
A suitable form of Si based on a truncated expansion in Hermite polynomials is [31]215

(1.22) Si = wi

[
ξi − u

c2s
+
ξi · u
c4s

ξi

]
· F.216

For planar channel flow we assume a constant body force in the horizontal direction, F =217
(ρG, 0).218

The density is obtained directly form the zeroth order moment of f i:219

(1.23) ρ =
∑
i

fi =
∑
i

f i;220

and the momentum from the first order moment of (1.19):221

(1.24) ρu =
∑
i

f iξi = ρu− ∆t

2
F.222
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FIG. 2. (colour online) The pre-collisional states at a point on the southern boundary. The darker gray (red
on line) lattice points on the bottom line outside the boundary are missing and need to be supplied by the boundary
conditions.

Moments Combination of unknowns
ρ, ρuy , Πyy f2 + f5 + f6

ρux, Πxy , Qxyy f5 − f6

Πxx, Qxxy , Rxxyy f5 + f6

TABLE 1
Moment groups at a southern boundary

Expressions for the non-conserved moments must be found by taking moments of the trans-223
formation (1.19). For example, the momentum flux tensor is224

(1.25) ΠΠΠ =
2τΠΠΠ + ∆tΠΠΠ(0) + τ∆t (Fu + uF)

2τ + ∆t
,225

where ΠΠΠ =
∑
i f iξiξi. From (1.25) we can find the deviatoric stress T = ΠΠΠ(0) −ΠΠΠ in terms226

of the moments of f i:227

(1.26) T =
2τ(ΠΠΠ(0) −ΠΠΠ)− τ∆t(Fu + uF)

2τ + ∆t
.228

2. Boundary conditions. At a straight wall the D2Q9 lattice has three unknown “in-229
coming” (unknown) distributions which need to be supplied by the boundary conditions. To230
solve the lattice Boltzmann equation one usually imposes boundary conditions directly upon231
the distributions fi. Due to the invertible relationship between the discrete velocity distri-232
bution function and its moments, an alternative method would impose constraints on three233
judiciously chosen moments and then translate these into the particle basis [3]. Since this234
methods is used in the Sections that follow, it is discussed in some detail here. To illustrate235
the moment-based apporach, let’s consider a horizontal solid wall at a southern boundary.236
The three incoming (unknown) distribution functions are f2, f5 and f6, as shown in Figure237
2. Table 1 shows how these three unknowns appear in each of the nine moments at the wall238
[3, 37].239

The three rows of Table 1 are linearly independent. Therefore we may impose a boundary240
condition on one moment from each row of Table 1 and solve for the incoming distributions.241
All other wall moments can be expressed in terms of known fi and the imposed constraints.242
It is logical to choose the moments that correspond to the hydrodynamic quantities: den-243
sity, momentum, and momentum flux, rather than the higher-order moments Q and R. For244
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Navier–Stokes flow with no–slip walls, a possible set of constraints would be245

(2.1) ρux = ρuy = 0, Πxx = Π(0)
xx = c2sρ.246

The condition on Πxx follows from the zero wall velocity constraint and the commonly held247

assumption that Πxx = Π
(0)
xx + τΠ

(1)
xx , where Π

(1)
xx ∝ ∂ux/∂x. These are the conditions used248

in the original moment method [3] and most subsequent work [4, 37, 1, 22, 40, 33]. Note that249
this is not a condition on the pressure or density. It is a condition on the tangential component250
of the momentum flux, saying that non-equilibrium parts much vanish at the boundary. The251
density (and thus pressure) is not imposed; it is computed from known values and dependent252
moments at the boundary, as shown in equation (2.3), for example.253

The second-order discretisation (1.20) requires us to find the unknown (incoming) f i,254
rather than fi. In the absence of a body force, the conserved moments may be calculated255
from f i in precisely the same way as from fi. However, if a source term Si is included, one256
must be careful to respect equation (1.24). Conditions on the stress must be re-expressed257
using equation (1.25). Conveniently, the simple Navier–Stokes stress boundary condition258
becomes Πxx = Π(0). In terms of the incoming distribution functions, the conditions (2.1)259
are260

f2 = f1 + f3 + f4 + 2
(
f7 + f8

)
− ρ

3
,261

f5 = −f1 − f8 +
ρ

6
− Gρ∆t

4
,(2.2)262

f6 = −f3 − f7 +
ρ

6
+
Gρ∆t

4
,263

where the wall density is given by264

(2.3) ρ = f0 + f1 + f3 + 2
(
f4 + f7 + f8

)
.265

Similar expressions can be found for the incoming f i at other boundaries.266
We now use the moment method with Navier–Stokes conditions to simulate Poiseuille267

flow in an infinitely long 2D planar channel (the computational domain is periodic in the268
streamwise direction). The flow is driven by the force F = (Fx, Fy) = (ρG, 0), where G269
is a constant mimicing the pressure gradinet. The relevant non-dimensional number is the270
Reynolds number, Re = UcH/ν, where Uc = H2G/8ν is the centerline velocity. H =271
(n − 1)∆x is the channel height and n is the number of grid points in the vertical direction.272
The spanwise velocity uy and the normal component of the extra stress Tyy are zero and the273
shear stress given by a simple linear profile. This will be proven analytically in Section 3.274
The density was confirmed to be constant in all cases and the spanwise velocity zero - this is275
verified theoretically in the Section 3 but previously known from He et al. [25].276

Figure 3 plots the non–dimensional streamwise velocity and tangential stress whenRe =277
100, Ma = 0.1

√
3 and n = 33. We emphasise that the numerical solution for ux is exact278

to floating point round-off error. Moreover, the exact solution is still obtained when using279
the minimum number of grid points, n = 3, required to define the characteristic length, H ,280
with the moment-method. The plot of tangential stress Txx, however, shows large spurious281
oscillations, as first noticed by Reis [36]. These are generated at the boundary but can infect282
the flow in the bulk. Doubling the resolution allows us to capture the correct behaviour away283
from the walls but the spurious oscillations, although smaller in magnitude and rapidly de-284
caying, remain, as shown in Figure 4. Lowering the Mach number by an order of magnitude,285
on the otherhand, reduces the Knudsen number and thus τ (note that Kn ∝Ma/Re), which286
emphasises the inconsistency between the Navier-Stokes stress boundary condition and the287
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FIG. 3. Plot of the streamwise velocity (left) and tangential stress in an infinitely long two dimensional planar
channel flow using the original moment–based boundary conditions (2.2) when Re = 100, Ma = 0.1

√
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FIG. 4. (colour online) Plot of the analytical and computed solutions of the tangential stress in an infinitely long
planar channel flow using Navier–Stokes boundary conditions (2.2) when Re = 100. Left: n = 65, Ma = 0.1

√
3.

Right: n = 33 and Ma = 0.01
√

3.

lattice Boltzmann equation, as observed in Figure 4. Further explanation will be given in288
Section 3. The deviatoric stress is approaching the Navier–Stokes solution (Txx → 0 as289
Kn → 0), but the numerical oscillations, although small in magnitude, can infect the entire290
domain.291

Microscale flows typically operate in the small Reynolds number (diffusion dominated)292
regime. Figure 5 plots the deviatoric stress at Re = 0.1 when Ma = 0.01

√
3 (Kn =293

O(10−1)) and Ma = 0.001
√

3 (Kn = O(10−2)). Grid scale oscillations are no longer294
present, which we will show later is due to a larger value of τ (c.f. Section 3). However,295
the computed stress for the Kn = O(10−1) case is completely incorrect over the whole296
channel while the Kn = O(10−2) is correct in the interior but deviates substantially from297
the analytical solution near the boundaries. We now investigate the LBE computations of the298
stress in the same flow with some commonly used boundary conditions.299

2.1. Bounce–back. The bounce–back method generally places the wall between grid300
points; its precise location is a function of the kinematic viscosity and, with the BGK collision301
operator, only asymptotically coincides with the point halfway between nodes. The offset of302
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FIG. 5. (colour online) Plot of the analytical and computed solutions of the tangential stress in an infinitely long
planar channel flow using Navier–Stokes boundary conditions (2.2)when Re = 0.1. Left: n = 33, Ma = 0.01
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FIG. 6. (colour online) Plot of the analytical and computed solution of the tangential stress in an infinitely long
planar channel flow using bounce–back boundary conditions when Re = 100 and n = 32. Left: Ma = 0.1

√
3.

Right: Ma = 0.01
√

3.

the wall from the midway point is O(∆x2) [16]. The bounce–back method is defined by303

(2.4) fī (x, t+ ∆t) = f?i (x, t) ,304

where i is the incoming direction and opposite to ī (ξi = −ξī) and f?i denotes the post–305
collision distribution function. We note that for a second order in time implementation one306
should generally transform between f i and fi (equation (1.19)) before applying the bounce–307
back rule, but this is not necessary for steady, constant body force, flow. Note also that308
we do not consider variations to bounce-back that use interpolation techniques to prescribe309
conditions at specific locations (on or off node), such as Bouzidiet. al. [5].310

Figure 6 plots the tangential component of the deviatoric stress using bounce–back bound-311
ary conditions with Ma = 0.1

√
3 and Ma = 0.01

√
3. In both examples n = 32 and312

Re = 100 (this number of grid points is chosen to ensure the same grid spacing as the com-313
putations using “on–node” boundary conditions) . Although some oscillations are visible,314
they are a lot smaller in amplitude than in those with the original moment-based conditions.315
This is because bounce-back does not explicitly impose an inconsistent condition on the stress316
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FIG. 7. (colour online) Plot of the analytic and computed solutions of the tangential stress in an infinitely long
planar channel flow using bounce–back boundary conditions when Re = 0.1. Left: n = 32, Ma = 0.01
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Figure 7 plots the deviatoric stress at Re = 0.1 when Ma = 0.01
√

3 and Ma =317
0.001

√
3. The bounce–back method also predicts qualitatively incorrect behaviour when318

Ma = O(10−1). Reducing Ma by an order of magnitude predicts the stress correctly in the319
bulk but deviation from the analytic solution is observed at the boundary. The computations320
with bounce–back are more accurate than the original moment method because no constraints321
have been placed on Txx explicitly.322

2.2. Non–equilibrium bounce–back. Like the moment method, non–equilibrium bounce–323
back [53] places conditions precisely on grid points. It insists on the exact satisfaction of the324
no-slip condition (u = 0) at boundary points. To close the system it is assumed that the non–325
equilibrium part of velocity distribution functions normal to a boundary is “bounced–back”.326

For example, at a south wall it is assumed that f2 − f (0)
2 = f4 − f (0)

4 . If a no–slip condition327
is imposed, the resulting incoming distribution functions at such a wall are found to be328

f2 = f4,329

f5 = f7 −
1

2
(f1 − f3) ,(2.5)330

f6 = f8 +
1

2
(f1 − f3) .331

The non–equilibrium bounce–back scheme may be given an entirely equivalent interpre-332
tation in terms of the velocity moments. The conditions (2.5) can be obtained by imposing333
the moment constraints [3]334

(2.6) ρux = 0, ρuy = 0, Qxxy = 0.335

The two velocity conditions are useful in defining the problem, but the condition on a com-336
ponent of the third order (non–hydrodynamic) moment seems somewhat arbitrary. In terms337
of the second order (f i) discretisation, the non–equilibrium bounce–back method becomes338

f2 = f4,339

f5 = f7 −
1

2

(
f1 − f3

)
− Gρ

4
,(2.7)340

f6 = f8 +
1

2

(
f1 − f3

)
+
Gρ

4
.341
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FIG. 8. (colour online) Plot of the analytic and computed solutions of the tangential stress in an infinitely long
planar channel flow using non–equilibrium bounce–back boundary conditions when n = 33 and Re = 100. Left:
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FIG. 9. (colour online) Plot of the analytic and computed solutions of the tangential stress in an infinitely
long planar channel flow using non–equilibrium bounce–back boundary conditions when Re = 0.1. Left: n = 33,
Ma = 0.01
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3. Right: n = 33 and Ma = 0.001

√
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Figure 8 plots the tangential component of the deviatoric stress using non–equilibrium342
bounce–back boundary conditions with Ma = 0.1

√
3 and Ma = 0.01

√
3. In both examples343

n = 33 and Re = 100. Although we notice the spurious behaviour near the wall with the344
larger Mach number, they are not as severe as the Navier–Stokes stress boundary conditions.345
This is because no explicit condition has been imposed on Πxx. However, when we reduce346
the Mach number, the oscillations infect the entire flow domain and are larger in magnitude347
than those observed in Figure 4.348

Figure 9 plots the deviatoric stress at Re = 0.1 when Ma = 0.01
√

3 and Ma =349
0.001

√
3. Non–equilibrium bounce–back is shown to predict behaviour similar to the mo-350

ment method with Navier–Stokes stress conditions when Ma = O(10−1). The simulation351
with the smaller Ma fails to predict the correct wall behaviour. We notice the error is smaller352
than the computations with the moment method, but larger than with bounce–back.353

2.3. Diffuse reflection. Maxwell’s kinetic boundary conditions for Boltzmann’s equa-354
tion [32] express the incoming distributions as355

(2.8) f(x, ξ, t) = (1− α)f(x, ξ − 2nn · ξ, t) + αf (0)
w (x, ξ, t), ξ · n > 0,356
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where α is the accommodation coefficient and f (0)
w is the Maxwell-Boltzmann distribution357

evaluated at the wall. The first term describes a specular reflection and the second the emis-358

sion of an f (0)
w distribution of particles from the wall. Setting α = 1 gives the diffuse reflec-359

tion condition. These conditions were adapted to a finite particle velocity set by Broadwell360
[6] and analysed in further detail by Gatignol [15]. More recently, Ansumali and Karlin [2]361
applied this method to the lattice Boltzmann equation. For the D2Q9 velocity set with zero362
wall velocity, the purely diffusive Maxwell-Broadwell conditions on the south wall are363

(2.9) fi = f
(0)
i

f4 + f7 + f8

f
(0)
2 + f

(0)
5 + f

(0)
6

, for i ∈ {2, 5, 6}.364

These are translated into the moment basis as [37]365

(2.10) ρuy = 0, Qxxy = 1
3Πyy −Rxxyy, Qxyy = −Πxy,366

and the Maxwell–Braodwell conditions in terms of the f i variables are367

f2 =
2

3

(
f4 + f7 + f8

)
,368

f5 =
1

6

(
f4 + f7 + f8

)
+
ρG

24
,(2.11)369

f6 =
1

6

(
f4 + f7 + f8

)
− ρG

24
.370

Figure 10 plots the tangential component of the deviatoric stress using Maxwell–Braodwell371
boundary conditions with Ma = 0.1

√
3 and Ma = 0.01

√
3. In both examples n = 33 and372

Re = 100. Strong oscillations are once again observed near the walls. The computed stress373
approximates the analytical solution well in the bulk when the Mach number is large. When374
Ma is reduced (smaller Knudsen number), the magnitude of the stress is smaller but spuri-375
ous the oscillations infect the entire domain. They are stronger with the Maxwell–Broadwell376
boundary condition than with the original moment method.377

Figure 11 plots the deviatoric stress at Re = 0.1 when Ma = 0.01/
√

3. The purely dif-378
fusive Maxwell–Broadwell condition predicts behaviour very similar to bounce–back when379
Ma = O(10−1); the only noticeable difference being the location of the wall (recall the380
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boundary is positioned between grid points for bounce–back). Reducing Ma by an order of381
magnitude once again allows for accurate computations of the bulk flow but errors at the wall382
remain.383

3. Discrete solutions for unidirectional planar channel flow. We now follow closely384
He et al. [25] and find the discrete solution of the lattice Boltzmann equation (1.20) for time–385
independent planar channel flow in an infinitely long channel subject to the the boundary386
conditions (2.1). The flow is driven by a force that mimics the constant pressure gradient,387
F = (Fx, Fy) = (ρG, 0), where G is a constant. To ease notation we write the velocity388
components as u = (ux, uy) = (u, v) and work in so–called lattice units with ∆x = ∆t =389
1. The flow domain is a channel of height H consisting of n computational nodes in the390
vertical direction with solid walls located at j = 1 and j = n. Since there is no time nor391
x–dependence, the components of equation (1.20) are392
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f
j

0 =
4ρ

9

(
1− 3

2

(
u2
j + v2

j

))
− 4τρG

3(τ + 1/2)
uj ,393

f
j

1 =
ρ

9

(
1 + 3uj + 3u2

j −
3v2
j

2

)
+
τρG

3
(2uj + 1) ,394

f
j

2 =
ρ

9(τ + 1/2)

(
1 + 3vj−1 + 2v2

j−1 −
3u2

j−1

2

)
− τρG

3(τ + 1/2)
uj−1 +

τ − 1/2

τ + 1/2
f
j−1

2 ,395

f
j

3 =
ρ

9

(
1− 3uj + 3u2

j −
3v2
j

2

)
+
τρG

3
(2uj − 1) ,396

f
j

4 =
ρ

9(τ + 1/2)

(
1− 3vj+1 + 3v2

j+1 −
3u2

j+1

2

)
− τρG

3(τ + 1/2)
uj+1 +

τ − 1/2

τ + 1/2
f
j+1

4 ,397

f
j

5 =
ρ

36(τ + 1/2)

(
1 + 3uj−1 + 3vj−1 + 3u2

j−1 + 3v2
j−1 + 9uj−1vj−1

)
398

+
τρG

12(τ + 1/2)
(1 + 2uj−1) +

τ − 1/2

τ + 1/2
f
j−1

5 ,399

f
j

6 =
ρ

36(τ + 1/2)

(
1− 3uj−1 + 3vj−1 + 3u2

j−1 + 3v2
j−1 − 9uj−1vj−1

)
400

− τρG

12(τ + 1/2)
(1− 2uj−1) +

τ − 1/2

τ + 1/2
f
j−1

6 ,401

f
j

7 =
ρ

36(τ + 1/2)

(
1− 3uj+1 − 3vj+1 + 3u2

j+1 + 3v2
j+1 + 9uj+1vj+1

)
402

− τρG

12(τ + 1/2)
(1− 2uj+1) +

τ − 1/2

τ + 1/2
f
j+1

7 ,403

f
j

8 =
ρ

36(τ + 1/2)

(
1 + 3uj+1 − 3vj+1 + 3u2

j+1 + 3v2
j+1 − 9uj+1vj+1

)
404

+
τρG

12(τ + 1/2)
(1 + 2uj+1) +

τ − 1/2

τ + 1/2
f
j+1

8 .405

406

The notation f
j

i denotes the the distribution function f i at node j; similarly for uj and vj .407
At this stage it is worth noting the special case τ = 1/2. With this choice of relaxation408

time the recurrence in f
j

i is removed and each distribution function only depends on uj and409
vj . Equivalently, the moments of f i at node j only depend on the equilibrium function,410

f
(0)
i , at j and at its nearest neighbours. This specific choice corresponds to the lattice kinetic411

scheme of Inamuro [28].412
As in He et al. [25], The velocity in the bulk, 2 ≤ j ≤ n − 1, is found according to the413

first order moment of f i,414

(3.1)
∑
i

f
j

i ξα = ρuj = ρuj −
1

2

∑
i

Sji =
(
f
j

1 − f
j

3 + f
j

5 − f
j

6 + f
j

8 − f
j

7

)
;415
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which, upon using the above recurrence relation for f i, becomes416

ρuj −
ρG

2
=

2uj
3

+
2τρG

3
+

1

τ + 1/2

(uj−1

6
+
uj−1vj−1

2

)
417

+
1

τ + 1/2

(uj+1

6
− uj+1vj+1

2

)
+

τρG

3(τ + 1/2)
418

+
τ − 1/2

τ + 1/2

(
f
j−1

5 − f j−1

6 + f
j+1

8 − f j−1

7

)
.(3.2)419

We use the recurrence relations for f
j

i to find expressions for
(
f
j−1

5 − f j−1

6

)
and

(
f
j+1

8 − f j+1

7

)
:420

(
f
j−1

5 − f j−1

6

)
= ρuj−1 −

ρG

2
−
(
f
j−1

1 − f j−1

3

)
−
(
f
j−1

8 − f j−1

7

)
;(3.3)421 (

f
j+1

8 − f j+1

7

)
= ρuj+1 −

ρG

2
−
(
f
j+1

1 − f j=1

3

)
−
(
f
j+1

5 − f j+1

6

)
.(3.4)422

(3.5)423

Substituting these into (3.2) and using the recurrence again to eliminate the f
j±1

i in favour of424

f
j

i yields425

(3.6)
uj+1vj+1 − uj−1vj−1

2
= ν (uj+1 + uj−1 − 2uj) +G,426

and we remind the reader that ν = τ/3. Equation (3.6) is the second order finite–difference427
form of the incompressible Navier–Stokes equations with a constant body force:428

(3.7)
∂(uv)

∂y
= ν

∂2u

∂y2
+G.429

The recurrence relations for f i show also (as in [25], likewise) that430

(3.8) v2
j+1 − v2

j−1 = 2τ (vj+1 − 2vj + vj−1)431

and432

(3.9) v2
j+1 − 2v2

j + v2
j−1 = −2τ (vj+1 − vj−1) .433

Adding and subtracting these two equations tells us that vj must be independent of j. Since434
the boundaries impose v1 = vn = 0, we conclude that vj = 0 for all j. The equation (3.7)435
with vj = 0 is a linear ordinary difference equation for uj with solution436

(3.10) uj =
4Uc

(n− 1)2
(j − 1)(n− j) + Us, j = 1, 2, . . . n437

where Uc = H2G/8ν is the center-line velocity and H = (n − 1) is the channel height.438
Us is the “numerical slip” which depends on the boundary conditions. It is a constant so439
the solution, regardless of the boundary conditions, is a perfect parabola off-set from zero at440
the boundaries by an amount Us. Thus there are no boundary layers in the velocity for the441
D2Q9 LBE. For the moment method, u1 = un = 0, as imposed by equation (2.1). Therefore442
Us = 0 and the exact solution for the velocity in Poiseuille flow is obtained.443
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3.1. The stress tensor. The recurrence relations for f i can also be solved for the three444
components of the stress tensor. Starting with the normal component of the momentum flux,445

Π
j

yy = f
j

2 + f
j

4 + f
j

5 + f
j

6 + f
j

7 + f
j

8446

=
2ρ

3(2τ + 1)
+

2τ − 1

2τ + 1

(
f
j−1

2 + f
j−1

5 + f
j−1

6 + f
j+1

4 + f
j+1

7 + f
j+1

8

)
.(3.11)447

We can eliminate the distributions at nodes neighbouring node j by using the recurrence448
relations for f i, which tell us that449

f
j+1

4 + f
j+1

7 + f
j+1

8 = −ρvj+1 + f
j+1

2 + f
j+1

5 + f
j+1

6 ,(3.12)450

f
j−1

2 + f
j−1

5 + f
j−1

6 = ρvj−1 + f
j−1

4 + f
j−1

7 + f
j−1

8 .(3.13)451

Upon using the recurrence relations again and the fact that vj = 0 we see that Πj
yy = ρ/3452

and thus T jyy = 0.453
For the shear momentum flux,454

Π
j

xy = f
j

5 − f
j

6 + f
j

7 − f
j

8,455

=
ρ

3(2τ + 1)
(uj−1 − uj+1)456

+
2τ − 1

2τ + 1

(
f
j−1

5 − f j−1

6 + f
j+1

7 − f j+1

8

)
.(3.14)457

We follow the same procedure as above and use equations (3.3) and (3.4) to eliminate f
j−1

5 −458

f
j−1

6 + f
j+1

7 − f
j+1

8 , and then use the recurrence relations for f i again to replace all f i459
evaluated at nodes neighboring node j. This gives460

(3.15) Π
j

xy =
2ρτ

3(τ + 1/2)
(uj−1 − uj+1) +

(
τ − 1/2

τ + 1/2

)2

Π
j

xy,461

which rearranges into462

(3.16) Πj
xy = −ρ

6
(τ + 1/2) (uj+1 − uj−1) .463

Since Π
(0)
xy = ρuv = 0 for unidirectional channel flow, we obtain the exact expression for the464

shear stress,465

(3.17) Txy =
ρτ

6
(uj+1 − uj−1) .466

This is a consistent second order central finite difference approximation to the Navier-Stokes467
shear stress Txy = µu′.468

To find the solution for the tangential stress469

Π
j

xx =
(
f
j

1 + f
j

3 + f
j

5 + f
j

6 + f
j

7 + f
j

8

)
,470

=
2ρ

9
+

ρ

9(τ + 1/2)
+

2

3
ρu2

j +
ρ

6(τ + 1/2)

(
u2
j−1 + u2

j+1

)
471

+
τ − 1/2

τ + 1/2

(
f
j−1

5 + f
j−1

6 + f
j+1

7 + f
j+1

8

)
472

+
4τ

3
ρGuj +

τ

3(τ + 1/2)
ρG (uj+1 + uj−1)(3.18)473
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we must note that474 (
f
j−1

5 + f
j−1

6

)
= Π

j−1

xx −
(
f
j−1

1 + f
j−1

3 + f
j−1

7 + f
j−1

8

)
,475 (

f
j+1

7 + f
j+1

8

)
= Π

j+1

xx −
(
f
j+1

1 + f
j+1

3 + f
j+1

5 + f
j+1

6

)
.476

Upon using the recurrence relations for f i and respecting the transformation (1.26) we find477
the discrete solution for the tangential stress Txx:478

3
(
4τ2 − 1

) (
T j+1
xx − 2T jxx + T j−1

xx

)
− 12T jxx = 4τ2ρ

(
u2
j−1 − 2u2

j + u2
j+1

)
479

− 16τ3ρG (uj+1 + uj−1 − 2uj)480

+ 6τρG (uj+1 + uj−1 + 2uj) .(3.19)481

We seek a quadratic particular solution of the form T j(PI) = αj2 +βj+γ. Substituting482
into equation (3.19) and using the solution (3.10) for uj with Us = 0 we find483

T j(PI)xx = ρG2

(
−6j2 + 6j(n+ 1)− 3n− 3

2
n2 − 16τ2 +

3

2

)
484

= −2µτ

(
uj+1 − uj−1

2

)2

+ ρG2
(
16τ2 − 3

)
,(3.20)485

The first term on the right-hand-side is a second order centered finite difference approxima-486
tion to−2µτ(u′)2 and the second is an error due to the discretisation of the body force. Since487
G ∝ cs∆t, its presence is consistent with the second order accuracy of the LBE. This term488
vanishes when τ =

√
3/4.489

The homogeneous solution to equation (3.19) is490

(3.21) T j(hom)
xx = Amj +Bm−j ,491

where A and B are constants and492

(3.22) m =
2τ + 1

2τ − 1
.493

We can clearly see the inadequacies of the Navier–Stokes boundary condition for the tan-494
gential stress, which explicitly sets Txx = 0, requiring A and B to be non–zero. We can495
find the coefficients A and B in this case by using the solution (3.10) for the velocity and496
the boundary conditions T 1

xx = Tnxx = 0. To exploit the symmetry of the solution we write497

T
j(hom)
xx = Cmj +Dmn+1−j so that the boundary conditions T 1

xx = Tnxx = 0 determine498

(3.23) C = D = − TW

mn +m
,499

where TW = T
1(PI)
xx = T

n(PI)
xx is the particular solution (3.20) evaluated at the wall. The500

complete solution is thus501

T jxx = T j(hom)
xx + T j(PI)xx ,502

= − TW

mn +m

(
mj +mn+1−j)− 2µτ

(
uj+1 − uj−1

2

)2

− ρG2
(
16τ2 − 3

)
.(3.24)503
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FIG. 12. (colour online) Plot of the discrete ((analytical solution of the LBE (3.24) and computed LBE solutions
of the tangential stress in an infinitely long 2D planar channel using the Navier–Stokes moment-based boundary
conditions for the LBE (2.2)when n = 33 and Ma = 0.1

√
3, and Re = 100.

When τ < 1/2, mj changes sign for odd and even j. This causes the solution (3.24) to504
oscillate near the boundary. This inconsistency becomes more severe as τ → 0 andm→ −1,505
and is worse when the number of gridpoints, n, is even (because in this case the term in the506
denominatormn+m→ 0). For a fixed Reynolds number, τ decreases as either ∆x increases507
(fewer grid points) or ∆t decreases (smaller Mach number). This is in agreement with the508
results reported in Section 2. The discrete solution (3.24) is plotted together with the lattice509
Boltzmann BGK computation of the tangential component of the deviatoric stress in Figure510
12.511

3.2. Interpretation of the recurrence relation. The left hand side of (3.19) defines a512
tridiagonal matrix and reveals the numerical scheme used by the lattice Boltzmann method513
for the deviatoric stress. The special case of τ2 = 1/6 corresponds to the classic fourth order514
compact finite difference approximation for second order derivatives at grid points [30]. This515
value gives precisely the “optimal” collision time reported by Holdych et al. [26] and is sim-516
ilar to that of Zhao [51], as found from a truncation error analysis of the lattice Boltzmann517
equation. The choice of τ2 = 3/16 will eliminate the body force error while τ2 = 1/4 elim-518
inates the recurrence for Txx on the left hand side of equation (3.19). More generally, when519
τ2 = 1/4 the moments of f i only depend on the equilibrium function at nearest neighbours.520
This corresponds to the lattice kinetic scheme of Inamuro [28]. The above analysis offers521
further interpretation of the lattice Boltzmann equation in terms of finite difference stencils.522
Unfortunately, one does not get much freedom to choose numerically favourable values of τ523
with the BGK model, at least not without excessive resolution, because τ is usually set by524
the viscosity or Reynolds number. The two-relaxation-time collision operator offers a way525
forward since parameter that controls the effective stencil of the LBE is the product of two526
different relaxation times, rather than the τ2, as will be discussed in Section 5.527

4. Stress boundary conditions. The previous sections show that the D2Q9 lattice Boltz-528
mann equation hasO(τ2) contributions to the stress. Thus the model should be accompanied529
with compatible boundary conditions for T . We follow Reis [36] and seek a wall stress con-530
dition that is consistent with (1.16). As before, we illustrate the procedure with a solid wall531
at the south of the domain, but the method may be applied to all boundaries aligned with grid532
points.533

For completeness, we write the three components of (1.15) for the deviatoric stress at a534
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no–slip wall in planar channel flow:535

Txx + 2τTxy
∂ux
∂y

= 0,(4.1)536

Tyy = 0,(4.2)537

Txy − µ
∂ux
∂y

= 0.(4.3)538

Substituting equation (4.3) into equation (4.1) gives the required boundary condition for the539
tangential component of the deviatoric stress,540

(4.4) Txx = −2τ

µ
T 2
xy.541

To impose the stress boundary condition upon the lattice Boltzmann equation (1.20) we542
must enforce constraint (4.4) on Πxx and then translate this into conditions for the incoming543
f i. T is related to Π through equation (1.26), and since ux = 0 on the boundary,544

Πxx =
ρ

3
− 2τ + 1

2τ
Txx,(4.5)545

Πxy = −2τ + 1

2τ
Txy.(4.6)546

The above, together with equation (4.4), defines the boundary condition for Πxx in terms of547
Πxy:548

(4.7) Πxx =
ρ

3
+

12τ

ρ (2τ + 1)
Π

2

xy.549

We can express the wall shear stress in terms of the known distribution functions at the wall:550

(4.8) Πxy = −ρG
2
− f1 + f3 + 2f7 − 2f8.551

The appearance of the force ρG is due to streamwise momentum moment, equation (1.24).552
Together with the no-slip condition, the incoming f i at the south boundary are553

f2 = f1 + f3 + f4 + 2
(
f7 + f8

)
− ρ

3
− 12τ

ρ(2τ + 1)
Π

2

xy,554

f5 = −f1 − f8 +
ρ

6
+

6τ

ρ(2τ + 1)
Π

2

xy −
ρG

4
,(4.9)555

f6 = −f3 − f7 +
ρ

6
+

6τ

ρ(2τ + 1)
Π

2

xy +
ρG

4
.556

Equivalent expressions are obtained for the unknown f i at the north wall. More generally, the557
boundary condition for the tangential component of the stress is given in terms of the shear558
stress. If one imposes boundary conditions on the velocity then the wall shear stress can also559
be formulated in terms of the tangential velocity moment and known (outgoing) distribution560
functions.561

This local method is based on the PDE solutions (4.1,4.2,4.3) of the deviatoric stress at562
the boundaries but the lattice Boltzmann solution for the stress includes a small error term563
due the the discretisation of the body force. We can find the analytical solution of the lattice564
Boltzmann stress with the Burnett boundary conditions by writing565

(4.10) T jxx = ρG2

(
−6j2 + 6j(n+ 1)− 3n− 3

2
n2 − 16τ2 +

3

2

)
+ k

(
mj +mn+1−j) ,566
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FIG. 13. (colour online) Plot of the discrete analytical solution (4.11) and LBE numerical prediction of the
tangential stress in an infinitely long planar channel using the moment-based stress boundary conditions (4.9) when
n = 33 and and Re = 100. Left: Ma = 0.1
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3. Right: Ma = 0.01
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3,.

where the constant, k, that multiplies the homogeneous solution is determined by making567
the error vanish at j = 1 and j = n. Thus the analytical solution of the lattice Boltzmann568
deviatoric stress with consistent Burnett boundary conditions is569

(4.11) T jxx = −2µτ

(
uj+1 − uj−1

2

)2

+ ρG2
(
16τ2 − 3

)(
1− mj +mn+1−j

m+mn

)
.570

Equation (4.11) agreed with the computed solutions of the stress to machine precision571
for all tested parameter values and resolutions. Thus we show instead comparisons with572
the analytical solution of the partial differential equation for the deviatoric stress. Figure 13573
plots the computed and analytical solution of the tangential stress, Txx, when Re = 100 and574
n = 33 using the Burnett boundary condition. The oscillations are no longer visible and575
an excellent agreement between the numerical and exact solution of the PDE observed. The576
small error at each grid point is precisely the ρG2(16τ2−3)(1−(mj+mn+1−j)/(m+mn))577
contribution to the discrete T jxx. For completeness we include a plot of the same flow with578
Ma = 0.01

√
3.579

Figure 14 plots the deviatoric stress at Re = 0.1 when Ma = 0.01
√

3 and Ma =580
0.001

√
3 using the proposed stress boundary condition. The method still predicts completely581

different behaviour to the solution (1.16) when Ma = O(10−1). This is due to the slow582
relaxation of the third order moment Q, which violates the assumptions made in Section583
3.1 when deriving the constitutive equation for Tαβ . However, the wall behaviour is now584
predicted precisely and the numerical solutions are free from oscillations. Reducing Ma585
(equivalently, ∆t) by an order of magnitude allows us to compute the stress very accurately586
throughout the channel; something which all boundary conditions discussed in Section 2587
failed to do.588

5. Two relaxation time models. The two-relaxation-time (TRT) discrete Boltzmann589
equation relaxes the odd and even order moments at different rates and can be written con-590
cisely as591

(5.1)
∂fi
∂t

+ ξ · ∇fi = − 1

τ+

[
1

2
(fi + fī)− f

(0+)
i

]
− 1

τ−

[
1

2
(fi − fī)− f

(0−)
i

]
,592
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tangential stress in an infinitely long planar channel using the moment-based stress boundary conditions (4.9) when
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where τ+ and τ− are the relaxation times for the even and odd order moments, respectively,593

ī is defined by ξī = −ξi, and f (0−)
i are the even and odd parts of f (0)

i :594

f
(0+)
i = ρwi

(
1 +

9

2
(ξi · u)

2 − 3

2
u2

)
,(5.2)595

f
(0−)
i = 3ρwiξi · u.(5.3)596

The BGK equation is recovered when τ+ = τ− = τ . The zeroth, first and second order597
moments of (5.1) yield the partial differential equations (1.10)–(1.12), with τ replaced by598

τ+. If we do not assume that Qαβγ ≈ Q(0)
αβγ , as was done in Section 1.1, then the deviatoric599

stress take the form600

(5.4)

Tαβ+τ+

[
∂tTαβ + uγ∂γTαβ + Tαγ

∂uβ
∂γ

+ Tβγ
∂uα
∂γ
− ∂γQαβγ

]
= τ+θρ

(
∂uα
∂β

+
∂uβ
∂α

)
,601

where Qαβγ is the third order moment with respect to the peculiar velocity.602
The third–order moment PDE is603

(5.5)
∂Q

∂t
+∇ ·R = − 1

τ−
(
Q−Q0

)
.604

In terms of the peculiar velocity the left hand side of (5.5) becomes605

∂tQαβγ + ∂δRαβγδ = ∂t
(
Qαβγ + uα

(
c2sρδβγ − Tβγ

)
+ uβ

(
c2sρδγα − Tγα

)
606

+ uγ
(
c2sρδαβ − Tαβ

)
+ ρuαuβuγ

)
607

+ ∂δ [Rαβγδ + uαQβγδ + uβQαγδ + uγQαβδ + uδQαβγ(5.6)608

+ uαuβ
(
c2sρδγδ − Tγδ

)
+ uαuγ

(
c2sρδβδ − Tβδ

)
609

+ uαuδ
(
c2sρδβγ − Tβγ

)
+ uβuγ

(
c2sρδαδ − Tαδ

)
610

+ uβuδ
(
c2sρδαδ − Tαδ

)
+ uγuδ

(
c2sρδαβ − Tαβ

)
611

+ ρuαuβuγuδ] ,(5.7)612
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whereRαβγδ =
∑
i ficiαciβciγciδ .613

We proceed by considering Poiseuille flow where, in terms of the peculiar velocity, equa-614
tions (1.12) and (5.7) reduce to615

−2u′Txy +Q′xxy =
1

τ+
Txx,(5.8)616

R′xxyy = − 1

τ−
(Qxxy − 2uTxy) .(5.9)617

The expression for Txy remains unchanged and is given in (1.16). If τ− � τ+, as is likely618
to be the case for a numerically favourable algorithm (c.f Section 5.1) we cannot assume619
Qxxy ≈ Q(0) and must instead seek a more general solution to (5.9). This equation involves620
the fourth–order tensorRxxyy which, for planar channel flow, evolves according to621

(5.10) − 2u′xTxy +Q′xxy = − 1

τ+

(
Rxxyy −R(0)

xxyy

)
.622

If we now assume623

(5.11) R′ ≈ R(0)′
xxyy =

2

3
uu′,624

then equation (5.9) becomes625

(5.12) Qxxy ≈
2 (τ+ − τ−)

3
uu′.626

Note that Qxxy ≈ 0 when τ+ = τ−. Upon substituting the above into (5.8) we find the627
tangential component of the deviatoric stress,628

(5.13) Txx = 2τ+µuu′′ − 2ρΛ

3

(
uu′′ + (u′)

2
)
,629

where Λ = τ+τ−. At a no–slip boundary we still have Txx = −2ρΛ(u′)2/3.630
The above analysis sheds further light on the results presented in Section 2. In terms631

of the moment basis, standard and non–equilibrium bounce–back impose Qxxy = 0 at the632
walls. This implies Qxxy = 2uTxy . Non-equilibrium bounce-back also sets u = 0, and thus633
Qxxy = 0, which is consistent with equation (5.12) in the interior. For standard bounce-back,634
u is generally small at the walls. This explains why the spurious oscillations are less severe for635
standard and non–equilibrium bounce back than for the original moment method and diffuse636
reflection when Re = 100 and Ma = 0.1

√
3. Note that the diffuse reflection condition637

places non–zero constraints on the third order moments. In particular, since Πyy = Π
(0)
yy , the638

method imposes Qxxy = ρ/9−Rxxyy at the boundary.639

5.1. Analysis of a lattice Boltzmann equation with two relaxation times. The lattice640
Boltzmann algorithm with two relaxation times can be written concisely as641

f i (x + ξi, t+ 1) = f i (x, t)− 1

τ+ + 1/2

[
1

2

(
f i + f ī

)
− f (0+)

i

]
642

− 1

τ− + 1/2

[
1

2

(
f i − f ī

)
− f (0−)

i

]
.(5.14)643

The discrete solutions of the TRT model for planar channel flow may be obtained in the same644
manner as the BGK case discussed in Section 3. Precisely the same solutions are obtained for645
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u, Txy and Tyy. The equation for the tangential stress is similar to equation (3.19) but with646
τ2 replaced by Λ = τ+τ−:647

3 (4Λ− 1)
(
T j+1
xx − 2T jxx + T j−1

xx

)
− 12T jxx = 4Λρ

(
u2
j−1 − 2u2

j + u2
j+1

)
648

− 16Λτ+ρG (uj+1 + uj−1 − 2uj)649

+ 6τ+ρG (uj+1 + uj−1 + 2uj) .(5.15)650

The numerical advantages of the TRT model are evident. We have already shown that651
there is no numerical slip error with the moment method, allowing the freedom to select the652
odd relaxation time based on stability requirements alone. Therefore we can set Λ = 1/4 and653
adjust τ+ according to the flow parameters while still satisfying the boundary conditions. We654
are also free to choose Λ = 1/6, corresponding to the classic Padé compact finite difference655
scheme [30] without sacrificing the accuracy of our boundary conditions. The choice of656
“magic parameter” Λ = 1/6 was found previously to eliminate fourth order spatial errors and657
thus said to be the optimal choice for computing diffusion [17]. Also, the error due to the658
body force discretisation can be elimianted for any Re number by setting Λ = 3/16. This659
is the value of the “magic parameter” that eliminates the numerical slip error of bounce-back660
[16]. However, although a fixed value of Λ allows for an adjustable viscosity, it does not661
permit a variation in the coefficient µτ−. That is, a fixed Λ will not allow for a variable662
relaxation of the largest contribution to the stress at O(τ2).663

The method for imposing consistent Burnett stress boundary conditions first presented664
by Reis [36] and revisited in Section 4 is here modified for a TRT scheme. Since the no-slip665
condition is satisfied exactly for any collision operator with the moment-method we can still666
impose the tangential stress to be proportional to the square of the shear stress. But in light667
of equation (5.13), equation (4.4) is modified to668

(5.16) Txx = −2τ−

µ
T 2
xy.669

The boundary condition for Πxx now becomes670

(5.17) Πxx =
ρ

3
+

12τ−

ρ (2τ+ + 1)
Π

2

xy,671

and the unknown f i are found to be672

f2 = f1 + f3 + f4 + 2
(
f7 + f8

)
− ρ

3
− 12τ−

ρ(2τ+ + 1)
Π

2

xy,673

f5 = −f1 − f8 +
ρ

6
+

6τ−

ρ(2τ+ + 1)
Π

2

xy −
ρG

4
,(5.18)674

f6 = −f3 − f7 +
ρ

6
+

6τ−

ρ(2τ+ + 1)
Π

2

xy +
ρG

4
.(5.19)675

Figure 15 plots the tangential stress Txx at Re = 100 and Re = 0.1 using the TRT stress676
boundary conditions with Λ = 1/4. The Mach number and grid resolution are Ma = 0.1

√
3677

and n = 33, respectively. The PDE solution for the Burnett stress (5.13) and the discrete678
analytical solution (5.15) are also shown. The numerical prediction is completely free of679
spurious stress oscillations due to the consistent treatment of boundary values. Moreover, the680
agreement between the three solutions is excellent, which verifies our analysis and justifies681
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FIG. 15. (colour online) Plot of the PDE solution (5.13), discrete analytic solution (5.15) and numerical
(computed TRT LBE) prediction of the tangential stress in an infinitely long planar channel using the TRT moment-
based stress boundary conditions (5.18) with Λ = 1/4, Ma = 0.1

√
3 and n = 33. Left: Re = 100; Right:

Re = 0.1.

the proposed boundary conditions. The computed solution form the LBE and and analytical682
solution of the LBE agree to machine precision and the difference between the LBE and the683
PDE solution differ by ρG2(16Λ−3)(1−(mj+mn+1−j)/(m+mn)) at each grid point. The684
same trend has been observed when Λ = 1/6 and all tested parameters. When Λ = 3/16, the685
force error is removed.686

Note that Kn = O(1) for the right–hand plot of Figure 15, which is usually considered687
to be outside the realm of D2Q9 lattice Boltzmann models We must interpret this result with688
caution. The long relaxation time of the third order moment, as set by Λ, and the resulting689
negative parabolic profile of Txx may not be physically relevant. Be it a physical model or690
numerical artefact, the TRT constitutive equation for stress at second order exists and a failure691
to recognise it may result in a loss of computational accuracy, efficiency, and stability.692

6. Discussion. Moment-based boundary conditions for the lattice Boltzmann equation693
usually assume that the tangential component of the deviatric stress vanishes at solid no-slip694
walls, as is the case in the Navier–Stokes equations. However, even though the D2Q9 model695
cannot capture kinetic effects in the velocity field, the deviatoric stress does include non-zero696
contributions at O(τ2) which coincide with the Burnett stress for isothermal planar channel697
flow. The neglect of these manifests in prominent oscillations in the computed solution of698
the stress, jeopardising the numerical stability and accuracy of the algorithm. This article has699
analysed the stress field as modelled by BGK and TRT lattice Boltzmann equations in planar700
channel with Navier-Stress and Burnett conditions to better understand the lattice Boltzmann701
deviatoric stress.702

In Section 3 we followed He et al. [25] and analytically solved the BGK lattice Boltz-703
mann equation in planar channel flow for both the velocity and stress fields. The moment-704
based method was shown to give the exact solution for the velocity using the minimum num-705
ber of grid points (n = 3 =⇒ ∆x = 1/2). The analytic solution for the tangential706
stress highlights the incompatibility of the Navier–Stokes moment-based boundary condi-707
tions which, by forcing Txx = 0, includes an inconsistent homogenous contribution and708
causes rapid oscillations in the computations when τ < 1/2. The Burnett boundary condi-709
tion of Reis [36] for the deviatoric stress was revisited in Section 4 and modified for TRT710
schemes in Section 5. This method is fully local in space and time and inherits all the compu-711
tational advantages of the lattice Boltzmann algorithm. Moreover, it eliminates the spurious712
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oscillations in the stress field and the exact agreement between the solution of the reccurence713
relation and the numerical simulations confirmed our analysis. The small discrepancy be-714
tween the LBE and discrete Boltzmann PDE solution atO(τ2) has been identified and shown715
to be due to the space-time discretisation of the force term.716

The analytical solution reveals further numerical characteristics of the lattice Boltzmann717
equation. Equation (3.19) defines a tri–diagonal matrix for the deviatoric stress. For the718
specific value τ2 = 1/6 this difference equation corresponds to a fourth–order compact finite719
difference scheme (Padé scheme) for second order derivatives at gridpoints [30]. This is720
precisely the apparently “optimal” relaxation time found by Holdych et al. [26]. The choice721
τ2 = 1/4, on the other–hand, can be seen to enhance the numerical stability of the algorithm722
since it eliminates the recurrence in equation (3.19). This most stable value of τ for the BGK723
model is the basis of the lattice kinetic scheme of Inamuro [28]. The error due to the force724
vanishes when τ2 = 3/16. In this case, the LBE solution agrees with the PDE solution to725
machine precision.726

The BGK model with equilibria defined by equation (1.4) does not permit the freedom727
to choose the relaxation time based on numerical considerations since τ is defined by the728
Reynolds number. In Section 5 we repeated our analysis with the two relaxation time model729
[19, 10]. Here it was shown that the numerical characteristics are governed by the product of730
the odd and even relaxation times, Λ = τ+τ−, as discussed in the seminal work [10, 17]. Now731
for any Reynolds (and Mach) number, one may eliminate the stress recurrence by choosing732
Λ = 1/4 and adjusting the odd relaxation time accordingly (see also [10]). This may be733
useful for high Reynolds number flows on coarse domains. Similarly, setting Λ = 1/6 yields734
a compact finite difference scheme for second order derivatives, which may be advantageous735
for diffusion-dominated flows. The error due to the force discretisation vanishes when Λ =736
3/16, and this is likely to be a good choice for flows that are dominated, by the body force.737
Moreover, this is the value of the so-called “magic parameter” that eliminates the numerical738
slip error of bounce-back and yields a consistent algorithm [16]. However, one does not have739
the freedom to adjust the relaxation rate of the dominant contribution to the deviatoric stress740
with a favourable value of Λ. Thus the analysis has shed further light on the structure of the741
D2Q9 lattice Boltzmann algorithm, the influence of the relaxation times on the numerics, and742
the O(τ2) Burnett contributions to the stress at boundaries.743
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