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ABSTRACT In electronics manufacturing, the necessary quality of electronic components and parts is
ensured through qualification testing using standards and user requirements. The challenge is that product
qualification testing is time-consuming and comes at a substantial cost. The work contributes to develop a
novel prognostics framework for predicting qualification test outcomes of electronic components enabling
the reduction of qualification test time and cost. The research focuses on the development of a new,
prognostics-based approach to qualification of electronics parts that can enable ‘‘smart testing’’ using
data-driven modelling techniques in order to ensure product robustness and reliability in operation. This
work is both novel and original because at present such approach to qualification testing and the associated
capability for test time reduction (respectively cost reduction) it offers are non-existent in the electronics
industry. An effective way of using three different methods for development of prognostics models are
identified and applied. Predictive models are constructed from historical qualification test data in the form of
electrical parameter measurements using Machine Learning (ML) techniques. ML models can be imbedded
within the sequential electrical tests qualification procedure and enable the forecasting of the pass/fail
qualification outcome using only partial information from already completed electrical tests. Data-driven
prognostics models are developed using the following machine learning techniques: (1) Support Vector
Machine (SVM), (2) Neural Network (NN) and (3) K-Nearest Neighbor (KNN). The results show that with
just over half of the individual tests completed, the models are capable of forecasting the final qualification
outcome, pass or fail, with accuracy as high as 92.5%. The predictive power and overall performance of the
researched models in predicting qualification test binary outcomes with varying ratios of Pass and Fail data
in the processed datasets are analysed.

INDEX TERMS Data-driven prognostics, data analysis, machine learning, modeling, electronics manufac-
turing, quality, qualification testing.

I. INTRODUCTION
The global market for electronic products is anticipated to
reach US$2.4 trillion per year by 2020 [1]. This growth has
directed to intense competition between manufacturers to
minimise the time-to-market and cost of their products while
at the same time delivering high quality products to the cus-
tomers. However, ensuring functional requirements and qual-
ity of electronics components, respectively products, involves
the adoption of time-consuming and resource-intensive pro-
cesses, which is a main tailback from an economics point of
view and also for the rapid release of these products to the
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market. The challenges are to identify solutions for meeting
the quality requirements specified for electronic products in a
cost effective manner. Quality testing of the products within
the shortest possible time is also one of the key priorities for
many electronics manufacturers.

Qualification and reliability testing, and quality assurance
processes are the most common approach to assess per-
formance and ‘‘fit-for-purpose’’ characteristics of the prod-
uct [2]. Qualification is a process depending on applications.
Therefore, qualification specifications or requirements are
not same for all applications. The process varies from one
product to another product. Commonly, the manufacturers
produce product according to application constraints, which
meet customer requirements. Therefore, testing is important
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to ensure that the anticipate products meet the speci-
fied requirements by fulfilling operational functionality and
performance [3], [4].

Qualification testing of electronics products is performed
on several parameters which indicate functional state of each
electronic component or product. The outcome of qualifica-
tion test is mostly binary namely either pass or fail, true or
false. It is depended on the test values as well as associated
specified test limits which are required to measure for indi-
vidual product. A test value within the expected test range is
associated with pass status of the product under qualification
and indicates that the required quality is present. Quality is
important as it also predetermines, alongwith other attributes,
the subsequent reliability. In the context of a product devel-
opment process, qualification test results are regularly fed
back to the design teams and to the manufacturers to enable
resolving issues and realising required improvements.

Electronics industry has common practice to conduct qual-
ification test measurements, for example, to confirm trace-
ability information is available, and as a result companies in
such instances have access to large historical sets of quali-
fication test data for their products. In most cases, the data
remains unused. However, there is a great possibility to
enable the optimisation of qualification test procedures with
the information in the data.

The measured parameters and logical tests in a qualifica-
tion specification performed on an electronic product could
vary from only a few to potentially hundreds. Therefore, it is
required to minimise the overall test time by adopting an
optimum qualification testing procedure. It would be a great
advantage if the test times are reduced leading to a reduction
in reducing production costs as well as product delivery time
to the customer. One potential way of reducing qualification
test time is by adopting prognostics models developed using
available historical qualification test data and capable to accu-
rately forecast the final test outcomes (pass/fail).

Data-driven prognostics approaches such as those that use
machine-learning techniques can take advantage from the
availability of historical data and use this data to ‘‘train’’
selected model structures to capture and recognise the effects
of changes in measured or monitored parameters on manu-
facturing process or product operational trends. For example,
a comparison between in-situ data and healthy baseline data
helps to detect anomaly. The data is usually gathered under
several modes and load conditions under which a product
is projected to function. [5], [6]. Machine learning is an
influential approach which has capability of analysing and
making decision based on pattern of historical data. The
advantages of ML are not yet fully established and hence it’s
current use in many industrial applications domains are still
limited. However, more recently the result of the increasing
use of IoT, this has started to change. The use of machine
learning algorithms namely Support Vector Machine (SVM),
Neural Network (NN) and K-Nearest Neighbor (KNN) [7]
has become more common and started to play an important
role in tasks related to attaining active and ideal outcomes by

intensive analytics of historical data. Machine learning tech-
niques are currently used in electronic product manufacturing
for different purposes such as product qualification, yield pre-
diction, automatic defect detection, and defect classification.

Jaai et al. [6] have proposed a multivariate state estimation
method to identify the onset of failure in ball grid arrays.
A sequential probability ratio test was completed with accel-
erated temperature cycling (ATC) tests. Luan et al. [8] have
proposed a technique for conducting qualification of IC pack-
ages. This was considered under drop impact during early
design stage to qualify the package which can significantly
shorten the development time and associated cost. Manufac-
turers also adopt predominantly standards-based qualifica-
tion testing [9] to warrant quality and functional requirements
of electronic products used in different applications are met.
The inappropriate association between field use and test con-
ditions stimulate to the insufficient qualification that leads
to unforeseen product failure while in service and excessive
economic damages.

Stoyanov et al. [10] have proposed a qualification method
for determining reliability of electronic products as an alter-
native to physical testing for improving efficiency and robust-
ness. Self-organising Map (SOM) is used to map a new
product through similarity approach with respect to groups
of previously tested parts of known qualification test results.

Park et al. [11] have suggested computational method
for predicting packaging yield in semiconductor fabrication.
An algorithm (random forest) has been employed to iden-
tify variables which are related in packaging yield. In addi-
tion, a nonlinear SVM is employed for yield classification.
Sohan and Lee [12] have suggested canonical correlation
analysis to obtain relationship between multiple process con-
trol monitoring variables and various probe bin variables of
IC semiconductor to improve the yield. Kupp andMakris [13]
have developed a model-view-controller (MVC) architec-
ture to solve low yield in semiconductor manufacturing.
Gun Kim et al. [14] have proposed machine learning
approach to improve packaging yield in semiconductor man-
ufacturing. The authors have used fab measurement data,
wafer test data, and package test data during analysing.

Kim et al. [15] have proposed machine learning classifi-
cation models such as linear regression, KNN, decision tree,
NN and support vector regression to identify wafers, which
are faulty during semiconductor manufacturing. The models
were developed with the use of fault detection and classi-
fication data to distinguish faulty wafers. Chou et al. [16]
describes defect classification (ADC) system that performs
identifying defects on semiconductor chips at various manu-
facturing stages. Probabilistic Neural Networks (PNN) clas-
sifiers was used to improve the defect detection accuracy
and reduces operator workload. Boubezoul et al. [17] have
proposed a classification approach to detect defective wafer.
Machine learning algorithms such as Generalized Relevance
Learning Vector, SVM, KNN and Parzen were employed to
improve detection rate of defective wafers. Lee et al. [29]
have presented a data-driven method capable of reducing
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qualification time of Lithium-ion (Li-ion) batteries before
its end-of-life (EOL). The method fast detects anomaly in
unhealthy batteries using curvature value of a capacity fade
curve. Particle filter was employed to reduce test time by
1.8 months from 3-6 months. However, the system did not
provide any relationship between time-to-anomaly detection
and EOL.

While most of the research and applications of machine
learning and computational intelligence techniques relate
to the process monitoring and control of electronics and
diagnostics/prognostics under failure test or in-field oper-
ational loads, the use of such technologies to improve or
optimise qualification testing of electronics parts is yet to be
realised and demonstrated.

In the authors’ previous work, an Off-line data analytics
and imbedded in-line model-enabled prognostics approach
has been proposed for smart qualification test of an elec-
tronic product using SVM [18]. The aim of this study is
to develop a machine learning based novel computational
approach for predicting qualification test outcomes of an
electronic module using historical test data. This approach
would help to reduce test time and huge cost associated with
the qualification testing. The proposed approach has explored
the competency of machine learning algorithms such as NN,
SVM, and KNN in predicting qualification test outcomes.
Prediction accuracies from each algorithm are assessed and
a performance comparison of the algorithms is presented in
this paper.

II. FRAMEWORK FOR PREDICTING QUALIFICATION
TEST OUTCOME
The type of qualification testing considered in this research
work is the most common electrical parameter testing where
the qualification involves undertaking a sequence of discrete
tests associated parameter measurements of the electronic
part/product. For each of the individual tests, the measured
parameter value must fall under the specification range if it is
to be considered as PASS.

An electronic part is qualified when all discrete tests con-
stituting the qualification specification are passed. The testing
of a part is stopped if the part is failed under a test in the
sequence. Huge number of electrical, logical and other func-
tional parameter measurements are involved for most of the
qualification procedures of the complex electronic product
and therefore, the total test time could be a lengthy process.
Given the sequential nature of executing the individual qual-
ification tests, a prospective way to shorten the qualification
time is taking benefit of the fact that as the testing progresses,
more and more data of already completed individual tests
becomes available, and thus it becomes possible to minimise
the available measurement’s and aim to infer if remaining
tests are likely to be passed or if one or more of them may
fail. In essence, developing machine-learning models could
provide huge opportunities for predicting qualification test
outcome of an electronic part of interest with the use of past
historical data. The models could forecast the qualification

FIGURE 1. Conceptual schematic of the proposed prognostics approach.

outcome using known individual test results up to a given
point in the sequence of tests.

The proposed prognostics framework for predicting the
qualification test outcomes (Pass/Fail) of the electronic prod-
uct is shown in Fig 1. The framework is capable of assisting
smarter testing by employing knowledge gained through test
data analytics. Data-driven prognostics models were devel-
oped using test data for forecasting anticipated qualification
tests outcome. Offline smart tests was accomplished through
failure statistics and similarity tests and details of the tests
data analytics are presented in [18]. This paper presents an
offline analytics to develop prognostic models for forecasting
the overall test outcome by evaluating model performances
following five individual steps.
Step 1: Qualification testing is required for the electronics

industry to obtain electrical/functional test measurements.
At the beginning, a qualification test data set of an electronic
part with a mix of known pass and fail data was obtained from
an electronic manufacturer.
Step 2: The data related to pass and fail electronic parts

are separated at the data pre-processing stage. Detection
and elimination of data outliers in the data set is typically
a required step that can be automated and be executed by
adopting a number of techniques and criteria. The measured
values in the individual tests are normalised, for example in
the range 0 to 1 to facilitate prognostics model development.
The strategy of considering upper and lower limit as the
maximum and minimum values from the cleaned data has
been implemented. The main advantage of this technique is
that one rule can be applied across the whole range of tests.
Further details of normalization can be found in [18].
Step 3: A master data set is organised to develop sev-

eral training data sets using different combinations of data
related to pass and fail with their corresponding (known)
qualification outcomes. The training data sets are employed
to developmodels with different machine learning algorithms
(SVM, KNN and NN).
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FIGURE 2. Prediction scenario for qualification test outcome.

Step 4: During the qualification test process ML is devel-
oped with first k tests in the test sequence as training datasets.
The model can predict outcome of all future n sequential tests
using the partially completed tests (1 to k).
Step 5: A validation data set is also generated from the

master data set to test the prediction accuracy of the devel-
oped models and to validate them. The performance of each
model structure is evaluated by calculating a prediction error.
The models are then used to predict the likely outcome of the
overall qualification – PASS or FAIL for a new device.

Fig. 2 outlines schematically the approach for optimisation
of the qualification process using machine learning predic-
tive models. If the total number of qualification tests in the
sequential testing is n, and the number of completed tests
is k (i.e. k is the current test being completed, and tests k+1,
k+2, ..., n not yet undertaken), a machine learning model
built with past historical data and taking the tests parameter
values as inputs for tests 1, 2,..., k can be executed to forecast
what the expected final outcome of the qualification is. The
model infers, on the basis of completed test results, if a failure
under the remaining, not yet undertaken tests, is likely (pre-
diction FAIL outcome) or not (prediction for PASS outcome).
If the evaluated expected model accuracy is acceptable for the
application where the electronic part is used, a decision might
be accepted to terminate the testing at test k and not to run the
remaining tests. This will reduce the qualification test time
as part of the quality assessment procedure and respectively
provide cost savings.

III. MACHINE LEARNING ALGORITHMS: DATA
CLASSIFICATION
Machine learning techniques are extensively used to solve
classification problems particularly where large amount of
data are used [19]. Supervised and unsupervised are the two
core branches of machine learning techniques. Supervised
machine learning is built with input data and associated
output data whereas unsupervised learning have only input
data without having any corresponding output data [20]–[22].
Supervised machine learning can be divided as classification
and regression. Classification is used as supervised learning
method. Themodel is built and learned functions from a train-
ing data set (input and output data). In a classification prob-
lem, output data represent different categories such as pass or
fail and good or bad. Classification has data mining capability
that can discover the knowledge embedded in databases using
artificial intelligence, statistical and mathematical methods
for extracting and classifying useful information.

FIGURE 3. A Generic NN model structure.

A. NEURAL NETWORK (NN)
NN is a network model structure that can be seen as being
arbitrary function approximation of highly nonlinear data.
Fig. 3 shows a generic NN model structure. The definition
of the model structure has high degree of flexibility which
enables the NN to etablish effectively the relationship within
the modelled data, and thus to be used for predicting the
performance of the observed system. To formulate different
data sets it is required to avoid over-fitting of data for training
with the network. Different training and validation data sets
are required to execute and validate the model.

Input, output and validation are three main data sets for
building a NN model. First, a NN model is created after
training with the input data and the known output data. Then
the validation data set is used to measure the prediction
performance of the model [22].

Feed forward NN and LevenbergMarquardt (LM) learning
algorithm are used to construct a complete NN model. Feed
forward NN is selected for predicting the test outcomes of
the qualification data. Levenberg Marquardt (LM) learning
algorithm is used to train the NN [22]. Gradient descent
method and the Gauss-Newton method are combined in this
network. The algorithm has the capability to solve nonlinear
problems using its standard technique. Training performance
is evaluated using mean squared error to simplify the con-
struction of a network by minimising the sum of the squared
errors. The sum of squares is estimated by Hessian matrix
as H = JTJ , where J is Jacobian matrix, gradient g = JTe
where e is considered as network error and Levenberg-
Marquardt training algorithm is presented by Eq. 1.

Xk+1 = Xk − [JT J + µI ]−1JT e (1)

where Xk denotes connection weight at iteration k , µ repre-
sents scalar combination coefficient that performs a transfor-
mation to gradient descent or Gauss-Newton algorithm and
I represents as Identity matrix. The descent gradient method
is a common learning rule used for realising the NN training
process. The error function is used to compute the error
between the outcome of training and the desired output. This
is completed by determining the sum of the squared errors of
the total number of input and desired output patterns of the
training set. The error function is given by Eq. 2.

ε =
∑

tp − fp (2)
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where tp is the desired output and fp is the actual output. The
target of this learning rule is to find the appropriate values of
weights that can minimise the error.

B. SUPPORT VECTOR MACHINE (SVM)
SVM is a linear or non-linear classifier that contains math-
ematical function to differentiate two different kinds of
objects. Input and output data sets are required to train and
create an SVM model.

A validation data set (unknown output) is used to validate
the performance of the model. However, the SVM model is
also capable of holding data from the training set for auto-
matic model validation. SVM is a supervised machine learn-
ing algorithm mainly used for binary classification problems
that can minimise generalisation errors. The algorithm is also
used for multiclass problem. The fundamental concept of this
algorithm is to separate classes of objects in the data space
with the use of kernel function and functional margin. Kernel
functions solve nonlinear problems with higher dimension as
feature space. Then the functional margin minimises the gen-
eralisation errors of classifier by finding optimal hyperplane.
This hyperplane creates the finest split-up boundary between
two classes. To separate training data linearly, SVM tech-
nique can help to prepare the training data for classification
into a higher-dimensional space [23], [24].

Assume {xi, yi} where i = 1, 2,. . . ,N, is a set of training
data where each sample xi ∈ Rn, n is size of the input
space which belongs to a class. The samples are assumed
have two classes namely positive and negative, which can be
expressed as yi ∈{−1, +1). In the case of linearly separable
data set, a decision boundary or separating hyperplane can be
expressed by Eq. 3 to separate the given data.

ωx + b = 0 (3)

where, ω, a hyperplane normal vector and b, a scalar offset
are parameters of the model and x is the set of attributes of
themodel. Fig. 4 shows an example of the optimal hyperplane
of two data sets and support vectors which are on the margin.
The optimal hyperplane decision function can be formulated
by Eq. 4 [23].

f (x) = sgn(w0x + b0) = sgn(
N∑
i=1

α∗i yi(xix)+ b0) (4)

C. K-NEAREST NEIGHBOR (KNN)
KNN algorithm is a classification procedure that is capable
of classifying objects of available closest training instances
in the problem domain using supervised learning technique.
KNN algorithm works according to the following steps:
(1) parameter determination, (2) distance calculation between
query-instance and all the training samples, (3) sorting of
distances samples (training) and determination of nearest
neighbor on the basis of Kth minimum distance, (4) categori-
sation of the training samples for the arranged value which
exist under K and (5) measurement of the prediction value
using majority of nearest neighbors [25].

FIGURE 4. Optimal hyperplane used in SVM for separating data.

FIGURE 5. Two dimensional KNN.

KNN accomplishes classification of objects from the near-
est learning data of the objects. K is considered as a positive
integer and the neighbors are selected from the classified
object. A learning set represents the data characteristics while
the data are situated in many dimensional spaces. K value
can decrease the influence of noise and creates boundaries
on each classification. Euclidean distance is commonly used
to calculate distance within new data set and training data.
Euclidean distance between two points p and q can be
expressed by Eq. 5

Rd1 =

√(
px − qx

)2
+

(
py − qy

)2
Rd2 =

√(
px − qx

)2
+

(
py − qy

)2
+
(
pz − qz

)2 (5)

where space dimension considered as, d = 2 and d = 3.
Assume that set S contains n points, query point is defined
as Pi (Pi ∈ S) and subset C comprises k points then C ∈ S,
k < n, for P1 ∈ C, P2 ∈ S-C, that can be met by Eq. 6 [26].

dist (Pi,P1) ≤ dist (Pi,P2) (6)

Fig. 5 shows an example of KNN decision rule in two
dimensions for K= 2 and K= 7 for a set of samples divided
into two classes.
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FIGURE 6. Sample of raw qualification test data in a normalised form.

An unknown sample (star symbol) is classified by using
two closest known samples when k = 2. However for k = 7,
seven known closest values are used to classify the unknown
sample. In the last case, four samples belong to the same class
whereas three belongs to the other class.

IV. STUDY CASE
A. QUALIFICATION TEST DATA
Qualification test of an electronic module is used to demon-
strate the proposed approach for test time reduction. The
data is derived based on qualification specification for the
product that includes different types of electrical parameter
tests total of 95 individual tests, performed sequentially, are
conducted on each module to determine whether it passes or
fails the qualification requirements. Fig. 6 shows a sample
of normalised raw data from the qualification test of the
electrical module collected from a manufacturer. The column
wise measured parametric values indicate each sequential test
whereas the test results for eachmodule are presented in rows.

Once a module is failed then the test is stopped and it is
not required to carry out further tests. Then a value with an
asterisk (∗) is showed for the module. Hence no test data will
be available for the module from that failure point. First four
rows indicate parametric tests no, parameters, upper limit and
lower limit of the individual test.

B. DATASETS FOR MACHINE LEARNING
The development of prognostics models in this study follows
a machine learning based data-driven approach. The models
are developed and validated using historical datasets of mea-
sured parameters (i.e. this is the data on the qualification test
measurements of electrical parameters) and associated data
of the observed outcome (in this study this is the qualification
status outcome, pass or fail).

The study demonstrates the proposed prognostics approach
for the case when the prognostics models are to be used
on a tested electronic module after completion of the first
60 individual qualification tests in the overall sequential pro-
cedure. In this instance, there are another 35 remaining tests
yet to be undertaken. Thus, this particular investigation is

looking at the potential to use developed models with the
measured test data of the tested module for tests 1 to 60
(model inputs) to evaluate the final qualification outcome.
If the model accuracy is acceptable, in practice and in this
instance it may be possible to accept status of qualification
without undertaking the remaining 35 tests, and hence reduce
qualification time. The first 60 individual sequential tests
have been used to develop ML models. Then the remaining
new 35 sequential tests are used to predict the tests outcome
with the developed models. The last 35 tests are not related
to first 60 tests. This will reduce the test number through
prediction.

A dataset, in this study, contains qualification test data
records (data points) for electronic modules, either pass or
fail; each of which is represented mathematically as a vector
holding the measurement test results of the first 60 sequential
tests in the qualification. These vector components will act as
model inputs [27]. Because this is historical data, the qualifi-
cation outcomes for each tested module are known. Hence,
each data point can be associated with a known status for
qualification, pass (1) or fail (0), thus forming a pair of known
data in the form of (input, output).

1) TRAINING DATASETS OF QUALIFICATION TEST DATA
The quality of the developed models is highly dependent on
the data used. To obtain diverse and deep insight knowl-
edge of the effects of the datasets, five training data sets
are arranged from the master data set, each containing and
combining in a certain way pass and fail data from tested
electronic modules. The respective sizes of the five qualifi-
cation test training datasets are 1164, 2000, 4000, 5000 and
10000 respectively. The total number of the data records,
both pass and fail, in the master dataset is 50,000+ but the
fail data records are only 622. Building predictive models
from data to forecast pass or fail qualification status for the
electronic modules requires both pass and fail data to enable
the learning algorithms establishing the potential correlations
between qualification tests measurements (model inputs).
Therefore, the definition of the datasets for model training
purposes aimed to maximise the size, selected to be 582 data
points, of the data associated with qualification failure. The
remaining 40 failed module data records are used as part of
the validation datasets. Therefore, in each data five datasets,
with set, to the number of the data points for the failed
electronic modules is constant and fixed to 582.

Three sub-training sets are formulated from each training
set by varying the ratio between the numbers of data points
associated with fail and pass modules. The ratio of number of
fail and pass modules is expressed as R by Eq. 7.

Ratio, R=
No. of FAIL modules in training data sets
No. of PASS modules in training data sets

(7)

The three data sub-sets to each of the five datasets are
defined on the basis of using three sub-sets of failed data
records with sizes 582 (i.e. all failed data in the training set),
400 and 200. As the total size of the data in the five training
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TABLE 1. Data arrangement for training and validation in SVM, NN and
KNN for different training data sets.

sets (TS1 to TS5) increases from 1164 to 10,000, the
15 sub-sets of data obtained have varying ratio in the range
0.02 to 1.0. Table 1 provides summary of the definition of
the training sets and their respective subsets along the size of
data of pass and fail modules. The last column of the table
provides the ration R of fail to pass data in the data subsets.

2) MODEL VALIDATION DATASETS OF QUALIFICATION
TEST DATA
As detailed in Table 1, 15 sub-sets of training data are defined
and used to develop the prognostics models. As part of the
model development strategy, validation of the accuracy of
the constructed models is performed. The validation uses
qualification test data not used as part of the model train-
ing computations. In this study, three validation datasets are
defined as follows:

1. Validation set VS1: Size of the data sets is 40 and all
data is associated with electronic modules that passed the
qualification specification. There is no data in this data set
from modules which failed the qualification

2. Validation set VS2: Size of the data sets is 40 and all
data is associated with electronic modules that failed the
qualification specification. There is no data in this data set
from modules which passed the qualification.

3. Validation set VS3. A combined data set of VS1 and
VS2, with size of 80.

The rationale to use three different validation datasets as
defined above is to enable better assessment and evaluation

FIGURE 7. Examples of training models developed by SVM algorithm
using the S1C training dataset.

of the performance of the constructed models in predicting
the two possible qualification outcomes in the context of the
different data ratios used in the training datasets test.

3) PROGNOSTICS MODELS DEVELOPMENT USING
MACHINE LEARNING
Machine learning models are developed for each of the
15 training subsets listed in Table 1. NN, SVM and
KNN algorithms were employed and their performance in
the context of the specification of the training datasets was
investigated. NN, SVM and KNN models predict the pass-
fail outcome using different model structures suitable for
classification of data. The model input the test measure-
ments available for the first 60 tests in the qualification.
Results from these models are in the form of the so-called
confusion matrix, which details the results as percentage
of correct/incorrect classification of the predicted outcomes.
An example of predictive accuracy for the SVM model
when developed with the training dataset S1C are illustrated
in Fig. 7.

C. VALIDATION RESULTS
Fig. 8 presents prediction accuracies of the qualification test
outcomes by SVM, NN and KNN algorithms using the train-
ing sets containing 1164 data points (TS1) and three different
validation data sets. When the models were validated with
pass and fail data the results in Fig. 8(a) showed that for
SVM and NN the accuracies increased with the fail to pass
ratio and reached to the maximum values when the ratio
is highest (R=1.0; implying same number of pass and fail
data points in the training set). This indicates that accuracy
is sensitive to the sizes of fail and pass data, and accuracy
overall increases as good balance of both is present. Based
on the validation result using the sub-set of fail data, it is
also observed that there is a strong dependency of accuracy,
across all model structures, on the amount of failed data in the
training data set. Similarly, the models from predominantly
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FIGURE 8. Comparison of qualification test outcome prediction
accuracies by SVM, NN and KNN using a training set TS1 when validated
with (a) pass and fail data (b) only fail data and (c) only pass data.

pass training data when R=0.2 showed best performance in
the case of the pass only validation dataset. The results also
showed that for all ratios SVM performed better than the
other two algorithms. Similar behavior was also observed in

the prediction accuracy results validated with the fail data
only (Fig. 8(b)). However, the rate of increase of prediction
accuracies with the ratio is higher for all three algorithms
though the accuracies decreased significantly at the lower
ratios (0.21 and 0.52). In this case, SVMperformance is again
far better than the other two.

Different behavior was observed in the prediction accura-
cies when validated with the pass data only (Fig. 8 (c)). All
models show higher prediction accuracies compared to the
other two validation cases.

The prediction accuracies achieved by the NN models
remain constant to 100% for all the ratios. On the other
hand, the prediction accuracies by the SVM and KNN mod-
els slightly decreased with an increase of the ratio in con-
trast to the results obtained using the other two validation
sets. The absence of fail data in the validation set could
contribute to this behavior. However, even the lowest accu-
racy values at the ratio 1 in this case are somewhat closer
to the highest accuracy values at the same ratio for the
other two validation scenarios. In summary, for all algo-
rithms the best prediction accuracies for all algorithms were
achieved when the ratio is 1. NN models show highest pre-
diction accuracies when validated with the pass data only.
However, SVM performs best when validations were con-
ducted with only the fail data or pass and fail data. There-
fore, the number and arrangement of fail data both in the
training and validation sets have influenced the prediction
accuracies.

As it was observed previously that among all three valida-
tion sets, the worst results are obtained for the validation set
with only the fail data. Therefore, in the following sections,
results are presented for the validation data set with only the
fail data to demonstrate the performance of the models in the
worst-case scenario.

Fig. 9 shows further results for the training data set TS2 to
TS5 (see Table 1). The general rising trend of prediction
accuracies was observed with the increase of fail to pass
ratios in all the training data sets. It should be noted that
the fail to pass data ratios plotted in the horizontal axes in
the graphs does not remain same but decreases with the size
of the training sets, as the number of fail data in all training
sets remain constant to 582. It is apparent that the best pre-
diction accuracies for every training set were obtained with
the largest fail to pass ratios. When the ratio is 0.42 for the
Training set 2 (2000), the best prediction accuracy (80%) was
obtained by SVM. However, for other training sets (3, 4 and
5), the best prediction accuracies (75%, 72.5%, and 70%)
were obtained by KNN with the largest ratios respectively
(0.17, 0.13 and 0.06).

Fig. 10 provides the effects of varying the training data
sizes on the prediction accuracy and varying the number of
fail data in the training sets.

It should be noted that in all training sets, the maximum
number of fail data is limited to 582, while only an increase
in number of pass data makes the changes in the size of the
training sets.
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FIGURE 9. Comparison of prediction accuracies of qualification test
outcomes obtained by SVM, NN and KNN for (a) Training set TS2
(b) Training set TS3 (c) Training set TS4 and (d) Training set TS5,
as formulated in Table 1.

A general trend is very clear from the Fig. 10 that if the
ratio of the pass and fail data in the dataset becomes closer to
one, the prediction accuracy gradually increases for all sizes

FIGURE 10. Effects of size of training dat sets on the prediction
accuracies obtained by (a) SVM (b) NN and (c) KNN algorithms.

of training sets and for algorithms employed in this study.
Therefore, the best accuracy is obtained for any particular
training set and algorithm when the number of the fail data
included in the training set is at its maximum of 582 records.
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FIGURE 11. Range of prediction accuracies obtained by SVM, NN and
KNN models built with different training datasets.

For SVM algorithm, if the size of the training set increases,
the prediction accuracy gradually decreases. A study by Raik-
wal and Saxena [28] on predicting future disease found
that the prediction accuracy measured by SVM algorithm
increased with the size of the training data set. However,
the results found in this investigation does not agree with the
results found in the literature. This could be due to the fact
that in this case although the training data set size increases
but the number of fail data in all sizes of the training sets
remain constant; only the pass data number increases. As it is
the primary interest to predict the fail outcome, the increase
in pass data number in the training sets makes the prediction
accuracy worse. For KNN, a similar trend of decreasing
prediction accuracies with the training set sizes was observed.
On the other hand, for NN, no clear trend in the prediction
accuracies was observed when the size of the training data
sets increased.

It is interesting to note that for all algorithms, when the
number of fail data in the training sets is 200, the dispersions
of the prediction accuracies is much narrower compared to
that when the number of fail data in the training sets is 582.
The exact reason for this is not quite clear. However, for
any number of fail data in the training sets, minimum and
maximum dispersions were found in the results obtained by
KNN and SVM algorithms respectively. This means that the
effect of size of training data sets on the prediction accuracy
in KNN is smaller than in SVM.

D. COMPARATIVE ANALYSIS AND DISCUSSIONS
When all the results are plotted for each training set and algo-
rithms (Fig. 11), it is very clear that overall, SVM provides
the best prediction accuracy (92.50%) and KNN provides the
second best prediction accuracy (80%) for the smallest size
(1164) of the training set where the ratio of fail to pass data
is 1.0. However, NN provides the best prediction accuracy
(77.50%) for the Training set 2 (2000).

For the largest training set size (10,000), KNN provides
the best accuracy (70%) than that by NN (60%) and SVM
(55%). Therefore, SVM should be used for the smaller size

FIGURE 12. Range of prediction accuracies obtained by SVM, NN and
KNN models built with different training datasets.

data set but for the larger size data set with the same number
of fail data (582), KNN is recommended to achieve the best
performance. In addition, a clear trend of continuous decrease
in prediction accuracies with the increase of training set
size was observed for SVM and KNN, although the trend
is unpredictable for NN. However, in general, an increase
in training data size should improve the prediction accuracy.
This could be due to a decrease in fail to pass ratio with an
increase in the training data size. This can be explained by an
increasing trend of prediction accuracies with an increase of
the fail to pass ratios as shown in Fig. 12. It is interesting
to note that for the same ratio 0.04 (S4C: 200/4800 and
S5B: 400/9600 in Table 1), higher number of fail data in
the training set has increased the prediction accuracies for all
three algorithms. Similar trend was also noticed for ratio 0.11
(S24C: 200/1800 and S3B: 400/3600 in Table 1). Therefore,
the increase of fail to pass ratio in training data sets positively
using historical datasets of measured parameters (i.e. this is
the data on the qualification test measurements of electrical
parameters) and associated data of the observed outcome (in
this study this is the qualification influence the prediction
accuracy of the qualification tests outcome with the ratio
being 1 producing the best prediction result.

Further work can focus on different ways of designing the
training and validation data sets, for example by uncovering
certain data attributes dependencies and using data records
from selected devices in a more intelligent way. Further
prognostics models can be developed by using different deep
learning algorithms to compare their performances with the
algorithms employed in the present study.

V. CONCLUSION
This study has intended to the formulation and the devel-
opment of a computational approach, which can be applied
to optimise qualification test procedures of electronic
products by reducing test times through imbedded in-line
model-based prognostics. It is established from this inves-
tigation that data-driven predictive models in the domain of
machine learning such as SVM, NN and KNN are capable of
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predicting the pass/fail qualification test outcomes of sequen-
tially performed measurements on electrical parameters with
accuracy, which might be acceptable for many applications
in electronics manufacturing. Out of total 95 numerical tests
in the full qualification specification, the researched models,
developed assuming data availability form 60 tests, are shown
to be able to predict the testing outcome (pass or fail) for
the remaining tests with an acceptable accuracy. Such in-line
prognostics in the instance of the problem will enable an
approximate 37% reduction in the numerical tests saving
significant cost and qualification test time for the electronic
product manufacturers..

The developed approach and the associated models investi-
gated and tested in this workwhichwere developed and tested
with rigour using comprehensive datasets from historical
qualification data on an electronic module. For all models and
training sets, the prediction accuracies were found to improve
when the ratio of the number of fail to pass data points used
in the training sets increase to 1. Therefore, it is important to
maintain balance between pass and fail data in the training
sets and to make their respective sizes as equal as possible
and as large as possible. The results from this investigation
have shown that machine-learning models built from such
balanced datasets show better prediction accuracy of the qual-
ification test outcomes. This improvement is consistent when
the validations are conducted with the data sets containing
either a combination of pass and fail data or only fail data.
Overall SVM models showed better prediction accuracies
(92.50%) over the KNN (80%) and NN (77.50%).

The proposed approach to optimise qualification times
through use of ML techniques and imbedded model-based
prognosis of qualification test outcomes has the potential to
transform current practices of undertaking comprehensive,
time consuming and expensive tests on electronic parts and
in general electronic products. This can have huge impact as
it can cut cost of qualification testing in applications that can
tolerate the accuracy of the model forecast.
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