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Abstract11

Mathematical models of social contagion that incorporate networks of human interactions have be-12

come increasingly popular, however, very few approaches have tackled the challenges of including complex13

and realistic properties of socio-technical systems. In this work we define a framework to characterize the14

dynamics of the Maki-Thompson rumor spreading model in structured populations, and analytically find15

a previously uncharacterized dynamical phase transition that separates the local and global contagion16

regimes. We validate our threshold prediction through extensive Monte Carlo simulations. Furthermore,17

we apply this framework in two real-world systems, the European commuting and transportation network18

and the Digital Bibliography and Library Project (DBLP) collaboration network. Our findings highlight19

the importance of the underlying population structure in understanding social contagion phenomena and20

have the potential to define new intervention strategies aimed at hindering or facilitating the diffusion of21

information in socio-technical systems.22

The mathematical modeling of contagion processes is crucial in gaining insight into a broad range of23

phenomena from the spreading of infectious diseases to social collective behavior. While this avenue of24

research has a long tradition both in the biological and social sciences, in recent years there have been25

significant advancements triggered by increasing computational power and data availability characterizing26

socio-technical systems. These advances are particularly evident in the area of infectious disease forecasting27

where current models now incorporate realistic mobility and interaction data of human populations [1, 2, 3,28

4, 5, 6]. Analogously, social contagion phenomena that were initially modeled using the same mathematical29

framework as epidemics [7, 8, 9, 10] are now described by complex contagion models [11, 12, 13] aimed at30

specifically characterizing processes such as the establishment of shared social norms and beliefs [14, 15, 16],31

the diffusion of knowledge and information [17, 18], and the emergence of political consensus [19]. These32

models consider complex factors such as reinforcement and threshold mechanisms [20, 21, 22, 23] and the loss33

of interest mediated by social interactions [24, 25, 26]. Furthermore, many of these theoretical approaches34

have put networks at the center of our understanding of social contagion phenomena and the information35

spreading process [27, 28, 8, 17, 29, 30, 31, 32, 12, 33]. However, most theoretical and numerical work on the36

dynamics of social contagion focuses on highly stylized models, trading off the realistic features of human37

interactions for analytical transparency and computational efficiency. As a result, social contagion models38

able to integrate the effects of human mobility, community structure, and time varying behavioral patterns39

are largely unexplored.40

In this paper, we consider the classic rumor spreading model [24, 25] to study the effects of structured41

populations on the global diffusion of a rumor or piece of information. More specifically, we model the42

spatial structure of realistic populations and the behavior of individuals in virtual social networks through43

a reaction-diffusion model in a metapopulation network, and an activity-driven model with communities,44

respectively. We first identify analytically the necessary conditions for the social contagion to spread to45

a macroscopic fraction of the population. This analysis shows that although the rumor model is lacking46

any critical threshold, the population structure introduces a dynamical phase transition (global invasion47

threshold [34]) which is a function of the interactions between subpopulations. We validate the analytical48

results with large-scale numerical simulations on synthetic networks with different topological structures.49

Additionally, we recover the global threshold of the contagion process in data-driven models of the European50

transportation network and the Digital Bibliography and Library Project (DBLP) collaboration network.51

Understanding how the social structure in both the physical and virtual worlds affects the emergence of52

contagion phenomena has the potential to indicate novel ways to utilize the network connectivity to develop53

efficient network-based interventions. The framework developed here opens a path to study the effects54

of communities and spatial structures in other complex contagion processes which can incorporate agent55

memory [35] and social reinforcement [22], or introduce other heterogeneous features such as age-dependent56

contact patterns and socio-economic conditions [36].57
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Figure 1: Types of structured populations considered in the modeling framework. (A) A schematic rep-
resentation of a reaction-diffusion process on a metapopulation network, where individuals homogeneously
interact within their current subpopulation, and then diffuse through the network constrained by the global
structure. (B) A schematic representation of a modular activity-driven network at two points in time where
individuals are confined to a single community, but when activated choose to form links to those outside of
their current community based on a probability of inter-community interaction. Each instantaneous network
is generated independently of prior networks.

1 Model Definition58

Here we use a variant of the original rumor model [24], known as the Maki-Thompson (MT) model [25], to59

describe the spread of information through a population based on interactions between agents [37]. Similar60

to epidemic models, individuals can be classified into three compartments, ignorants: those who do not61

know the rumor, spreaders: those who know and are actively sharing the rumor, and stiflers: those who62

know the rumor but are no longer spreading it. The contagion process evolves through interactions between63

individuals in a population. If a spreader contacts an ignorant individual, with a probability λ, the ignorant64

will transition into a spreader. However, when a spreader contacts either a stifler or another spreader, with65

a probability α, the spreader will transition into a stifler. The stifling mechanism describes an individual’s66

tendency to become uninterested in the rumor once the appeared novelty of the information is lost. In67

homogeneously mixed populations, this feature does not allow the presence of a rumor threshold [24, 38],68

meaning that for any λ > 0 the rumor will always spread to a macroscopic proportion of the population (see69

methods). We investigate the behavior of this model on two types of structured populations that incorporate70

the complexity observed in socio-technical systems (Fig. 1).71

• Rumor model in spatially structured populations. We first consider a population where spatially72

defined groups of individuals (subpopulations) are coupled together by a mobility rate (Fig. 1a) [39, 33].73

This structure, also called a metapopulation network, is used to model species persistence in ecosystems74

[40], the evolution of populations [41], and the global spreading of infectious diseases [42]. Specifically,75

we consider a metapopulation network with V subpopulations, each with an average population size76

of N individuals. Reaction-diffusion processes are used to characterize both the local interaction77

and global mobility dynamics. Individuals first react within their current subpopulation according to78

the rumor model dynamics and then diffuse between subpopulations based on a Markovian diffusion79

process. The probability that an individual will leave her current subpopulation and travel to a specific80

neighbor is p/k, where p is the mobility parameter and k is the number of neighboring subpopulations.81

• Rumor model in virtual structured populations. In contrast to the reaction-diffusion scheme,82

rather than moving between communities, individuals may belong to a specific virtual community such83
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as an interest or disciplinary group, online forum, or political affiliation etc., but interact occasionally84

with individuals in other virtual communities through collaborations, forum posts, or direct messages85

etc.(Fig. 1b). We model these interaction dynamics using a modular activity-driven network scheme86

[43, 44]. In particular, we consider a population with V communities whose sizes (s) follow a specific87

distribution, P (s). Every individual is assigned an activity potential ai∆t that is sampled from a88

preset distribution F (a). The activity of an individual corresponds to the probability with which the89

individual becomes active during a given time step [43]. Each active individual will form a single90

connection to another individual in the population creating an instantaneous network. To induce91

a community structure, an activated individual will choose to form a link to a randomly selected92

individual outside of her home community with a probability µ, otherwise, an intra-community link93

will be formed. The parameter µ allows us to tune the interaction between communities. After each94

single iteration of the rumor model, the network resets and a new instance is generated in the same95

manner.96

2 Invasion threshold in structured populations97

Although the rumor model in a single homogeneous population does not exhibit a spreading threshold, the98

presence of a subpopulation structure fundamentally alters the contagion dynamics. This can be clearly99

seen for the rumor model in virtual structured populations by examining two limits of the inter-community100

interaction term, µ. When µ = 0, individuals will only interact with others in their community. Thus, the101

rumor will never escape the seed community. However, in the limit where µ = 1, individuals effectively102

do not belong to any community and will always choose to form an external connection. Therefore, the103

rumor will certainly reach a macroscopic fraction of the population. The same reasoning can be applied to104

the limits of the mobility parameter, p, in the case of spatially structured populations. In both modeling105

frameworks, the population structure induces a transition point separating a dynamical regime where only106

local spreading is possible from a regime where the rumor spreads globally through the network.107

To characterize this transition point quantitatively, we use a branching process framework to describe the108

rumor spreading dynamics across subpopulations [42, 45]. Let us consider a system that is structured into109

V subpopulations, each consisting of N individuals, on average, at any given time. Within the homogeneous110

population structure, we assume that all nodes are statistically equivalent and the connections formed111

between pairs of nodes are uncorrelated. Let Dn be the number of affected subpopulations where the rumor112

is known by at least one individual at generation n. We use a tree-like approximation to write an expression113

that captures the number of subpopulations that know the rumor at each generation of the spreading process,114

obtaining:115

Dn = Dn−1

1−

n−1∑
m=0

Dm

V

CΦ. (1)116

The above equation assumes that every affected subpopulation in the (n − 1)th generation (Dn−1), may117

seed each one of its (1−
∑n−1
m=0Dm/V )C unaffected neighbors with a probability Φ, where C indicates the118

average number of neighboring subpopulations and 1−
∑n−1
m=0Dm/V is the probability that the neighboring119

subpopulation is not already aware of the rumor during the (n− 1)th generation. In a structured population120

model, a rumor epidemic occurs when each affected subpopulation, early in the contagion process, spreads121

the rumor on average to at least one fully ignorant subpopulation. Using the above expression, this global122

contagion condition reads as Dn/Dn−1 ≥ 1. Given that we are interested in the early time dynamics of123

the process, we assume that
∑n−1
m=0Dm/V << 1, defining the global contagion threshold Dn/Dn−1 ' CΦ ≥124

1. This effectively defines the subpopulation reproductive number R∗ = CΦ; i.e. the average number of125

communities becoming aware of the rumor from a single subpopulation. Analogously to the reproductive126

number in biological epidemics, in order for information to spread globally, R∗ must be greater than or equal127

to one [42, 45]. The terms, C and Φ, depend explicitly on the type of structured population model as well as128
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the contagion process. In the following sections we provide expressions for these parameters and the rumor129

invasion thresholds for both spatially structured and virtual populations.130

2.1 Spatially structured populations131

In a homogeneous metapopulation network the number of possible subpopulations that could be seeded by132

each affected subpopulation is C = 〈k〉−1; i.e. the average number of neighboring subpopulations minus the133

one which originally seeded the contagion process. Due to the lack of a local rumor threshold within a single134

subpopulation, the probability Φ is simply given by the probability that at least one spreader will decide135

to leave an affected community and travel to a neighboring subpopulation where it will start spreading the136

rumor:137

Φ = 1−
(

1− p

〈k〉

)β
, (2)138

where β is the number of spreaders in an affected subpopulation that can travel out of their current sub-139

population during the rumor epidemic. This value Φ, is calculated by considering one minus the probability140

that none of the spreaders will travel to a new community, (1− p
〈k〉 )

β . Here, β = 2(1+λ/α)N
α , is the product141

of the total number of individual spreaders generated by the contagion process within a single population142

and the average amount of time they are actively spreading the rumor (details in methods). Using the above143

expressions and considering small mobility probabilities, such that p/〈k〉 << 1, we can approximate the144

probability Φ ' βp/〈k〉. In this limit we obtain an explicit expression for the rumor invasion threshold as:145

R∗ =
〈k〉 − 1

〈k〉
2

(
1 +

λ

α

)
pN

α
≥ 1. (3)146

From the above expression it is possible to rewrite the necessary threshold condition to find the critical147

mobility pc in the system required for a global spreading of the rumor as:148

pc =
〈k〉

(〈k〉 − 1)

α

2(1 + λ
α )N

(4)149

Below the critical value, pc, the amount of individual mobility restricts the global propagation of the ru-150

mor. In this subcritical regime, spreaders in affected communities are generally unable to travel to a new151

subpopulation before they transition into stiflers, which consequently causes the rumor to go extinct in the152

early stages. This critical mobility is a function of both the network structure and the rumor model param-153

eters, λ and α. However, for homogeneous networks with sufficiently large average degrees 〈k〉, the effect154

of the network structure is relatively insignificant. In the Supplementary Information we derive the critical155

mobility for metapopulation networks with heavy tailed degree distributions and find that the analytical156

expression depends not only the average degree of the network 〈k〉, but also the second moment 〈k2〉 of157

the degree distribution. Heterogeneous networks are characterized by having degree distributions with high158

variance (large 〈k2〉), thus considerably affecting the value of the mobility threshold. We also see that pc is159

linearly dependent on α. When λ is small relative to α, the critical mobility is controlled predominantly by160

the stifling probability. Recall that the stifling probability characterizes the tendency for an individual to161

become disinterested in the rumor (i.e. transition into a stifler) when interacting with others that know the162

rumor. This finding is a feature worth remarking for the global spread of a rumor in a spatially structured163

environment, that places the emphasis not on how appealing a rumor is, but rather on the rate at which164

people decide that the rumor is not worth spreading.165

2.2 Virtual structured populations166

Now let us consider a modular activity-driven network where we assume discrete time, ∆t = 1, a homogeneous167

activity rate (a) for all individuals in the network, and a homogenous distribution of community sizes. In168

this model, if an individual chooses to form an inter-community link, by construction it can choose any of169
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the other C = V −1 communities. The probability Φ, that at least one spreader from an affected population170

will choose to connect another individual outside of their current community and successfully transmit the171

rumor can be written as172

Φ = 1−
(

1− λµ

V − 1

)β
. (5)173

In this expression λµ
V−1 is the probability that an inter-community link successfully transmits the rumor to174

one of the V − 1 specific subpopulations and β translates to the number of potential chances that a single,175

affected community has to spread the rumor to another community. As described in the methods section, β176

is not explicitly dependent on the activity assigned to each individual as long as a > 0 and still remains a177

function of the total number of spreaders in the community and the average amount of time they were active.178

Therefore, the same equation used for spatially structured populations, β = 2(1+λ/α)N
α , holds. We can thus179

calculate the rumor invasion threshold by assuming that λµ
V−1 << 1 in the limit of large V , obtaining:180

R∗ = 2(1 +
λ

α
)
λNµ

α
≥ 1. (6)181

The rumor invasion threshold in terms of the critical inter-community interaction rate, µc reads,182

µc =
α

2λN(1 + λ
α )
. (7)183

This expression resembles the mobility threshold of Eq. 4 except for the addition of the λ parameter in the184

denominator, which comes from the node interaction process. In the spatially structured model, the mobility185

of an individual was the only factor that controlled whether the rumor spread to a new community. However,186

in the activity-driven model, active individuals do not move to another community, but rather may form a187

single connection through which the rumor has to be successfully transmitted to another individual in order188

to start the contagion process. This introduces a linear dependence on α/λ rather than α alone. When189

the spreading probability λ is high, the more likely an ignorant individual will transition into a spreader190

during a specific interaction. Thus, the rumor spreads more readily and does not require a high amount191

inter-community interaction to globally propagate. This result shows the inherent differences between Eq. 4192

and Eq. 7 and brings attention to the importance of the type of structured population used when modeling193

a socio-technical system. In the SI we derive the critical interaction probability for populations with a194

heterogeneous size distribution.195

2.3 Simulations in synthetic structured populations196

In order to validate the analytical findings, we performed an extensive set of stochastic simulations of the197

rumor model on synthetic, structured populations. We generated homogeneous metapopulation networks as198

Erdös-Rényi random graphs with average degrees of 〈k〉 = 12 and an average population size of N = 103199

individuals. To initiate the contagion process, one individual is made aware of the rumor in a single, randomly200

selected community. The microscopic reaction dynamics are mathematically defined by chain binomial201

and multinomial processes, which were used to update the stochastic transitions of individuals between202

compartments (details in SI). Following the reaction process, individuals diffuse along a specific link to a203

neighboring subpopulation with a probability p/k where k is the degree of the individual’s current community.204

Our simulation results show the final fraction of affected communities as a function of the mobility probability205

p for various α parameters (see Fig. 2a), recovering the critical transition which separates the non-spreading206

and global spreading dynamical regimes. The vertical lines represent the values predicted from Eq. 4 and207

are in good agreement with our numerical findings. Furthermore, we see a clear dependence of the transition208

point on the stifling rate α. In the SI we show similar simulations for metapopulation networks with heavy209

tailed degree distributions, p(k) ∼ k−2.2. In this scenario, the network structure significantly reduces the210

threshold since, as mentioned above, it now depends on the second moment of the degree distribution which211

diverges for heterogeneous networks when V →∞.212
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Figure 2: Results from numerical simulations of the rumor spreading process in homogeneous structured
populations. (A) The final fraction of subpopulations where the rumor is known at the end of the rumor
epidemic as a function of the mobility rate p, for varying α values averaged over 4, 000 simulations. The
networks have V = 103 subpopulations with an average of N = 103 individuals and an average degree
〈k〉 = 12. The vertical lines represent the predicted threshold values from Eq. 4 and the value λ = 0.1 was
used for the spreading probability. (B) The final fraction of communities where the rumor is known as a
function of the inter-community interaction probability for varying λ values averaged over 1, 000 simulations.
A total population had V = 103 communities, each containing 103 individuals. The vertical lines represent
the predicted values from Eq. 7 and a value of α = 1 was used as the stifling probability. The error
regions represent the 90% reference range and the averages in the supercritical regime were calculated on
the simulations where at least 5% of the subpopulations experienced a rumor epidemic.

For the second type of structured population, we generated modular activity-driven networks with V =213

103 total communities, each with the same number of individuals, N = 103, and every individual assigned214

the same activity probability, a = 0.1. To start the contagion process, a single individual from a randomly215

selected community is made aware of the rumor. An instantaneous network is generated by the modular216

activity-driven network model on which the rumor dynamics unfold for a single iteration. After the reaction217

process, a new network instance is generated and the process repeats until all individuals are either still218

ignorants or stiflers (more model details in SI). In Fig. 2b we show the final fraction of communities where219

a rumor epidemic occurred as a function of the inter-community interaction parameter µ, for multiple λ220

values. The phase diagram supports our theoretical findings, and confirms that for higher values of λ less221

inter-community interactions are required for the rumor to globally propagate. Additionally, we also model222

this system using a heterogeneous size distribution and report the results in the SI.223

3 Data-driven Simulations224

To further support the theoretical results obtained in the previous section, we analyze the rumor model225

on two real-world networks. Specifically, we simulate a rumor spreading across a metapopulation network226

modeling the transportation patterns in Europe and across a modular activity-driven network modeling227

scholarly collaborations from the DBLP collaboration network. The mobility of individuals throughout228

Europe is constructed by dividing the continent into spatial regions that are coupled together using data229

about commuting patterns and long-range transportation fluxes such as airline traffic (details in SI). This230

realistic, synthetic metapopulation network has been used in simulations of emerging infectious diseases as231

well as in the analysis and predictions of pandemic events [46, 47, 10]. In this framework, the mobility232

of individuals across subpopulations (analogous to the p parameter in spatially structured populations) is233

derived from actual transportation data. To study the effects of a reduction in mobility, we rescaled the234
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proportion of individuals that travel at each time step by a factor ω. We show the results of the rescaled235

mobility on the spatial diffusion of a rumor simulated over the transportation network in Fig. (3a,c).236

Interestingly, we see a clear transition in the mobility required for the rumor to spread. The phase diagram237

reveals that the critical ωc in this system is significantly small implying that the current human mobility238

pattern across Europe is orders of magnitude above the rumor threshold.239

We also model the collaboration process of the DBLP co-authorship network using the modular activity-240

driven network scheme [48]. Nodes in the network are individual researchers that can form collaborations with241

others either within or outside of their own communities. In particular, a link represents co-authorship on at242

least one paper and each community is a specific publication venue. We measure the amount of interaction243

µ between communities by calculating the frequency of cross-community links relative to the total number244

of internal and external links. We simulated the rumor model to analyze how information would propagate245

in this system by rescaling the actual individual’s tendency to link outside of their current community246

(analogous to the µ parameter in the virtual structured population framework) by a factor ω to study the247

effects of lowering inter-community interaction rates. In Fig. (3b,d), we show the results of this rescaling248

on the final fraction of affected disciplinary communities and observe a transition point characterizing the249

amount of inter-community collaboration needed in order for a rumor or idea to spread globally. Similar250

to the transportation network, the critical rescaling value ωc is extremely small. Both data-driven network251

applications extend our modeling framework by incorporating heterogeneous and non-trivial subpopulation252

interactions. Consequently, the assumptions of statistical equivalence of nodes and an uncorrelated network253

structure made in our calculations are no longer valid. Therefore, in these realistic systems, the critical254

value ωc, can not be easily computed analytically. However, we do see a similar phenomenology between the255

synthetic and data-driven structured populations in that there does exist a critical transition point in the256

amount of interaction between subpopulations or communities that is necessary for the a rumor to propagate.257

In both cases, the critical transition point (ωc) is very small, highlighting the role of our interconnected world258

in facilitating the diffusion of information across geographical boundaries as well as through disciplinary259

communities. However, this result is not necessarily universal across all types of structured populations.260

Information spreading is fundamentally dependent on the strength of interactions among elements of the261

network, thus calling for specific case by case studies on the location of critical transition points in real world262

situations.263

4 Discussion and Conclusion264

In this work, by using a classic rumor spreading model lacking any critical threshold in a single homogeneous265

population, we show that the contagion process in structured populations exhibits a phase transition with a266

critical threshold dependent on the amount of interactions/coupling between subpopulations. The analytical267

and numerical results presented here emphasize the importance of accounting for the complex structure268

observed in socio-technical systems when studying social contagion processes. The features observed in real-269

world systems can potentially alter the theoretical picture and the understanding provided by only studying270

stylized models. Our results show that successful information or rumor spreading is the result of a complex271

interaction between the intrinsic properties of the contagion process and the dynamics of interactions between272

subpopulations/communities that comprise social systems.The flexibility of the framework allows for further273

study of different types of emergent behaviors that may be more complex than the rumor model used here.274

For example, in order for a contagion to spread, individuals must be contacted by multiple neighbors in275

their social network. Analogously, additional features can be incorporated into the interaction process and276

network structure such as age-dependent contact patterns, socio-economic conditions, and data-driven human277

mobility. These features have the potential to not only provide unexpected results of theoretical nature but278

also actionable insights crucial to understand and control social contagion phenomena.279
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Figure 3: Results from numerical simulations of a rumor spreading in real-world networks. (A-B) The
average final fraction of stiflers as a function of (A) the rescaling mobility factor in the European commuting
and transportation network and (B) the rescaling factor of the inter-community interaction probability
within the DBLP collaboration network. Simulations used a spreading probability of λ = 0.1 and stifling
probability of α = 1. Error bars represent the 90% reference range of the simulations where at least 5% of the
subpopulations experienced a rumor epidemic. (C-D) The temporal evolution of the rumor spreading process
taken from individual simulations corresponding to the ω values highlighted in (A-B) with red circles. (C)
In the European commuting and transportation network, the rumor was initiated Paris, France by seeding
one individual. (D) In the DBLP collaboration network, nodes represent publication venues where node size
corresponds to the population size and the line thickness corresponds to the amount of inter-community
interaction between each pair of communities. The activity probability per individual is a = 0.1, while the
inter and intra-community probability is derived from the data.
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Materials and Methods280

Final Rumor Size in a Single Population: The mean field rate equations for the Maki-Thompson281

(MK) rumor model in a homogeneously mixed population are listed below. The densities of spreaders (S),282

ignorants (I) and stiflers (R) in a population are defined by s = S/N, i = I/N, r = R/N , respectively, where283

N is the total number of individuals in the population, yielding:284

di

dt
= −λs(t)i(t)

ds

dt
= λs(t)i(t)− αs(t)(s(t) + r(t))

dr

dt
= αs(t)(s(t) + r(t)).

(8)285

Using the initial conditions i(0) ≈ 1 and r(0) = 0, a solution to these differential equations can be obtained286

analytically in the infinite time limit. The transcendental equation below has a trivial solution when r∞ = 0,287

but a non-trivial solution, r∞ = 1− e−(1+ λ
α )r∞ , when λ/α+ 1 > 1, confirming that a rumor will propagate288

through a population and reach a macroscopic fraction of individuals [38]. Assuming that (1 + λ
α )r∞ << 1,289

we can obtain the approximate solution:290

r∞ '
2 λα

(1 + λ
α )2
≈ 2

λ

α
(9)291

We can see that the final density of stiflers scales with λ/α. This relationship is verified through numerical292

simulations of the rumor model for a single homogeneously mixed population as detailed in the Supplemen-293

tary Material.294

295

Average Spreading Time: The average spreading time, 〈τ〉, is the time elapsed since the individual296

was first told the rumor to the time the individual became a stifler. Fig. 1b in the SM shows the average297

spreading time as a function of 1
λ + 1

α from simulations done on a single population. A linear line is fit to298

the data, producing the equation:299

〈τ〉 =
1

λ
+

1

α
+

1

2
(10)300

301

302

Number of potential spreaders: The number of potential spreaders β that could transmit the rumor to303

another population can be calculated as β = 〈τ〉Nr∞ where 〈τ〉 is the average amount of time an individual304

remains a spreader, and Nr∞ is the final average number of individuals that know the rumor at the end of305

the spreading process. Using the approximated equations for the final stifler density as well as the average306

spreading time, one obtains:307

β = r∞N〈τ〉 =
2(1 + λ

α )N

α
. (11)308

309

310

In the modular activity-driven network model, the expression for β is not altered by the fact that individu-311

als are “activated" with probability a. The average spreading time 〈τ〉 should be measured by considering312

the duration of the contagion process, which should be on the order of 1/a (average number of time steps313

between activations), and the activity of the individual at each time step, which is a. It follows that these314

terms cancel each other out, so the effective number of interactions of each spreader will not be dependent315

on a as shown also numerically in the SM.316
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