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Abstract 

Agricultural planning processes at the farm to national level are essential for assessing and 

reacting to land conditions, opportunities, and threats for coffee production. However, the 

lack or uncertainty of information is common during these processes. Bayesian networks 

can be used to manage these uncertainties. We, therefore, developed the first Bayesian 

network model for an Agroecological Land Evaluation for Coffea arabica L. (ALECA). A 

newly developed set of suitability functions was used to populate the nodes in the network. 

ALECA was then adjusted and validated in Central America. The results show that even 

without the use of coffee maps as input, ALECA accurately scores the suitability of actual 

coffee areas for coffee production as higher than that non-coffee areas, and can accurately 

predict the known order of quality of coffee reference zones in Central America. The results 

also show that ALECA can be used as a decision-support tool even under data uncertainty. 
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1. Introduction 

The agricultural sector faces the challenge of producing enough goods for a growing 

population. This problem is exacerbated by changes in climate and the depletion of soil and 

water, factors that determine the suitability of land for agricultural production (Godfray et al., 

2010). Information about the spatiotemporal variations of these factors is necessary for 

efficient agricultural planning processes at the farm, local and regional scales. Agricultural 

planning involves the inventory and classification of available resources to define the 

biophysical potential of land for crop production, called land suitability evaluation. Most land 

suitability evaluation systems assess climatic, soil and landform factors, while others also 

include anthropogenic factors such as local production systems, relevant cultural customs, 

policies, etc. (Littleboy et al., 1996; McRae and Burnham, 1981; Verheye, 1987).  

Commonly, land suitability evaluation systems are used at national or regional scales 

to generate spatial representations of land suitability for different crops or animal production 

systems. However, they can also be used at local or farm level by farmers and other 

stakeholders themselves. The advantage, in this case, is that a more accurate evaluation 

can be performed due to the availability of more detailed farm data, but often the expertise 

required to operate the models is lacking (Jakeman et al., 2006). Another drawback is that 

the majority of land suitability evaluation systems provide limited options to deal with 

uncertainty, which is a common feature in land evaluation processes, and environmental 

modeling in general (Refsgaard et al., 2007). Bayesian networks offer a solution to this 

problem: They have the ability to manage uncertainty (of data and knowledge), integrate 

expert knowledge, and combine qualitative and quantitative information. Bayesian networks 

can also integrate complex systems from different domains and aggregate model 

dimensions to the level required, making them a suitable tool for ecological modeling and 

land suitability evaluations (Aguilera et al., 2011; Chen and Pollino, 2012; Poppenborg and 

Koellner, 2014).  

Land suitability evaluation systems are especially relevant for managing risks in 

cropping systems with perennials, as the initial investments are usually higher, there is a 

waiting period of 3-4 years before the first harvest can be brought in, and resources are tied 

up for longer periods of time. One such example is coffee (Coffea arabica L.). Many 

smallholder farmers’ livelihood in coffee-producing countries depends on its cultivation. Its 

production is reliant on a number of biophysical factors, such as climate, soil, landform, 

genetics and farming practices, whose relevance varies from site to site (Bertrand et al., 

2011; Haggar et al., 2011; Silva et al., 2013; Wang et al., 2015). In recent years, coffee 

producers have experienced a series of income losses due to market failures, pests and 
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diseases, the depletion of resources, extreme weather events, and a changing climate 

(Avelino et al., 2015; Tucker et al., 2010; Vega et al., 2003). 

In light of the recent shocks and changing biophysical factors, it is desirable to develop 

mechanisms to describe and quantify the impacts of these changes on land suitability for 

coffee production. Some authors used species distribution models to explore the climatic 

suitability for coffee at regional and worldwide levels (Bunn et al., 2015, 2014; Chemura et 

al., 2015; Ovalle-Rivera et al., 2015). These models use coffee maps as presence data 

together with climate information to predict climatic suitability for coffee production. This 

approach assumes that climate is the only explanatory variable of coffee presence in a given 

location, and farmers’ actions to improve climatic conditions or the influences of legal and 

socioeconomic factors are mostly excluded. Others, like D’haeze et al. (2005), explored the 

soil suitability (under the same climate conditions) for Robusta coffee using the Automated 

Land Evaluation System software based on the Framework for Land Evaluation of FAO 

(1976). Both studies focus on only one aspect of the environment, yet the response of 

species to environmental conditions is better explained by combining soil, topographical and 

climatic variables. While soil and topography are broadly aligned to climate, in practice, 

different soil types e.g. can be found under the same climatic conditions and vice versa 

(Coudun et al., 2006; Franklin and Miller, 2009). Mighty (2015) and Nzeyimana (2014) thus 

used multi-criteria analyses including climate, soil and landform variables in geographical 

information systems to evaluate land suitability for coffee in Jamaica and Rwanda, 

respectively. 

All of these studies either look at a variety of factors but exclude uncertainty, or include 

uncertainty in their assessment but focus only on either soil or climate as the determining 

factor for coffee suitability. To date, no land suitability evaluation system includes all relevant 

factors for coffee production as well as uncertainty and has the potential to be used by 

scientists as well as stakeholders in coffee production. We, therefore, present in this paper 

the first Bayesian network model for the Agroecological Land Evaluation for Coffea arabica 

L. (ALECA) in Central America.  

2. Materials and Methods  

2.1. Study area 

The study area encompasses the region of Central America spanning latitudes from 

7.21° to 18.4°N and longitudes from 92.21 to 77.16°W, covering the countries of Guatemala, 

Belize, El Salvador, Honduras, Nicaragua, Costa Rica and Panama (Fig. 1). The area 

experiences tropical to subtropical conditions with a strong influence from the Atlantic 

Ocean. Dry winters and wet summers characterize the regional climate, whereby Atlantic 
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regions experience more rainfall and higher humidity (>80%) than Pacific ones (Taylor and 

Alfaro, 2005). Average variations in mean air temperature during the year are minimal (<4°C) 

and decrease from North to South, but maybe larger locally due to changes in topography 

(Magaña et al., 1999; Taylor and Alfaro, 2005). Due to the low variability in temperature, 

precipitation is the climatically more important determinant (Taylor and Alfaro, 2005). Even 

under future climate scenarios, where temperatures are expected to increase by 3 to 4°C, 

the projected decrease in precipitation and increase in precipitation variability is regarded 

as the major threat to the region (Giorgi, 2006; Karmalkar et al., 2011).  

 

Fig. 1. Study area in Central America. Coffee areas are marked green1.   

Cultivation of Coffea arabica L. in Central America started in the 18th century in the 

Pacific region (Ukers, 1935). In some aspects, the cultivation systems differ little in the area 

(Samper, 1999); most of the coffee is cultivated in agroforestry systems, where trees are 

planted in coffee plantations to generate goods and services to the coffee plants and farmers 

(Somarriba et al., 2004), and 99% of coffee grown is Coffea arabica, with 1% Coffea 

canephora (Robusta) in Guatemala (USDA, 2015). Currently, nearly one million hectares 

 
1 Guatemala: 2010, Ministerio de Agricultura y Ganadería  

El Salvador: 2010, Ministerio de Agricultura y Ganadería 

Honduras: 2013, Instituto Nacional de Conservación y Desarrollo Forestal 

Nicaragua: 2012, Ministerio Agropecuario y Forestal 

Costa Rica: 2013, Instituto del Café de Costa Rica 

Panamá: 2012, Instituto Nacional de Estadísticas y Censo 
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are used for coffee production in Central America, generating 8 to 11% of the worldwide 

coffee supply (ICO, 2015).   

2.2. Model development 

2.2.1. Selection of variables 

We started with a literature review to identify the key agroecological variables 

influencing coffee cultivation. Generally, coffee plants are sensitive to climate, soil conditions 

and farming practices (Camargo, 2010; Wang et al., 2015), in the literature described by the 

variables altitude, mean annual temperature, mean annual maximal temperature, annual 

mean precipitation, dry season length, relative humidity, wind speed, pH in H2O, cation 

exchange capacity, soil organic carbon content, bulk density, soil texture, slope and aspect 

(Alégre, 1959; Descroix and Snoeck, 2004; Silva et al., 2013). From this list, we excluded 

altitude for our model, which is typically used as a proxy to define optimal and suboptimal 

climatic conditions for coffee (Avelino et al., 2005; Vaast et al., 2008), but which is only a 

substitute for temperature, which we use directly, wind speed and relative humidity due to 

gaps in data and information about its influence on coffee suitability, mean annual maximum 

temperature due its high correlation to mean annual temperature (Pearson coefficient r=0.96 

and p<0.00001), which we calculated for the region based on WorldClim data (Hijmans et 

al., 2005), and soil organic matter due to its only indirect influence on coffee plants. With this 

variable selection, we are in line with other authors' recommendations for agricultural land 

evaluation (McRae and Burnham, 1981; Sys et al., 1991) and coffee land evaluation 

(Descroix and Snoeck, 2004; Mighty, 2015; Nzeyimana et al., 2014).  

For the selected factors, we compiled their optimal, suboptimal and unsuitable levels for 

coffee production (Table 1). Mean annual temperatures of 18 to 21°C are thought to be ideal 

for coffee production (Alégre 1959). Temperatures above this range hasten the ripening of 

the coffee berry flesh before complete bean maturity is reached and consequently, the coffee 

quality declines (Vaast et al., 2006). Also, plant growth is reduced, and vegetative 

abnormalities start to occur at too low or high temperature (Camargo, 1985 & Franco, 1958 

cited by DaMatta and Ramalho, 2006). For precipitation, Wallis (1963) estimated water 

requirements of 951 mm year-1, in practice, as much as 1500 – 2000 mm are desirable. 

Precipitation higher than 2500 mm year-1 can lead to waterlogging, a boost in fungal 

diseases, premature berry droppings, and ineffective fertilizer applications, amongst others 

(ANACAFE, 2006; Willson, 1985). Concerning the distribution of precipitation over the year, 

a dry season of 3 to 4 months is ideal to stimulate the main flowering and harvesting season 

in Central America. In regions closer to the equator, like Colombia, two short dry periods 

occur in a year facilitating two harvesting seasons. Longer dry seasons can lead to flowering 
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and fruit abortions, and quality and yield decline (Cannell, 1985; Willson, 1985), which is 

why coffee farmers identified precipitation (droughts and excessive rainfall) as the primary 

climatic concerns in the region, followed by temperature (Eakin et al., 2014; Tucker et al., 

2010). 

Soil texture affects multiple soil properties that influence soil fertility and crop 

productivity. Since coffee productivity is sensitive to nutrient and water supply, sandy and 

heavy clay soils are avoided for their limitations in water and nutrient holding capacity and 

drainage. The pH and cation exchange capacity are critical indicators of nutrient availability 

in the soil. Coffee plants prefer slight to medium acidic soils (5.0 to 6.2) with a high cation 

exchange capacity. Unlike soil texture, pH and cation exchange capacity can be modified 

by farming practices, such as chemical fertilization, the addition of organic matter, burnings, 

etc. (Descroix and Snoeck, 2004; Osman, 2013). Slope defines the vulnerability of a site to 

erosion and determines the potential for mechanization. Thus, flat or low slopes are optimal, 

as steep slopes require major soil conservation practices and reduce the efficiency of 

farming practices (Descroix and Snoeck, 2004; Ramírez, 2009). The aspect influences 

temperature variations at the microclimate level; in northern latitudes, south-facing slopes 

receive more sunlight than north-facing ones (Adams, 2010; Bonan, 2008) and Avelino 

(2005) found that coffee cultivated on east-facing slopes produced a better coffee quality in 

two locations in Costa Rica. Philpott et al. (2008) discovered significantly higher landslides 

in southwestern-facing slopes during a hurricane in Mexico. 

Table 1. Agroecological variables selected to describe coffee land suitability in Central America 

with unsuitable, suboptimal and optimal values as reported in the literature. 

Component Variables Unit Unsuitable Suboptimal Optimal 

Climate 

Mean annual 

temperature 
°C ≤101,2, ≥303,6, >322 

<15-163, <17-

184 >233,4, >265 
18-213, 18-234 

Annual precipitation 
 

mm <10007 
<13008,  

>30007,9 

1550-200010, 

1600-18003 

Dry season length # months ≤ 60 mm >611 <212, 5-611 2-413,3-414 

Soil 

pH in H20 - <48, >88 
<5,  

>6.5 

5.5-6.59, 5.2-

6.214 

Cation exchange 

capacity 
Meq 100g-1  <515 >2215, 16 

Texture  Categorical 

Sand (>30%), 

heavy clay 

(clay>70%)12,13 

 
Loam, clay loam, 

clay 

Landform 
Slope % >509, >7017 >407 0-407 

Aspect Cardinal directions   East18 
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1 Larcher (1981), 2 Jaramillo and Guzmán (1984), 3 Alégre (1959), 4(1985) cited by DaMatta and Ramalho 

(2006), 5Nunes et al. (1973) cited by DaMatta and Ramalho (2006), 6 DaMatta and Ramalho (2006), 7 

ANACAFE (2006), 8 Willson (1985), 9 Descroix and Wintgens (2004), 10Forestier (1969) cited by Willson (1985), 

11 Descroix and Snoeck (2004),  12 Maestri and Barros (1977), 13 Haarer (1958), 14Robinson 1964 cited by 

Willson (1985), 15 Molina and Melendez (2002), 16 Verheye (2002), 17 Blanco and Aguilar (2015), 18Avelino et 

al. (2005).   

2.2.2. Suitability functions 

We created suitability functions, i.e. response curves, for the selected variables based 

on the agroecological requirements of coffee, and the literature listed in Table 1. We used 

two kinds of functions: tables for discrete variables (texture and aspect) and equations for 

continuous variables. To create the equations, we first defined the suitability scores for the 

variable values based on literature, secondly graphed the suitability scores for each variable 

and finally identified the functions that best fit each graph (Fig. 2). In the case of tabular 

suitability functions, for soil texture, we defined the suitability scores from literature. For 

aspect, we used a survey of 600 coffee farms in Nicaragua (Nitlapan, 2012) to define the 

suitability of each cardinal direction by using an analysis of covariance, a mean separation 

test, and a weighted mean. 

In the case of wild species, these types of functions describe the relationship of a 

species’ occurrence in relation to values of an environmental condition (Austin, 1980; 

Franklin and Miller, 2009). In our study, the suitability functions describe how suitable the 

value of a variable is for coffee production, ranging from 0 to 100% (Fig. 2 &Table 2).  

 

Fig. 2. Graphical display of the suitability functions for continuous variables.  
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Table 2. Suitability functions of the selected agroecological variables. Suitability scores range from 

0 to 100%. The values in the texture table denote that there is a probability of 99% that ‘Sand’ e.g. 

only has suitability of 0-25% for coffee production and a 1% probability that it is in the range of 25-

50%. 

Variables Equations 

Mean annual 

temperature 

𝑆𝑡𝑖 = 𝑇𝑖~𝑁(𝜇, 𝜎
2) ÷ 𝑇𝜇~(𝜇, 𝜎

2) ∙ 100 

Where 𝑆𝑡𝑖 is the suitability score for a given annual mean temperature in °C (𝑇𝑖) and is 

distributed normally with mean μ = Tμ=  20 and variance σ2 = 3.89 

Annual 

precipitation 

𝑆𝑝𝑖 =  

{
 
 

 
 

 

 0, 𝑖𝑓  𝑃𝑖 < 800;

𝑃𝑖~𝑁(𝜇, 𝜎
2) ÷  𝑃𝜇~ (𝜇, 𝜎

2) ∙ 100, 𝑖𝑓 𝑃𝑖 < 2300;

     90, 𝑖𝑓 𝑃𝑖  ≤ 3000;
60, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where 𝑆𝑝𝑖 is the suitability score for given annual precipitation in mm (𝑃𝑖) and is distributed 

normally with mean 𝜇 = 𝑃𝜇=  2000 and 𝜎2 = 620.48 

Dry season 

length 

𝑆𝑑𝑖 = {
0,    𝑖𝑓  𝐷𝑖 > 8;                          

 
  
0.252𝐷𝑖

4 − 3.828𝐷𝑖
3 + 14.149𝐷𝑖

2 − 1.458𝐷𝑖 + 60,       𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

Where 𝑆𝑑𝑖 is the suitability score for a given dry season length in months (𝐷𝑖) 

Slope  
𝑆𝑠𝑖  = 0.01 𝑆𝑖

2 − 2𝑆𝑖 + 100 

Where 𝑆𝑠𝑖 is the suitability score for a given slope in percentage (𝑆𝑖) 

Aspect  
𝑆𝑎𝑖 = 

{
 
 

 
 

 

80, 𝑖𝑓 𝐴 = 𝐹𝑙𝑎𝑡;                      90, 𝑖𝑓 𝐴 = 𝑊𝑒𝑠𝑡;           

72, 𝑖𝑓 𝐴 = 𝑆𝑜𝑢𝑡ℎ𝑒𝑎𝑠𝑡;           93, 𝑖𝑓 𝐴 = 𝑆𝑜𝑢𝑡ℎ𝑤𝑒𝑠𝑡;

80, 𝑖𝑓 𝐴 = 𝑁𝑜𝑟𝑡ℎ𝑒𝑎𝑠𝑡;         97, 𝑖𝑓 𝐴 = 𝑁𝑜𝑟𝑡ℎ𝑤𝑒𝑠𝑡;

80, 𝑖𝑓𝐴 = 𝐸𝑎𝑠𝑡;                     100, 𝑖𝑓 𝐴 = 𝑆𝑜𝑢𝑡ℎ;           
87, 𝑖𝑓𝐴 = 𝑁𝑜𝑟𝑡ℎ;                                                               

 

Where 𝑆𝑎𝑖 is the suitability score for a given slope aspect (𝐴) 

pH (H20) 

𝑆𝑝𝐻𝑖 = 𝑝𝐻𝑖~𝑁(𝜇, 𝜎
2) ÷ 𝑝𝐻𝜇~(𝜇, 𝜎

2) ∙ 100 

Where 𝑆𝑝𝐻𝑖 is the suitability score for a given pH (𝑝𝐻𝑖) and is distributed normally with 

mean 𝜇 = 𝑝𝐻𝜇= 5.5 and 𝜎2 = 0.79 

Cation 

exchange 

capacity 

 𝑆𝑐𝑒𝑐𝑖 =  {

0,   𝑖𝑓 𝐶𝐸𝐶𝑖  < 1                        
100,    𝑖𝑓  𝐶𝐸𝐶𝑖 ≥ 22                          

−0.061𝐶𝐸𝐶𝑖
2 + 6.114𝐶𝐸𝐶𝑖 − 5.053,       𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

Where 𝑆𝑐𝑒𝑐𝑖 is the suitability score for a given cation exchange capacity in meq/100g (𝐶𝐸𝐶𝑖) 

Texture 
 

 

 

 

 

 

𝑆𝑡𝑖 = 

 

 

 

 

Where 𝑆𝑡𝑖 is the suitability score for given soil texture (𝑇𝑖) 

 

Texture 
Suitability (%) 

0 to 25 25 to 50 50 to 75 75 to 90 90 to 100 

Sand 99 1 0 0 0 
Sandy loam 99 1 0 0 0 
Loamy sand 0 99 1 0 0 
Loam 0 0 1 99 0 
Silt loam 0 0 1 99 0 
Silt 0 1 99 0 0 
Sandy clay loam 0 1 99 0 0 
Clay loam 0 0 1 99 0 
Silty clay loam 0 0 1 99 0 
Sandy clay 0 1 99 0 0 
Silty clay 0 0 0 1 99 
Clay 0 0 0 1 99 

 



  

9 

 

2.2.3. Modeling in Bayesian Networks  

Bayesian Networks are multivariate statistical models that comprise two main 

components:  First, a directed acyclic graph composed of a set of random variables X = (X1, 

[...], Xn) linked by arcs, where the arc direction defines direct dependencies between 

variables (parent and child nodes). Each variable has at least two mutually exclusive states. 

Second, a conditional probability distribution (conditional probability table) that quantifies the 

dependencies between variables. To illustrate, assume that X1 is the child variable of parent 

variables X2, […], Xn, written as P(X1 | X2, [...], Xn), which expresses the probability of X1 

occurring given the values of X2, [...], Xn (Jensen and Nielsen, 2007b; Pearl, 1988). In our 

case, the combination of agroecological variables determines the level of suitability of a 

given piece of land for coffee cultivation. In a Bayesian network framework, this implies direct 

causal links between each variable and the variable land suitability, i.e. P(Land Suitability | 

variable1, [...], variablen). These multiple links create an exponential increment of model 

complexity due to the need to estimate the probability distributions for all possible 

combinations of the states of the agroecological variables (Landuyt et al., 2013). We avoided 

this complexity and at the same time increased the explanatory ability of the model by adding 

two intermediate levels (the S-variables and components) between each agroecological 

variable and the land suitability. This technique is known as divorce in graphical models and 

is commonly used to keep conditional probability tables tractable (Chen and Pollino, 2012; 

Jensen and Nielsen, 2007a). We built our model using the software Netica v.5.17 (Norsys 

Software Corp.). 

The final graphical model (Fig. 3) displays three evaluation levels: variables, 

components (groups of variables), and final land suitability (groups of components). The 

model scores and aggregates the suitability of the agroecological variables at each level to 

obtain the final land suitability, which we defined as the potential of a given unit of land to be 

used for viable coffee cultivation. In the first level, we created a node with discretized states 

for each variable and defined the maximum and minimum values of the variables (Pollino et 

al., 2007) and the priors from data available for the region (Table 3) (Hengl et al., 2014; 

Hijmans et al., 2005). Then, we added a new child variable “S” to each agroecological 

variable and used the suitability functions to populate the conditional probability tables of the 

S-variables. In the second level, we grouped and aggregated the S-variables into the 

components climate, soil, and landform by using the Linear Combination Method (Hopkins, 

2014). This method is a simple weighted sum of factors. We assigned the same weight to 

all S-variables. In the third level, we again used the weighted sum method to aggregate the 

components into the final variable Land Suitability, but this time assigned different weights 

to each component (49% to climate, 36% to soil and 15% to landform). The weights were 
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calculated based on two coffee survey from Nicaragua (Lara Estrada, 2005; Nitlapan, 2012) 

using Pearson´s correlation coefficients between our selected variables and the coffee 

yields reported in the surveys. 

After the structure of the model was determined, the priors of the agroecological 

variables were learned from data using the Counting-Learning Algorithm (Norsys, 2015) and 

the conditional probability tables of all child-nodes were populated using the described 

equations and weighted sums. Then the model was compiled and ready to use. 

  

 

Fig. 3. Graphical structure of the Agroecological Land Evaluation model for Coffea arabica L. 

(ALECA). Arrows indicate causal relationships between variables (from parent to child nodes). 

Level 1 (white boxes): suitability functions [0-100%] are used in the “S” nodes to evaluate the 

suitability levels of the agroecological variables for coffee cultivation. Level 2 (gray boxes): the 

suitability scores of Level 1 are aggregated into components. Level 3 (green box): the 

components are aggregated and weighted to obtain the final land suitability score. The units of 

the S variables, the components, and the final land suitability score are percent. 

Table 3. Description of the state values for the selected variables. 

Variables States* 

Level 1  

Annual mean temperature [°C]  4-9.99, 10-11.99, [...], 26-27.99, 28-29.99 

Annual precipitation [mm]  500-999.99, 1000-1249.99, [...], 2750-2999.99, 3000-6499.99 

Dry season length [months] 0, 1, 2, 3, 4, 5, 6, 7, 8  

Slope [%] 0-1.99, 2-3.99, [...], 16-29.99, 30-59.99, 60-99.99 

Aspect [cardinal direction] 
North, Northeast, East, Southeast, South, Southwest, West, 

Northwest, Flat 

pH in H20 [-] 2-2.49, 2.5-2.99, 3-3.49,[...], 7-7.49, 7.5-7.99 

Cation exchange capacity [Meq 100 g-1] 2.5-4.99, 5-7.49, [...], 17.5-19.99, 20-22.49, ≥22.5 

Texture [categorical] 
Sand, Loamy sand, Sandy loam, loam, Silt loam, Silt, Sandy clay 

loam, Clay loam, Silty clay loam, Sandy clay, Silty clay, Clay 

S variables [%]: 0-9.99, 10-19.99, [...], 80-89.99, 90-99.99 
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2.3. Data sources 

For the simulations, we used the WorldClim dataset (Hijmans et al., 2005) to extract 

precipitation and temperature and calculate dry season length. WorldClim provides climate 

data in raster format from interpolated observations for the period 1950 to 2000 and also 

includes digital elevation [90 m aggregated at 1 km] from the Shuttle Radar Topography 

Mission (SRTM). We used this data to estimate the slopes and aspect [0 to 360°], which 

was converted to cardinal directions (ESRI, 2008). Sand, silt and clay content, cation 

exchange capacity and pH in H2O were downloaded from the SoilGrids portal 

(www.soilgrids.org). SoilGrids is a worldwide 3D spatial dataset for chemical and soil 

physical properties at a 1 km resolution (Hengl et al., 2014). Soil data were available from 0 

to 200 cm depth in layers of 5 cm; we used the average of the layers between 0 at 30 cm 

depth. Lastly, we merged all climate, landform and soil data into a single dataset, where 

each pixel [1 km resolution] corresponds to one “land case” to be evaluated in the model. 

3. Sensitivity analysis 

The influence of a parent variable on a child variable is defined by the prior distribution, 

the variable states (i.e. size and bounds) and the equations or conditional probability tables 

inside the child variable (Bennett et al., 2013). To explore the influence of the chosen 

agroecological variables on land suitability, we ran a sensitivity analysis using the variance 

reduction metric. The higher the variance reduction value of a variable is (scoring from 0 to 

100%), the greater its influence on land suitability (Marcot et al., 2006; Norsys, 2015). We 

also examined the influence of the single components’ scores on land suitability. 

The analysis shows that the components climate and soil and their respective 

agroecological variables (except texture) influence land suitability most, and that results are 

not very sensitive to the landform component. Inside the components, mean temperature 

plays the most important role in the climate, pH in the soil and slope in the landform 

component (Fig. 4). The low variance reduction of landform results a) from the low weight 

Annual mean temperature, Annual 

precipitation, Dry season length, Slope, 

pH in H20, Cation exchange capacity   

S variable Aspect [%] 70-79.99, 80-89.99, 90-99.99 

S variable Texture [%] 0-24.99, 25-49.99, 50-74.99, 75-89.99, 90-99.99 

Level 2  

Component suitability [%]:  

Climate, Landform and Soil 
0-9.99, 10-19.99, [...], 70-79.99, 90-99.99 

Level 3  

Land Suitability [%] 0-9.99, 10-19.99, [...], 70-79.99, 90-99.99 
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derived to the landform component, and b) from the narrow distribution of slope and aspect 

in our gridded input dataset, where, due to the resolution, extremes in slope, which would 

restrict or prohibit coffee cultivation on some plots, are filtered out. Since ALECA was also 

developed to be applied to specific plots on farms, the inclusion of landform is nevertheless 

important. A flat or low slope is more desirable on a piece of land with excellent or good 

conditions of soil and climate (land suitability > 85%) than a steep slope and will thus be 

better ranked. For example, steep slopes facilitate soil erosion and the efficiency of 

agronomic practices (Okoth et al., 2007; Tilman et al., 2002). 

For an explanation of how the components’ scores interact to define the final land 

suitability, see appendix. 

 

 

Fig. 4. Sensitivity analysis of model results using variance reduction for land suitability (left) 

and components (right). CEC: cation exchange capacity, DS: dry season length, PA: mean 

annual precipitation, TA: mean annual temperature. 

4. Model validation 

Validating a model like ALECA is difficult due to the nature of its results, which do not 

give data on the presence/absence of coffee, but provide a score of 0-100% indicating the 

suitability of a specific land unit for coffee cultivation. We nevertheless decided to compare 

our model results with regional data of the spatial distribution of coffee areas (Fig. 1), 

assuming that the distribution of current coffee areas is the result of a historical and technical 

selection for the best possible and available areas (Rueda and Lambin, 2013; Samper, 

1999) and that consequently, ALECA should score their land units high on the suitability 

scale. Some plantations may be located in areas of lower suitability since farming practices 

Components
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like the planting of shade trees improve land suitability by lowering temperatures (Haggar et 

al., 2011; Siles et al., 2010), but no coffee plantations should be located on completely 

unsuitable areas. 

The results of this exercise show that there is indeed a close fit between patterns of 

coffee areas reported in national coffee maps and areas scored as suitable for coffee 

production by our model (Fig. 5; maps of the entire region can be found in the supplementary 

material). Areas with coffee plantations have a mean land suitability score of 85% 

(SD=5.34), nearly 98% of the plantations are located in areas with a suitability higher 70%, 

only 2% of the areas are ranked 60-70%, and no coffee plantations have land suitability 

scores below 60% (Table 4). In comparison, non-coffee areas have a mean land suitability 

score of 76% (SD=7.7), with 80% located in areas with a suitability higher 70%, 17% in areas 

ranked 60-70%, and 3% in areas with suitability scores below 60%. We assume that the 

occurrence of coffee plantations in areas ranked 60-70% is the result of social and 

agronomical factors, such as planting coffee for land reclamation purposes (Charlip, 2003). 

Additionally, the use of farming practices like agroforestry systems and better adapted 

genetic material have permitted farmers to extend coffee production to sites with a lower 

suitability ranking (Lopez-Rodriguez et al., 2015; Muschler, 2001; Philippe et al., 2009). 

Guatemala, for example, the country with the highest proportion (54%) of coffee areas rated 

between 60 and 80% suitability, is also the only country in Central America with a significant 

Robusta production. This coffee species is better adapted to warmer conditions than Coffea 

arabica L. (USDA, 2015; Willson, 1985), indicating that the simulated lower suitability scores 

may be realistic. The relatively high proportion of non-coffee areas with scores higher 70% 

shows that there is great expansion potential in Central America for coffee production. It 

should be kept in mind, however, that non-coffee areas include urban and protected areas, 

coasts, roads, and other land uses that are not immediately available for plantations. 

We conclude from this validation study that, taking local social and agronomical factors 

into account, ALECA performs well in terms of land suitability scoring of potential coffee 

areas.  
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Fig. 5. Map of reported coffee areas and simulated land suitability scores in selected areas 

of Central America. Coffee is usually grown in areas with high estimated suitability, 

indicating a good model performance. Pixel size is 1 km. 
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Table 4. Simulated land suitability scores of current coffee and non-coffee areas for Coffea arabica 

L. in Central America with GUA = Guatemala, HON = Honduras, SV = El Salvador, NIC = Nicaragua, 

CR = Costa Rica, PAN = Panamá. A graphical presentation of the data can be found in the 

supplementary material. 

Land 
suitability 
score (%) 

 Coffee areas  Non-coffee areas 

 GUA HON ESV NIC CR PAN ∑ % ∑ km2  % km2 

<60  <0.01 <0.01 - - <0.01 - <0.01 <1  3.20 15,776 

60 - 69  1.90 0.06 <0.01 0.09 0.06 - 2.11 224  17.34 85,469 

70 - 79  18.25 2.62 0.96 1.56 0.99 0.30 24.68 2,614  44.75 220,678 

80 - 89  14.99 17.33 11.88 11.15 3.66 0.46 59.47 6,302  32.75 161,489 

90 - 100  2.08 2.99 1.82 2.49 4.26 0.10 13.74 1,456  1.96 9,677 

 Total  37.22 23.00 14.66 15.29 8.97 0.87 100 10,598  100 493,089 

 

In a second validation study, we compared the simulated land suitability scores of eight 

coffee reference zones with their conventionally reported suitability for coffee cultivation, 

hoping to show that ALECA simulates higher scores for prime coffee areas than for areas 

known to be of lesser suitability. The selected zones are located in Honduras, Nicaragua 

and Costa Rica and include the zones Marcala and El Paraíso in Honduras (Teuber, 2009), 

Jinotega, Masatepe and Nueva Guinea in Nicaragua (Haggar et al., 2011; Vaast et al., 

2005), and Tarrazú, Turrialba and San Carlos in Costa Rica (Muschler, 2001; Siles et al., 

2010). According to the literature and commonly held views, the region Tarrazú is 

considered as optimal, Jinotega and Marcala as very good, and Turrialba, Masapete, El 

Paraíso, Nueva Guinea and San Carlos as suboptimal for coffee production (Haggar et al., 

2011; Muschler, 2001; Rojas, 1989; Vaast et al., 2005). 

We found that Tarrazú, the only region ranked optimal, was also the region simulated to 

have the highest mean land suitability-scores among the reference zones. The determining 

factors for the high score were mainly climate and soil conditions (Fig. 6), which is line with 

the assessments of other authors for Tarrazú (Bornemisza and Segura, 1999; Chinchilla et 

al., 2011; Rojas, 1989). Next in the land suitability ranking were Jinotega and Marcala, both 

also known in reality for their overall good production levels and coffee quality (IICA, 2003; 

Teuber, 2009). Jinotega scored slightly worse in the soil compartment and Marcala in the 

climate compartment than Tarrazú. Turrialba, Masatepe, and El Paraíso received suitability 

scores of 80-89% due to several limitations in climate, soil, and landform, with Turrialba 

having a better climate, and Masatepe better soil and landform conditions (cf. Haggar et al., 

2011). Finally, even though Nueva Guinea showed the best landform conditions, non-

optimal values in mean temperature and soil chemical properties resulted in a land suitability 

score of 73%, only above of San Carlos. 
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This analysis shows that ALECA is not only able to assign high suitability scores to actual 

coffee areas in Central America as shown in the previous validation study but also to 

reproduce reported quality patterns between single coffee areas. Fig. 6 also shows that 

looking at the different component suitability scores instead of only the final land suitability 

score can help to understand the reasons behind the final ranking and facilitate better 

decision support. 

 

Fig. 6. Overall land suitability and single component suitability scores of the coffee reference zones 

in Central America. In the land suitability figure, the colors black (optimal), grey (very good) and white 

(suboptimal) indicate the commonly accepted classifications of the reference zones. Honduras: 

EPA=El Paraíso, MAR=Marcala; Nicaragua: NGU=Nueva Guinea, MAS=Masatepe, JIN=Jinotega; 

Costa Rica: SCA=San Carlos, TUR=Turrialba, TAR=Tarrazú. Errors bars represent the standard 

deviation of the mean. Different letters inside bars indicate a significant difference between reference 

zones (ANOVA by Fischer test; p<0.01). 

Based on the results of this validation study, we propose that land suitability scores 

above 90% can be categorized as optimal (cf. Tarrazú), 90-85% as very good (cf. 

Marcala and Jinotega), 84-75% as moderate (cf. El Paraíso, Masatepe, Turrialba), 74-

60% as suboptimal (cf. San Carlos and Nueva Guinea) and values below 60% as 

unsuitable for coffee production.  
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5. Application example using uncertain information 

One of the main motivations for developing ALECA was that the Bayesian network 

approach allows users to consider data uncertainty. Users may have precise information for 

some variables and incomplete information for others, or may simply want to consider the 

inherent uncertainty of some input data, like e.g. soil sampling deviations or errors in rainfall 

measurements. To demonstrate ALECA’s ability to deal with this issue and still deliver 

reliable results, we conducted a simulation using input data with added uncertainty and 

compared the results to simulations without uncertainty in the input data. We assumed that 

farmers can easily measure slope, soil texture, and dry season length and thus have precise 

information (hard evidence) for these factors. For the remaining variables, we used Netica’s 

Uncertain Value Format, which allows users to represent different types of data uncertainty 

by using Gaussian distributions, intervals, a set of (im)possibilities and others (Norsys, 

2015). In this case, we used the Gaussian uncertain value format to calculate a mean and 

standard deviation for each case value based on the input data for each land case and the 

state values of each agroecological variable (Table 3). We then ran the model with both 

input datasets, thus estimating land suitability scores with and without uncertainty in the 

input data, and finally calculated for both result datasets in order to evaluate model 

performance the Bayesian metrics quadratic loss and spherical payoff, and the conventional 

metrics bias, RMSE, and Index of Agreement (Marcot, 2012; Willmott, 1981). 

Results show that the mean land suitability-scores were approximately the same, with 

76.13% and an SD=4.88 calculated from the input dataset with added uncertainty and 

76.29% with an SD=7.7 from the original dataset (Fig. 8). The use of data with uncertainty 

generated a land suitability score distribution with shorter tails, however. This finding 

indicates that in areas with land suitability scores ranged 60-90%, ALECA’s performance is 

quite accurate even under uncertainty, but that in regions with low (<60%) or high suitability 

scores (≥ 90%) results differ by ca. 5% between data with and without uncertainty. This 

difference is negligible in our case, as the qualitative ranking of areas does not change with 

a difference of 5%: areas with suitability values below 60% are unsuitable for coffee 

production in any case, and areas with values above 90% will remain optimal or very good. 

Overall, the study shows that in the suitability range most coffee areas are in Central 

America are found in, ALECA can deliver a reliable analysis even under uncertainty and can 

thus be used as a decision support tool even in situations where data is missing or uncertain. 
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Fig. 7. Land suitability (LS) scores simulated from input data with and without added 

uncertainty.  A) Dispersion graph of LS scores. A bias (ca. 5%) is visible between 

datasets at low and high LS values. B) Box plot of the same values as shown in A). 
The classes on the x-axis only apply to the white boxes (input data without 

uncertainty). The grey boxes show the LS scores of the same land units, but with 

added uncertainty in the input data. C) Two maps of a randomly chosen coffee zone 

in Nicaragua. 

6. Discussion 

Bayesian networks are versatile tools for the creation of land suitability evaluation 

systems for coffee production. Unlike other land suitability evaluation systems (Bunn et al., 

2014), models like ALECA have a transparent and informative graphical interface that allows 

users to evaluate the suitability of a given land unit for coffee cultivation at variable, 

component and aggregate level. Decision makers can see, explore and learn from the 

evaluation process (Jakeman et al., 2006; Ranatunga et al., 2008). Like Mighty (2015) and 

Nzeyimana et al. (2014), we used climate, soil and topography variables to define land 

suitability. The main difference between their variable selection and ours is that they used 

proxy variables like soil orders and geological information to represent the effect of soil 

properties in some cases, while we focused on variables with a direct influence on land 
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suitability (Austin, 2002). Finally, the combined deterministic and probabilistic updating in 

ALECA allows the model to produce quick and accurate results by using i) deterministic 

updating when there is no uncertainty in the evidence for the parent variable(s) and no 

uncertainty in the equation or tables relating the child variable to its parent(s), and ii) 

probabilistic updating when uncertainty is present from any of those sources (B. Boerlage, 

Norsys Software Corp.; personal communication).  

Some caveats should be kept in mind, however. First, we had to use data from different 

types of studies (surveys and trials), regions and conditions to develop the suitability 

functions, but assumed that the information appropriately represents the process under 

study (Rodríguez et al., 2011; van Oijen et al., 2010). Second, the literature largely refers to 

only Coffea arabica L. and ignores varietal differences (Bertrand et al., 2011; Philippe et al., 

2009). Thus, we also excluded varietal differences from our model. Third, there is uncertainty 

associated with the datasets we used that we did not consider in the validation procedure 

for the sake of clarity. We opted to demonstrate how this factor can be considered in the 

uncertainty exercise instead. Finally, like other land evaluation systems, ALECA uses a 

linear combination method to estimate land suitability, which is a weighted sum of individual 

variables’ suitability that excludes any interactions and assumes variable independence 

(Hopkins, 2014). However, the influence of some variables can depend on the state of other 

variables. Medium to low amounts of annual precipitation, for example, have less of an 

impact on coffee when soil texture is clayey (Willson, 1985) and the slope aspect modifies 

the temperature at the site level (Barry, 2008). Including these interactions would have 

required defining all conditional dependencies between the states of the different variables, 

which was not feasible due to a lack of information. The model validation exercise showed 

that ALECA performs well even without considering these interactions, but we will 

nevertheless keep refining the model with any new data set that becomes available. 

Plans for ALECA also include the addition of variables describing the impact of farming 

practices like mulching on soil properties and erosion reduction, irrigation on water supply 

and the planting of trees on microclimate and soil conditions. The shade of trees, for 

example, reduces the temperature under the canopy in agroforestry coffee plantations (Siles 

et al., 2010). By defining the potential of temperature reduction based on the level of shade, 

it is easily possible to explore changes in temperature suitability due to trees in ALECA. 

ALECA can also be adapted for use in coffee regions outside Central America by updating 

the bounds and priors of the variables to the new conditions. For the regions that experience 

lower annual or seasonal temperatures than Central America, the introduction of a variable 

like ‘temperature of the coldest month’ may be necessary (Woodward and Williams, 1987), 

but no further changes to the structure would likely be needed.    
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7. Conclusions  

In this study, we introduce ALECA, the first Bayesian network model to evaluate land 

suitability for coffee production in Central America under uncertainty. The validation showed 

that even without the use of coffee maps as input, ALECA reliably scored the suitability of 

actual coffee areas for coffee production as higher than that non-coffee areas, and was able 

to accurately predict the known order of quality of several coffee reference zones in Central 

America. We further showed that the model can also be used as a reliable decision support 

tool for coffee stakeholders in situations where some input data is uncertain. The graphical 

structure of the model permits users to easily assess the main factors determining land 

suitability for coffee production, to explore how changes in these factors impact suitability, 

and to plan adaptation measures accordingly.    

Acknowledgments  

This study was funded and supported by the School of Integrated Climate System Sciences 

(SICSS), the Kompetenzzentrum Nachhaltige Universität (KNU) and the cluster of 

excellence “Integrated Climate System Analysis and Prediction” (CliSAP) at Universität 

Hamburg. We would further like to thank Nitlapan-UCA and FUNICA in Nicaragua for 

providing the data of Nitlapan (2012) and Dr. Christophe Mongtanon, Dr. Enrique Succar 

and two anonymous reviewers for their comments on the manuscript.  

References 

Adams, J.M., 2010. Vegetation-climate interaction: how plants make the global environment, 

2nd ed, Springer-Praxis books in environmental sciences. Springer ; In Association 

with Praxis, Berlin ; New York : Chichester, UK. 

Aguilera, P.A., Fernández, A., Fernández, R., Rumí, R., Salmerón, A., 2011. Bayesian 

networks in environmental modelling. Environmental Modelling & Software 26, 

1376–1388. doi:10.1016/j.envsoft.2011.06.004 

Alégre, C., 1959. Climates et caféiers d´Arabie. Agronomie Tropicale 14, 23–58. 

ANACAFE, 2006. Guía Técnica de Caficultura. ANACAFE, Guatemala, Guatemala. 

Austin, M.P., 2002. Spatial prediction of species distribution: an interface between ecological 

theory and statistical modelling. Ecological Modelling 157, 101–118. 

doi:10.1016/S0304-3800(02)00205-3 

Austin, M.P., 1980. Searching for a model for use in vegetation analysis. Vegetatio 42, 11–

21. doi:10.1007/BF00048865 

Avelino, J., Barboza, B., Araya, J.C., Fonseca, C., Davrieux, F., Guyot, B., Cilas, C., 2005. 

Effects of slope exposure, altitude and yield on coffee quality in two altitude terroirs 

of Costa Rica, Orosi and Santa María de Dota. Journal of the Science of Food and 

Agriculture 85, 1869–1876. doi:10.1002/jsfa.2188 



  

21 

 

Avelino, J., Cristancho, M., Georgiou, S., Imbach, P., Aguilar, L., Bornemann, G., Läderach, 

P., Anzueto, F., Hruska, A.J., Morales, C., 2015. The coffee rust crises in Colombia 

and Central America (2008–2013): impacts, plausible causes and proposed 

solutions. Food Security 7, 303–321. doi:10.1007/s12571-015-0446-9 

Barry, R.G., 2008. Mountain Weather and Climate. Cambridge University Press, Leiden. 

Bennett, N.D., Croke, B.F.W., Guariso, G., Guillaume, J.H.A., Hamilton, S.H., Jakeman, A.J., 

Marsili-Libelli, S., Newham, L.T.H., Norton, J.P., Perrin, C., Pierce, S.A., Robson, B., 

Seppelt, R., Voinov, A.A., Fath, B.D., Andreassian, V., 2013. Characterising 

performance of environmental models. Environmental Modelling & Software 40, 1–

20. doi:10.1016/j.envsoft.2012.09.011 

Bertrand, B., Alpizar, E., Lara, L., SantaCreo, R., Hidalgo, M., Quijano, J., Montagnon, C., 

Georget, F., Etienne, H., 2011. Performance of Coffea arabica F1 hybrids in 

agroforestry and full-sun cropping systems in comparison with American pure line 

cultivars. Euphytica 181, 147–158. doi:10.1007/s10681-011-0372-7 

Blanco, R., Aguilar, A., 2015. Soil erosion and erosion thresholds in an agroforestry system 

of coffee (Coffea arabica) and mixed shade trees (Inga spp and Musa spp) in 

Northern Nicaragua. Agriculture, Ecosystems & Environment 210, 25–35. 

doi:10.1016/j.agee.2015.04.032 

Bonan, G.B., 2008. Ecological climatology: concepts and applications, 2nd ed. Cambridge 

University Press, Cambridge ; New York. 

Bornemisza, E., Segura, A., 1999. Los suelos cafetaleros de América Central y su 

fertilización, in: Desafíos de la caficultura en Centroamérica. IICA, PROMECAFE, 

San José, C. R, pp. 97–137. 

Bunn, C., Läderach, P., Pérez Jiménez, J.G., Montagnon, C., Schilling, T., 2015. Multiclass 

Classification of Agro-Ecological Zones for Arabica Coffee: An Improved 

Understanding of the Impacts of Climate Change. PLOS ONE 10, e0140490. 

doi:10.1371/journal.pone.0140490 

Bunn, C., Läderach, P., Rivera, O.O., Kirschke, D., 2014. A bitter cup: climate change profile 

of global production of Arabica and Robusta coffee. Climatic Change 129, 89–101. 

doi:10.1007/s10584-014-1306-x 

Camargo, A., 1985. O clima e a cafeicultura no Brasil. Informe Agropecuario 11, 13–26. 

Camargo, M.B.P. de, 2010. The impact of climatic variability and climate change on arabic 

coffee crop in Brazil. Bragantia 69, 239–247. doi:https://dx.doi.org/10.1590/S0006-

87052010000100030 

Cannell, M.G.R., 1985. Physiology of the coffee crop, in: Coffee. Springer, pp. 108–134. 

Charlip, J.A., 2003. Cultivating coffee: the farmers of Carazo, Nicaragua, 1880-1930, Ohio 

University research in international studies. Latin America series. Ohio University 

Press, Athens. 

Chemura, A., Kutywayo, D., Chidoko, P., Mahoya, C., 2015. Bioclimatic modelling of current 

and projected climatic suitability of coffee (Coffea arabica) production in Zimbabwe. 

Reg Environ Change 1–13. doi:10.1007/s10113-015-0762-9 



  

22 

 

Chen, S.H., Pollino, C.A., 2012. Good practice in Bayesian network modelling. 

Environmental Modelling & Software 37, 134–145. 

doi:10.1016/j.envsoft.2012.03.012 

Chinchilla, M., Mata, R., Alvarado, A., 2011. Andisoles, inceptisoles y entisoles de la 

subcuenca del río Pirrís, región de Los Santos, Talamanca, Costa Rica. Agronomía 

Costarricense 35, 83–107. 

Coudun, C., Gégout, J.-C., Piedallu, C., Rameau, J.-C., 2006. Soil nutritional factors improve 

models of plant species distribution: an illustration with Acer campestre (L.) in France. 

Journal of Biogeography 33, 1750–1763. doi:10.1111/j.1365-2699.2005.01443.x 

DaMatta, F.M., Ramalho, J.D.C., 2006. Impacts of drought and temperature stress on coffee 

physiology and production: a review. Brazilian Journal of Plant Physiology 18, 55–

81. doi:10.1590/S1677-04202006000100006 

Descroix, F., Snoeck, J., 2004. Enviromental Factors Suitable for Coffee Cultivation, in: 

Wintgens, J. (Ed.), Coffe: Growing, Processing, Sustainable Production. Wiley-VCH, 

Alemania, pp. 164–177. 

Descroix, F., Wintgens, J.N., 2004. Establishing a Coffee Plantation, in: Wintgens, J.N. (Ed.), 

Coffee: Growing, Processing, Sustainable Production. Wiley-VCH Verlag GmbH, pp. 

178–245. 

D’haeze, D., Deckers, J., Raes, D., Phong, T.A., Loi, H.V., 2005. Environmental and socio-

economic impacts of institutional reforms on the agricultural sector of Vietnam: Land 

suitability assessment for Robusta coffee in the Dak Gan region. Agriculture, 

Ecosystems & Environment 105, 59–76. doi:10.1016/j.agee.2004.05.009 

Eakin, H., Tucker, C.M., Castellanos, E., Diaz-Porras, R., Barrera, J.F., Morales, H., 2014. 

Adaptation in a multi-stressor environment: perceptions and responses to climatic 

and economic risks by coffee growers in Mesoamerica. Environ Dev Sustain 16, 

123–139. doi:10.1007/s10668-013-9466-9 

ESRI, 2008. How Aspect works [WWW Document]. URL 

http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=How%20Aspect

%20works (accessed 9.23.15). 

FAO, 1976. A framework for land evaluation, Soils bulletin. Food and Agriculture 

Organization of the United Nations, Rome, Italy. 

Forestier, J., 1969. Culture du caféier Robusta en Afrique centrale: par J. Forestier,. Institut 

français du café et du cacao, Paris. 

Franco, C.M., 1958. Influence of temperatures on growth of coffee plant, Bulletin. IBEC 

Research Institute, New York (EUA), New York, NY (EUA). 

Franklin, J., Miller, J.A., 2009. Mapping species distributions spatial inference and prediction. 

Cambridge University Press, Cambridge; New York. 

Giorgi, F., 2006. Climate change hot-spots. Geophys. Res. Lett. 33, L08707. 

doi:10.1029/2006GL025734 

Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, 

J., Robinson, S., Thomas, S.M., Toulmin, C., 2010. Food Security: The Challenge of 

Feeding 9 Billion People. Science 327, 812–818. doi:10.1126/science.1185383 

Haarer, A.E., 1958. Modern Coffee Production. Leonard Hill Limited, London, England. 



  

23 

 

Haggar, J., Barrios, M., Bolaños, M., Merlo, M., Moraga, P., Munguia, R., Ponce, A., Romero, 

S., Soto, G., Staver, C., de M. F. Virginio, E., 2011. Coffee agroecosystem 

performance under full sun, shade, conventional and organic management regimes 

in Central America. Agroforestry Systems 82, 285–301. doi:10.1007/s10457-011-

9392-5 

Hengl, T., de Jesus, J.M., MacMillan, R.A., Batjes, N.H., Heuvelink, G.B.M., Ribeiro, E., 

Samuel-Rosa, A., Kempen, B., Leenaars, J.G.B., Walsh, M.G., Gonzalez, M.R., 

2014. SoilGrids1km — Global Soil Information Based on Automated Mapping. PLoS 

ONE 9, e105992. doi:10.1371/journal.pone.0105992 

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution 

interpolated climate surfaces for global land areas. International Journal of 

Climatology 25, 1965–1978. doi:10.1002/joc.1276 

Hopkins, L.D., 2014. Methods for Generating Land suitability Maps: A Comparative 

Evaluation, in: Ndubisi, F.O. (Ed.), The Ecological Design and Planning Reader. 

Island Press/Center for Resource Economics, pp. 348–367. 

ICO, 2015. Historical Data on the Global Coffee Trade [WWW Document]. URL 

http://www.ico.org/new_historical.asp?section=Statistics (accessed 9.11.15). 

IICA, 2003. Cadena de Comercializacion del Café. Managua, Nicaragua. 

Jakeman, A.J., Letcher, R.A., Norton, J.P., 2006. Ten iterative steps in development and 

evaluation of environmental models. Environmental Modelling & Software 21, 602–

614. doi:10.1016/j.envsoft.2006.01.004 

Jaramillo, A., Guzmán, M., 1984. Relación entre la temperatura y el crecimiento en Coffea 

arabica L. variedad Caturra. CENICAFE 35, 57–65. 

Jensen, F.V., Nielsen, T., 2007a. Building Models, in: Bayesian Networks and Decision 

Graphs, Information Science and Statistics. Springer New York, pp. 51–108. 

Jensen, F.V., Nielsen, T.D., 2007b. Bayesian networks and decision graphs., 2nd ed, 

Information science and statistics. Springer, New York. 

Karmalkar, A.V., Bradley, R.S., Diaz, H.F., 2011. Climate change in Central America and 

Mexico: regional climate model validation and climate change projections. Climate 

Dynamics 37, 605–629. doi:10.1007/s00382-011-1099-9 

Landuyt, D., Broekx, S., D’hondt, R., Engelen, G., Aertsens, J., Goethals, P.L.M., 2013. A 

review of Bayesian belief networks in ecosystem service modelling. Environmental 

Modelling & Software 46, 1–11. doi:10.1016/j.envsoft.2013.03.011 

Lara Estrada, L., 2005. Effects of the altitude, shade, production and fertilization on coffee 

quality (Coffea arabica L. var. Caturra) produced in agroforestry systems of coffee 

zone Northern Central of Nicaragua (M.Sc.). Spanish. Postgraduate School - CATIE, 

Turrialba, Costa Rica. http://hdl.handle.net/11554/4936. 

Larcher, W., 1981. Effects of low temperature stress and frost injury on plant productivity, in: 

Physiological Processes Limiting Plant Productivity. Butterworth-Heinemann, pp. 

253–269. 

Littleboy, M., Smith, D.M., Bryant, M.J., 1996. Simulation modelling to determine suitability 

of agricultural land. Ecological Modelling, Environmental and Ecological Models for 

Simulation and Management 86, 219–225. doi:10.1016/0304-3800(95)00055-0 



  

24 

 

Lopez-Rodriguez, G., Sotomayor-Ramírez, D., Amador, J., Schroder, E., 2015. Contribution 

of nitrogen from litter and soil mineralization to shade and sun coffee (Coffea arabica 

L.) agroecosystems. Tropical Ecology 56, 155–156. 

http://tropecol.com/volumes/toc/en/toc56–2.htm. 

Maestri, M., Barros, R.S., 1977. Coffee, in: Alvin, P., Kozlowski, T. (Eds.), Ecophysiology of 

Tropical Crops. Academic Press, Inc, New York, USA. 

Magaña, V., Amador, J.A., Medina, S., 1999. The midsummer drought over Mexico and 

Central America. Journal of Climate 12, 1577–1588. 

doi:http://dx.doi.org/10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2 

Marcot, B.G., 2012. Metrics for evaluating performance and uncertainty of Bayesian network 

models. Ecological Modelling 230, 50–62. doi:10.1016/j.ecolmodel.2012.01.013 

Marcot, B.G., Steventon, J.D., Sutherland, G.D., McCann, R.K., 2006. Guidelines for 

developing and updating Bayesian belief networks applied to ecological modeling 

and conservation. Can. J. For. Res. 36, 3063–3074. doi:10.1139/x06-135 

McRae, S.G. (Stuart G., Burnham, C.P. (Christopher P., 1981. Land evaluation, 

Monographs on soil survey. Clarendon Press ; Oxford University Press, Oxford : New 

York. 

Mighty, M.A., 2015. Site suitability and the analytic hierarchy process: How GIS analysis can 

improve the competitive advantage of the Jamaican coffee industry. Applied 

Geography 58, 84–93. doi:10.1016/j.apgeog.2015.01.010 

Molina, E., Melendez, G., 2002. Tabla de interpretación de análisis de suelos. Centro de 

Investigaciones Agronomicas, Universidad de Costa Rica, Costa Rica. 

Muschler, R.G., 2001. Shade improves coffee quality in a sub-optimal coffee-zone of Costa 

Rica. Agroforestry Systems 131–139. doi:10.1023/A:1010603320653 

Nitlapan, 2012. Proyecto “Acceso a mercados de café diferenciados”. Resultados de 

monitoreo  y auditoría ambiental. (Project report). NITLAPAN-UCA, Managua, 

Nicaragua. 

Norsys, 2015. Netica Help [WWW Document]. URL 

http://www.norsys.com/WebHelp/NETICA.htm (accessed 9.15.15). 

Nunes, M., Brumby, D., D Davies, 1973. Estudo comparativo do metabolismo fotossintético 

em folhas de cafeeiro, beterraba e cana-de-açúcar. Garcia de Orta, Série Estudos 

Agronómicos 1, 1–14. 

Nzeyimana, I., Hartemink, A.E., Geissen, V., 2014. GIS-Based Multi-Criteria Analysis for 

Arabica Coffee Expansion in Rwanda. PLoS ONE 9, e107449. 

doi:10.1371/journal.pone.0107449 

Okoth, P.F., Ng’ang’a, J.K., Kimani, P.K., 2007. Consequences of Field Management and 

Soil Erosion on the Sustainability of Large Scale Coffee Farming in Kiambu, in: 

Bationo, A., Waswa, B., Kihara, J., Kimetu, J. (Eds.), Advances in Integrated Soil 

Fertility Management in Sub-Saharan Africa: Challenges and Opportunities. Springer 

Netherlands, pp. 299–309. 

Osman, K.T., 2013. Soils: Principles, Properties and Management. Springer Netherlands, 

Dordrecht. 



  

25 

 

Ovalle-Rivera, O., Läderach, P., Bunn, C., Obersteiner, M., Schroth, G., 2015. Projected 

Shifts in Coffea arabica Suitability among Major Global Producing Regions Due to 

Climate Change. PLoS ONE 10, e0124155. doi:10.1371/journal.pone.0124155 

Pearl, J., 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible 

Inference, 1st ed. Morgan Kaufmann, San Francisco, USA. 

Philippe, L., Benoít, B., Hervé, E., 2009. Breeding Coffee (Coffea arabica) for Sustainable 

Production, in: Jain, S.M., Priyadarshan, P.M. (Eds.), Breeding Plantation Tree 

Crops: Tropical Species. Springer New York, pp. 525–543. 

Philpott, S.M., Lin, B.B., Jha, S., Brines, S.J., 2008. A multi-scale assessment of hurricane 

impacts on agricultural landscapes based on land use and topographic features. 

Agriculture, Ecosystems & Environment 128, 12–20. 

doi:10.1016/j.agee.2008.04.016 

Pollino, C.A., Woodberry, O., Nicholson, A., Korb, K., Hart, B.T., 2007. Parameterisation and 

evaluation of a Bayesian network for use in an ecological risk assessment. 

Environmental Modelling & Software, Bayesian networks in water resource 

modelling and management 22, 1140–1152. doi:10.1016/j.envsoft.2006.03.006 

Poppenborg, P., Koellner, T., 2014. A Bayesian network approach to model farmers’ crop 

choice using socio-psychological measurements of expected benefits of ecosystem 

services. Environmental Modelling & Software 57, 227–234. 

doi:10.1016/j.envsoft.2014.03.006 

Ramírez, J.E., 2009. Hacia la caficultura sostenible. San José (Costa Rica). 

Ranatunga, K., Nation, E.R., Barratt, D.G., 2008. Review of soil water models and their 

applications in Australia. Environmental Modelling & Software 23, 1182–1206. 

doi:10.1016/j.envsoft.2008.02.003 

Refsgaard, J.C., van der Sluijs, J.P., Højberg, A.L., Vanrolleghem, P.A., 2007. Uncertainty 

in the environmental modelling process – A framework and guidance. Environmental 

Modelling & Software 22, 1543–1556. doi:10.1016/j.envsoft.2007.02.004 

Rodríguez, D., Cure, J.R., Cotes, J.M., Gutierrez, A.P., Cantor, F., 2011. A coffee 

agroecosystem model: I. Growth and development of the coffee plant. Ecological 

Modelling 222, 3626–3639. doi:10.1016/j.ecolmodel.2011.08.003 

Rojas, O., 1989. Determinación del potencial agroecológico para el cultivo del café (Coffea 

arabica) en Costa Rica. Turrialba 39, 279–287. 

Rueda, X., Lambin, E.F., 2013. Linking Globalization to Local Land Uses: How Eco-

Consumers and Gourmands are Changing the Colombian Coffee Landscapes. 

World Development 41, 286–301. doi:10.1016/j.worlddev.2012.05.018 

Samper, M., 1999. Trayectoria y viabilidad de las Caficultoras Centroamericanas, in: 

Desafíos de La Caficultura En Centroamérica. 

IICA/PROMECAFE/CIRAD/IRD/CCCR, San José, Costa Rica, pp. 1–68. 

Siles, P., Harmand, J.-M., Vaast, P., 2010. Effects of Inga densiflora on the microclimate of 

coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in 

Costa Rica. Agroforestry Systems 78, 269–286. doi:10.1007/s10457-009-9241-y 



  

26 

 

Silva, S.A., Lima, J.S.S., Bottega, E.L., 2013. Yield mapping of arabic coffee and their 

relationship with plant nutritional status. Journal of soil science and plant nutrition 13, 

556–564. http://ref.scielo.org/s5dspw. 

Somarriba, E., Harvey, C.A., Samper, M., Anthony, F., González, J., Staver, C., Rice, R.A., 

2004. Biodiversity Conservation in Neotropical Coffee (Coffea arabica L.) Plantations, 

in: Schroth, G., da Fonseca, G., Harvey, C., Gascon, C., Vasconcelos, H., Izac, A. 

(Eds.), Agroforestry and Biodiversity Conservation in Tropical Landscapes. 

Washington, DC, USA. 

Sys, C., Ranst, E. van, Debaveye, J., 1991. Land Evaluation. Part I. Principles in Land 

Evaluation and Crop Production Calculations, Agricultural Publications. Brussels, 

Bergium. 

Taylor, M.A., Alfaro, E.J., 2005. Central America and the Caribbean, Climate of, in: 

Encyclopedia of World Climatology. Springer, pp. 183–189. 

Teuber, R., 2009. Café de Marcala - Honduras’ GI Approach to Achieving Reputation in the 

Coffee Market. Estey Centre Journal of International Law and Trade Policy 10, 131–

148. http://purl.umn.edu/48798. 

Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., Polasky, S., 2002. Agricultural 

sustainability and intensive production practices. Nature 418, 671–677. 

doi:10.1038/nature01014 

Tucker, C.M., Eakin, H., Castellanos, E.J., 2010. Perceptions of risk and adaptation: Coffee 

producers, market shocks, and extreme weather in Central America and Mexico. 

Global Environmental Change 20, 23–32. doi:10.1016/j.gloenvcha.2009.07.006 

Ukers, W., 1935. All about coffee, Second. ed. New York, USA. 

USDA, 2015. Coffee Annual Report: Guatemala (GAIN Report No. 15003). Foreign 

Agricultural Service, USDA. http://www.fas.usda.gov/data/guatemala-coffee-annual-

0. 

Vaast, P., Bertrand, B., Perriot, J.-J., Guyot, B., Génard, M., 2006. Fruit thinning and shade 

improve bean characteristics and beverage quality of coffee (Coffea arabica L.) 

under optimal conditions. Journal of the Science of Food and Agriculture 86, 197–

204. doi:10.1002/jsfa.2338 

Vaast, P., Cilas, C., Perriot, J.J., Davrieux, J.J., Guyot, B., Bolaños, M., 2005. Mapping of 

Coffee Quality in Nicaragua According to Regions, Ecological Conditions and Farm 

Management, in: ASIC Conference. Bangalore, India. 

Vaast, P., Kanten, R., Siles, P., Angrand, J., Aguilar, A., 2008. Biophysical Interactions 

Between Timber Trees and Arabica Coffee in Suboptimal Conditions of Central 

America, in: Jose, S., Gordon, A.M., Nair, P.K.R. (Eds.), Toward Agroforestry Design, 

Advances in Agroforestry. Springer Netherlands, pp. 133–146. 

van Oijen, M., Dauzat, J., Harmand, J.-M., Lawson, G., Vaast, P., 2010. Coffee agroforestry 

systems in Central America: II. Development of a simple process-based model and 

preliminary results. Agroforestry Systems 80, 361–378. doi:10.1007/s10457-010-

9291-1 

Vega, F.E., Rosenquist, E., Collins, W., 2003. Global project needed to tackle coffee crisis. 

Nature 425, 343–343. doi:10.1038/425343a 



  

27 

 

Verheye, W., 2002. Management of Agricultural Land: Chemical and Fertility Aspects, in: 

Encyclopedia of Life Support Systems (EOLSS). 

Verheye, W.H., 1987. Land Suitability Evaluation in Major Agro-ecological Zones and its 

Application in Land Use Planning and Nature Protection, in: Barth, H., L’Hermite, P. 

(Eds.), Scientific Basis for Soil Protection in the European Community. Springer 

Netherlands, pp. 377–388. 

Wallis, J.A.N., 1963. Water use by irrigated Arabica coffee in Kenya. The Journal of 

Agricultural Science 60, 381–388. 

doi:http://dx.doi.org/10.1017/S0021859600011977 

Wang, N., Jassogne, L., van Asten, P.J.A., Mukasa, D., Wanyama, I., Kagezi, G., Giller, 

K.E., 2015. Evaluating coffee yield gaps and important biotic, abiotic, and 

management factors limiting coffee production in Uganda. European Journal of 

Agronomy 63, 1–11. doi:10.1016/j.eja.2014.11.003 

Willmott, C.J., 1981. On the validation of models. Physical geography 2, 184–194. 

doi:10.1080/02723646.1981.10642213 

Willson, K.C., 1985. Climate and Soil, in: Coffee. Botany, Biochemistry and Production of 

Beans and Beverage. New York, USA. 

Woodward, F.I., Williams, B.G., 1987. Climate and plant distribution at global and local 

scales. Vegetatio 69, 189–197. doi:10.1007/BF00038700 

 

  



  

28 

 

Appendix 

Influence of single components on final land suitability scoring  

 

Fig. A1. Suitability scores of single components and final land suitability score of coffee 

areas in Central America. The climate and soil components have a larger influence on the 

final land suitability score than landform. To achieve very high or low land suitability scores, 

both climate and soil components need to have high or low values, indicating that no further 

analysis of causes is required. Intermediate land suitability values (60 to 80%) can arise 

from diverse component values, in which case the single component and variable values 

need to analyze in order to identify the limiting factors for coffee production. 
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Fig. A2. Map of current land suitability for Coffea arabica L. in Central America 
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Fig. A3. Map of current climate suitability for Coffea arabica L. in Central America 
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Fig. A4. Map of current soil suitability for Coffea arabica L. in Central America 
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Fig. A5. Map of current landform suitability for Coffea arabica L. in Central America 
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Supplementary Material 

Links to download four high resolution images in format PDF: 

i. Map of current land suitability for Coffea arabica L. in Central America 

ii. Map of current climate suitability for Coffea arabica L. in Central America 

iii. Map of current soil suitability for Coffea arabica L. in Central America 

iv. Map of current landform suitability for Coffea arabica L. in Central America 

 

Accompanying figures to Table 5 

 

Fig. S1. Simulated share of total coffee and non-coffee area in Central America in the 

different land suitability classes for coffee production. 
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Fig. S2. Simulated share of total coffee areas in the countries Guatemala, Honduras, El 

Salvador, Nicaragua, Costa Rica, and Panama in the different land suitability classes for 

coffee production. 
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