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Abstract: Climate data availability plays a key role in development processes of policies, services,
and planning in the agricultural sector. However, data at the spatial or temporal resolution required
is often lacking, or certain values are missing. In this work, we propose to use a Bayesian network
approach to generate data for missing variables. As a case study, we use relative humidity, which is
an important indicator of land suitability for coffee production. For the model, we first extracted
climate data for the variables precipitation, maximum and minimum air temperature, wind speed,
solar radiation and relative humidity from the surface reanalysis dataset Climate Forecast System
Reanalysis. We then used machine learning algorithms to define the model structure and parameters
from the relationships of the variables found in the dataset. Precipitation, maximum and minimum
air temperature, wind speed, and solar radiation are then used as proxy variables to infer missing
values for monthly relative humidity and relative humidity for the driest month. For this, we used
both complete and incomplete initial data. In both scenarios of data availability, the comparison of
estimated and measured values of relative humidity shows a high level of agreement. We conclude
that using Bayesian Networks is a practical solution to estimate relative humidity for coffee
agricultural planning.

Keywords: probabilistic modeling; machine learning; modeling climate information; graphical models;
proxy climatic variables; land evaluation; Central America; Coffea arabica L.

1. Introduction

Missing data is a major challenge for agricultural planning, reporting and research not only
at the level of individual farms, but also at regional, national, or international scales. Incomplete
information leads to misrepresentation and bias, but collecting the missing data can be very costly [1,2].
Several procedures have been employed in previous applications to deal with data gaps. For example,
the Agricultural Resource Management Survey in the USA uses conditional or national averages with
or without outliers [2]. In agricultural research, data gaps have been filled by combining survey and
satellite information [3], spatial interpolations [4], introduction of proxy variables [5], and, in the case
of climate research, by using the regularized EM algorithm for Gaussian data [6], empirical orthogonal
functions [4], grouping methods of data handling [7], and others.

A scarcity of data, data with a high uncertainty attached or inhomogeneous data from different
sources is especially prevalent in developing countries. While the procedures described above are
mostly suitable for dealing with the problem, their practical implementation in developing countries
is often difficult due to a lack of qualified personnel and financial shortfalls [8–10]. For example,
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in several Central American countries, the reconstruction of climate variables using interpolation
methods was only possible with external funding from the World Bank [10]. To overcome these hurdles,
we propose to use a Bayesian network (BN), which is a mathematical model that graphically represents
conditional probabilistic dependencies between variables. BNs can deal with uncertainty, missing data,
missing (hidden) variables and small datasets; it is possible to learn the graphical structure and the
parameters of the model from data, literature, expert knowledge or a combination of all [11–14].
Another practical advantage of using BN is the availability of free software [15,16].

In a BN approach, data can be generated for variables with missing values while maintaining
a consistent relationship with other variables in the same dataset [17]. It also allows the user to
incorporate the uncertainty surrounding input data by entering a range or distribution of possible
values or by using the prior information parameterized in the model when no information is available.
Instead of a single, certain value, the output is then the most probable value of the variable of interest
with the uncertainty attached [11,14,18]. The Bayesian ability to handle uncertainty in the modeling
process is advantageous, considering that uncertain and missing data are common in real-world
situations [19], especially when dealing with climate variables and when working in regions without
good data coverage [10,20,21].

There are several options in BNs for dealing with missing data: removing the registers with
missing values; using mode values in place of the missing values or estimating the missing values based
on the values of the other variables in the corresponding register using probabilistic inference [13].
The last option has the advantage that the complete dataset is used, and that specific values are
estimated for the missing registers instead of only a measure of central tendency like the average or
median. Therefore, in our approach, we estimate the missing values based on proxy variables and
probabilistic inference. As a case study, we created a novel Bayesian network model to estimate the
relative humidity for Central America and Southern Mexico. In order to build the model, we used
machine learning algorithms available in the Bayesian networks approach to define the model’s
graphical structure and parameters from monthly relative humidity data [18,22,23]. We then applied
the model to infer values for relative humidity under two conditions: using a complete set of input
information, and incomplete information, where one or two of five proxy variables were unavailable.
The second scenario shows the capability of BN models to produce results even when information is
missing. In both scenarios, monthly relative humidity and the Relative Humidity of the Driest Month
(RHDM) were inferred. RHDM is one of the main variable-indicators to describe the land suitability
for Coffee arabica L. production [24].

A comparison of BN-estimated and reported values of monthly relative humidity and RHDM
shows a high level of agreement between the values. The results also indicate a high level of
consistency in the relationship between estimated relative humidity and proxy variables, which is
one of the major concerns in modeling climate data. We conclude that the proposed method is
a practical solution for estimating relative humidity, as it is based on information that is readily
available and does not require high computational resources or technical expertise. Furthermore,
estimating climate data for agricultural planning constitutes an important and unexplored domain for
the application of probabilistic graphical models, which have only been used in climate science for
weather forecasting [25] and to explore the dependencies between climate variables so far [20]. Thus,
this study forms an important contribution to the literature of BN applications and offers a valuable
tool for coffee planning in Central America.

2. Methods

2.1. Study Region

The study region, consisting of Central America and Southern Mexico, is located in the tropical
zone, where the temperature remains relatively constant throughout the year and changes in season
are driven by changes in precipitation. The prevalence of high water vapor contents and tropical
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temperatures leads to a high relative humidity [26,27]. The climatic conditions are favorable for coffee
production, and most countries in the region are recognized for their high-quality coffee and shaded
coffee systems [28–32], together producing more than 10% of the total global coffee supply [33,34].
However, projections of climate change show that the region is likely to experience severe alterations
in climate in the future, which may negatively impact coffee production [35–37].

2.2. Relative Humidity

Relative humidity describes the water content in the air [38] and is normally calculated
from the ratio between the saturation vapor pressure and the vapor pressure at a specific
temperature [39,40]. Relative humidity has been identified as a key factor for coffee quality during the
postharvest-storage [41,42] and as an agroecological variable that influences the suitability of a site
for coffee production [24,43]. For example, values of RHDM between 50–60% are considered optimal,
and values below 20% or above 80% as suboptimal for coffee cultivation [24]. Measurements of relative
humidity are done using hygrometers in weather stations; however, this type of measurement is more
expensive than measuring temperature or precipitation and therefore done far less frequently. To close
the data gap, the development of modeling tools to estimate humidity based on other measured
variables is a feasible strategy [26,44]. In this study, we model the variable monthly relative humidity
and relative humidity of the driest month, i.e., the month with the lowest precipitation.

2.3. Data

Variables experimentally observed or produced by reanalyses retain consistency among
themselves. In our approach, we exploit this correlation to build and parameterize a Bayesian network
model for inferring missing values for the relative humidity values from other climate variables. As a
data source, we use the surface reanalysis dataset Climate Forecast System Reanalysis (CFSR) [45,46].
CFSR1 includes daily values for the variables precipitation (mm), air temperature (◦C, minimum and
maximum at 2 m), wind speed (m/s, at 10 m), surface solar radiation (MJ/m2) and relative humidity
(%, at 2 m). The spatial resolution is 38 km × 38 km per pixel and data are available from 1979 to 2014.

We downloaded a set of daily data of all variables, covering Central America and Southern Mexico
(a total of 855 pixels) for the years 1979 to 2000. From this dataset, a monthly subset MRH was created
by aggregating the daily to monthly data for each year and pixel (n = 225,720). Then, a second subset
RHDM was created by extracting the data (cases) of all the variables for the driest months of each
year (n = 18,810). Summary statistics for the variables of both datasets were calculated (Table A1):
The data distribution for humidity is different in both datasets, with µ = 77.79 and 69.13, and σ = 9.66
and 9.08 for the MRH and RDHM datasets, respectively, and in the RDHM dataset, the shape of the
humidity distribution is more skewed to the left (Figure 1). The distribution of precipitation also
differs markedly between both datasets (µ = 8.13 and 1.05, and σ = 8.38 and 1.79 for MRH and RDHM
datasets, respectively), whereas only minor difference can be found for solar radiation, maximum and
minimum temperature, and wind speed.

1 https://globalweather.tamu.edu/

https://globalweather.tamu.edu/
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Figure 1. Empirical distributions of monthly relative humidity, precipitation, maximum and 
minimum temperature, solar radiation and wind speed from the datasets MRH and RHDM (n = 
225,270 and 18,810, respectively). MRH: Monthly Relative Humidity; RHDM: Relative Humidity of 
the Driest Month.  

2.4. Variable Selection 

An exploratory analysis using principal components was done to identify which variables 
should be included in the model. For this, the complete dataset MRH was used (n = 225,270). The two 
first principal components explained 91.7% of the data variability (PC1 = 75.5% and PC2 =16.2%) 
(Figure 2). Relative humidity has a positive correlation to precipitation (PRCP), and a negative one 
to TMAX and solar radiation (Solar) (PC1). Under intermediate conditions of precipitation and solar 
radiation, wind and TMIN have a major influence on the range of relative humidity (65–85%, PC2). 
With the exception of TMAX, relative humidity has a non-linear relationship with the proxy variables 
(Figure A1). Since all proxy variables thus influence relative humidity in different situations, we 
included all in the model.  

 
Figure 2. Principal component analysis including precipitation (PRCP), maximum temperature 
(TMAX), minimum temperature (TMIN), solar radiation (Solar) and wind speed (Wind) using 
monthly relative humidity (MRH) categorical values as the classification variable (n = 225,720). Gray 
dots and attached numbers correspond to MRH categorical values.  

Figure 1. Empirical distributions of monthly relative humidity, precipitation, maximum and minimum
temperature, solar radiation and wind speed from the datasets MRH and RHDM (n = 225,270 and 18,810,
respectively). MRH: Monthly Relative Humidity; RHDM: Relative Humidity of the Driest Month.

2.4. Variable Selection

An exploratory analysis using principal components was done to identify which variables should
be included in the model. For this, the complete dataset MRH was used (n = 225,270). The two
first principal components explained 91.7% of the data variability (PC1 = 75.5% and PC2 = 16.2%)
(Figure 2). Relative humidity has a positive correlation to precipitation (PRCP), and a negative one
to TMAX and solar radiation (Solar) (PC1). Under intermediate conditions of precipitation and
solar radiation, wind and TMIN have a major influence on the range of relative humidity (65–85%,
PC2). With the exception of TMAX, relative humidity has a non-linear relationship with the proxy
variables (Figure A1). Since all proxy variables thus influence relative humidity in different situations,
we included all in the model.
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Figure 2. Principal component analysis including precipitation (PRCP), maximum temperature
(TMAX), minimum temperature (TMIN), solar radiation (Solar) and wind speed (Wind) using monthly
relative humidity (MRH) categorical values as the classification variable (n = 225,720). Gray dots and
attached numbers correspond to MRH categorical values.
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2.5. Discretization

The model was built using the software package Netica (Version 6.04, Norsys Software Corp.,
Vancouver, BC, Canada), which is free for small models with less than 15 variables. For each selected
variable, nodes were created and discretized. The discretization of continuous variables in BN leads to
the loss of information [11]. An accepted strategy to deal with this is to mimic the data distribution of
the variables in the discretization [47,48]; however, the definition of the breakpoints for each state is a
major challenge [47,49,50]. There are automatic methods to discretize continuous variables, but the
selection of one method over another based on their performance is not clear, and using automatic
methods may result in a discretization inappropriate for the purpose of the model and the users.
For this reason, expert knowledge remains the best option for discretization [14,47,50].

Here, we seek to estimate monthly relative humidity and the relative humidity of the driest month
using a single model. The data distribution for precipitation is narrower for RHDM than for MRH
(Figure 1 & Table A1) and thus requires shorter breakpoints to gain enough precision to infer the
relative humidity under dry conditions. We, therefore, split the states into two: for the lower values
that correspond to the data distribution of the cases2 of RHDM the breakpoints are shorter, and for the
remaining range, the breakpoints are further apart. For the other proxy variables, intervals of equal
length were implemented focusing on reproducing the distribution of the data. States were merged if
the resulting states had a frequency distribution close to zero. The number of states of each variable
was also based on the level of influence of this variable on relative humidity (see Section 3.1.); the less
influence, the less states were defined, thus contributing to reducing model complexity without loss of
performance (Figure 3).

We used the metric Spherical Payoff3 to evaluate the contribution of a change in range or the
number of states on model performance. If a change in the state’s range or number of states performed
better, the change remained.

2.6. Model Structure and Parameters

Once the node variables were discretized, the graphical model was learned from 80% of the
cases of the dataset MRH (n = 180,530). The relative humidity node was set as the target variable,
and the machine learning algorithm Tree Augmented Naive Bayes (TAN) was used to learn the
model structure (Figure 3). TAN is a Bayesian classifier that incorporates dependencies between
attributes by building structures between them [22]. The TAN algorithm drew edges from relative
humidity to each proxy variable, and added extra edges between proxy variables. Using the same
80% of the MRH dataset, the Bayesian Counting—Learning Algorithm [18] was used to learn the
parameters –prior and conditional probabilities- of all variables in the model. The Counting—Learning
Algorithm allows the model to move from initial-ignorance mode to parameterized mode by calculating
the conditional probabilities and experience (confidence of the conditional probabilities) of the
corresponding combination of variables’ states [18,23]. Once the parameter values are learned,
the model can be compiled and is ready for use.

2 A case is the set of values of the proxy variables and relative humidity for a given month and pixel. For example, in the
Figure 3B, the case entered in the net has values only for three variables.

3 The Spherical Payoff is a scoring metric used to test the performance of Bayesian network models. The score goes from 0 to
1, where 1 indicates the best performance [51].
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Figure 3. The Bayesian network model to infer monthly relative humidity. (A) Compiled model
without evidence entered; (B) Model state when model is inferring the relative humidity of the driest
month using only three proxy variables. Grey boxes indicate that evidence (values) were entered for
the corresponding variables; the model uses the available new information to update the states of
the remaining unknown variables (Wind, Solar, RH). RH: relative humidity (%), TMAX: maximum
temperature (◦C), TMIN: minimum temperature (◦C), PRCP: total precipitation (mm). Graphical
structure and parameters learned from the reanalysis dataset CFSR [45,46].

2.7. Sensitivity Analysis and Model Validation

After compiling the model, we did a sensitivity analysis using the variance reduction procedure.
The variance reduction estimates the impact of a change in the state of a proxy variable on the state of
the target variable [51]. The variance reduction values range from 0 to 100%, where a higher value
indicates a higher influence [18,49].

We validated the model in two ways. First, we tested the ability of the model to infer the monthly
relative humidity of any given month in the year and the specific relative humidity of the driest month
for the same period using all the proxy variables (PRCP, TMAX, Solar, Wind, and TMIN). Second,
we explored the capability of the model to infer relative humidity with the variables Solar and Wind
missing, which are hardly registered in the study region’s weather stations (Figure 3B). The output
value in the second case is the expected value, which is the mean of the possible states, weighted by
their probability of occurrence [18]. As input data, we used the remaining 20% of the cases of the MRH
dataset (n = 45,190) for inferring monthly relative humidity, and all the cases of the RHDM dataset
(n = 18,810) for inferring the relative humidity of the driest month. Then, we compared the inferred to
the observed values. For this, we used the metrics RMSE and bias [11,52]. Finally, we provide a spatial
comparison between the inferred and reported values described above, and suitability maps of the
relative humidity of the driest month for Coffea arabica L. for the entire study region.

3. Results and Discussion

Climate variables dynamically interact at the same time and space, and some of these interactions
are non-linear relationships. Being able to define our model structure and parameters using learning
algorithms was therefore a significant advantage of the Bayesian network approach, which allowed us
to capture this natural complexity in a simple explicit graphical model (Figures 2, 3 and A1).

3.1. Sensitivity Analysis

The sensitivity analysis (variance reduction) shows that precipitation and maximum temperature
have the highest influence on relative humidity, followed by solar radiation, wind speed and minimum
temperature (Table 1). This is expected, as relative humidity is a measure of the water content of air
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and variations in precipitation will influence this water content [39,53], and higher temperatures in
tropical regions boost evapotranspiration processes, which release water to the air. Despite the low
influence of TMIN on relative humidity, the variable has a strong influence on Wind, Solar and TMAX
(Table 1), which is a result of the edges added by the TAN algorithm during the structure learning
step. The influence between proxy variables is relevant in situations where a variable is unknown.
The model can use the known proxy variables to update the states of the remaining unknown proxy
variables and the relative humidity (Figure 3B), facilitated by the implicit representation of the joint
distribution of the model obtained from the structural and parameter learning [22,23]. The variables
PRCP, TMAX and TMIN are thus the most influential in the entire network, and are required by the
model to produce enough evidence to obtain good estimates for relative humidity.

Table 1. Results of the sensitivity analysis using variance reduction *. Variables: Relative humidity (RH),
precipitation (PRCP), maximum temperature (TMAX), minimum temperature (TMIN), solar radiation
(Solar), and wind speed (Wind).

Proxy Variables
Target Variables

RH PRCP TMAX Solar Wind TMIN

RH - 25.20 29.30 22.80 18.50 4.68
PRCP 41.80 - 7.70 3.22 0.89 5.42
TMAX 33.90 6.67 - 17.60 7.41 29.60
Solar 17.90 2.36 16.00 - 16.60 21.50
Wind 13.70 2.18 1.73 19.10 - 24.90
TMIN 1.94 3.09 24.20 28.60 45.90 -

* Variance reduction values go from 0 to 100, where a higher score indicates a higher influence on the target variable.

3.2. Validation

The expected values of monthly relative humidity and relative humidity of the driest month
were inferred using (1) complete cases for all proxy variables, and (2) incomplete cases, where data
of specific variables were missing, in our case once Wind, and once both Solar and Wind. In general,
when comparing inferred values to reported values (Table 2), the metrics bias (less than the unit) and
RMSE (<5%) indicate a very close agreement between values. As expected, the best model performance
was obtained when information on all proxy variables was available; however, even under conditions
of missing variables, the results were still very good (Table 2 and Figure 4). The only observable effect
of missing variables was a lower model performance when estimated relative humidity values were
<60%, which could be the result of the low number of cases in the MRH training dataset in this range
(5.3% of total cases; 6 cases at 30–40%, 361 cases <50%, and 2060 cases <60%). Therefore, for some
combinations of variable states, there were very few cases defining the conditional relationships
(experience) between the variables, and the missing variable conditions increased the uncertainty
during the inference.

Table 2. Model performance inferring the monthly relative humidity (MRH) and the relative humidity
of the driest month (RHDM) using proxy variables.

Inferred
Variable

Cases (Dataset) Proxy Variables ** Metrics

Model
Building * Validation Known Missing BIAS RMSE

Monthly relative
humidity

180,530
(MRH)

45,190
(MRH)

PRCP, TMAX, Solar, Wind, TMIN - −0.99 4.03
PRCP, TMAX, Solar, TMIN Wind −0.52 4.13
PRCP, TMAX, TMIN Solar, Wind −0.40 4.13

Relative
humidity of the

driest month

180,530
(MRH)

18,810
(RHDM)

PRCP, TMAX, Solar, Wind, TMIN - −0.26 2.25
PRCP, TMAX, Solar, TMIN Wind −0.76 4.93
PRCP, TMAX, TMIN Solar, Wind −0.08 5.00

* Graphical structure and parameters. ** Proxy variables: Precipitation (PRCP), maximum temperature (TMAX),
minimum temperature (TMIN), solar radiation (Solar), and wind speed (Wind).
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Eskelson et al. reported similar RMSE values (3 to 4%) in a study in which they used air
temperature in a set of linear models to estimate relative humidity in a Riparian forest [44], and Eccel
reported RMSE values of 8–11% in his attempt to estimate relative humidity based on temperature
and precipitation in the Italian Alps [54]. When comparing the performance metrics to the error of
observation inherent in measurements using hygrometers, this study’s accuracy falls in the middle of
the accepted error range (1 to 5%) set for sensors [39,44]. Even though our metrics are thus similar to
the ones reported by other authors, our approach has the additional advantage that it is possible to use
new available information on proxy variables to update the states of the unknown proxy variables and
therefore the target variable relative humidity (Table 2 and Figure 4). This feature is relevant to real
world situations, where missing information is a frequent condition. In the case presented in Figure 3B,
the new evidence of PRCP, TMAX and TMIN provoked the update of the states of the (unknown)
variables Solar, Wind and relative humidity (see Figure 3: compare the probability distribution of
variables in Figure 3A,B).
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Finally, we present a spatial comparison of model-estimated vs. reanalysis-reported RHDM
values, and a suitability map of RHDM for coffee production over the region of Central America and
Southern Mexico (Figure 5). It shows that the model reproduces the general spatial patterns well and
coffee areas are located mainly in areas with high to medium RHDM-suitability. Thus, the relative
humidity estimated with the method described in this study can be used reliably in spatially explicit
land evaluation tools such as the model ALECA (Agroecological Land Evaluation for Coffea arabica L.),
which consists of several climate, soil and landform variables that together describe and evaluate the
suitability of land units for the production of Arabica coffees [55].

Other potential areas of application for this method are in paleoclimatology, where missing
information is a normal situation, in meteorology and climate science to predict and explore the
dynamics between climate variables, or in crop modeling applications, where available datasets are
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frequently incomplete. In the future, we plan to include the use of Dynamic Bayesian Networks to
estimate a variable’s values at different time steps considering the previous state values and new
information [56,57].
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Figure 5. Maps of relative humidity of the driest month (A) reported in the CFSR reanalysis dataset for
Central America and Southern of Mexico (pixel size 38 km × 38 km); and (B) estimated with our BN
model. (C) Suitability map of relative humidity of the driest month for Coffeea arabica L. based on the
estimated values using complete dataset. Reference year: 2000. Suitability map (modified from [24]):
Optimal = Optimal conditions (50–60%), S1 = Very good (40–50% & 60–70%), S2 = Moderate (7–80%),
S3 = Marginal (>80%).

3.3. Caveats

We used a complete dataset to create the model (structure and parameters); however, incomplete
data is a common situation in the study area. Bayesian networks can deal with this situation by
using learning algorithms for missing data, such as the Expectation-Maximization or Gradient
Descent algorithms. Their implementation (in Netica) is similar to the steps described here using the
Counting-Learning Algorithm [18,58,59].

It should also be kept in mind that if the model is used in a different region, or with data of a higher
resolution, variable states such as the range and maximum and minimum values need to be adjusted
to the new conditions. In addition, in a high-resolution analysis, the addition of topographic and
location (latitude and longitude) variables to the model may become necessary, as altitude, for example,
can influence relative humidity at a local scale [60,61] and location could capture the spatial variability
of the climate variables in the region. Further adjustments would also be necessary if the time step is
changed from monthly to weekly or daily. Lastly, even though we built the model to estimate relative
humidity, this method is equally suited for inferring missing values for other climate variables.

4. Conclusions

In this paper, we describe the application of a Bayesian network to generate missing data of
relative humidity based on its relationship to proxy variables. The procedure is simple, requires a low
modeling effort, and ensures that the relationships between all climatic variables remain consistent
throughout the process. The model shows a good performance estimating relative humidity, even in
cases of uncertainty when proxy variables are missing. We conclude that Bayesian networks are a
suitable tool for estimating relative humidity for agricultural planning, an essential and less-explored
domain for the application of probabilistic graphical models.
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Appendix A

Table A1. Summary statistics of relative humidity (RH), precipitation (PRCP), maximum temperature
(TMAX), solar radiation (Solar), wind speed (Wind) and minimum temperature (TMIN) from the
datasets MRH and RHDM. MRH: monthly relative humidity, and RHDM: relative humidity of the driest
month. Data source: surface reanalysis dataset Climate Forecast System Reanalysis (CFSR) [45,46].

Dataset Variable Unit Mean S.D. Median Minimum Maximum Skewness Kurtosis

RHDM

RH % 69.13 9.08 70.16 37.45 98.16 −0.41 −0.18
PRCP mm 1.05 1.79 0.47 0.00 24.41 4.19 24.69
TMAX ◦C 29.76 3.33 29.27 10.00 42.35 0.24 0.94
Solar MJ/m2 21.53 3.10 21.74 7.93 28.27 −0.39 −0.17
Wind m/s 3.37 1.73 2.85 0.77 11.51 1.08 0.64
TMIN ◦C 20.53 4.93 20.92 −2.66 29.17 −0.57 −0.26

MRH

RH % 77.79 9.66 78.50 37.45 98.73 50.04 0.37
PRCP mm 8.13 8.38 5.47 0.00 83.94 −146.41 4.01
TMAX ◦C 28.75 3.05 28.48 10.00 42.35 −5.03 1.71
Solar MJ/m2 19.69 3.83 20.03 3.72 28.27 39.49 −0.04
Wind m/s 2.83 1.58 2.32 0.63 11.81 −109.93 1.35
TMIN ◦C 21.51 4.40 21.85 −2.66 29.54 50.07 −0.13
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