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Abstract. The dendritic growth of pure materials in undercooled melts is critical

to understanding the fundamentals of solidification. This work investigates two new

insights, the first is an advanced definition for the two-dimensional stability criterion of

dendritic growth and the second is the viability of the enthalpy method as a numerical

model. In both cases, the aim is to accurately predict dendritic growth behavior

over a wide range of undercooling. An adaptive cell size method is introduced into

the enthalpy method to mitigate against ‘narrow-band features’ that can introduce

significant error. By using this technique an excellent agreement is found between the

enthalpy method and the analytic theory for solidification of pure nickel.

1. Introduction

Experimentation and theoretical modeling with the solidification of nickel and nickel-

based alloys revealed a lot of information about the structure of melts and crystals

forming under different driving forces and influences of various fields [1–3]. One of

the first experimental estimations of solidification kinetics was conducted using melt

flux and levitation techniques [4–8] on the basis of which some estimations of speed

limited growth of crystals were made [9]. The roles of solute trapping and solute

drag in rapidly solidifying diluted nickel-based alloys were investigated by Eckler et



Modeling of dendrite growth 2

al. [10,11]. The effect of convective flow on growth kinetics was also quantitative for Ni-

dendrites [12]. Using an original technique for experimental measurements, Schwarz et

al. formulated the mechanism of grain refinement [13] as well as presented measurements

of diffusive speed and diffusion coefficients [14, 15]. The effect of microgravity on

crystal growth [16] and microstructure of undercooled melts [17,18] was measured in an

electro-magnetic facility. These experiments used the containerless methods for sample

processing [1, 2] and provide a deep undercooling in melts, in which forced convection

may drastically influence the growth kinetics when the growth velocity is comparable to

the flow speed [12,19,20]. A comparative analysis of crystallization kinetics and crystal

microstructure was given to clarify the role of external fields, such as gravitational [16],

alternating electromagnetic [19] and static magnetic fields [21,22].

Theoretical modeling and predictions were made for crystals of nickel and nickel-

based alloys using the atomistic and mesoscopic models. In molecular dynamics (MD)

simulations, one of the central tasks was to obtain the thermodynamic and kinetic

properties of solid-liquid interfaces (see Ref. [23] and references therein). In some cases,

the interface energy (tension) can be well found from the laboratory experiments using,

for instance, the method of nucleation statistics [24]. However, for nickel, a kinetic

phenomenon at the interface such as the “attachment-detachment of particles” cannot be

reproduced due to its opaqueness. Therefore, MD simulations are an important source of

kinetic data, in particular, for the growth coefficients of different crystallographic faces

of nickel [25,26]. Such data provides the phase-field models with the necessary material

properties to allow the growth and analysis of the structure of nickel dendrites [27, 28].

The linear and non-linear behaviors of the interface velocity for a different interface

undercooling in MD simulations [25, 26] were also obtained as a benchmark for the

kinetic equations of growth that follow, in particular, from the phase-field models [29].

In addition to this, transformations in multi-component melts based on nickel under

the influence of buoyancy-driven melt convection were modeled using the phase-field

method by Apel and Steinbach [30]. Special attention has been paid to the comparison

of the sharp interface model and the phase-field methods [31, 32]. The sharp interface

model possesses the zero thickness of the solid-liquid interface and it is based on the

Stefan-type theoretical approach. This model determines the first condition connecting

the dendrite tip velocity, the dendrite tip diameter, and the melt undercooling. The

second condition is defined by the selection theory, which enables to find a stable

solution of heat and mass transfer equations in the vicinity of dendritic tip region (see,

for details, [33–37]). A less commonly known enthalpy method has been successfully

used to model the dendritic growth in undercooled melts [38]. The method has been

used to allow not only the prediction of kinetics but also some microstructural details

of crystalline (in particular, dendritic) patterns [22, 39].

In all of these studies with the enthalpy method only specific undercoolings

have been investigated and the method has not been tested as an accurate predictor

across a wide range of undercoolings. One advantage of the enthalpy method is that

the interface thickness is not explicitly required as part of the formulation, however
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for implementation purposes an interface consisting of a single computational cell

is required. This introduces the so called ‘narrow-band feature’ error in curvature

calculation, which is related to the amount of local information about the morphology

and cannot be mitigated through mesh refinement [38]. Using smoothed differentials

can somewhat alleviate the problem, however additional techniques to minimise this

error are required. This work presents a novel technique that exploits the self-symmetry

of dendrite tips, where a dimensionless form of the curvature and an adaptive cell

size method is used to show that the enthalpy method can be used across a wide

range of undercoolings. Therefore, the main goal of the present article is to investigate

consistency between the well established sharp interface model and the enthalpy method.

A sharp interface model that includes the selection mode for arbitrary growth Péclet

numbers [40] is compared with the numerical enthalpy method for the two-dimensional

tip velocity and radius of dendrites.

2. Sharp interface model

2.1. Undercooling balance

The dendrite tip diameter ρ and its growth velocity V represent the main parameters

of crystal growth. The total undercooling balance connects the melting temperature Tm
of a single-component liquid and the far-field temperature T∞ as ∆T = Tm − T∞ and

introduces the first model equation, which consists of several contributions:

∆T = ∆TT + ∆TR + ∆TK . (1)

Here ∆TT is the thermal contribution, ∆TR = 2d0TQ/R is the two-dimensional

undercooling due to the Gibbs-Thomson effect, TQ is the adiabatic temperature, d0
is the capillary constant, and ∆TK = V/µk is the kinetic undercooling, where µk stands

for the kinetic coefficient.

The thermal contribution ∆TT can be written out using the Ivantsov function IvT ,

which describes the temperature field around the the growing steady-state dendrite of

a parabolic form:

∆TT = TQIvT (Pg), (2)

where the Ivantsov function IvT

IvT (Pg) = Pg exp(Pg)
∫ ∞
1

exp (−Pgη
′)√

η′
dη′ (3)

depends on the growth Péclet number Pg = ρV /(2DT ) (DT stands for the thermal

diffusivity).

Finally, the total undercooling balance (1) can be reformulated in a parametric

form of Pg as [41]:

∆T = ∆TT (Pg) +
4d0TQ
ρ(Pg)

+
2DTPg

µkρ(Pg)
. (4)
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Equation (4) represents the undercooling balance, the solution of which determines only

the product ρV as a function of the undercooling ∆T , and does not give the information

about the dependencies ρ(∆T ) and V (∆T ) in a separate form. For this reason, a second

equation providing a selection criterion is needed. This criterion is found from the

solvability theory [42–45].

2.2. Solvability criterion

Consider a two-dimensional parabolic dendrite growing in a single-component

undercooled liquid. In the case of low anisotropy of kinetics and surface energy, the

temperature distribution is in close proximity to the parabolic Ivantsov solution, which

describes a steady-state dendritic growth. Pelcé and Bensimon [42] (see also [43, 44])

showed that this statement leads to the microscopic solvability condition representing an

approximate analytical solution of the linearized heat transfer equation at the parabolic

surface of an Ivantsov dendrite. This leads to the solvability condition:

∞∫
−∞

G [X0(l)]Ym(l)dl = 0, Ym(l) = exp

i l∫
0

km(l1)dl1

 , (5)

where G designates the curvature operator, X0(l) is a continuum of solutions from

which the dependence of the marginal wavenumber mode km(l) can be derived, and i

is the imaginary unit. Note that the solution G [X0(l)] is orthogonal to the imposed

perturbation Ym(l) that provides a stable mode.

To obtain the marginal wavenumber km entering in the solvability integral (5), a

linear stability analysis should be carried out [41]. In this case, the marginal mode of

the wavenumber km (see [44] for details), is determined by the cubic equation:

k3m =
V exp(iθ)

2d(θ)DT

km −
iV sin θ

2DT

k2m +
V 2 cos θ exp(iθ)

4d(θ)D2
T

+
iV β̃(θ) sin θ

d(θ)TQ
k2m, (6)

where θ is the angle between the normal to the dendrite interface and its growth

direction. The capillary length d in the case of n-fold symmetry of the crystal is

expressed as d(θ) = d0 [1− β cos(nθ)].

Substituting the analytical solution of the cubic equation (6) into the solvability

integral (5), yields the stability criterion [40] in the form:

σ∗ =
2d0DT

ρ2V
=

d0
ρPg

=
σ0β

7/4(
1 + a1

√
βPg

)2 , (7)

where σ0 and a1 are the constants. This criterion describes the broad range of possible

Péclet numbers. Note that expression (7) transforms to the low Péclet number stability

criterion previously discussed in many studies (see, among others, [42, 43,46–48]).

Equation (7) represents the unified selection criterion which gives a combination

of ρ and V for the thermal dendritic growth in single-component systems without
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convection‡. Considering the undercooling balance (4) and the selection criterion (7),

a pair of the most important parameters of primary solidification, ρ and V , at a given

undercooling ∆T can be obtained.

3. Numerical modelling using an enthalpy based method

The transient numerical model uses an enthalpy method for dendritic growth, based on

the work of Voller [38]. Building from the initial work of Tacke and co-workers [49,50],

Voller took the classical sharp interface model and through the introduction of the order

parameter, f , formulated a diffuse interface method based on enthalpy. f represents the

liquid fraction, where f = 1 is fully liquid and f = 0 is fully solid. Intermediate values

of f represent the interface where computational cells are solidifying. One of the key

differences between this formulation and more traditional phase-field methods is that

the interface thickness is not explicitly defined nor is a key parameter in the governing

equations [51, 52]. To relate f to enthalpy, the volumetric enthalpy H is defined as the

sum of latent heats:

H = cpT + fL. (8)

The conservation of enthalpy is given by

∂H

∂t
= ∇ · (K∇T ) . (9)

The thermal conductivity K is assumed to be constant. The interface is undercooled to

the temperature T i:

T i = Tm −
Γ (θ)

L
Tmκ, (10)

where the surface energy anisotropy takes the form γ = d0 (1 + ε4 cos 4θ) and therefore

the surface stiffness is given by

Γ (θ) = γ +
∂2γ

∂θ2
= d0 (1− 15ε4 cos 4θ) . (11)

Curvature is taken as the divergence of the normal, which in terms of liquid fraction is

κ = ∇ · ∇f
|∇f |

. (12)

Voller converted this equation set into a dimensionless system and then discretized it

onto a Cartesian grid. The same approach is used here and so for brevity, this approach

is not repeated, however, there are two important aspects of the numerical approach

that are necessary for the improvements in this presented work. The first is a calculation

of curvature, where for a cubic mesh i.e. the cell lengths are equal, ∆x = ∆y, equation

(12) can be written as

κ =
1

∆x

fyyf
2
x + fxxf

2
y − 2fxfyfxy(

f 2
x + f 2

y

) 3
2

, (13)

‡ The criterion (7) was also derived for the dendrite growth with convection in the work [40]. The tests

of the criterion with convection were made in the works [21,22], in which again dendritic crystallization

was analyzed at arbitrary Péclet numbers.
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where

fx = ∆x
∂f

∂x
= (fi+1,j − fi−1,j) /2, (14)

fxx = ∆x2
∂2f

∂x2
= (fi+1,j − 2fi,j + fi−1,j) (15)

and similarily fy and fyy are the first and second derivatives in the y direction multiplied

by ∆x and ∆x2 respectively. The second aspect of the computational method is that

liquid cells only become ‘seeded’ when neighboring cells fully solidify. This has the

effect of creating a region where 0 > f < 1, that is on the order of one computational

cell. Therefore, while no explicit thickness is required by the formulation, in practice

this creates an interface thickness that is proportional to the grid size. Consequently,

this leads to the so-called narrow-band feature, which causes problems in calculating

interfacial properties, namely curvature.

Therefore mesh refinement can actually increase errors, for example, the curvature

is calculated locally and so if a large number of cells represent the tip radius then

locally there may not be enough information to distinguish the curvature accurately.

The narrow-band error leads to two effects, the curvature drives to zero if the interface

locally appears flat or to a very large value if the interface has a ‘corner’. This can cause

the dendrite morphology to take on an unrealistic faceted ‘diamond’ like structures.

On the other hand, if the cell size is too large, errors associated with a coarse

mesh are introduced, and in general, leads to an under prediction of curvature. For

example, in the extreme case where the tip radius is less than a single cell then due

to lack of resolution, the radius would be calculated as a single cell with an error on

the order of ∆x. This under-prediction of curvature should in principle lead to an over

prediction of tip radius, but in practice, as the error essentially manifests in the Gibbs-

Thompson condition, it has an analogous effect of artificially lowering the anisotropy.

This reduces the bias toward preferential growth orientations and allows the dendrite to

grow secondary arms or for the tip to split, ultimately leading to competition between

these new ‘primaries’ and therefore not an accurate representation of the system.

The coarse mesh and the narrow-band errors essentially introduce an upper and

lower limit on the cell size for a given undercooling. However, due to the large disparity in

characteristic length scales between low and high undercooled solidification, a criterion

is required for selecting an appropriate value of ∆x. This could be based on analytic

theory, however, in the context of this investigation where testing and comparison to

the analytic theory is a key aim, then the numerical solutions should not be dependent

on it. Furthermore, the error in curvature will have a dependency on undercooling and

subsequently, there will be undercooling dependent errors in both tip radius and velocity

that are not straightforward to quantify. Instead, an approach has been developed that

provides a similar relative error for all cases across the entire undercooling range.

The process begins by simply multiplying 13 through by ∆x, such that the right-

hand side is no longer dependent on ∆x and the left-hand side becomes κ∆x. The

morphological feature of interest is the tip radius, therefore by letting ∆x be chosen
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such that ∆x = (N + ε) r0, where N is the number of cells representing the tip radius

and ε is the error from both the narrow-band and coarse mesh described previously, ∆x

no longer appears. Given that r0 = 1/κ equation (13) reduces to

N + ε =
fyyf

2
x + fxxf

2
y − 2fxfyfxy(

f 2
x + f 2

y

) 3
2

. (16)

This scaled curvature approach essentially removes physical length scales from

the curvature calculation and for a given choice of N only the local distribution of f

determines the curvature with a relative error. By assuming the dendrite tip morphology

exhibits self-similarity across the entire undercooling range, the local distribution of f

should be somewhat similar irrespective of undercooling. However, as r0 is unknown,

∆x also becomes an unknown. Therefore, an iterative approach is taken where ∆x

adaptively changes based on the curvature (hence tip radius) calculations. If N∆x is

smaller than r0 then ∆x is increased and similarly if N∆x is larger than r0 then ∆x

is decreased. While this represents the physical size of the domain and the dendrite

changing with time, at steady-state conditions r0, V and ∆x become constant.

The selection of N depends on the behaviour of the coarse grid and narrow-

band feature errors. If N is too small instabilities from the coarse grid error lead

to unsteady solutions from oscillations of tip splitting and secondary branching. The

narrow-band feature error, increases with N , however, due to the faceting-like nature

this error introduces into the morphology, this error always under-predicts the tip radius.

Therefore in this work, the optimal value of N is assumed to be the smallest value that

yields stable steady state solutions. It is worthwhile to note that this optimal of value

of N is not necessarily problem specific, but implementation specific and would depend

on the stencil size and any other approximations to the differentials in the curvature

calculation.

3.1. Problem Setup and Parametric Study

The discretized enthalpy formulation is solved on a square computational domain

comprising 1200 × 1200 cells. Solidification occurs in the southwest corner of the

domain. The far-field boundaries at the north and east are fixed to the bulk undercooled

temperature. The south boundary is a symmetry boundary and the west boundary is

of a Neumann type for both T and f with ∂T/∂x = ∂f/∂x = 0.

To mitigate against influence from the boundary conditions, a moving mesh

technique is used where the dendrite tip stays in the same relative position in the domain.

In this work, this position is 100 cells in the x direction. When the solidification front

reaches this position all field variables are moved by one cell, for example fi,j = fi+1,j.

On the west boundary information is lost, while on the east boundary far-field conditions

are introduced into the last layer of cells.

A single simulation is used to conduct a parametric study across a wide range

of undercooling starting at the highest undercooling. Using the previous steady-state
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values for f and T the next undercooling solution is preconditioned by modifying the

temperature in all liquid cell values by the relative change in undercooling. This allows

for the system to converge to a steady-state solution in a smaller number of time steps.

Only the first undercooling solution is different, as initial conditions, including initial cell

size, need to be specified. In this case, the entire domain is set to the bulk undercooled

temperature and a small nucleus is placed in the southwest corner of the domain. As

solidification advances, the tip reaches the x position for the moving mesh. Then every

time the mesh moves, the cell size and time interval are used to calculate the tip velocity,

averaged curvature values over the solidification time of the cell are used to calculate tip

radius. ∆x is then increased or decreased based on the tip radius, where the change is

limited to 5% of its current value to ensure stability. If ∆x is within 1% of the current

value of r0/N then ∆x is unchanged. ∆t = 0.1∆x2 is updated from ∆x and the process

repeats until another cell solidifies and the mesh moves again. To further relax the

convergence of the system the update of ∆x is carried out every time the mesh has

moved twice. This also allows more time for the morphology of the tip to adapt to the

new spacial scales as there is a temporal delay due to the release of latent heat and the

subsequent thermal transport.

As the system approaches steady state, values for ∆x, κ and V become constant, a

solution is considered converged when the current values for ∆x, κ and V vary by less

than 0.1% to the previous 8 calculations of their respective values. The system is then

preconditioned for the next undercooling and ∆x will increase to find a new equilibrium.

4. Discussion

A parametric study calculating steady-state tip velocity and radius for pure nickel was

conducted over the range of 304 K down to 28 K undercooling. Figure 1 shows spot

values normalized to the steady-state values, highlighting how the solution procedure

progresses from one undercooling to the next, indicated by the discontinuities in the

normalized variables.

Figure 2 shows the tip morphologies for 304, 189, 117, 73, 45 and 28 K undercooling.

The circle in the figure represents the tip radius based on N = 8. This result highlights

how this adaptive cell size approach conforms to the self-similarity of the dendrite, where

the real length scales between the highest and lowest undercooling results vary by almost

two orders of magnitude.

Temperature contours are given in figures 3 and 4 for the highest and the lowest

undercooling respectively with the insets focused on the tip undercooling. The bulk

undercooling temperature has been blanked out in the figures, highlighting the furthest

extent to which the thermal field expands into the domain. In the case of high

undercooling, this is to around 150 cells of the dendrite, while in the low undercooled

case the thermal field extends over 400 cells from the dendrite. With a domain of 1200 ×
1200 cells, the far-field boundaries do not influence the solution. The inset of the figures

shows that this method can also handle large disparities in tip undercooling, shown here
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Figure 1. Typical normalised spot values for parametric study.

Figure 2. Dendritie morphology for various undercoolings.
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Figure 3. Thermal field for high, 304 K, undercooling.

by two orders of magnitude difference ranging from −10 K to −0.1 K. This is a direct

consequence of the disparity in length scale, hence curvature which feeds into the Gibbs-

Thompson condition. The influence of the growth Péclet number can be clearly seen

in both the main figure and the inset through the isotherms. In the high undercooled

case, the isotherms take on an oblate shape, while in the low undercooled case they are

more circular. Similarly in the insets, the isotherms in the high undercooled case are

oblate and extended along the tip, while the low undercooled case they are again more

circular.

These examples from the parametric study demonstrate two key points, the first

is that as the enthalpy formulation does not explicitly require the interface thickness,

a large disparity in cell size can be used, however, the trade-off is that coarse mesh

and narrow-band errors can be introduced and are difficult to quantify. However, by

exploiting the self-similarity of dendrite tip morphology and using an adaptive cell size

that is proportional to a key morphological feature, in this case, tip radius, steady-

state solutions for tip evolution can be obtained, where the relative error across a large

undercooling range should be approximately the same.

A test of theoretical predictions obtained accordingly to the sharp interface model

(Section 2) and numerical simulations carried out using the enthalpy method (Section

3) are illustrated in figures 5 and 6. The theoretical curves for the dendrite tip velocity

V and its tip radius ρ/2 as functions of the total undercooling ∆T are calculated from
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Figure 4. Thermal field for low, 28 K, undercooling.

Figure 5. Dendrite tip velocity versus the melt undercooling for pure Nickel (physical

parameters are listed in table 1).
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Figure 6. Dendrite tip radius versus the melt undercooling for pure Nickel (physical

parameters are listed in table 1).

the undercooling balance (4) and the stability criterion (7) for pure nickel with the

crystal symmetry n = 4. Comparing the theory with computational simulations we

see that both approaches are in good agreement in a broad range of melt undercooling

(growth Péclet number). For example, a moderately low undercooling ∆T ≈ 65 K

gives the growth Péclet number Pg ≈ 0.008 whereas the larger undercooling ∆T ≈ 334

K leads to an increased Péclet number Pg ≈ 0.66. The last estimate means that the

contribution a1
√
βPg in (7) becomes of the order of 0.1. It gives a 20 percent correction

to the denominator of the stability criterion (7) as compared with unity (with the low-

velocity stability criterion when the right-hand side of expression (7) is just σ0β
7/4).

More specifically, this definition of the stability criterion (7) describes the whole range

of undercooling (all computationally achieved Péclet numbers) for the crystallization of

single-component melts.

5. Conclusion

In summary, the sharp interface model based on the selection of stable mode for

dendritic growth at the arbitrary Péclet numbers is compared with the computational

modeling carried out using the enthalpy method. The comparison made for the

dendrite tip velocity and dendrite tip radius for arbitrary Péclet number shows that

the two-dimensional theory under consideration works well in the whole range of

melt undercooling (Péclet numbers) and is consistent with the numerical enthalpy

method. An excellent match between the numerical model and analytical solution was

achieved. Our results highlight that the advanced stability criteria are necessary to
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Table 1. Physical and numerical parameters used in the present analytical calculations

and numerical simulations for the pure Nickel. Here: ShIM means the sharp interface

model and EnthM means the enthalpy method.

Parameter Symbol ShIM EnthM

Melting temperature (K) Tm 1728 1728

Adiabatic temperature (K) TQ 435 435

Thermal diffusivity (·10−5 m2/s) DT 1 1

Density (·103 kg/m3) ρNi 7, 9 7,9

Anisotropy strength β 0.018 0.018

Capillary length (·10−10 m) d0 4 4

Selection parameter σ0 0.05 −
Selection parameter a1 1.9 −

accurately predict the behavior of governing dependencies within a broad range of melt

undercooling. On the computational side, this work also shows that the enthalpy method

is viable for these fundamental studies, provided approaches are taken to mitigate

against narrow-band feature errors, in this case by using an adaptive cell size method.

As the enthalpy formulation has no explicit dependence on the interface thickness, it

may have many advantages over traditional phase-field methods especially in a very

low undercooled region where length scale disparities between the interface thickness,

dendrite size, and thermal boundary layer become large.

Concluding this section, let us underline the main theoretical assumptions and

future directions of the present study. In this work, it has been assumed that the

dendrites are two-dimensional and they grow in a single-component melts in the absence

of convection. Therefore an important task is to extend the theory and simulations to

dendritic growth in three dimensions, as well as to investigate the effects of impurities

and melt convection. This will allow for a direct comparison of the numerical model

and analytic solution to experimental results. An extension to the case of a rapid

crystallization scenario is also of fundamental significance. This will require using the

generalized stability (solvability) criterion recently derived in ref. [53].
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