
1 

 

Prediction of the glyphosate sorption coefficient across two loamy agricultural 1 

fields 2 

 3 

Marcos Paradelo*1,2, Trine Norgaard1, Per Moldrup3, T.P.A. Ferré4, K.G.I.D. Kumari1, Emmanuel 4 

Arthur1, and Lis W. de Jonge1 5 

1Dept. of Agroecology, Faculty of Sciences and Technology, Aarhus University, Blichers Allé 20, 6 

P.O.Box 50, DK-8830 Tjele, Denmark 7 

2Dept. of Plant Biology and Soil Science, Faculty of Sciences, University of Vigo, E-32004 8 

Ourense, Spain 9 

3Dept. of Civil Engineering, Aalborg University, Sofiendalsvej 11, DK-9200 Aalborg SV, Denmark 10 

4Dept. of Hydrology and Water Resources, Arizona University, 1133 E. James E. Rogers Way, 11 

P.O. Box 210011, Tucson, AZ 85721-0011, USA 12 

* corresponding author e-mail address: marcos.paradelo@agro.au.dk 13 

  14 

mailto:marcos.paradelo@agro.au.dk


2 

 

ABSTRACT 1 

Sorption is considered one of the most important processes controlling pesticide mobility in 2 

agricultural soils. Accurate predictions of sorption coefficients are needed for reliable risk 3 

assessments of groundwater contamination from pesticides. In this work, we aim to estimate the 4 

glyphosate sorption coefficient, Kd, from easily measurable soil properties in two loamy, 5 

agricultural fields in Denmark: Estrup and Silstrup. Forty-five soil samples in Estrup and 65 in 6 

Silstrup were collected from the surface in a rectangular grid of 15×15-m from each field, and 7 

selected soil properties and glyphosate sorption coefficients were determined. Multiple linear 8 

regression (MLR) analyses were performed using nine geo-referenced soil properties as variables to 9 

identify the parameters related with glyphosate sorption. Scenarios considered in the analyses 10 

included: (i) each field separately, (ii) both fields together, and (iii) northern and southern sections 11 

of the field in Silstrup. Considering correlations with all possible sets of the same nine geo-12 

referenced properties, a best-four set of parameters was identified for each model scenario. The 13 

best-four set for the field in Estrup included clay, oxalate-extractable Fe, Olsen P and pH, while the 14 

best-four set for Silstrup included clay, OC, Olsen P and EC. When the field in Silstrup was 15 

separated in a northern and southern section, the northern section included EC, and oxalate-16 

extractable Fe, Al and P, whereas the southern part included pH, clay, OC and Olsen P. The best-17 

four set for both fields together included clay, sand, pH and EC. Thus, the most common 18 

parameters repeated in the best-four sets included clay and pH as also reported previously in the 19 

literature, but in general, the composition of the best-four set differed for each scenario, suggesting 20 

that different properties control glyphosate sorption in different locations and at different scales of 21 

analysis. Better predictions were obtained for the best-four set for the field in Estrup (R2 = 0.87) 22 

and for both fields (R2 = 0.70), while the field in Silstrup showed a lower predictability (R2 = 0.37). 23 

Possibly, the low predictability for the field in Silstrup originated from opposing gradients in clay 24 
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and oxalate-extractable Fe across the field. Also, whereas a lower clay content in Estrup may be the 1 

limiting variable for glyphosate sorption, the field in Silstrup has a higher clay content not limiting 2 

the sorption, but introducing more variability in Kd due changes in other soil properties.  3 

Keywords: sorption coefficient, glyphosate, field scale, multiple linear regression  4 
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INTRODUCTION  1 

Pesticide leaching risk may vary strongly at the field scale, mostly because of heterogeneities in 2 

soil structure and biochemistry (Jury and Roth, 1990; Koestel et al., 2013). Sorption is one of the 3 

main processes controlling pesticide leaching (Arias-Estevez et al., 2008). Sorption also influences 4 

the magnitude and rate of other soil processes and functions, for example, reducing the 5 

bioavailability of pesticides for microbiota and hence limiting biodegradation (Alexander, 1995). 6 

Additionally, sorption reduces pesticide efficacy, leading to an increase in pesticide application 7 

rates (Reichenberger et al., 2007) which, in turn, influence other processes like plant growth or 8 

microbial activity. The sorption coefficient, Kd [L kg-1], is one of the most sensitive input 9 

parameters in pesticide fate models (Farenhorst et al., 2008). The sorption coefficient, in turn, 10 

depends on the nature of the pesticide molecule and selected soil properties such as organic carbon, 11 

pH, texture, etc. (Wauchope et al., 2002; Weber et al., 2004). Because of such complex and 12 

interactive processes, it is essential to identify a set of soil properties that can predict location-13 

specific pesticide sorption and thereby mobility. Rather than measuring the sorption coefficient 14 

itself by batch equilibrium experiments on soil samples, regression equations narrowed down to a 15 

few easily measurable soil properties will be beneficial if the relevant soil properties can be 16 

determined from non-destructive on-the-go surface techniques. Such regression models combined 17 

with on-the-go techniques will limit the sampling and laboratory costs for field scale modelling of 18 

Kd, but first, it is essential that the regression models are based on the right properties.   19 

Glyphosate [N-(phosphonomethyl)glycine] is a non-selective herbicide with carboxyl, 20 

amino, and phosphonate functional groups (de Jonge and de Jonge, 1999). Glyphosate has a low 21 

mobility and strong affinity to soil mineral fractions such as clay and amorphous iron and 22 

aluminum oxides (Borggaard and Gimsing, 2008; Vereecken, 2005). Variable-charge minerals are 23 

considered to be more effective to glyphosate sorption than permanent-charge minerals (Gimsing 24 
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and Borggaard, 2002). Interpretations of the role of OC on glyphosate sorption are conflicting 1 

(Morillo et al., 2000). For example, Tsui and Chu (2004) observed increasing glyphosate sorption 2 

with increasing OC content while Gerritse et al. (1996) observed decreasing glyphosate sorption 3 

with increasing OC content. In addition to soil constituents, soil chemistry (pH, EC, ionic 4 

composition) plays a role on glyphosate sorption. Since glyphosate is a zwitterion, its net charge is 5 

pH-dependent (Stalikas and Konidari, 2001), and therefore, variations in soil pH can alter 6 

glyphosate sorption. Sorption of glyphosate is assumed to occur through the adsorbent–cation–7 

phosphate linkage (de Jonge et al., 2001; Sprankle et al., 1975; Torstensson, 1985) and hence, an 8 

enhanced effect of cations (e.g., ferric, ferrous, and aluminum ions) on glyphosate sorption is also 9 

reported (Hensley et al., 1978; Sprankle et al., 1975). The resemblance of the sorption mechanisms 10 

of phosphate and glyphosate has led to the conclusion that glyphosate and phosphate compete for 11 

sorption sites on clay minerals and amorphous oxides (de Jonge et al., 2001). However, Borggaard 12 

(2011) reported that phosphate can have no effect or even increase glyphosate sorption. Overall, it 13 

is clear that heterogeneity in soil geochemistry imparts strong variation in glyphosate sorption.  14 

 15 

Identification of field-scale areas vulnerable to leaching is important to understand and 16 

forecast groundwater pesticide loadings and to implement best management practices to minimize 17 

groundwater contamination. In particular, a thorough knowledge of the spatial variability of soil 18 

properties that control sorption is necessary to develop accurate predictive models of glyphosate 19 

sorption. However, based on soil properties and terrain attributes across a 2.72-ha agricultural field 20 

section Farenhorst et al. (2008) was not able to develop regression models strong enough to predict 21 

glyphosate sorption in soil (R2=0.11). Neither was it possible for Singh et al. (2014) to detect any 22 

correlations between the glyphosate sorption coefficient and pH, clay and sand and only weak 23 

correlations was obtained with soil organic carbon (r= −0.21, P<0.001) and silt (r= −0.11, 24 
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P<0.001). Furthermore, Vinther et al. (2008) only showed a weak spatial correlation between the 1 

glyphosate sorption coefficient and clay (r=0.36, P<0.01) and OC (r=0.38, P<0.01).  2 

In this study we investigated the influence of soil physical and chemical properties on the 3 

glyphosate Kd. The main objective of the study was to estimate Kd from easily measurable physical 4 

and chemical properties of soils taken from two Danish agricultural fields that are part of the 5 

Danish Pesticide Leaching Assessment Programme (www.pesticidvarsling.dk). Multiple linear 6 

regression (MLR) analysis was used to relate the glyphosate sorption coefficient, determined from 7 

laboratory batch experiments, with the soil physical and chemical properties. Based on the strength 8 

of these relationships, we determined if any of these measurements could be used for field-scale 9 

screening of glyphosate mobility. 10 

MATERIAL AND METHODS 11 

Field sites  12 

Sampling was carried out at two agricultural loamy fields (Silstrup and Estrup) in Denmark (Fig. 13 

1), which belong to the Danish Pesticide Leaching Assessment Program (Lindhardt et al., 2001). 14 

Silstrup is located in northwestern Jutland (56°55´56.16´´N, 8°38´43.91´´E) and covers 1.69 ha of 15 

loamy agricultural land and slopes gently 1-2o. Two pedological profiles classified the soil as Alfic 16 

Argiudoll and Typic Hapludoll according to the USDA classification (Lindhardt et al., 2001). The 17 

field site in Estrup is located in southern Jutland (55°29´09.96´´N, 9°04´09.37´´E) and covers 1.26 18 

ha of loamy agricultural land. The field site is virtually flat and the complex geological structure 19 

comprises a clay till core with deposits of different age and composition. Three pedological profiles 20 

classified the soil as Aquic Argiudoll, Abruptic Argiudoll, and Fragiaquic Glossudalf (Lindhardt et 21 

al., 2001). Both fields were managed conventionally with regard to crop rotation, fertilization, and 22 

soil tillage. Further information about field management at the two sites can be found elsewhere 23 

(Brüsch et al., 2013; Norgaard et al., 2014b; Norgaard et al., 2013). 24 
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 1 

Soil sampling and characterization 2 

Bulk soil was collected from the top 20-cm in a rectangular grid of 15×15-m covering the 3 

cultivated area of each field (Fig. 1). This sampling grid was chosen to represent the spatial 4 

variations across the fields, and still keep the sampling intensity at a reasonable level. Sixty-five 5 

samples were collected from Silstrup and 45 from Estrup. Air dried and 2-mm sieved soil samples 6 

were used for subsequent soil analysis and sorption experiments. Texture was determined by a 7 

combined sieve/hydrometer method (Gee and Or, 2002). Organic carbon was determined on a 8 

LECO analyzer coupled with an infrared CO2 detector (Thermo Fisher Scientific Inc., MA). The 9 

pH was measured in a soil/water solution of 8 ml soil suspended in 30 ml of demineralized water 10 

and electrical conductivity (EC) was measured in a 1:9 (v/v) soil/water extract. Oxalate extractable 11 

Al, Fe and P were measured using the procedure described by Shoumans (2000). Available soil 12 

phosphorous was determined by the Olsen method (Olsen, 1954). 13 

 14 

Glyphosate solution 15 

The sorption studies were performed with 14C-labeled glyphosate ([glycine-2-14C] glyphosate, N-16 

(phosphonomethyl)glycine). Radiolabelled 14C-labelled glyphosate was purchased from Perkin 17 

Elmer (Boston, USA). Stock solutions were prepared by dissolving 14C-labeled glyphosate in a 0.01 18 

M CaCl2 solution to an initial glyphosate concentration of 0.23 mg L-1. Sodium azide (1.00 g L-1) 19 

was added to prevent microbial degradation. 20 

 21 

Sorption experiments  22 

The glyphosate sorption coefficients were determined by batch equilibrium experiments with three 23 

replicates. Air dry soil aliquots (0.5 g) were equilibrated with 0.5 mL of 0.01 M CaCl2 for 24 h in 24 
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glass centrifuge tubes closed with Teflon caps. Nine milliliters of the 0.01 M CaCl2 containing the 1 

desired concentration of glyphosate were added and the samples were rotated end-over-end (30 2 

rpm) for 24 h at 20°C followed by centrifugation at 5,000 rpm for 1 h. Samples of 3 mL 3 

supernatant were mixed with 17 mL of scintillation cocktail (Packard Ultima Gold, PerkinElmer, 4 

MA). The glyphosate concentration was quantified using a liquid scintillation analyzer (Packard 5 

Tri-carb 2250CA, Packard Instrument Co., IL). The stopping criterion was set to 1%, with a 6 

maximum counting time of 1 h. The amount of glyphosate sorbed was calculated as the difference 7 

between the solution concentration at the equilibrium and the concentration in vials without soil. 8 

Controls were included without soil material but were otherwise treated similarly. 9 

The sorption coefficient, Kd, was calculated from Eq. (1). 10 

 s
d

e

C
K

C
=       (1) 11 

where Cs is the amount of compound sorbed by the soil [g kg−1] and Ce is the compound 12 

concentration of the soil solution at equilibrium [g L−1].  13 

 14 

Multiple linear regression analysis 15 

The analyses used in this paper follow directly those used to predict colloid dispersibility, mobility, 16 

and transport at the experimental site in Silstrup (Norgaard et al., 2014a). To examine the 17 

interactions among parameters, a multiple linear regression (MLR) analysis was performed to relate 18 

Kd to every combination of nine measured soil properties (pH, EC, clay, sand, OC, AlOX FEOX, POX, 19 

and Olsen P). We make the simplest assumption of a linear dependence of Kd on the (combinations 20 

of) measured properties. However, it would be a relatively simple matter to consider nonlinear 21 

relationships if they were strongly supported in the literature. We emphasize that the adopted 22 

approach with MLR does not necessarily suggest that the underlying processes are inherently 23 
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linear; some of these processes may exhibit nonlinear, or even discontinuous, dependence on soil 1 

properties. However, our aim was merely to determine whether a small set of easily measureable 2 

properties showed a strong enough correlation with the glyphosate sorption coefficient for them to 3 

be used for field-scale screening. The variance inflation factor (VIF) was used to quantify the 4 

magnitude of multicollinearity for the included properties in each of the considered sets.  5 

In our study, consideration of the results of the MLR analyses with all possible 6 

combinations of parameters allowed us to examine, with the fewest assumptions possible, the 7 

importance of soil properties on Kd across the two different fields. We examined the combinations 8 

of properties in sets of varying size best able (defined by maximum R2) to explain sorption of 9 

glyphosate in different scenarios: each field separately and both fields together. In addition, Silstrup 10 

was split into a northern and southern section, because this site showed marked differences between 11 

North and South in solute transport behavior and colloid dispersibility and leaching (Norgaard et 12 

al., 2014a; Norgaard et al., 2013).  13 

  14 
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RESULTS AND DISCUSSION 1 

Soil properties and glyphosate sorption 2 

The average values and ranges of the selected soil properties are listed in Table 1. Clay content was 3 

lower in Estrup (0.06 - 0.14 kg kg-1) than in Silstrup (0.14 - 0.19 kg kg-1). The combination of these 4 

two fields provides a wide range in clay content for studying glyphosate sorption. Estrup showed a 5 

gradient in clay content from the southern to the northeastern part of the field (Fig. 2A). Higher 6 

clay contents in Silstrup were found in the northern part of the field (Fig. 3A). The average OC 7 

contents were 0.032 and 0.022 kg kg-1 for Estrup and Silstrup, respectively. Interestingly, both 8 

fields showed opposing gradients of OC and clay (OC maps not showed). In Estrup, the variations 9 

in OC were larger with values from 0.018 up to 0.084 kg kg-1. Higher amounts of AlOX were 10 

present in Estrup, most likely related with the high OC content (Fernandez-Sanjurjo et al., 1998). 11 

The content of FeOX, was twice as high in Silstrup compared to Estrup. The spatial variability of 12 

FeOX followed the same pattern as clay in Estrup (Fig. 2B), while in Silstrup higher FeOX were 13 

found in the southern section (Fig. 3B), where the clay content was lower. There were no 14 

differences in the phosphorus content, either POX or Olsen P, between the two fields. Oxalate-15 

extracted phosphorous ranged from 235 to 558 mg kg-1 and Olsen P from 39 to 100 mg kg-1 (Table 16 

1). Oxalate extractable P presented higher values in the southwestern part of Estrup (Fig. 2C), while 17 

in Silstrup POX presented higher values in the southern part (Fig. 3C). The pH of both fields was 18 

slightly acidic or neutral, ranging from 6.3 to 7.6 in Estrup and from 6.4 to 7.5 in Silstrup. Higher 19 

pH values in Estrup were located in the northwestern part of the field (Fig. 2D), and lower values in 20 

the eastern part. A belt from West to East in the center of Silstrup presented higher pH values, 21 

decreasing towards the southern part of the field (Fig. 3D). Electrical conductivity (EC) average 22 

values were 52 and 47 µS cm-1 for Estrup and Silstrup respectively. Higher EC values were found 23 
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in the southwestern part of Estrup; Silstrup showed a positive gradient in EC from Southeast to 1 

Northwest. 2 

The glyphosate sorption coefficient was higher in Silstrup (344 to 667 L kg-1) than in Estrup 3 

(161 to 536 L kg-1,). Glyphosate was strongly sorbed in the northwestern part of the field in Estrup 4 

(Fig. 2F) following the gradients in clay and FeOX. Silstrup showed a maximum sorption capacity in 5 

the northern part of the field, with a sorption “hotspot” towards the eastern part (Fig. 3F). There 6 

was no evident spatial correlation of Kd on the maps of the soil properties in Silstrup.  7 

 8 

Single Linear Regression analysis 9 

The best single predictor of Kd differed across the selected geographical scenarios. In Estrup, FeOX 10 

(Fig. 4B) was the parameter that explained most of the observed variation in Kd (R2=0.73), and clay 11 

also provided a good correlation with Kd (R2 = 0.52) (Fig. 4A). In Silstrup, the inverse correlation 12 

with POX gave the best R2 (R2 = 0.20) (Fig. 4C). Dividing Silstrup in northern and southern sections, 13 

POX (R2=0.17) was selected in the North and Olsen P (R2=0.25) in the South (Fig. 4D). When we 14 

predicted Kd from both fields together, clay was the best predictor (R2=0.62) (Fig. 4A). From these 15 

results, FeOX or clay content could be considered as single predictors of Kd explaining more than 16 

50% of the sorption variability; however, the uncertainty would be relatively high. Piccolo et al. 17 

(1994) found that amorphous oxides mainly interact with glyphosate enhancing its retention in soil. 18 

Glyphosate affinity to clay was stated from the first glyphosate sorption study reported in the 19 

literature (Sprankle et al., 1975) where sorption was stronger in a clay loam soil than a sandy soil, 20 

and it was confirmed by later studies. For example, Farenhorst et al. (2009) found that clay, 21 

together with pH, controlled glyphosate sorption across a prairie land scape. With a similar range of 22 

clay content as in our study (0.01 to 0.25 kg kg-1), they measured sorption coefficients from 19 to 23 

547 L kg-1. The negative correlation with both Pox and Olsen P in Silstrup field suggested that P 24 
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competes with glyphosate for the sorption sites in the soil, reducing glyphosate sorption (de Jonge 1 

et al., 2001).   2 

 3 

Multiple Linear Regression analysis 4 

Multiple linear regression analysis was used to examine which set of measured soil properties could 5 

explain Kd best using as few assumptions as possible. The number of combinations, c, studied can 6 

be calculated by the binomial coefficient: 7 

𝑐 =
𝑚!

𝑘!(𝑚−𝑘)!
, 0 < 𝑘 ≤ 𝑚     (2) 8 

where m is the number of measurements and k is the number of parameters selected. The same 9 

predictor properties were used for all the analyses. The number of unique parameter sets obtained 10 

from k ranging from 1 to 9 was 511 for each of the five geographical scenarios considered: Estrup; 11 

Silstrup; Silstrup North; Silstrup South; and both fields together. For each subset of parameters 12 

considered, the goodness of the fit (R2) and the significance level (p for significance, α= 0.05) were 13 

calculated. This analysis was applied previously to predict colloid dispersibility, mobilization and 14 

transport at different soil sample scales (Norgaard et al., 2014a). Figure 5 presents the MLR results 15 

for the different geographical scenarios. The R2 for each subset based on the MLR to Kd is shown 16 

in Fig. 5A, C, E, G, and I. The y-axis represents R2 and the x-axis the number of predictor 17 

properties used for each set. A black point represents the R2 from a combination of k properties 18 

with p-values > 0.05. Larger black dots represent sets with p-values ≤ 0.05, and red dots indicate 19 

the maximum R2 obtained for each parameter set size. The best performances for each k value were 20 

significant (p-values ≤ 0.05) in all the sets.  The improvement achieved when multiple parameters 21 

were included compared to the best single parameter was dependent on the geographical scenario; 22 

in general, the increment in R2 from using one to nine parameters was between 0.2 and 0.3 (Fig. 5), 23 
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with little increase for both fields together, and considerably improvement in Silstrup South. For all 1 

of the geographical scenarios, the increasing rate of R2 with increasing parameter set size decreased 2 

after around four parameters suggesting that only four parameters need to be considered in defining 3 

a screening set. A similar result was found by Norgaard et al. (2014a) for predicting colloid 4 

dispersibility and transport with a limited number of informative parameters that are feasible to 5 

measure at the field scale. In this study, all of the best-four sets were significant, with a p-value ≤ 6 

0.05. The selection of four parameters did not reduce substantially the R2 compared to using all 10 7 

parameters. The best-four set for each MLR analysis is shown in Table 2. Positive signs are 8 

assigned to parameters which are positively correlated to Kd and vice versa. The weight of each 9 

parameter is shown in Table 3. None of the properties included in the best-four sets for the 10 

geographical scenarios had a VIF > 3 (data not shown). A VIF larger than 10 has previously been 11 

used to indicate that multicollinearity influences the regression estimates (O'Brien, 2007), however, 12 

based on our VIF this does not appear to be the case in any of the best-four models. The best-four 13 

set predicting Kd in Estrup included clay, FeOX, Olsen P (all positively correlated) and pH 14 

(negatively correlated), R2 = 0.87. The best-four set in Silstrup included a positive correlation with 15 

clay, and a negative correlation with EC, sand, and OC (R2 = 0.36). Surprisingly, POX, the best 16 

single predictor in Silstrup, was not included in the best-four subset. Only for k = 4, POX is out of 17 

the best predictors, while it was selected for the other nine sets of k values. This variability in the 18 

composition of the  parameter sets together with the low performance achieved (less than 50% of 19 

the variability explained) suggest that other factors not measured possibly exerted a strong control 20 

on the sorption within this field site. Compared to Estrup where the low clay content may result in 21 

clay being a limiting factor for glyphosate sorption, the field in Silstrup has a higher clay content 22 

where more properties are likely to influence glyphosate Kd and the predictability of the best-four 23 
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set model Furthermore, the opposite gradients of clay and FeOX in Silstrup could interfere in their 1 

effects on the glyphosate sorption. 2 

Dividing Silstrup in two geographical areas, the selected parameters differed from the 3 

whole field (Table 2). For the northern part, only the negative correlation with EC is common with 4 

the results for the whole field. Also, there is a positive correlation between Kd and the amorphous 5 

oxides (FeOX and AlOX) and a negative correlation with POX for the northern part. For the southern 6 

part, the best-four set comprised a negative correlation with pH, clay, OC and Olsen P. The 7 

negative correlation with clay does not follow some previously published results (Glass, 1987; 8 

Vereecken, 2005). However, in this case, because clay is not the strongest predictor in the set, the 9 

negative sign may indicate interactions among clay, OC and Olsen P in controlling Kd.  10 

he best-four set for both fields together was positively correlated with clay and negatively 11 

correlated with pH, EC and sand (R2 = 0.70). The selection of clay suggested that the finest fraction 12 

of the soil controlled glyphosate sorption across both fields together. This parameter presented a 13 

wide range, not overlapped between the two fields (Table 1). The range of EC and pH are similar in 14 

both field sites (Fig. 4E and F). The effect of pH on glyphosate sorption is reported elsewhere (de 15 

Jonge and de Jonge, 1999; Gimsing et al., 2004; Mcconnell and Hossner, 1985). Increasing pH 16 

causes an increase in the negative charges of the soil surfaces as well as on glyphosate molecules. 17 

This phenomenon enhances the repulsion between the pesticide and the soil surfaces (Gimsing et 18 

al., 2004). Decreasing Kd with increasing EC (Fig. 4F) suggested that cations in the solution 19 

complexed glyphosate molecules reducing sorption on the soil surfaces. Glyphosate can form 20 

strong complexes with Zn, Cu, Co, or Fe (Caetano et al., 2012) that can inactivate sorption 21 

glyphosate ligands. For example, Copper-glyphosate complexes were found to reduce the herbicide 22 

sorption on montmorillonite (Morillo et al., 1997). 23 
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In general, the parameters selected by MLR are consistent with previously published 1 

controlling factors for glyphosate sorption (de Jonge et al., 2001; Gimsing and Borggaard, 2002; 2 

Hance, 1976; Sprankle et al., 1975). Clay and pH were selected in most of the geographical 3 

scenarios studied. Gimsing et al. (2004) found that FeOX and pH predicted glyphosate sorption in 4 

surface soils, and Ghafoor et al. (2013) included OC, pH and clay in their model for predicting Kd.  5 

For a better understanding of the differences in R2 in the analyses we plotted the predicted 6 

values as a function of the measured values (Fig. 5B, D, F, and H). Open points represents the 7 

predicted values for the best-four parameters, and full dots represent the predicted values for all 8 

parameter sets. As expected, using all parameters reduced deviations of the predicted values from 9 

the 1:1 line. In general, residuals were well distributed along the 1:1 line for the different 10 

geographical scenarios. A slight deviation from the 1:1 line, however, was observed for Kd > 550 L 11 

kg-1 (Fig. 5D, J) that corresponds to the northern Silstrupsection. When we studied the northern 12 

section individually (Fig. 5F), the bias of the predicted Kd from the 1:1 line was reduced. However, 13 

the low predictive power suggests that other, unmeasured properties exert a strong control on 14 

glyphosate sorption in Silstrup. 15 

    16 

CONCLUSIONS 17 

The influence of soil physical and chemical properties on glyphosate sorption was studied across 18 

two agricultural fields. The best-four set of parameters was considered to give an acceptable 19 

prediction of Kd compared to using the nine parameters measured in Estrup and with both fields 20 

together, while in Silstrup the performance was low. The most commonly selected parameters for 21 

predicting glyphosate sorption across the geographic scenarios studied included clay, pH, FeOX, EC 22 

and P. However, the four most predictive parameters varied depending on the field site. The 23 

proposed analysis could explain most of the variability in Estrup but less than half of the variation 24 
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in Silstrup suggesting that potential factors controlling glyphosate sorption in Silstrup were not 1 

determined. Further studies with larger data sets including a wider range of parameters are planned 2 

to verify the minimum number of measurements required for accurate estimation of Kd. 3 
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FIGURE CAPTIONS 1 

Fig. 1. Sampling distribution in Estrup (A) and Silstrup (B).The horizontal dotted line in Silstrup 2 

indicates the division between the northern and southern section. 3 

Fig. 2. Spatial variation of selected soil properties (A) clay, (B) oxalate extractable iron, FeOX, (C) 4 

Oxalate extractable phosphorous, POX, (D) pH, (E) EC, and (F) the glyphosate sorption coefficient 5 

,Kd, in Estrup. The interpolated maps were obtained by empirical Bayesian kriging in ArcMap 10.1. 6 

Fig. 3. Spatial variation of selected soil properties (A) clay, (B) oxalate extractable iron, FeOX, (C) 7 

Oxalate extractable phosphorous, POX, (D) pH, (E) EC, and (F) the glyphosate sorption coefficient, 8 

Kd, in Silstrup. The interpolated maps were obtained by empirical Bayesian kriging in ArcMap 9 

10.1. 10 

Fig. 4. The glyphosate sorption coefficient as a function of (A) clay content, (B) oxalate extractable 11 

iron, FeOX, (C) oxalate extracted P, POX (D) Olsen P, (E) pH and (F) EC for the two fields studied. 12 

Notice that Silstrup was divided in northern and southern sections. 13 

Fig. 5. Prediction of the glyphosate sorption coefficient, Kd, with the multiple linear regression 14 

(MLR) model. The panels A, C, E, G and I show the increase in R2 as a function of the number of 15 

parameters included in the analysis (k = 10), for Estrup, Silstrup, Silstrup North, Silstrup South, and 16 

Both fields. Sets with a p value > 0.05 are shown as small dots; sets with a p value ≤ 0.05 have 17 

larger dots. The best prediction set (highest R2 and p ≤ 0.05) for a particular number of parameters 18 

included is marked with a red dot. Panels B, D, F, H and J show the predicted Kd versus the 19 

measured Kd for Estrup, Silstrup, Silstrup North, Silstrup South, and both fields, respectively. Filled 20 

symbols show the prediction sets using 9 parameters; open symbols show the prediction sets using 21 

only four parameters. Black circles represent Estrup points, red squares represent Silstrup North 22 

points, and blue triangles represent Silstrup South points. The solid lines represent the 1:1 line.    23 
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TABLES 1 

 2 

Table 1. Selected soil properties and glyphosate sorption coefficients for Estrup and Silstrup . 3 

  
pH EC clay silt sand OC AlOX FeOX POX Olsen P Kd 

   
µS cm-1 ---------------kg kg-1--------------- --------------mg kg-1-------------- L kg-1 

Estrup 

min 6.31 33 0.06 0.14 0.46 0.02 513 464 238 39 161 

max 7.60 110 0.14 0.30 0.77 0.08 2078 1675 558 100 536 

mean 6.71 52 0.11 0.25 0.59 0.03 928 1105 335 59 322 

Silstrup 

min 6.39 40 0.14 0.23 0.45 0.02 648 1843 235 49 344 

max 7.49 71 0.19 0.33 0.59 0.02 971 2960 465 90 667 

mean 6.75 47 0.16 0.30 0.51 0.02 762 2420 328 64 475 

EC: electric conductivity; OC: Organic Carbon content; AlOX, FeOX, POX: Oxalate extractable aluminum, iron and 4 
phosphorous; Olsen P: Available phosphorous; Kd: glyphosate sorption coefficient 5 

 6 
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 1 

Table 2. The best-four sets from the multiple regression analysis (MLR) predicting the glyphosate 2 

sorption coefficient (Kd) for the different geographic scenarios: Estrup, Silstrup, Silstrup North, 3 

Silstrup South and all data. A “-” symbol indicates that the parameter is inversely correlated with 4 

Kd, and a “+” symbol indicates that the parameter is positively correlated with Kd. The R2 values 5 

using a single parameter, the best four sets and all parameters are presented in the first three rows. 6 

  Estrup Silstrup Silstrup N Silstrup S Both fields 

R2 single 0.73 0.20 0.17 0.25 0.62 

R2 best four set 0.87 0.36 0.43 0.53 0.70 

R2 all parameters 0.93 0.45 0.50 0.69 0.72 

pH -   - - - 

EC   -   - 

clay +  +  - - + 

sand       - 

OC  -  - -  

AlOX        

FeOX +     

POX        

Olsen P +   - - -  

EC: electric conductivity; OC: Organic Carbon content; AlOX, FeOX, POX: Oxalate extractable aluminum, iron and 7 
phosphorous; Olsen P: Available phosphorous. 8 
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Table 3. Weights of variable predictors for best-four sets from the multiple regression analysis 1 

(MLR) predicting the glyphosate sorption coefficient (Kd) for the different geographic scenarios: 2 

Estrup, Silstrup, Silstrup North, Silstrup South and all data. 3 

Geographic scenario Equation  

Estrup -187.0 pH + 1412 clay + 0.213 FeOX + 0.733 Olsen P 

Silstrup -6.49 pH +2792 clay -11450 OC -1.83 Olsen P 

Silstrup N -8.27 EC -0.395 AlOX + 0.100 Fe-ox -2.274 POX 

Silstrup S -335.4 pH -3510.1 clay -28162 OC -2.274 Olsen P 

Both fields - 201.0 pH – 1.27 EC + 2850 clay – 282.9 sand 

 4 
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FIGURES 1 
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Fig. 6.  5 
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Fig. 10.  2 
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