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I. INTRODUCTION

The problems of hydroelasticity have many applications in biology, medicine and industry.

They are also relevant to polar engineering where ice sheets are modelled by elastic sheets.

The reader is refered to1 for a review and references.

Early work on the subject was based on the Kirchhoff-Love elastic model (refered to as

the KL model). It was for example used in2 and3 to calculate large amplitude periodic waves.

Two-dimensional solitary waves were later studied in4 and three-dimensional configurations

were investigated in5. The dynamics and the stability of hydroelastic solitary waves were

considered in6 and dark solitons were calculated in7. In most of these works, the boundary

integral equation method, first introduced for the gravity-capillary problem in8, was adapted

for solving the fully nonlinear hydroelastic problem. In9 a different numerical method (based

on a truncated Laurent series) was used to compute periodic and generalised solitary waves.

More recently a new nonlinear model for elastic sheet was introduced by Plotnikov and

Toland10. It uses the special Cosserat theory of hyperelatic shells with Kirchhoff’s hypotheses

to express the pressure P exerted by the elastic sheet on the water as

P = D(κss +
1

2
κ3). (1)

Here D is the flexural rigidity, κ is the curvature of the free surface and s is the arclength.

Solitary waves were studied by using this model in11,12. Time-dependent solutions and

periodic waves were also computed in these papers. The Plotnikov and Toland has the

advantage over the KL model that it conserves the elastic potential energy.

In this paper, we use the Plotnikov and Toland’s model and the series truncation method

to study periodic and generalised solitary waves. The problem is formulated in Section II

and the numerical scheme is described in Section III. Numerical results are presented in

Section IV. They strongly suggest that there are no true solitary waves (i.e. the amplitude

of the ripples of the generalised solitary waves does not vanish for any choice of the pa-

rameters). A comparison with the results given by the KL model is presented in Section

V. The corresponding properties of gravity-capillary waves are also discussed in Section V.

Concluding remarks are given in Section VI.
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II. FORMULATION

We consider a two-dimensional irrotational flow of an inviscid and incompressible fluid of

constant depth h, covered by an elastic sheet. The free-surface (i.e. the upper surface of the

fluid) is deformed by a train of waves travelling at a constant velocity c. The configuration

is illustrated in Figure 1.

We introduce a two-dimensional cartesian system with the y-axis pointing upwards. We

denote by y = η(x) the equation of the (unknown) free-surface. The level of the bottom is

chosen to be y = −h. The acceleration of gravity g acts in the negative y-direction. A frame

of reference moving with the waves is chosen so that the flow is steady. We introduce the

potential function ϕ and the streamfunction ψ. We choose ψ = 0 on the free-surface and

ϕ = 0 at the crest where x = 0. We denote by −Q the value of the streamfunction ψ on the

bottom.

y

xO

ψ = −Q

φ = 0
ψ = 0

FIG. 1. The mathematical configuration of the problem.
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The governing equations are as follows

∇2ϕ = 0, − h < y < η(x), (2)

ϕy = ϕxηx, on y = η(x), (3)

1

2
(ϕ2

x + ϕ2
y) + gy +

P

ρ
= B, on y = η(x), (4)

ϕy = 0, on y = −h, (5)

where P is the pressure exerted by the sheet on the fluid. We shall use the model proposed

by Plotnikov and Toland10 where P is defined in (1). In Section V, we will also use the KL

model in which (1) is replaced by

P = Dκxx. (6)

Equation (3) and (5) are the kinematic boundary conditions on the free-surface and on the

bottom respectively. Equatioin (4) is the Bernoulli equation on the free-surface or, in other

words, the dynamic boundary condition and B is the Bernoulli constant.

We use the potential function ϕ and the streamfunction ψ as the independent variables.

We then introduce the complex velocity w = u− iv and write

u− iv = ceτ−iθ (7)

The function τ(ϕ, ψ)− iθ(ϕ, ψ) is an analytic function of the complex potential ϕ+ iψ. The

definition 7 implies

xϕ + iyϕ =
1

u− iv
=

1

c
e−τ+iθ (8)

whose real part and imaginary parts can be used to find x and y by integrating with respect

to ϕ.

Then (4) becomes

c2

2
e2τ(ϕ,0) +

g

c

∫ ϕ

0

e−τ(φ,0) sin[θ(φ, 0)]dφ+
D

ρ
(∂ssκ+

1

2
κ3) = B. (9)

By using the chain rule, we have

∂sκ = ∂sϕ∂ϕκ+ ∂sψ∂ψκ = ceτκϕ. (10)

where we have used the property that ψ is constant on the free-surface. Since κ = ceτθϕ

and we obtain after some algebra

κss +
1

2
κ3 = c3e3τ (θϕϕϕ + 3τϕθϕϕ + τϕϕθϕ + 2τ 2ϕθϕ +

θ3ϕ
2
). (11)
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We note that a formulation similar to that described in this section was used before in9

for the KL model.

III. NUMERICAL SCHEME

The flow domain in the complex potential plane is the strip −Q < ψ < 0. The kinematic

boundary condition on the bottom can be satisfied by using the method of images. Then

we have ψ = −2Q on the image of the free-surface into the bottom. Hence the extended

flow domain is the strip −2Q < ψ < 0. Then we perform the conformal mapping

t = e−
2iπf
cλ , (12)

where f = ϕ+ iψ is the complex potential and λ is the wavelength. It maps the strip onto

the annulus r20 < |t| < 1, where

r0 = e
−2πQ

cλ . (13)

Since w is an analytic function of f , so is τ − iθ. Hence τ − iθ is an analytic function of t

which can be represented by the Laurent series

τ − iθ = a0 +
∞∑
n=1

ant
n +

∞∑
n=1

bnt
−n. (14)

Since ψ = −2Q is the image of the surface ψ = 0, we obtain

τ(ϕ, 0)− iθ(ϕ, 0) = τ(ϕ,−2Q) + iθ(ϕ,−2Q). (15)

Combining (14) and (15) gives

bn = anr
2n
0 . (16)

We choose c as the unit velocity and Q/c as the unit length. In the dimensionless form,

(9) becomes
1

2
e2τ +

1

F 2

∫ ϕ

0

e−τ(φ) sin[θ(φ)]dφ+ β(κss +
1

2
κ3) = B, (17)

where B is the dimensionless Bernoulli constant,

F =
c√
gh

(18)

is the Froude number and

β =
Dc

ρQ3
. (19)
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One can easily rewrite (13) as

r0 = e
−2π
l (20)

where l is the dimensionless wavelength. By substituting (12) into (14) and truncating the

series after N − 2 terms, we get

τ = a0 +
N−2∑
n=1

cos(knϕ)(1 + r2n0 )an, (21)

θ =
N−2∑
n=1

sin(knϕ)(1− r2n0 )an. (22)

Now we introduce N − 1 collocation points uniformly distributed in [0, l
2
],

ϕI =
l

2

I − 1

N − 2
, I = 1, 2, ...N − 1. (23)

The dynamic boundary condition (17) is satisfied at these points, which yieldsN−1 algebraic

equations. The periodicity of the wave implies

x =
l

2
when ϕ =

l

2
. (24)

Fixing the amplitude gives the additional equation

|y( l
2
)− y(0)| = A = s̄l, (25)

where s̄ is the steepness (i.e. the difference of heights between a crest and a trough divided

by the wavelength) and A is the amplitude. By fixing β, A and l, the resulting system

with N +1 equations and N +1 unknowns (a0, a1, ..., aN−2, B, b) can be solved by Newton’s

method. The error of the numerical solution obtained by Newton’s method is set to be less

than 10−10. Once the solution is obtained, one can get the values of x and y by integrating

xϕ and yϕ respectively. This gives the profile of the wave.

A. Case of infinite depth

In the case of infinite depth, the numerical scheme remains valid except that we now

use the reference length (D/ρc2)
1
3 since Q/c tends to infinity as the depth tends to infinity.

Following (13), r0 = 0 since h tends to infinity and so bn = 0 by (16). The dynamic boundary

condition (9) becomes

1

2
e2τ + γ

∫ ϕ

0

e−τ(φ) sin[θ(φ)]dφ+ [∂2sκ+
1

2
κ3] = B, (26)
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where

γ = (Dg3/ρc8)
1
3 . (27)

We note that γ is related to the phase velocity c. In Section IVA we use this parameter to

test the numerical accuracy.

IV. DISCUSSION OF RESULTS

A. Numerical Accuracy

We check the convergence and accuracy of our numerical procedure in the particular case

of infinite depth. When the amplitude of the waves is small, the equations of Section II can

be linearised and solved analytically. The (linear) dispersion relation of the waves is then

c2 =
g

k
+
D

ρ
k3 (28)

where k = 2π/λ is the wavenumber. Using the dimensionless variables of Section IIIA, we

can rewrite (28) as

γ = k − k4, (29)

where γ is defined by (27). Now we consider the quantity e defined by

e = |γn − γt|, (30)

where γt is the theoretical value predicted by (29) and γn is the corresponding numerical

value given by the numerical procedure of Section III. From Table I, it can be seen in the

column of s = 0.001 and s = 0.002 that e converges quickly to a value that is essentially

equal to zero as the number of collocation points increases. It can also be seen from the last

two columns of Table I that the numerical values of γ for periodic waves of finite amplitude

are different from the values of γt obtained from the linear dispersion relation (29) because

of the nonlinearity. We compute γn for different values of N . Table II shows that γn

converges quickly as N increases. In most of the computations presented in this paper we

used N = 500.
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Error

Wavelength N s = 0.001 s = 0.002 s = 0.1 s = 0.2

10 20 1.08× 10−3 1.08× 10−3 1.50× 10−3 1.74× 10−2

10 100 3.96× 10−5 3.95× 10−5 4.06× 10−4 1.64× 10−2

10 500 1.52× 10−6 1.41× 10−6 3.66× 10−4 1.63× 10−2

10 1000 3.51× 10−7 2.37× 10−7 3.65× 10−4 1.63× 10−2

10 2000 5.90× 10−8 5.56× 10−8 3.65× 10−4 1.63× 10−2

TABLE I. The values of e for periodic waves of small and finite amplitude.

γ

Wavelength N s = 0.1 s = 0.15 s = 0.2 s = 0.25

10 20 0.47396 0.47717 0.48989 0.54572

10 100 0.47287 0.47605 0.48883 0.54475

10 500 0.47283 0.47601 0.48879 0.54471

10 1000 0.47283 0.47601 0.48879 0.54471

10 2000 0.47283 0.47601 0.48879 0.54471

TABLE II. The values of γ for periodic waves of finite amplitude.

B. Periodic waves in infinite depth

A weakly nonlinear theory can be developped by expanding the solution in powers of

a parameter ϵ which measures the amplitude of the wave. Vanden-Broeck and Parau9

developped the theory up to order ϵ2 for the KL model. Their results apply also to the

Plotnikov-Toland model because the KL model and the Plotnikov-Toland model agree up

to order ϵ2. In particular, the function η(x) of Section II is written as

η(x) = ϵη1(x) + ϵ2η2(x) +O(ϵ3), (31)

It is found that

η1(x) = A1 cos kx, (32)

provided

g +
D

ρ
n4k4 − c20nk ̸= 0 (33)
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for all integer value of n ≥ 2. Here c0 is the value of c predicted by (28). The value of A1

depends on the particular definition of ϵ. Vanden-Broeck and Parau9 chose

ϵ =
a

λ
, (34)

where a is the first Fourier coefficient of η(x). It then follows that A1 = λ.

When there exists an integer m ≥ 2 such that

g +
D

ρ
m4k4 − c20mk = 0, (35)

then

η(x) = A1 cos kx+ Am cosmkx. (36)

In particular when m = 2, it is shown in9 that

A2 = ±1

2
A1, (37)

The two profiles corresponding to (36) with m = 2 have a crest or a trough dimple (see the

portion of Figure 2 corresponding to m = 2). These solutions (known as Wilton ripples)

were first calculated for gravity-capillary waves (see for example9,13 for details). The corre-

sponding solutions for m > 2 become more and more tedious to calculate analytically as m

increases. However they can easily be computed by using the numerical procedure of Section

III. To achieve this we need to make an appropriate intial guess for (a0, a1, ..., aN−2, B, γ) in

the Newton’s iterations. The value of k can be predicted by (28) and (35) for different values

of m. Then the value of γ can be easily computed by using (27). We choose a1 = −0.1

and set all the remaining coefficients equal to zero. This completes the initial guess which

leads to a nonlinear solution by Newton’s iterations. In deep water, as explained in9, there

exist many different families of periodic waves with dimples on their free-surface. This is

confirmed by the present numerical results. Some typical free-surface profiles are presented

in Figure 2. These results show that more and more dimples appear on the free surface

profiles as m increases.

C. Periodic waves in finite depth

The infinite depth numerical results for Figure 2 can be extended to finite depth by

assuming r0 ̸= 0. As expected by analogy with the infinite depth results, there are again
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FIG. 2. Typical surface profiles for order m = 2, 3, 4, 5 in deep water. Only half of a wavelength of

the waves is shown.

dimples on the free surface. However as the wavelength l increases (i.e. as r0 in (20)

approaches 1) these dimples tend to concentrate in the troughs of the waves (see Figure 3).

These results suggest that as l → ∞, the waves approach solitary waves characterised by

a train of ripples of constant amplitude in the far field. Such waves are called generalised

solitary waves to contrast then to true solitary waves which are characterised by a flat free

surface in the far field.
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FIG. 3. Surface profiles in the case of finite depth for β = 0.07 and A = 0.14: the half wavelength

l/2 equals (a) 6, (b) 9, (c) 12, (d) 15, (e) 18, (f) 21. Only half of a wavelength of the waves is

shown.
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D. Generalised Solitary Waves

In order to confirm the existence of generalised solitary waves, we repeated the computa-

tions of Figure 3 for larger values of l and various values of β and A. We present in Figure

82 84 86 88 90 92 94 96
0.84

0.86

0.88

0.9

0.92

0.94

0.96

P2
P1

FIG. 4. The graphs of 1/F 2 versus the wavelength l for β = 0.07 and A = 0.14.

0 5 10 15 20 25 30 35 40 45 50
−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

FIG. 5. The two profiles corresponding to P1 and P2 in Figure 4. The vertical scale has been

exaggerated to show the difference of these two profiles.

4 values of 1/F 2 versus l for β = 0.07 and A = 0.14. These results illustrate that there are

an infinite number of branches of solutions which approach parallel curves as l → ∞. Two

such branches are shown in Figure 4. To explain this property we present in Figure 5 two

profiles corresponding to the points P1 and P2 in Figure 4. We see that these two profiles are

very close to each other except that the one corresponding to P2 has one more “wavelength
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of ripples” in the far field. This implies that the distance between the two parallel curves

of Figure 4 is approximately equal to twice the wavelength of the ripples in the tail of the

waves (this becomes exact as l → ∞). Generalised solitary waves are then obtained by

jumping from one curve (such as those in Figure 4) to the next as we take the limit l → ∞.

After each jump, two more wavelengths of the ripples appear (one on the right and one on

the left). In the limit l → ∞, we obtain a generalised solitary wave characterised by infinite

train of ripples in the far field. For each value of β, these generalised solitary waves form a

two-parameter family of solutions.

We consider a particular family for 89 < l < 95 which is shown in Figure 6 (since l

is large, it provides an approximation of generalised solitary waves). Two sub-branches of

solutions are discovered. The intersection illustrates the fact that it is possible to have two

different generalised solitary waves with the same wavelength and the same Froude number.

Some typical free surface profiles for the left sub-branch and the right sub-branch are shown

in Figure 7 and Figure 8 respectively. From Figure 7, it can be seen that the waves start

89 90 91 92 93 94 95
0.84
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0.9

0.92

0.94

0.96
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g©
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i©

FIG. 6. The graph of 1/F 2 versus the wavelength for a particular family when β = 0.07 and

A = 0.14.

with large ripples and then evolve to generalised solitary waves with small ripples which

enlarge again in the later stage. From Figure 8, one can again observe first very large ripples

which become smaller and then larger again. The main difference is that the right-end point

of the solutions from the left branch is a trough whereas the one from the right branch is a

crest.

Alternatively we may impose a different condition instead of (25). For example, we can
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FIG. 7. Typical surface profiles from the left branch. Only half of a wavelength is shown.

fix the value u0 of the velocity at x = 0. This condition was already considered in14 for the

gravity-capillary problem. Accordingly, we replace equation (25) by

τ(0, 0) = ln u0. (38)

We present values of 1/F 2 versus l for u0 = 0.97 and β = 0.07 in Figure 9. The value of

1/F 2 changes little as the wavelength varies since the vertical scaling is small. The function

is monotonically decreasing in each family and will eventually converges to a limit as the

wavelength tends to infinity. Unlike what we have seen in Figure (6), we have only found a

single branch rather than two. Examining profiles on two consecutive families in Figure 9, we

found that one corresponds to the waves whose right-end point is a crest while the other one

has a trough as its right-end point. Similar results are found in the case of gravity-capillary

waves. (see Section V).

The ripples in the tail of generalised solitary waves are of questionable physical valid-

ity because they occur on both sides and therefore do not satisfy the radiation condition.

Therefore an important question is whether or not the parameters can be chosen so that the

amplitude of the ripples vanish. To investigate this question we choose the absolute value of
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FIG. 8. Typical surface profiles from the right branch. Only half of a wavelength is shown.
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FIG. 9. Value of 1/F 2 versus the wavelength when u0 = 0.97 and β = 0.07.

the curvature of the free surface at ϕN−1 = l/2 as a measure of the amplitude of the ripples

in the tail. We denote this parameter by J . Values of J versus β for l = 99.58 and F = 1.03

are shown in Figure 10. These results and similar ones obtained for other values of l and F

strongly suggest that J ̸= 0 for β ̸= 0 and that there are therefore no true solitary waves

(i.e. solitary waves for which the free surface is flat in the far field). A qualitatively similar
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result was found in15 for gravity-capillary waves.
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FIG. 10. Value of the parameter J versus β when l = 99.58 and F = 1.03.

V. COMPARISON WITH THE KIRCHHOFF-LOVE MODEL AND THE

PROBLEM OF GRAVITY-CAPILLARY WAVES

A. The Kirchhoff-Love model

We may compare the results from the previous section to the ones produced by the KL

model which is defined by (6). We follow the numerical procedure of Section III to simulate

the solutions.

In Figure 11 we plot values of 1/F 2 versus the wavelength l for A = 0.14 and β = 0.07.

One can see that there are again two different sub-branches for each family. One slight

difference is that the two curves in each family do not intersect in Figure 11 whereas they

do in Figure 4. Apart from this, the two graphs are qualitatively similar.

Furthermore, we can also use the KL model and fix the velocity u0 instead of A. The

result is shown in Figure 12. This is qualitatively similar to what we have seen in Figure 9.

B. Gravity-Capillary problem

Generalised solitary waves have been found before in the study of gravity-capillary waves

(see14 and and16 for a review). We present in this section a comparison of our results for

flexural-gravity waves with those of gravity-capillary waves.
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FIG. 12. Value of 1/F 2 versus the wavelength when u0 = 0.97 and β = 0.07.

For gravity-capillary waves, (1) is replaced by

P = −Tκ, (39)

where T is the surface tension. Using again c as the reference velocity and Q/c as the

reference legnth, (17) becomes

1

2
e2τ +

1

F 2

∫ ϕ

0

e−τ(φ) sin[θ(φ)]dφ− τ̄κ = B, (40)

where

τ̄ =
T

ρQc
(41)

is the Bond number.
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The remaining equatoins are unchanged and numerical results can be obtained by the

procedure of Section III. Values of 1/F 2 versus l are presented in Figure 13 and Figure 14.

The results from Figure 14 agree with those found in14. Two sub-branches are again found in

Figure 13. These results are qualitatively similar to those obtained in the previous sections

for flexural-gravity waves.
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FIG. 13. Value of F versus l when A = 0.14 and τ = 0.24.
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FIG. 14. Value of F versus l when u0 = 0.97 and τ = 0.24.

17



VI. CONCLUSION

We have presented numerical computations of nonlinear periodic waves and of generalised

solitary waves propagating under an elastic sheet. Most of the results were obtained for

the Plotnikov-Toland model. We have provided numerical evidence that there are no true

solitary waves (i.e. solitary waves with a flat free surface in the far field). Our findings were

then compared with those obtained with the simplified KL model and with computations of

gravity capillary waves.
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