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A numerical study of fully nonlinear waves propagating through a two-dimensional deep
fluid covered by a floating flexible plate is presented. The nonlinear model proposed by
Toland (2008) is used to formulate the pressure exerted by the thin elastic sheet. The
symmetric solitary waves previously found by Guyenne & Părău (2012) and Wang et al.
(2013) are quickly reviewed. A new class of hydroelastic solitary waves which are non-
symmetric in the direction of wave propagation is then computed. These asymmetric soli-
tary waves have a multi-packet structure and appear via spontaneous symmetry-breaking
bifurcations. We study in detail the stability properties of both symmetric and asym-
metric solitary waves subject to longitudinal perturbations. Some moderate-amplitude
symmetric solitary waves are found to be stable. A series of numerical experiments are
performed to show the non-elastic behaviour of two interacting stable solitary waves. The
large response generated by a localised steady pressure distribution moving at a speed
slightly below the minimum of the phase speed (called transcritical regime in the litera-
ture) is also examined. The direct numerical simulation of the fully nonlinear equations
with a single load reveals that in this range the generated waves are of finite amplitude.
This includes a perturbed depression solitary wave, which is qualitatively similar to the
large response observed in experiments. The excitations of stable elevation solitary waves
are achieved by applying multiple loads moving with a speed in the transcritical regime.
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1. Introduction

Hydroelasticity, a name adapted from aeroelasticity, is concerned with the motion
and distortion of deformable bodies responding to hydrodynamic excitations, and the
associated reactions on the motion of the environmental fluid. Hydroelastic waves enjoy
wide usages in marine structures and sea transport. Modern applications of hydroelastic
waves abound: very large floating structures usable as fully functional airport runways
(Megafloat project in Japan); large fast merchant ships and container vessels which are
relatively more flexible (Wang (2000)); flexible risers to transport hydrocarbon (mainly
refers to oil) from the seabed to shore or offshore facilities (Jain (1994)); safe use of lake
and ocean ice for roadways and landing strips (Wilson (1958); Takizawa (1985); Squire
et al. (1988)). Due to these physical and industrial significances, in-depth knowledge of
the characteristics of hydroelastic waves is therefore important.

The present work considers the irrotational motion of a two-dimensional inviscid and
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incompressible fluid of infinite depth, with the top surface being in contact with a fric-
tionless thin elastic sheet. Since there are two restoring forces across the free surface
(the gravity and the flexural rigidity due to the elastic bending) the hydroelastic waves
propagating through the elastic cover are also called flexural-gravity waves. This problem
has been proposed as an ideal model for the dynamics of a large body of waves covered
by a floating ice sheet in polar regions, and has been studied extensively mostly in the
linear setting since the pioneering work by Greenhill (1886) (the reader is referred to
the monograph by Squire et al. (1996) which describes in detail the research based on
the linear theory prior to 1996).

The linear theory is a good approximation when the deformations of the elastic cover
are relatively small, but it becomes unreliable as the amplitude of the waves grows (the
reader is referred to the reports of intense-in-ice events by Marko (2003) which highlight
the limitations of the linear theory). In particular, the linear theory fails for the problem
of a concentrated line load moving steadily over an ice sheet floating on a fluid when
the velocity of the load is at the minimum of the phase speed (denoted by cmin). This
breakdown of the linear theory is due to an accumulation of the energy which makes
the displacement of the free surface grow without limit. In order to resolve the problem,
Părău & Dias (2002) developed a nonlinear theory valid when the speed of the load
is close to the critical value cmin. They conducted a normal form analysis which leads
to a forced nonlinear Schrödinger equation (NLS) with the mean depth of the fluid
being a parameter. Their results show that for water of sufficiently large depth, bounded
responses in the form of hydroelastic solitary waves can exist for speeds up to cmin,
while there is a range of forcing speed below cmin for which there are no steady solutions
when the fluid is relatively shallow. Unsteady simulations using truncated models and
high-order spectral methods were carried out by Bonnefoy et al. (2009), confirming the
predictions of Părău & Dias (2002) in the appropriate regime. Milewski et al. (2011)
revisited the same problem and found hydroelastic solitary waves in deep water in the
absence of moving loads, even though the weakly nonlinear analysis shows that the
associated cubic NLS is of defocussing type at the minimum of the phase speed. However
these solitary waves are unusual, since they can only exist with finite amplitudes. In other
words, they do not bifurcate from infinitesimal periodic waves like the gravity-capillary
solitary waves in deep water (see, e.g., Vanden-Broeck & Dias (1992); Wang et al.
(2014)), nor from infinitesimal long waves like the Korteweg-de Vries (KdV) equation.
Furthermore, the unsteady simulations presented in the same paper reveal that these
solitary waves may arise naturally from the moving load problem subject to a moderate-
amplitude near-critical forcing. This fact indicates that the existence and the stability of
free solitary waves are crucial for the understanding of the forced problem.

All the results mentioned in the last paragraph are based on the Kirchhoff-Love model
which uses ∂xxκ to model the pressure due to the bending of the elastic sheet, where κ is
the curvature of the surface and x is the coordinate in the direction of wave propagation.
The Kirchhoff-Love elastic model has also been used in the absence of moving loads,
to study periodic hydroelastic waves (Forbes (1986, 1988)), generalised flexural-gravity
solitary waves (Vanden-Broeck & Părău (2011)) and the unsteady interaction between
a fluid-loaded elastic plate and a mean flow (Peake (2001)). Although the Kirchhoff-
Love model is widely used in the literature it has some limitations. In particular it does
not appear to have an elastic potential. More recently, Toland (2007, 2008) proposed a
novel nonlinear elastic model using the Cosserat theory of hyperelastic shells satisfying
Kirchhoff’s hypotheses, which has a clear variational structure. From then on, the ana-
lytical and numerical investigations of this new model have been gradually carried out.
Of note are the works of Toland (2008) who rigorously proved the existence of periodic
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hydroelastic waves, Guyenne & Părău (2012) who discovered that both elevation and
depression branches exist below the minimum of phase speed at finite amplitude in deep
water, Wang et al. (2013) who extended the branch of elevation solitary waves to the
highly nonlinear regime with the wave profiles featuring multi-packet structure and com-
puted periodic waves with an overhanging structure, Gao & Vanden-Broeck (2014) who
investigated the generalised solitary waves extensively, and Page & Părău (2014) who
considered nonlinear hydroelastic hydraulic falls past a submerged bottom obstruction.

There are relatively fewer studies on unsteady hydroelastic waves based on Toland’s
model. It is worth mentioning that Guyenne & Părău performed direct numerical simula-
tions for unsteady hydroelastic solitary waves in deep water (Guyenne & Părău (2012))
and shallow water (Guyenne & Părău (2014)). However their numerics is based on re-
duced models with the truncated Dirichlet-Neumann operator which cannot be used to
study highly nonlinear waves, such as overhanging waves. To our knowledge, there have
been no computations of the dynamics of hydroelastic solitary waves using the full Euler
equations and Toland’s model.

In this paper, we use a time-dependent conformal map technique to study numer-
ically the bifurcation, stability, collision and excitation of hydroelastic solitary waves.
We restrict our attention to deep water and to two dimensions. Motivated by the re-
cent work of Wang et al. (2014), we compute a new branch of solitary waves which are
non-symmetric in the direction of wave propagation. These waves have a multi-packet
structure. We study numerically the stability of all hydroelastic solitary waves found to
date. Our results show that some symmetric solitary waves are robust subject to longitu-
dinal perturbations, including not only the moderate-amplitude single-trough depression
solitary waves, but also certain elevation waves resembling two big troughs placed side-
by-side. We show that these stable two-trough coherent structures can be excited by
multiple loads simultaneously moving with a speed slightly below cmin.

The rest of the paper is structured as follows. We state the mathematical formulation
and introduce the time-dependent conformal map technique used to reduce the dimen-
sion of the problem in § 2 and § 3 respectively. We review the properties of symmetric
solitary waves in § 4.1, and compute asymmetric solitary waves in § 4.2. The stability
properties for both symmetric and asymmetric waves are studied numerically in § 5. We
then consider the interaction between two stable solitary waves, including both head-on
and over-taking collisions. The numerical experiments on the excitation of solitary waves
by one or multiple constant-velocity loads are performed in § 6.2. Concluding remarks
and possible future projects are presented in the last section.

2. Formulation

We consider a two-dimensional irrotational flow of an incompressible and inviscid fluid
beneath a thin elastic sheet. The fluid is assumed to be of infinite depth. We introduce
cartesian coordinates with the y-axis directed vertically upwards and with y = 0 at the
undisturbed level of the elastic sheet. The deformation of the elastic sheet is denoted
by y = η(x, t) where t is the time. Since the flow is irrotational we can introduce a
potential function φ, such that the velocity field reads (φx, φy). The problem reduces
then to solving Laplace’s equation

φxx + φyy = 0 , for −∞ < y < η(x, t) . (2.1)

The main approximations made here are that the elastic sheet is thin, and that its
inertia and its stretching (or the existence of a pre-stressed state) are neglected. Therefore
the only restoring forces are gravity and the flexural elasticity of the elastic sheet. In the



4 T. Gao, Z. Wang and J. -M. Vanden-Broeck

present paper, we use the fully nonlinear model based on the special Cosserat theory
of hyperelastic shells introduced by Toland (2008). Therefore the nonlinear boundary
conditions at y = η(x, t) are the kinematic condition

ηt = φy − ηxφx (2.2)

and the dynamic condition

φt = −1

2

[
φ2x + φ2y

]
− gη − D

ρ
Pb + Pe(x, t) , (2.3)

where g is the acceleration due to gravity, ρ is the density of the fluid, Pe is the external
pressure distribution exerted on the elastic sheet and D is the coefficient of flexural
rigidity defined as D = Eh3/12(1 − ν2). Here E is the Young’s modulus, ν the Poisson
ratio and h the thickness of the elastic sheet. Pb is the pressure distribution due to
elastic bending. It follows from Toland (2008) (equation (1.13) in Toland’s paper when
the surface tension is neglected) that

Pb = κss + 1
2κ

3 , (2.4)

where κ is the curvature of the free surface and s is the arc-length parameter. If the wave
profile is single-valued, the curvature can be expressed in the Cartesian coordinates as

κ =
ηxx(

1 + η2x

)3/2 . (2.5)

Finally, the far-field condition

φy → 0 , as y → −∞ (2.6)

completes the formulation. The system can be non-dimensionalized by choosing[
D
ρg

]1/4
,

[
D
ρg5

]1/8
,

[
gD3

ρ3

]1/8
(2.7)

as the units of length, time and potential respectively.The dynamic boundary condition
can be rewritten as

φt = −1

2

[
φ2x + φ2z

]
− η −

(
1

2
κ2 + κss

)
+ Pe(x, t) . (2.8)

The equations (2.1) (2.2) (2.4) (2.6) and (2.8) form a Hamiltonian system with the action
functional being the total energy of the fluid which is the sum of the kinetic energy and
the potential energy:

E =
1

2

[∫
R

dx

∫ η

−∞

(
φ2x + φ2y

)
dy +

∫
R

η2 dx+

∫
κ2 ds

]
. (2.9)

Here R is the real line. We denote the velocity potential on the free surface by ϕ(x, t) ,
φ(x, η(x, t), t). Working in the canonical variables ϕ and η, the kinematic and dynamic
boundary conditions can be recast as:

ηt =
δE
δϕ

, ϕt = −δE
δη

. (2.10)

It is noted that the effects due to inertia and the thickness of the elastic sheet can also be
incorporated into the pressure equation (2.8) (see Squire et al. (1996) for the expression
of the inertia and Forbes (1986) for how to model the system with the thickness of
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the plate). However the unsteady simulations become much more complicated when
the inertia is taken into account. For simplicity we neglect these two effects, and only
consider the pressure jump exerted by the elastic sheet owing to flexing. Even with
these approximations, the hydroelastic wave problem has been modelled with a variety
of methods. The reader is referred to Milewski & Wang (2013) for a discussion.

3. Numerical Method

The main idea for solving two-dimensional full Euler equations is based on a time-
dependent conformal mapping. This numerical method was pioneered by Dyachenko
et al. (1996). We start the derivation with finding a transformation that maps the
physical domain −∞ < y < η(x, t) into the lower half plane with horizontal and vertical
coordinates denoted by ξ and ζ respectively. The conformal mapping from (x, y) to (ξ, ζ)
can be found by solving the following boundary-value problem:

yξξ + yζζ = 0 for −∞ < ζ < 0

y = Y (ξ, t) at ζ = 0

y ∼ ζ as ζ → −∞

(3.1)

where Y (ξ, t) = η(x(ξ, 0, t), t). The harmonic conjugate x(ξ, η, t) is defined through the
Cauchy-Riemann relations for the complex function x(ξ, ζ, t) + iy(ξ, ζ, t). In the trans-
formed plane, the velocity potential φ and its harmonic conjugate ψ(ξ, ζ, t) also satisfy
Laplace’s equations. Defining Φ(ξ, t) , φ(x(ξ, 0, t), y(ξ, 0, t), t), Ψ(ξ, t) , ψ(ξ, 0, t) and
X(ξ, t) , x(ξ, 0, t) we obtain after some elementary analysis

X = ξ −H
[
Y
]

and Ψ = H
[
Φ
]
, (3.2)

where H is the operator of Hilbert transformation with the Fourier symbol isgn(k). It
can also be defined in the physical space as

H
[
f
]
(ξ) = PV

∫
R

f(ξ′)

ξ′ − ξ
dξ′ , (3.3)

where ‘PV’ indicates the Cauchy principal value of the integral. By using the chain rule,
the kinematic boundary condition in the transformed plane takes the form

XξYt − YξXt = −Ψξ . (3.4)

Following Dyachenoko et al. (1996), the evolution equation for Y is

Yt = YξH
[

Ψξ

J

]
−Xξ

Ψξ

J
(3.5)

where J = X2
ξ + Y 2

ξ is the Jacobian of the conformal map. Finally we reformulate the
dynamic boundary condition using the new variable ξ as

Φt =
Ψ2
ξ − Φ2

ξ

2J
− Y − 1

2

[
κξξ
J

+
(κξ
J

)
ξ

+ κ3
]

+ ΦξH
[

Ψξ

J

]
+ Pe , (3.6)

where the curvature is now written as

κ =
XξYξξ −XξξYξ

J3/2
. (3.7)

In order to find the dispersion relation of the system, we linearize the surface Euler
system (3.5)-(3.6) by taking Y , Φξ, Ψξ small, Pe = 0 and Xξ ∼ 1, J ∼ 1. This yields
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Φtt = H[Ψξ] +H[Ψξξξξξ]. Therefore the dispersion relation is

ω2 = k2c2 = |k|(1 + k4) . (3.8)

Relation (3.8) implies that the phase velocity c reaches its minimum value cmin ≈ 1.3247
when k = (1/3)1/4. The phase velocity is then equal to the group velocity at this mini-
mum.

We seek fully localised wave solutions travelling with speed c. In order to guarantee
that there are no waves in the far field, we choose c < cmin. We assume that the functions
Y and Φ depend on ξ − ct. It then follows from (3.4) that

Ψξ = cYξ, and hence Φξ = −cH[Yξ] . (3.9)

From (3.5), one can conclude that

H
[

Ψξ

J

]
= c

(
Xξ

J
− 1

)
. (3.10)

Substituting (3.9) and (3.10) into the dynamic boundary condition (3.6) with Pe = 0
(since we seek free solitary waves) and noticing that Φt = −cΦξ, we obtain after some
algebra the following nonlinear equation

c2

2

(
1

J
− 1

)
+ Y +

1

2

[
κξξ
J

+
(κξ
J

)
ξ

+ κ3
]

= 0 . (3.11)

This, together with Xξ = 1 − H[Yξ] defines an integro-differential system. Finally the
velocity potential can be recovered from Φ = −cH[Y ]. It is worth mentioning that the
curvature (2.5) is only valid for single-valued solutions, while the formulation (3.11) based
on the new parameter ξ is even true for multivalued wave profile, and the system (3.5)-
(3.6) allows us to compute the evolution of overhanging waves. In the new coordinates,
the Hamiltonian (2.9) becomes

E =
c2

2

∫
R

YξH[Y ] dξ +
1

2

∫
R

Y 2Xξ dξ +
1

2

∫
R

(YξξXξ −XξξYξ)
2

J5/2
dξ . (3.12)

where the terms on the right-hand side correspond to kinetic energy, gravitational poten-
tial energy and elastic potential energy respectively. We remark that conformal mapping
is a conventional technique to handle free-surface water wave problems in two dimen-
sions. Equation (3.11) and its modified versions were widely used in computing periodic
and solitary waves in deep water. Of note are the works of Crapper (1957) who obtained
analytical solutions for pure capillary in terms of elementary functions, Longuet-Higgins
(1988) and Schwarts & Vanden-Broeck (1979) who computed different branches of pe-
riodic capillary-gravity waves, and Guyenne & Părău (2012) who considered flexural-
gravity solitary waves based on Toland’s nonlinear elastic model. All the aforementioned
works show that multivalued steady profiles exist in capillary/capillary-gravity/flexural-
gravity waves, with a limiting configuration pitching off a closed bubble.

Details of the numerical procedure for finding fully localised travelling waves in (3.11)
are given as follows. The solitary-wave solutions are approximated by long periodic waves.
Therefore the equation (3.11) can be solved numerically via truncating the Fourier series
of Y , namely,

Y (ξ) =

N∑
n=0

an cos(nπξ/L) +

N∑
n=1

sin(nπξ/L) . (3.13)

The Fourier coefficients an and bn need to be found so that the dynamic boundary
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condition (3.11) is satisfied. This is done numerically. We first discretise the domain
[−L,L) into a uniform mesh. We evaluate (3.11) on the grid points and then project it
onto each element of the cos(nπξ/L) and sin(nπξ/L) basis for n = 0, 1, · · · , N . All the
derivatives and the Hilbert transform are calculated via Fourier multipliers making the
program efficient and accurate, while the nonlinear terms are computed in real space.
The resultant system of nonlinear algebraic equations is solved by Newton’s method. The
underlying period 2L and the total wavenumber N are both chosen to be sufficiently
large so that the wave profiles hardly change as L and N are further increased. In
most computations, we keep the mesh size ∆ξ = 0.05. We stop the iterations when the
l∞−norm of the residual error is less than 10−10. It is noted that for symmetric solitary
waves bn = 0 for all n, which reduces considerably the computing time. As a validation
of the numerical method, we recomputed the solutions of Crapper (1957) for periodic
capillary waves of infinite depth. We obtained an excellent agreement with Crapper’s
solutionsfull bifurcation diagram which relates the wave speed and the wave amplitude
(this is tested by checking that the l∞-norm of the errors are all less than 10−14). In
particular we were able to compute the overhanging profiles which occur for waves close
to the limiting configuration.

4. Travelling Waves of Permanent Form

4.1. Symmetric Waves

In this section we describe the basic properties of symmetric solitary waves propagating at
a constant velocity c without change of form. These waves will be used in § 4.2 as building
blocks to construct new asymmetric waves. The computation of steady symmetric solitary
waves can also serve as a validation of the numerical method since we just reproduced
the results in Guyenne & Părău (2012) and Wang et al. (2013).

Guyenne & Părău (2012) first computed free solitary waves for the Toland model.
They found that there is an elevation branch (a positive free-surface elevation η(0) at
the centre of the wave) and a depression branch (a negative free-surface elevation η(0)
at the centre of the wave) bifurcating from the phase speed minimum c∗ ≈ 1.3247. They
noticed that these solitary waves exist only with non-zero amplitude as shown in figure
1(a). A similar result was found earlier for the Kirchhoff-Love model (see Milewski et
al. (2011)). Later, Wang et al. (2013) calculated the complete solution branches for
depression and elevation solitary waves. They found that the elevation branch exhibits
multiple turning points, which indicates that different elevation solitary waves can travel
at the same speed (typical profiles of the elevation solitary waves are shown in figure
8(b)). For the depression branch, both Guyenne & Părău (2012) and Wang et al. (2013)
found that as the speed c decreases and approaches zero, the wave profiles become steeper,
eventually with an overhanging structure (a typical example of overhanging depression
solitary waves is shown in the right panel of figure 6).

The two branches in figure 1(a) bifurcate from the phase speed minimum c∗ ≈ 1.3247
with nonzero amplitudes. This is to be contrasted with the problem of gravity-capillary
waves where the branches bifurcate from the phase speed minimum with η(0) = 0 (see
for example Vanden-Broeck & Dias (1992)). The reason for this difference is that the
associated nonlinear Schrödinger equation (NLS) is of defocussing type for the present
problem (see Milewski & Wang (2013) for details).

The speed-energy bifurcation curves shown in figures 1(b,c) are closely related to
the stability properties of solitary waves subject to longitudinal perturbations. Saffman
(1985) considered the stability of periodic waves due to superharmonic perturbations
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Figure 1. Speed-amplitude and speed-energy curves for symmetric elevation and depression
solitary waves emerging from the bifurcation point c∗ ≈ 1.3247. (a) speed-amplitude curves of
the elevation and depression branches. The value of η at the middle point is considered as the
amplitude. The depression branch is monotonic for c ∈ [0, c∗) (only part of the curve is shown),
while the elevation branch demonstrates a complex behaviour with multiple turning points. (b)
speed-energy curve of the elevation branch showing a zig-zag behaviour; (c) speed-energy curve
of the depression branch with two stationary points. The energy partition is shown in (d) for
the elevation branch, and in (e) for the depression branch, where the total energy is partitioned
into kinetic energy (solid line), gravitational potential energy (dotted line), and elastic potential
energy (dash-dotted line).

(the period of the perturbation is less than that of the wave), and gave a necessary
but not sufficient condition for the stability exchange. He pointed out that stability ex-
changes can only occur at critical points, either stationary points or turning points, of
the speed-energy bifurcation curve, namely,

∂E
∂c

= 0 or
∂c

∂E
= 0 . (4.1)

Saffman’s argument is based on the Hamiltonian formulation of water waves (see Za-
kharov (1968)) and is developed for pure gravity waves. However, the result can be
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Figure 2. An initial guess for the computation of an asymmetric hydroelastic solitary-wave
profile (bottom figure) which is composed of a depression wave (top figure) and a one-hump
elevation wave (middle figure) both propagating at c = 1.32.

generalised to hydroelastic waves without any essential modification due to the Hamil-
tonian structure (2.9). Furthermore, since all the disturbances are superharmonic for
solitary waves, Saffman’s conclusion is extremely useful for our problem. In § 5, we will
focus on the stability properties for solitary waves via direct numerical simulations to-
gether with Saffman’s result. In figure 1(d)(e), the total energy is partitioned into three
parts: kinetic energy (solid line), gravitational potential energy (dotted line), and elastic
potential energy (dash-dotted line). We note that for the elevation branch different types
of energies are similar in their behaviour but differ quantitatively, namely, for an elevation
solitary wave, kinetic energy > gravitational potential energy > elastic potential energy
(see figure 1(d) from top to bottom). For large-amplitude depression solitary waves (fig-
ure 1(e)), as the translating speed decreases, the kinetic energy decreases and vanishes
at c = 0, while the elastic potential energy increases and reaches its global maximum at
the static state.

4.2. Asymmetric Waves

Asymmetric gravity-capillary waves in deep water were recently computed by Wang et al.
(2014) for the full Euler equations. Their existence is related to the possibility of having
several symmetric waves travelling at the same speed. Figure 1(a) shows that for values
of c close to 1.3247, we also have several symmetric flexural-gravity waves travelling at
the same speed. This suggests to search for asymmetric waves for the present problem.
In this section we provide numerical evidence that such waves do exist.

In order to compute asymmetric hydroelastic solitary waves, it is essential to choose
a good initial guess for the Newton’s iterations. Following the procedure described in
Wang et al. (2014), we choose a depression wave (see the top graph in figure 2) and an
elevation wave (see the middle graph in figure 2) computed in the last section. These two
waves are chosen so that they travel at the same speed c = 1.32 (this choice is possible
for values of c close to the minimum phase speed). We shift the profiles and then merge
them in the middle as a new wave profile (see the bottom graph in figure 2). This new
profile is considered as the initial guess of Newton’s method and the algorithm converges
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Figure 3. Speed-energy bifurcation diagram of asymmetric hydroelastic solitary waves. The
solid curve correspond to the branch of asymmetric waves. The dotted curve and the dashed
curve correspond to two branches of symmetric waves where the asymmetric branch bifurcates
from. (a)-(f) correspond to those waves travelling at speed c = 1.31 whose profiles are shown in
figure 4.

to a solution after several iterations. After obtaining a convergent solution, we can follow
the branch by using a continuation method. This yields the speed-energy bifurcation
diagram shown in figure 3.

We present in figure 3 values of the energy of asymmetric waves versus the speed c.
The solid curve corresponds to asymmetric waves, whereas the dotted curve and the
dashed curve correspond to symmetric waves. Typical wave profiles corresponding to
the points labelled (a)–(h) are shown in figure 4 including two asymmetric ones (figures
4(c,d)). The curves of figure 3 show that the speed of asymmetric solitary waves is
always below the minimum of the phase speed therefore these waves do not resonate
with linear periodic waves, namely, they do not turn into generalised solitary waves or
into periodic waves (see Milewski et al. (2011) for a discussion). As can be seen from
figure 3, the solid branches join the dashed and the dotted branches, i.e. the asymmetric
waves eventually become symmetric (see profiles (g) and (h) in figure 4). It shows that
the asymmetric waves appear from a spontaneous symmetry-breaking bifurcation and
vanish at another symmetry-breaking bifurcation. It is worth mentioning that profiles
4(a,b) from the upper branches are essentially consisting of two identical elevation waves,
while the profiles 4(e,f) from the lower branches are two depression waves merged at the
origin. Energywise, the results are quite reasonable since an elevation wave possesses
more energy than a depression wave with the same speed.

There exist many other families of asymmetric solitary-wave solutions which can be
found by using different initial guesses because of the many possible choices of elevation
waves travelling at the same speed as demonstrated in figure 1. We leave it as a future
research interest and focus on the stability problem.
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Figure 4. Typical profiles correspond to points (a)-(h) indicated in figure 3. (c) and (d) are
the typical profiles of asymmetric waves; (g) and (h) correspond to the symmetry-breaking
bifurcation points. All figures are shown in the physical space.

5. Stability of Solitary Waves

In this section, we investigate the stability of the waves computed in § 4 when they
are subjected to longitudinal perturbations. This is achieved by solving numerically the
evolution equations (3.5) and (3.6) with the (slightly perturbed) travelling wave as an
initial condition. Both symmetric and asymmetric waves are considered. For convenience
we choose a frame of reference moving with the speed of the unperturbed solitary wave.

5.1. Symmetric waves

We start with the symmetric depression solitary waves. The speed-energy bifurcation
curve for the depression branch shown again in figure 5 has two stationary points labelled
(1) and (2). According to Saffman (1985), stability exchanges may occur at these points.
We first investigate the stability of the waves before the first stationary point (c . 0.8).
The waves in this regime are large and steep, and some are even overhanging. Therefore
the numerics becomes very stiff if an explicit time integration method is used because of
the strong constraint on the time step. We remove this constraint by using the backward
Euler’s method which is implicit. We take a large-amplitude depression solitary waves
η(ξ) with c = 0.5 and η(0) = −2.70, which is overhanging (see the top figure of the right
panel of figure 6). At t = 0, a small perturbation 0.01 cos(ξ)η(ξ) is added to the steady
solution. The system (3.5) and (3.6) is then integrated by the backward Euler’s method
with the time step dt = 0.002, and at each step the discretised nonlinear algebraic system
is solved by Newton’s method. The time evolution of the perturbed wave is shown in the
left part of figure 6. The profiles in the physical space at time t = 0, 2, 4 are presented in
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Figure 6. Time evolution of a large-amplitude depression solitary wave propagating with the
velocity c = 0.5 and amplitude η(0) = −2.70. The computation was performed with dt = 0.002
and dξ = 0.01. Left: time evolution of the perturbation which is initially 0.01 cos(ξ)η(ξ). Right:
wave profiles in the physical space at time t = 0, 2, 4 (right top to bottom). Only the main parts
of the solutions are shown in figures.

the right panel from top to bottom. We can conclude that the bubble changes its shape
quickly and then becomes unstable. We stop the computation when the profile touches
itself forming a closed bubble. We can further deduce from this numerical experiment that
the depression solitary waves lie in the segment 0 < c . 0.8 are all unstable according to
Saffman’s theory.

For the remaining time-evolution computations, we use a fourth-order Runge-Kutta
method rather than the backward Euler’s scheme since the problems are not extremely
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stiff for moderate-amplitude waves. In most of the computations the mesh size in space
and the step size in time are chosen as dξ = 0.1 and dt = 5× 10−4 respectively.

For the solid part in figure 5 (the segment between the stationary points (1) and (2)), a
variety of perturbations with 5% of the energy of the initial depression solitary waves did
not show instability. However, as the speed increases and passes the second stationary
point (2), the solitary wave becomes unstable again. The snapshots of the dynamics of a
depression solitary wave in this region subject to the 1% amplitude-decreasing perturba-
tion are shown in figure 7(a). The wave eventually disperses out as time evolves. Finally
we can draw the conclusion that for the depression branch of hydroelastic solitary waves,
there are two stationary points in the speed-energy bifurcation diagram and that the
stability exchanges occur at both of them.

The stability problem for the elevation branch is more complicated since the speed-
energy curve has many stationary points and turning points, and we need to choose one
typical example between every two successive critical points and check its stability. In the
speed-energy bifurcation diagram (figure 8), the stationary points and the turning points
have been numbered from 1© to 7©. We found that only the waves between the turning
point 2© and stationary point 3© (solid curve in figure 8) are stable when subjected to
longitudinal perturbations. All other waves on the elevation branch (dot-dashed curve in
figure 8) turn out to be unstable.

We present some time-evolutions of elevation waves to demonstrate their stability
properties. A wave from the right of point 1© has been perturbed by 1% of the amplitude
of the steady wave. The snapshots show a little focussing phenomenon and a symmetry-
breaking instability as well, and finally become a stable depression solitary waves with a
radiated wave field of linear wave packets shedding on both sides (see figure 7(b)). Figure
9(a) displays a stable elevation wave which is located between point 2© and 3© of figure 8.
These stable elevation solitary waves feature two big troughs separated by a small dimple.
A 5% amplitude-decreasing perturbation has been applied to the initial solitary wave but
did not show any instability for a long-time computation. It is worth mentioning that
the amplitude-decreasing perturbation results in a wave of slightly smaller energy but
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those from the dot-dashed curves are unstable. The stationary points and the turning points are
marked as stars and pentagrams respectively in the graphs.

larger speed than the original one which causes the right translation in the moving frame.
However, not all the elevation waves featuring two depression solitary waves placed side-
by-side are stable. Figure 9(b) presents an example of unstable elevation waves composed
by two troughs with a small hump. The wave is located on the very last branch, i.e. beyond
7©, with c = 1.25, η(0) = 0.113 and E = 9.34. We choose a specific perturbation which
decreases the amplitude of the left trough by 0.5% and increases the right one by 0.5%.
Therefore the speed of the left trough is greater than that of the right trough so that an
overtaking collision occurs from which we can deduce the instability.

5.2. Asymmetric Waves

We now move on to the stability of the asymmetric solitary waves. It turns out that the
whole branch computed in §4.2 is unstable. One typical example is shown in figure 10,
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Figure 9. Time-evolution of (a) a perturbed elevation wave (c = 1.2) at t = 0, 3000, 4000, 5000
(from top to bottom); (b) a perturbed elevation wave (c = 1.25) at t = 0, 750, 1000, 1500 (from
top to bottom).

where we take an asymmetric solitary wave featuring a depression wave and an elevation
waves connected with small ripples as the initial data (figure 10a). As time goes on,
the left single trough remains unchanged but the elevation part on the right abruptly
turns to be one big trough (figure 10b). The right trough travels leftwards since its
speed is less than the speed of the moving frame (figure 10c). Therefore the stability
problem becomes an overtaking collision and only one big trough survives (figure 10d).
Numerical experiments have been performed for other asymmetric solitary waves on the
same branch. These were unstable in all cases tried.

6. Dynamics of the Solitary Waves

In this section we supplement the stability analysis of § 5 by studying the interaction
of solitary waves and their generation by moving disturbances.

6.1. Collision

We first consider head-on collisions and overtaking collisions between stable hydroelastic
solitary waves. In all the collision experiments, the initial data were constructed by first
shifting the existing travelling waves so as to minimise their overlap, and then adding
them together.

A typical example of head-on collisions is shown in figure 11. Here a stable elevation
wave travelling rightwards collides with a stable depression one travelling leftwards. The
collision is inelastic even though both waves survive after the collision, since a lot of
visible ripples shed on both sides during the interaction. Several other computations of
head-on collisions were carried out, and in all cases the collisions appeared to be inelastic.

The second set of numerical experiments on the dynamics of hydroelastic solitary waves
is of overtaking collisions. We choose two stable depression waves travelling in the same
direction but with different translating speeds. When the amplitude difference between
the two is large, only one wave survives after the collision with a radiation field. However,
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Figure 11. Head-on collision. An elevation wave travels rightwards at c = 1.3 and a depression
wave travels leftwards at c = 1.3 . We plot y versus x for time t = 0, 15, 30, 45, 60, 75, 90 (from
top to bottom).
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both depression wave can survive if their amplitude difference is small. As can be seen
from figure 12(a), the overtaking collision is also inelastic when both waves survive since
some radiation field is generated during the interaction. The error, which is of order 10−12

through the whole computation, shows that the energy is conserved to a high accuracy.
The difference between the initial data and the solution obtained by reversing time
after t = 4200 in the collision is of order 10−9 (see figure 12b). This further validates
the time-dependent codes. We can also choose a stable elevation wave to overtake a
depression one, and vice versa. One example of this kind of collision is presented in figure
13. The structure of the elevation solitary wave with two well-separated troughs was
destroyed during the interaction, and two depression waves travelling at different speeds
were ultimately observed.

6.2. Excitation

The coupling between a moving load and the hydroelastic waves generated has attracted
a long interest because its applications in polar regions (Wilson (1958); Takizawa (1985);
Squire et al. (1988)). According to the linear theory, the critical velocity for resonance
between the moving load and the hydroelastic waves occurs at the minimum of the phase
speed. The resonance results in an accumulation of energy and an unlimited growth of
the elastic-sheet displacement. Therefore the linear theory fails to predict the physical
behaviour of the system and a nonlinear theory needs to be developed. This was consid-
ered by Părău & Dias (2002); Bonnefoy et al. (2009); Milewski et al. (2011) for the
Kirchhoff-Love model and by Guyenne & Părău (2012, 2014) for Toland’s model with
reduced equations. The fundamental phenomena of the nonlinear problem is the shedding
of solitary waves. Here we examine the problem by using the full Euler equations and
Toland’s model. A single moving pressure which is defined as

P = Ae−(x+220−ct)2/16 , (6.1)

is applied in (3.6) initially with the amplitude A = 0.2 and a translating speed c = 1.3.
The pressure is switched off at t = 125. We found that the solution rapidly relaxes to a
symmetric depression wave after the forcing is released (figure 14). The stability of this
large-amplitude, fully-localised response is confirmed from its steady propagation at long
times.

The stability analysis in §5 shows that elevation waves with the structure of two well-
separated troughs connected by a dimple are also longitudinally stable. We now show
that these stable elevation waves can also be generated by moving loads. We choose the
load as two fully-localised pressures moving simultaneously on the ice sheet at the speed
c. These pressures are defined as

P1 = Ae−(x+220−ct)2/16 , (6.2)

P2 = Ae−(x+220−d−ct)2/16 , (6.3)

where A is a parameter measuring the magnitude of the pressures and d is the distance
between the centres of two pressures. Figure 15 shows the snapshots of the generation
of a stable elevation solitary wave by two pressures moving with the same speed. An
elevation wave of two big troughs quickly forms after the forcing is turned off (the 3rd
and 4th pictures in Figure 15). From longer computations (not shown), we believe that
these solitary waves are stable and robust. This large response can propagate without
changing its main structure, inspite of the interactions with the background radiation
induced by the initial generation process. This numerical experiment can be used to mimic
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Figure 12. Overtaking collision. Two depression waves travel rightforwards at c = 1.26 and
c = 1.25 respectively. (a) We plot y versus x for time t = 0, 700, 1400, 2100, 2800, 3500, 4200
(from top to bottom). The snapshots are shown in a frame of reference moving with the speed
c = 1.25. (b) The difference between the initial data and the time-reversed solution computed
from t = 4200 back to t = 0.

cars or aircrafts running successively on a very large floating structure and suggests that
fully-localised two-trough structure may be observable in a real situation.

7. Conclusions

Two-dimensional hydroelastic solitary waves propagating in deep water were inves-
tigated. The nonlinear model proposed by Toland (2008) was used to formulate the
pressure exerted by the thin elastic sheet. There are depression and elevation solitary
waves which are symmetric in the direction of wave propagation. These two branches,
which were previously computed and extended respectively by Guyenne & Părău (2012)
and Wang et al. (2013), were quickly reviewed. The depression and the elevation branches
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Figure 13. Overtaking collision. An elevation wave travels rightforwards at c = 1.3 and
a depression travels at c = 1.25 in the same direction. We plot y versus x for time
t = 0, 400, 800, 1200, 1600, 2000 (from top to bottom). The snapshots are shown in a frame
of reference moving with the speed c = 1.25.

bifurcate from the minimum of the phase speed and exist at subcritical speeds. The fact
that different symmetric solitary waves can propagate at the same speed inspires us
to search for asymmetric hydroelastic solitary waves. We superposed a depression wave
and an elevation one as the initial guess to find an asymmetric solitary wave by using
Newton’s method. The complete bifurcation diagram was then constructed by a nu-
merical continuation method. These asymmetric waves have a two-packet structure and
exist only in the subcritical regime. The asymmetric branch appears from a spontaneous
symmetry-breaking bifurcation and end up with another symmetry-breaking bifurcation.

The stability properties of all the hydroealstic solitary waves found to date, subject
to longitudinal perturbations were studied systematically by using the time-dependent
conformal map technique together with a backward Euler’s method or a fourth-order
Runge-Kutta method to integrate the full Euler equations in time. Our numerical exper-
iments show that moderate-amplitude depression waves (lying between the stationary
points (1) and (2) in figure 5) and certain elevation waves with two troughs connected
by a dimple (lying in the segment between the turning point 2© and the stationary point
3© in figure 7) are stable. These two kinds of stable solitary waves can both be excited
by applying one or two loads on the elastic sheet and moving the loads with a constant
speed slightly below the phase speed minimum. Once the system gains enough localised
energy, a stable hydroelasitc solitary wave with the radiation field can be obtained after
the pressure is switched off.

There are other possible fluid system with complicated solitary-wave branches whose
instability is worth investigating, most notably the interfacial gravity-capillary waves
between two immiscible fluids. The results of Laget & Dias (1997) show that if ratio of
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Figure 14. Snapshots of the free-surface due to large-forcing moving pressures (A = 0.2 and
u = 1.3) at t = 25, 100, 140, 200, 325 (from top to bottom). The forces is switched on at t = 0
and off at t = 125. It is initially placed at x = −220.

the density of the upper fluid to that of the lower fluid is larger than a critical value, the
bifurcation diagram (figure 14 in their paper) is similar to figure 1. Therefore a study
of the stability of these interfacial solitary waves is of interest. It is also noted that the
stability of multi-packet solitary waves was studied by Chardard et al. (2009, 2011)
using the Maslov theory. One might ask whether or not this theory can be applied to the
hydroelastic solitary waves.

We remark that we have considered in the present paper an idealised model which
includes only the bending (i.e. beam-like response) of the material in order to identify
the main properties of the waves. Other effects such as the stretching (i.e. rubber-like
response), mass, thickness and inertia of the material can be considered in further studies.
We finally comment that though the overhanging waves are theoretically plausible in the
idealised model, in practice the bending of the sheet will cause cracking for some critical
curvature, and overturning of a finite mass sheet must cause the sheet to fall off the fluid.
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