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Abstract Social closeness and popularity are key ingredients that shape the emer-
gence and evolution of social connections over time. Social closeness captures local
reinforcement mechanisms which are behind the formation of strong ties and com-
munities. Popularity, on the other hand, describes global link formation dynamics
which drive, among other things, hubs, weak ties and bridges between groups. In
this chapter, we characterize how these mechanisms affect spreading processes tak-
ing place on time-varying networks. We study contagion phenomena unfolding on
a family of artificial temporal networks. In particular, we revise four different varia-
tions of activity-driven networks that capture i) heterogeneity of activation patterns
ii) popularity iii) the emergence of strong and weak ties iv) community structure. By
means of analytical and numerical analyses we uncover a rich and process depen-
dent phenomenology where the interplay between spreading phenomena and link
formation mechanisms might either speed up or slow down the spreading.
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1 Introduction

Think about the last conference you attended. In particular, focus on the social inter-
actions you had throughout the week. Chances are that you spent a disproportionate
fraction of time chatting with old and current collaborators as well as with long time
colleagues you typically meet in such settings. Chances are that you also networked
with new people. Most of these interactions were probably short and spontaneous
exchanges maybe while waiting in line for coffee or after your presentation. Others
might have been with editors, to whom you were trying to push your new idea for a
book, or with one of the keynote speakers after her inspiring talk. Bear with us and
think about last time you visited Twitter. Chances are that you read and interacted
with the posts of popular users, which you don’t know personally, but follow avidly.
Finally, chances are that you also interacted with your personal friends you follow.

These two scenarios highlight how both face-to-face and digital interactions are
temporal acts driven by intricate social mechanisms. Among them we can identify
two categories. The first, refers to frequent reciprocated connections with individ-
uals in your close social circle(s). These are interactions you reinforce and activate
over time. The second refers to (mostly) one-sided interactions with popular indi-
viduals. These are connections you initiate with people who, thanks to their status
and fame, are able to attract a large share of the attention from many others. The
first category encompasses local mechanisms that do not depend on the behavior of
people outside your social circle. The second instead, global mechanisms that de-
pend on the behavior of, potentially, a large fraction of individuals.

Let’s go back to your last conference. Many of the interactions you probably had
were with people that, conference after conference, dinner after dinner, paper after
paper, entered in your close social circle. These are individuals that you know very
well and that are likely part of the same community. Some of the other interactions
instead were probably with popular and influential people such as the keynote speak-
ers or editors with whom many other participants wanted to speak to. The first type
of interactions were driven by social closeness, the second instead by popularity.

A large literature, mostly built on a time-aggregated (static) data, substantiates
this picture. In particular, it is well known that social ties (both offline and online)
can be categorized as strong or weak [1, 2, 3, 4, 5, 6, 7, 8]. The first describes a
small subset of ties which are activated frequently. The second instead describes
sporadic (such as the person you met while waiting for coffee) interactions. A clas-
sic signature of this tendency is found in the distributions of link’s weights which are
heterogeneous. There is more. In fact, as alluded above, people with whom we share
strong ties are likely to be also connected in tight communities [3, 9, 10, 11]. Thus,
strong ties are clustered around groups of people characterized by large links’ over-
lap [3, 12]. Some of the weak ties instead, bridge such groups [3, 13]. Another well
known property of real networks is the heterogeneity in the distribution of number
of ties (the degree) [14, 15]. In fact, networks are typically sparse. Many nodes are



Title Suppressed Due to Excessive Length 3

poorly connected. Few of them instead are able to attract a disproportionate amount
of connections. It is important to stress how strong and weak ties, communities, and
hubs emerge and evolve over time [16, 17]. Which model(s) can be used to repro-
duce such features? How do they affect contagion phenomena taking place on their
fabric? These are the main questions we will tackle in this chapter. In particular, we
aim to revise and discuss a set of models that have been proposed to capture the
evolution of social ties as function of time. In particular, we will consider both local
and global approaches able to reproduce the formation of strong ties, communities,
as well as the presence of popular individuals. From this stand point, we will then
study how they affect contagion (epidemic) processes unfolding on such networks.

2 The activity-driven framework

To explore the effects of local and global link formation mechanisms on epidemic
spreading processes, we will consider several variations of the activity-driven frame-
work [18]. These are models of time-varying networks, based on the same funda-
mental scheme. In particular, when one is tasked to describe the evolution of the
connections between N nodes, needs to specify (at least) which nodes are involved
in interactions at each time step. In the activity-driven framework this prescription
is divided in two steps: i) activation, ii) partners selection. The first describes, which
nodes are active and willing to connect. The second instead describes how such
active nodes select the partners to whom interact. The modeling of the activation
process, which will be the same for all the different variations of the framework
we discuss here, is based on the intuition that not all nodes are equally willing to
create or be part of social interactions. This has been confirmed with a range of ob-
servations in real datasets capturing very different type of interactions ranging from
scientific collaborations to R&D alliances between firms [18, 19, 20, 21, 22, 23, 24].
In particular, it turns out that the activity rate (measured in series of time windows
of size ∆ t) is very heterogeneous. Furthermore, the distribution of activity is largely
independent on the choice of ∆ t. In other words, if we measure the propensity of
nodes to be involved in a social interaction by splitting the data in time windows of
size ∆ t or ∆ t ′ we will get very extremely similar distributions. The partner selec-
tion process instead describes the mechanism behind the formation of links. Here,
we will revise and consider three different models that capture popularity and so-
cial closeness mentioned above. In addition, we will consider a basic version of the
model in which link creation is random. This will serve as null model (baseline).
In all cases, we will first discuss the details of the link formation mechanism and
then their effect on epidemic processes unfolding on the network at comparable time
scale respect to the evolution on the graph’s structure.

The general setting of activity driven models is the following. N nodes are de-
scribed by at least one variable: their activity a. This quantity regulates their propen-
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sity to be active and willing to initiate social interactions at each time step. Activities
are extracted and assigned to nodes from a distribution F(a), which in the following
we consider as a power-law. Thus F(a) =Ca−γ with ε ≤ a≤ 1 to avoid divergences
for small values of activities. At each time step t the network Gt starts completely
disconnected. Each node i is active with a probability ai∆ t. Active nodes create m
connections with others. As mentioned above we will consider four link creation
mechanisms. At time t +∆ t each link is deleted and the process re-start and a net-
work Gt+∆ t is generated. It is important to stress how all the links are deleted at the
end of each iteration and thus links do not persist across time steps unless they are
re-formed.

2.1 Model 1: baseline

The simplest link formation mechanism is random [18] (see Figure 1-A). In this
very unrealistic scenario partners are selected homogeneously across the entire sys-
tem. While, very active nodes are likely to initiate connections in adjacent time
steps, the probability that the same link is activated more than one time, the weight
in a time integrated network, follows a Poisson distribution which, as mentioned
in the introduction, is quite far from real observations. However, it is possible to
show that integrating links over T time steps, the degree distribution follows the
functional form of the activity [38]. Thus, the heterogeneous propensity to initiate
social interactions results in a heterogeneous degree distribution. It is important to
stress however, that each Gt network is mostly constituted by a set of disconnected
stars formed around active nodes. Hubs emerge in time due the active engagement
of such nodes.

2.2 Model 2: global links formation process driven by popularity

The second link formation we consider aims to capture a global, popularity based,
mechanism [23] (see Figure 1-B). The basic intuition here is that not all nodes are
equally attractive. Keynotes in conferences and celebrities in Twitter attract a dis-
proportionate fraction of the connections in the system. To account for this, we
assume that nodes, besides the activity, are characterized by another feature: the at-
tractiveness b. Observations in different online social platforms suggest that indeed
the propensity of people to attract connections is heterogeneously distributed [23].
All these aspects can be modeled within the activity-driven framework as follows.
Nodes are assigned with two features: activity a and attractiveness b. These two
quantities are extracted from a joint distribution H(a,b). Interestingly, observations
on online social platforms indicate that active people are also more attractive, thus
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the two features are in general positively correlated [23]. In these settings the dy-
namics of the networks are very similar as those described above. At each time step
t, the network Gt starts disconnected. Each node is active with probability a∆ t and
connects to m other nodes. Each partner j is selected following a simple preferential
attachment, thus with probability b j/〈b〉N. At time t +∆ t all links are deleted and
the process starts from scratch. It is possible to show that also in this case the de-
gree distribution, obtained integrating links over time, is heterogeneous. However,
the presence of attractiveness introduces some levels of heterogeneity in the weight
distribution [23].

2.3 Model 3: local links formation process driven by social memory

The third link formation mechanism is local and based on the idea of social close-
ness (see Figure 1-C). The intuition is that, due to the need for close social con-
nection, cognitive and temporal constraints, large part of our interactions take place
within a small social circle [4, 25, 26, 27, 28, 29, 30]. These are strong ties that we
remember (hence social memory) and activate frequently. We do also have sporadic,
weak, interactions with people outside the circle such as the conference participants
we met waiting for coffee in the hypothetical scenario described in the introduc-
tion. Observations across collaboration and communication networks corroborate
this picture [3, 13, 20, 22, 23, 24]. Indeed, the probability that the next social act, for
nodes that have already contacted k distinct individuals in the past, will result in the
establishment of a new, k+1-th, tie follows this function p(k) =

(
1+ k

c

)−η
[20, 22].

This implies that the larger the size of social circle the smaller the probability of in-
creasing it. Consequently, social acts are frequently repeated within small circles
of nodes. Remarkably, the behavior of large number of individuals can be modeled
using one single value of c (that captures the off-set after which the memory effects
become effective) and a single (or multiple within a small region) value of η (that
captures the memory strength) [20, 22]. We can modify the activity-driven frame-
work to account for the function p(k) that regulates the tendency towards new/old
connections (social memory). The evolution of these networks, driven by such lo-
cal link formation mechanism, is modeled as follows. At each time t the network
Gt starts completely disconnected. Each node i activates with probability ai∆ t and
creates m connections. Each of these is created towards a randomly selected node
never contacted before with probability p(ki) (where ki is the number of nodes al-
ready in the social circle of i) and with probability 1− p(ki) towards a node already
connected before. It is possible to show how both emergent degree and weight dis-
tributions are heterogeneous and function of η [20, 22].
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2.4 Model 4: local links formation process driven by communities

The fourth, and final, mechanism is also based on a local link formation process. As
mentioned in the introduction, not only our social ties are organized around strong
and weak ties but people in our social circles are likely to be friends. In networks
terms, social circles are communities formed by groups of tightly connected peo-
ple [9]. It is important to notice how the local mechanism described above (model
3) does not account for this important aspect. Indeed, triangles (i.e. a friend of my
friend is my friend), which are crucial aspects of real communities, might emerge
but are not likely by construction. There has been multiple proposals on how to
model emergent clusters using the activity-driven framework [31, 32]. Here, we
will consider the approach developed in Ref. [32] (see Figure 1-D). Observations
in real networks show how the size of communities is heterogeneous [9]. Thus, we
can set a distribution P(s) ∼ s−α with smin ≤ s ≤ smax to describe the size, s, of
communities in the system. Each node is then associated to a community. In these
settings, we can easily modify the activity-driven framework to account for commu-
nities. As before, at each time step t the network Gt starts completely disconnected.
Each node i is active with probability ai∆ t and creates m connections. With proba-
bility q each of these is directed towards nodes in the same community (at random).
With probability 1− q instead links are created randomly outside the community.
The parameter q regulates the modularity of the time-aggregated network. Clearly,
if q = 0 the community structure does not play any role on the dynamics of the net-
work. Instead, if q = 1 the system is formed by disconnected communities. Values
in between connect these two limits. It is possible to show how, for moderately high
values of q, the degree and weight distribution are heterogeneous [32].

3 Epidemic spreading on activity-driven networks: analytical
approach

After this preamble, we are in the position to investigate how global and lo-
cal link formation mechanisms affect epidemic spreading. To this end, we will
consider a prototypical contagion process: the Susceptible-Infected-Susceptible
model [33, 34, 35]. Here, nodes are divided in two compartments according to their
disease status. Susceptible, S for short, are healthy nodes that might be infected.
Infected, I for short, are infectious nodes. The natural history of the disease is de-
scribed by two transitions. The first is the infection process which is linked to a
contact between S and I nodes. In particular, a susceptible node in contact with an

infected one gets infected with probability λ : S + I λ−→ 2I. The second is instead
the recovery process. Infected nodes spontaneously recover and become susceptible
again with rate µ: I

µ−→ S. A key quantity, that can be used to study the spreading of
a disease with a given λ and µ in a given network, is the epidemic threshold. The
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T=1 T=2 T=3 IntegratedA)

B)

C)

D)

Fig. 1 Schematic representation of the four different variations of the activity-driven framework.
The first three columns describe three time-steps of the evolution of network. The final column
describes the union of links created in the three time steps. At each time, for all the networks,
we assume that the same nodes are active (nodes in red), but the link creation process is instead
different. For simplicity we assume m = 1, the width of the link in the final column is proportional
to how many time each link was activated. The first row (A) shows the case of random link creation
(model 1). The second (B) describe the global link creation mechanism based on popularity (model
2). In this representation, one of nodes (the node with degree 4 in the integrated network) is the
most attractive node. The third row (C) describes the local link creation mechanism based on the
social memory (model 3). The final row (D) describes the local link creation mechanism driven by
the presence of communities which are depicted by shaded areas (model 4).

disease will be able to spread, and reach an endemic state, only above a critical value
(which is determined by the features of the network where the process unfolds). Be-
low such critical value the disease will die out and affect only a small fraction of
the population. Before going forward we need another piece. In particular, how do
we go about estimating, numerically, the epidemic threshold? The classic approach
is to study I∞ as function of λ/µ [34, 36]. As already mentioned, above the thresh-
old the process reaches an endemic state. This is a dynamical equilibrium in which
the total number of infected nodes is constant. Thus above threshold I∞ > 0, while
below threshold I∞ = 0. Due to the stochastic nature of the process, the estimation
of the threshold by looking at the behavior of I∞ is quite hard. We will adopt an
alternative and recent approach, which looks at the life time, L, of the process [37].
This quantity is defined as the time the disease needs either to die out or to reach a
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finite fraction, Y , of the population. Indeed, well below the threshold the disease will
quickly die out. Well above the threshold the disease will be able to reach the frac-
tion Y quite quickly. For values between these two regimes the life time increases
and reaches a peak for values in proximity of the real threshold. In the language of
phase transitions, the life time acts as the susceptibility χ [37].
We have now all the ingredients to study a contagion process unfolding on different
versions of activity-driven networks which capture local and global link formation
dynamics. Before jumping to the details we summarize the key features of the vari-
ous models in Table 1.

Model Links creation mechanism Key variable(s)
1 Random Activity a
2 Global: driven by popularity Activity a and attractiveness b
3 Local: driven by social memory Activity a, social ties reinforcement parameters c

and η

4 Local: driven by communities Activity a, details of communities sizes distribu-
tion, probability q to select partners in the same
community

Table 1 Summary of the four different activity driven models and their key features

3.1 SIS epidemic processes unfolding on Model 1: baseline

As first step, let us consider the basic model where links are created randomly.
This is the baseline which will highlight the effects of heterogenous activity pat-
terns (since the link formation is featureless). We can assume that nodes in the same
activity class are statistically equivalent. Furthermore, we can differentiate them
according to their disease status. Thus we will refer to Sa, and Ia as the number of
susceptible and infected nodes in activity class a. As we are considering a fixed pop-
ulation Na = Sa + Ia at all times. In order to derive the conditions for the spreading,
we can study the evolution of the infected population. In particular, we can write the
number of infected nodes at time t +∆ t as:

Ia(t+∆ t) = Ia(t)−µIa(t)∆ t+mλSa(t)a∆ t
∫

da′
Ia′(t)

N
+mλSa(t)

∫
da′a′∆ t

Ia′(t)
N

.

(1)
In particular, this is given by the number of infected nodes at time t (first term on
the r.h.s.), minus the nodes that recover (second term on the r.h.s.), plus susceptible
nodes that are active, get in contact with infected nodes in other classes and get
infected as result (third term on the r.h.s.), plus susceptible nodes that get contacted
and infected by active infectious nodes in other categories of activity (fourth term
on the r.h.s.). It is important to stress that as each m link is created randomly, the
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probability of selecting a node in a particular class is simply m/N. By dividing for
∆ t in the limit of ∆ t→ 0 we can write:

dt Ia =−µIa +mλ
Na− Ia

N
aI +mλ

Na− Ia

N
Θ , (2)

where for simplify the notation we removed the explicit dependence of time, wrote
Sa = Na− Ia, defined Θ =

∫
aIada and considered that I =

∫
Iada is the total number

of infected nodes. Since we are interested at the early stages of the spreading we can
move forward linearizing the expression by assuming that Na ∼ Sa and by keeping
just the first order terms in Ia. Thus we get

dt Ia =−µIa +mλ
Na

N
aI +mλ

Na

N
Θ . (3)

By summing over all classes of activity we get

dt I =−µI +mλ 〈a〉I +mλΘ , (4)

since 〈a〉 =
∫

aNa/Nda =
∫

aF(a)da. The expression is now function of two vari-
ables of I and Θ . In order to understand their behavior we need to get an expression
for Θ . To this end, we multiply Eq. 3 by a and sum over all activity classes:

dtΘ =−µΘ +mλ 〈a2〉I +mλ 〈a〉Θ . (5)

At this stage, we obtained a system of two differential equations, one in I one in
Θ . The disease will be able to spread only if the largest eigenvalue of the Jacobian
of the system is larger than zero. In fact, this will imply that the region where we
developed the system is unstable. The Jacobian matrix can be written as

Jm =

(
−µ +λm〈a〉 λm

λm〈a2〉 −µ +λm〈a〉

)
,

with eigenvalues

Λ(1,2) = m〈a〉λ −µ±λm
√
〈a2〉. (6)

Thus, the epidemic threshold can be simply written as [18]

λ

µ
>

1
m

1

〈a〉+
√
〈a2〉

(7)

We can define β as the per capita rate at which people get infected. This is equal to
β = λ 〈k〉. The average degree at each time step is equal to 〈k〉 = 2m〈a〉. Thus we
can write

β

µ
> ξr ≡

2〈a〉
〈a〉+

√
〈a2〉

, (8)

where we defined ξr as the epidemic threshold for the random link creation pro-
cess. It is interesting to notice how the threshold is function of the first and second
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moments of the activity distribution and that it has been derived using also other
methods [38, 39, 40]. As the process is unfolding as the network changes structure
the threshold is not function of the integrated degree distribution but only of the
quantities describing the activation of each node at each time step.

3.2 SIS epidemic processes in Model 2: the effects of popularity

Let us now shift gears and analyze the first not random link creation mechanism. In
particular, following the previous order, let us consider the global mechanism based
on popularity. To this end, nodes are characterized by two features extracted from
a general joint distribution H(a,b). As before a describes the activity, b instead the
attractiveness. In these settings, it is necessary to divide nodes according to these
two features. Thus, the number of susceptible, and infected nodes of activity a and
attractiveness b at time t is indicated as Sa,b and Ia,b respectively. The evolution of
the number of infected nodes can be written as:

dt Ia,b =−µIa,b +
λm

N〈b〉
Sa,b

[
a
∫∫

da′db′b′Ia′,b′ +b
∫∫

da′db′a′Ia′,b′
]
. (9)

The first term on the r.h.s. accounts for the recovery process. The second describes
susceptible nodes that are active and select (with probability b/〈b〉N) infected nodes
in other classes getting infected. The third term finally describes susceptible nodes
selected by active and infected nodes in other classes and that become infectious
as result. It is interesting to notice the symmetry of the last two terms. To move
forward, let us define two functions θ =

∫∫
aIa,bdadb and φ =

∫∫
bIa,bdadb. The

previous expression becomes:

dt Ia,b =−µIa,b +
λm

N〈b〉
Sa,b

[
aφ +bθ

]
. (10)

As before, we can assume that at the early stages of the spreading Na,b ∼ Sa,b and
neglect the terms at the second order in Ia,b thus we are left with

dt Ia,b =−µIa,b +
λm

N〈b〉
Na,b[aφ +bθ ]. (11)

From the last expression, we can obtain a system of three equations necessary to
study the behavior of the number of infected nodes in the early stages. In particu-
lar, we can obtain an expression for i) I by summing all activity and attractiveness
classes, ii) θ by multiplying both sides for a and summing all classes, and iii) φ

by multiplying both sides for b and summing all classes. Doing so, we obtain the
following system of differential equations:
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dt I = −µI +
λm
〈b〉

[〈a〉φ + 〈b〉θ ], (12)

dtθ = −µθ +
λm
〈b〉

[〈a2〉φ + 〈ab〉θ ], (13)

dtφ = −µφ +
λm
〈b〉

[〈ab〉φ + 〈b2〉θ ]. (14)

The eigenvalues of the Jacobian matrix read:

Λ1 =−µ, Λ(2,3) =
λm
〈b〉

(
〈ab〉±

√
〈a2〉〈b2〉

)
−µ. (15)

As before, the disease is able to spread if the largest eigenvalue is larger than zero.
This condition implies [41]:

β

µ
> ξatt ≡

2〈a〉〈b〉
〈ab〉+

√
〈a2〉〈b2〉

. (16)

It is important to notice how the threshold has been computed without any assump-
tion on the form of the distribution H(a,b), thus it is valid for any (integrable) form.
A comparison between ξr and ξatt reveals how the general structure of the threshold
is similar. In particular, the second moments are under the square root in the denom-
inator. However, note how the details of the correlation between the two features
appear explicit in the term 〈ab〉. To gather a deeper understanding on the differ-
ences between the two thresholds, let us first consider the uncorrelated case thus
H(a,b) = F(a)G(b). In this case, we can re-write the threshold as:

ξatt =
2

1+
√
〈a2〉〈b2〉
〈a〉2〈b〉2

. (17)

As the dependence of the threshold on the two moments is symmetric, the case
with constant attractiveness and generic F(a) (baseline) can be mapped to the one
with constant activity and attractiveness distribution F(b). Clearly the symmetry
would be broken in case of directed networks, since the activity would regulate out-
links while the attractiveness in-links. Furthermore, as 〈b2〉 ≥ 〈b〉2 always holds, the
threshold can only be lower than or equal to the one found in first model. This means
that the introduction of any amount of heterogeneity in the attractiveness helps the
epidemic spreading pushing the threshold to smaller values. As mentioned in the in-
troduction, observations in real networks suggest that activity and attractiveness are
correlated. The relation between the two, in two online communication networks,
can be modeled as a ∼ bγc with γc close to one. What happens to the threshold in
this case? To answer this question, we can study the case of deterministic correlation
between the two variables imposing:

H(a,b) = F(a)δ (b−q(a)), (18)



12 Kaiyuan Sun, Enrico Ubaldi, Jie Zhang, Márton Karsai and Nicola Perra

where δ (x) is the Dirac delta and q(a) is the function that determines the attrac-
tiveness of a node given its activity: bi = q(ai), ∀i. Using the relation G(b) =
F(a)|da/db|, we can obtain an expression for G(b):

G(b) = F(q−1(b))
∣∣∣∣dq−1(b)

db

∣∣∣∣ . (19)

To account for the observations mentioned above, we can set q(a) = aγc , γc > 0.
Since the activity is distributed according to a power-law (F(a) ∝ a−γa ), the attrac-

tiveness will be distributed as G(b) ∝ b−1+ 1−γa
γc . In these settings, a generic moment

of the joint distribution can be expressed as:

〈anbm〉= 〈an+γcm〉, (20)

thus the epidemic threshold becomes:

ξatt =
2〈a〉〈aγc〉

〈a1+γc〉+
√
〈a2〉〈a2γc〉

.

Generally speaking (this is controlled by the value of γc) the threshold is not only
smaller than ξr but also smaller than the uncorrelated case. In fact, the disease is
able to spread faster when popular people, that are able to attract the connection
from many others, are also very active in contacting other nodes.

3.3 SIS epidemic processes in Model 3: the effects of social
memory

The third model, based on the local reinforcement of previously activated ties (so-
cial memory), does not allow (to the best of our knowledge) a derivation of a closed
expression for the threshold as we did in the previous two cases. Exact numerical
methods, based on the spectral properties of matrices obtained from Gt , can be used
to derive it, but these do not allow to gather an explicit expression [42, 43]. How-
ever, a recent paper by Tizzani et al [44] provides an analytical treatment with some
approximations. While we refer the interested reader to the original paper for de-
tails, here we provide a summary of their derivation as it nicely complements the
techniques we discussed above. First of all, they adopted an individual based ap-
proach, in which rather than considering classes of activity each node is considered
explicitly. In fact, the memory effects for each node make the interactions with a
given social circle more likely. Thus nodes in the same activity class cannot be con-
sidered statistically equivalent as their behavior depends on their memory of past
interactions. In the individual based approach, the focus goes from the study of the
evolution of the number of infected nodes in a given activity class to the study of
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the probability ρi(t) that the node i is infected at time t. This can be written as [44]:

dtρi(t) =−µρi(t)+λ [1−ρi(t)]

[
∑

j
ai [1− p(ki)]

Ai j(t)
ki

ρ j(t)+

+ ∑
j 6∼i

ai p(ki)
ρ j(t)

N− ki−1
+∑

j
a j [1− p(k j)]

Ai j(t)
k j

ρ j(t)

+ ∑
j 6∼i

a j p(k j)
ρ j(t)

N− k j−1

]
, (21)

where Ai j(t) is the adjacency matrix of the integrated graph up to time t, and 6∼
selects only the nodes j not yet connected to i. By construction this is N−k j(t)−1.
The first term on the r.h.s. describes the recovery rate of the node. All the other
terms describe the infection processes, which depend on the infection probability
λ and the probability that the node is susceptible (1−ρi(t)). The first two terms in
the large brackets account for the fact that the node i is active and connects with a
node j that has already contacted before (first term) or that has never seen (second
term). The last two terms are the same but in this case they account for the fact
that the other nodes are active and connect to i [44]. It is important to notice that
this expression underlies an approximation: the state of every node is independent
of the state of the neighbors. Clearly, this neglects the correlation between nodes.
The challenges induced by the memory are clear thinking that the adjacency matrix
and the social circle of each node are function of time. Thus, the unfolding of the
disease is clearly function of its starting point in time. As Tizzani et al. noted, if we
consider the limit in which 1� ki(t)� N, thus if the disease starts spreading when
the degree of each node is far from one and from N, hence at large times (but not
too large), the expression can be reduced as (see Ref. [44] for details):

dtρ(t) =−µρ(t)+λ [1−ρ(t)]∑
j

Ai j(t)
(

ai

ki
+

a j

k j

)
ρ j(t). (22)

In order to find a solution to this expression, Tizzani et al. transitioned from the time
integrated connectivity patterns (Ai j) to an annealed form (Pi j(t)) which describes
the probability that i and j have been connected in the past. Interestingly, they show
that

Pi j(t) = (1+η)
t

1
1+η

N
[g(ai)+g(a j)] , (23)

where they defined g(x) = x/(Cx)η . The strength of the memory η regulates the
expression as well as the activity of the two nodes. From here Tizzani et al can
move from the probability that a node i is infected at time t to the probability that
a node of activity a at time t is infected (thanks to the annealed approximation). In
particular, they obtain [44]:
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dtρ(a, t) =−µρ(a, t)+λ [1−ρ(a, t)]
[

ag(a)
g(a)+ 〈g〉

∫
da′F(a′)ρ(a′, t)

+
a

g(a)+ 〈g〉

∫
da′F(a′)ρ(a′, t)g(a′)+g(a)

∫
da′F(a′)

a′

g(a′)+ 〈g〉
ρ(a′, t)

+
∫

da′F(a′)
a′g(a′)

g(a′)+ 〈g〉
ρ(a′, t)

]
, (24)

where interestingly we find similar terms from the two previous cases. This expres-
sion is rather complex. However, the conditions for the spreading can be found,
conceptually as before, by linearizing it at early times and studying the Jacobian of
the system of four differential equations obtained for it (see Ref. [44] for the deriva-
tion). While the condition can be obtained fairly easily numerically, the nature of
the terms, and the size of the matrix does not allow for a simple closed expression.
Nevertheless, in case a disease start spreading in a mature social network in which
nodes have build social circles, this analytical treatment works extremely well [44].
However, the general case, does not have a general closed solution, yet.

3.4 SIS epidemic processes in Model 4: the effects of communities

Finally, let us turn our attention to the last model where the link creation dynamic
is influenced by the membership to specific communities. In particular, active nodes
select (at random) a connection with nodes in their community with probability
q, and outside their community with probability 1− q. Although we will not be
able to solve them, it is instructive to write the dynamical equations describing the
contagion process in these settings. Similarly to what we did before, let us define
Sa,s and Ia,s as the number of susceptible and infected individuals, respectively, in
the class of activity a and community of size s at time t. We can then write [32]:

dt Ia,s = −µIa,s +λaSa,s

[
q

Is

s
+(1−q)

I
N

]
+ λ

∫
da′a′

[
qIa′,s

Sa,s

s
+(1−q)Ia′,s

Sa,s

N

]
, (25)

where Is and I are the number of infected in communities of size s and in the whole
network, respectively. As usual, the first term in the r.h.s accounts for the recovery of
infected individuals. The second and third terms describe susceptible nodes that are
active and select infected nodes in their community or outside. The fourth and fifth
terms are similar but consider that active nodes and infected nodes select susceptible
nodes of class a in community of size s. For simplicity, we consider that N− s∼ N
and, at least initially, I−Is∼ I. Summing over all the activities and community sizes,
and considering only the first order terms in a, Ia,s and their products, we obtain
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dt I = −µI +λ 〈a〉I +λθ +λq∑
s
(〈a〉s−〈a〉)Is, (26)

dtθ = −µθ +λ 〈a2〉I +λ 〈a〉θ +

+ λq∑
s

[
(〈a2〉s−〈a2〉)Is +(〈a〉s−〈a〉)θs

]
, (27)

where we defined as before θ =
∫

aIada, and θs =
∫

aIa,sda. The term 〈ax〉s =∫
daNa,sax/s describes the moments of the activity distribution in any community

of size s. That is the average activity in a community of size s. As before, the sec-
ond, auxiliary, equation is obtained from the first by multiplying both sides by a
and summing over all s and a. The epidemic threshold, at least in principle, can be
derived evaluating the largest eigenvalue of the Jacobian matrix of the system of
differential equations in I and θ . Unfortunately, a closed expression, to the best of
our knowledge, has not been derived yet. Nevertheless, we can point out some in-
teresting observations. First of all, the terms in q weight a comparison between the
moments of the activity distribution in the whole network with the corresponding
values computed inside each community. In case the fluctuations of these terms are
negligible, due for example to very large community sizes or to narrow distribution
of activity, the equations become equivalent to the case q = 0 (which is equivalent,
for small community sizes, to a random link creation mechanism). Similarly, in case
q→ 0, the network has no modular structure, and the threshold becomes equal to
the first simple model. In the opposite limit q→ 1 the large majority of connections
take place inside each community. Thus the coupling between clusters becomes very
weak. Especially when the average size of communities is small, the probability of
selecting the same node as partner increases significantly.

Before moving to a more direct comparison between the thresholds in the four
different models, let us spend few words about another important, and prototypical,
contagion process: the SIR model [33, 34, 35]. While the infection mechanism is
equivalent to the SIS, the recovery is radically different. In fact, there is another
compartment, R, describing infected nodes that recover. These cannot be infected
again as they acquire a permanent immunity. It is easy to show that, in case at early
stages the population is fully susceptible and thus R ∼ 0, the threshold for the SIR
model unfolding on activity-driven networks with random or global link creation
dynamics is equivalent to that of a SIS process. However, the symmetry breaks in
case of local link creation mechanisms (for the last model in the limit of high q and
small community sizes) [32, 45]. In fact, the presence of memory in the connectivity
patterns induced by the reinforcement of previously activated ties or by high modu-
larity have opposite effects in SIR and SIS models. The repetition of a small number
of connections hinders the spreading power of SIR processes. In fact, as soon as a
node recovers, links towards it cannot result in further infections. However, such
repetition (as will see more in details in the next section) favors SIS dynamics since
it allows the disease to survive in small patches (infected nodes will eventually be
susceptible again).
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4 Epidemic spreading on activity-driven networks: numerical
simulations

In Fig. 2 we show the normalized lifetime, Ln, for the different variations of the
activity-driven framework discussed above. The normalization is done dividing each
curve by its maximum, i.e. Ln = L/maxL. In the plot we considered two versions
of the model with heterogenous attractiveness (model 2). In the first, attractiveness
and activity, for each node, are extracted independently (uncorrelated scenario). In
the second instead, attractiveness and activity are equal (correlated scenario). In the
case of social memory (model 3), we set c = 1 and η = 1, thus previously activated
ties are repeated with probability 1− p(k) = k

1+k . We also considered two different
versions of the model with communities (model 4). In the first, we set q = 0.45,
thus only 45% of the links are created within each community. In the second in-
stead, we set q = 0.9, a much higher value. In both scenarios, community sizes are
extracted from a power-law distribution P(s) s−2.1 with 10 ≤ s ≤

√
N. In order to

compare the different scenarios, we fixed (across the board) all the other parameters
(see legend of Fig. 2 for details). In these settings, several observations are in order.
First, all global and local links creation mechanisms result in smaller values of the
epidemic threshold respect to the baseline (random links’ creation). Second, global,
popularity-driven, mechanisms based on heterogenous distributions of attractivity
(model 2) push the threshold to much smaller values respect to local mechanisms
based on social closeness principles (models 3 and 4). Interestingly, correlations
between activity and attractiveness help the spreading of the disease even further
respect to uncorrelated scenarios. Third, the effects of communities depend on the
value of q. In particular, high values of this quantity help the spreading more than
smaller values of it. In fact, the repetition of connections within each cluster, helps
the disease to survive for smaller values of the spreading rate. Finally, social mem-
ory, thus the repetition of previously activated ties, helps the spreading respect to
medium-low values of modularity (q = 0.45), but not as much as larger values of
it. In order to gather a deeper understanding on the dynamics, in Fig. 3 we show, as
function of β/µ , the fraction of infected population evaluated at the time step equal
to the life time, IL. This quantity provides complimentary information respect to the
previous plot by showing the prevalence of the disease at the moment the conditions
that define the lifetime are met (i.e. disease either dies out or reaches a cumulative
fraction Y of the population). Several observations are in order. First, the presence of
heterogeneity in nodes’ attractiveness (model 2) not only results in the lower value
of the threshold (as shown in Fig. 2), but affects a larger fraction of the popula-
tion respect to all the other links creation mechanisms. The effects of correlations
between activity and attractiveness are not as visible as for the threshold. Second,
despite in case of strong modularity (q = 0.9) the threshold is smaller than in case
of social memory, the latter has a larger impact on the population. Indeed, while the
presence of tightly connected communities allows for the survival of the disease for
smaller values of the spreading rate, high values of modularity confine the impact
of the virus in small patches. It is important to notice that this effect is dependent on
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Fig. 2 We show the normalized lifetime of SIS processes unfolding on different variations of the
activity driven framework as function of β/µ . In all cases, we set N = 105, m = 1, F(a) a−2.1,
ε = 10−3, µ = 10−2, Y = 0.25, start each simulations with 1% of randomly selected seeds, and
each point is the average of 102 independent simulations. In the models with attractiveness, we set
the distribution of popularity as G(b) b−2.1 and considered two scenarios: 1) H(a,b) = F(a)G(b)
(uncorrelated case), 2) H(a,b) = F(a)δ (b−a) (correlated case). In the model with social memory,
we set c = 1 and η = 1, thus a node that contacted already k nodes will connect to a new tie with
probability p(k) = 1

k+1 and will reinforce a previously activated link with probability 1− p(k) =
k

k+1 . Finally, in the models with community structure, we extracted communities sizes for a power-
law distribution P(s) s−2.1 with 10≤ s≤

√
N and considered two values of q.

the average community size and the distribution of sizes. Intuitively, in case nodes
are arranged in few and very large communities such effects would be reduced as
the repetition of ties would be much less likely. Finally, social memory (model 3),
thus the reinforcement of previously activated ties, has a large impact on the system
respect to random and other local mechanisms for values of β/µ closer to the epi-
demic threshold. As β/µ increases we enter in a region of the phase space where
the repetition of the same connections hampers the spreading power of the disease
respect to randomly activated ties or to networks with low modularity (model 4). In
this regime, the spreading rate is high and having connections with a large number
nodes, rather than repeating the links with few of them, helps the unfolding of the
disease.

5 Conclusions

In this chapter we have investigated the effects of different link creation mecha-
nisms on contagion processes unfolding on time-varying networks. In particular, we
focused on two main classes: global and local mechanisms. We modeled the first
considering that the propensity of nodes to attract social interactions is heteroge-
neous. We modeled the second, considering two different approach: i) ties activated
in the past are more likely to be re-activated than new ones (social memory), ii)
social ties are typically organized in tight communities poorly connected between
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Fig. 3 We show IL for the different version of activity-driven models. This quantity describes the
fraction of infected nodes at time t = L. The parameters for all different cases are the same used in
Fig. 2.

them. The first mechanism is inspired by popularity (attractiveness) the second by
social closeness mechanisms. Furthermore, as null model, we considered the sim-
ple, and unrealistic, case in which links are created randomly (baseline). We first
provided details about how to analytically tackle the spreading of SIS processes in
these models. We then presented a more direct numerical comparison between them.
Interestingly, we found that global link creation mechanisms, driven by heteroge-
nous distributions of attractivity, drastically reduce the epidemic threshold respect
to the case of homogenous distribution of such quantity (baseline) and to the case
of local mechanisms driven by social closeness. Thus, the presence of globally pop-
ular nodes, able to attract a large share of the interactions, facilitates the spreading
respect to the local correlated dynamics induced by social closeness mechanisms.
In fact, as soon such popular hubs get infected they affect a large fraction of the
population that connects to them, even for small values of the spreading rate. The
effect of communities is function of the modularity. High values of modularity push
the threshold to smaller values respect to low values of it and to the social mem-
ory mechanism based on the repetition of previously activated ties. However, social
memory might have a large impact on system in terms of disease’s prevalence in
the population. In fact, for values of the spreading rates close to the threshold we
observe an interesting phenomenology where the fraction of infected nodes is larger
respect to the case of communities as well as to the baseline. While the presence of
communities allows the disease to survive for smaller values of the spreading rate,
it confines the disease in smaller patches respect to case of social memory.
Arguably, all the mechanisms considered here are not mutually exclusive. In fact,
both offline and online social networks are driven by their interplay. Here, we shown
that even taken singularly they introduced no-trivial dynamics on contagion pro-
cesses. More research should be conducted to study their interplay and trade-off in
the future.
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