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Abstract 

 In this study, we apply the two most prevalent topological optimisation algorithms to 

the design of single material heat sinks and heat exchangers. We aim to determine 

the merits and drawbacks of each method, extend the most suitable method to 

consider multi-material structures and to subsequently apply this method to design 

heat recovery structures subject to fluid convection. The two optimisation methods 

assessed were the density method and the level-set topological optimisation method. 

 This study presents a review of the current state-of-the-art in topology optimisation, 

identifying gaps and limitations in current knowledge relating to the application of these 

methods to fluid-flow and heat transfer problems. Both topological optimisation 

approaches have been implemented in a numerical framework consisting of a 

combination of the Matlab package and the Comsol Multiphysics package. The 

optimisation algorithms have been implemented in Matlab while Comsol is used to 

perform thermofluid analyses. The implementation has been validated against 

standard test cases. Comparison of the two methods indicated that the level-set 

method developed designs performed better than those developed by the density 

method, and that the level-set method had a number of additional advantages 

stemming from its superior handling of fluid-solid interface boundary. The relative 

performance of the approaches is fully discussed. 

 The level-set approach was extended through implementation of a regular re-

initialisation capability to increase the accuracy of interface boundary and through 

implementation of an adjoint-based sensitivity evaluation to enhance the 

computational efficiency. This framework is applied to the design of heat-recovery 

channels, particularly assessing the effect of solid-to-fluid thermal conductivity ratio 

and flow Reynolds number on the optimised shapes. 

 This framework is subsequently extended to consider multi-material problems 

through development of the underlying level-set formulation. The optimal design of 

copper-aluminium and copper-steel heatsinks are assessed and results and 

observations are discussed. Potential areas for further works are discussed after 

drawing conclusions. 
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s solid 

tr Transpose 
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1 Introduction 

Topological optimisation is a numerical approach which aims to determine the 

distribution of a defined volume of material within a defined space to 

minimise/maximise a specified objective within a given set of constraints. An 

illustrative example of the general concept would be a cantilever beam optimisation 

study presented in Figure 1-1. This work, carried out by Luo et al [1], uses a topological 

optimisation algorithm to determine the arrangement of material that minimises the 

displacement of the tip of the beam subject to a specified load. The analysis is subject 

to constraints defining linear elasticity equations and the volume of material that can 

be used. We can observe the transition of the design from an initialisation pattern 

through to an optimal solution. During the optimisation process, the shape of the beam 

varies a lot. The final optimal design differs quite considerably from ‘traditional’ designs 

in that it has an organic nature. 

Figure 1- 1 Iterative progression of structural topological optimisation of a mechanical structure 
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Figure 1- 2 Bridge support structures design using topological optimisation [2] 

Figure 1-2 shows a bridge support structure which has been designed using 

topological optimisation [2], with the organic nature of the design again evident. While 

the design of the bridge may result in excellent mechanical performance and be 

aesthetically pleasing there are clearly issues regarding the costs and complexity of 

making such a structure. Recent advances in additive manufacturing would seem to 

provide a solution to this issue. Indeed, additive manufacturing and topological 

optimisation would seem to be highly synergistic technologies.  

 While topological optimization is now becoming increasingly widely adopted for 

structural design its use in problems including fluid flow are still very much in their 

infancy. This is predominantly due to issues relating to complexity, stability and 

computational expense. In this study, we aim to apply topological optimisation 

algorithms to the design of heat transfer structures such as heat sinks and heat 

exchanger systems subject to convective fluid flow. This requires advances beyond 

the current state-of-the-art in the field. The overall objective is to move toward a point 
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where topological optimisation algorithms can be utilised to design heat transfer 

structures that can be fabricated using modern additive manufacturing approaches 

that provide superior performance to conventional designs. Furthermore, this study 

assesses the viability of developing designs comprising multiple materials (e.g. 

copper-aluminium heatsinks) that may enhance cost-performance design trade-offs. 

 

1.1 Motivation for study 

 Heat exchangers are the critical components used in variety of fields, including power 

generators, aircraft and automobile engines, microelectronics, etc. Increasing demand 

on the effectiveness of heat exchangers, forces researchers to look for novel design 

methodologies. Topology optimisation is a novel design method which is capable of 

giving superior, non-intuitive designs hence it started to find industrial applications in 

the field of structural engineering. In spite of its advantages, it is not explored much 

for fluid flow problems because of the complex nature of physics and its modelling. 

The motivation of this study is to identify the best topology optimisation method for 

fluid flow problems and developing a state of the art numerical framework for this 

method. Then this numerical framework will be used for the design of heat exchangers 

which involves the coupling of two physics namely fluid flow and heat transfer.  

 Currently most of the micro-electronic heat sinks are made of aluminium; though 

copper has superior thermal properties it is sparingly used because of its high cost. 

These low cost aluminium heat sinks become highly incapable with increasing current 

density and miniaturisation of micro-electronic devices. Hence, there is a need to 

design alternate heat sinks which will have low cost and superior heat dissipating 

properties. One possible avenue for this is designing composite heatsinks which use 

a large amount of aluminium and small amount of copper to enhance its heat 

dissipating properties. Since topology optimisation is a promising design technique, 

this will be explored for the design of cost effective multi-material heat sinks which are 

critically needed for the electronics industry. 

 

1.2 Aim and Objectives 

 The aim of this work is to assess the popular topology optimisation methods and to 

develop a numerical framework for the suitable topology optimisation method for the 
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design of fluid flow and heat transfer problems. Using the developed framework, heat 

recovery channels for different solid-fluid material sets and highly efficient multi-

material heat sinks made up of copper, aluminium and steel have to be designed. 

 The numerical framework is intended to be fixed mesh based, and should be accurate 

for fluid flow applications. The major objectives of this work are listed below. 

 Review and document the current state-of-the-art in topology optimisation and 

identify gaps and limitations in current knowledge for applying these methods 

to fluid-flow and heat transfer problems (Chapter 2 & 3). 

 Implement both level-set and density topology optimisation methods using 

Matlab and Comsol and validate with standard test cases (Chapter 4). Compare 

and contrast the two methods, by designing 3D convectively cooled heat sinks, 

and hence document their advantages and disadvantages (Chapter 5). 

 Develop the level-set numerical framework by implementing a re-initialisation 

capability and adjoint-based sensitivity evaluation capability. The re-

initialisation of level-sets improves the accuracy of interface prediction and 

adjoint-based sensitivity evaluation reduces the computational cost and 

improves the accuracy. (Chapter 6). 

 Utilise the above framework for the design of heat-recovery channels and study 

the effect of solid-to-fluid thermal conductivity ratio and Reynolds number on 

the optimised shapes (Chapter 7). 

 Update the above framework to handle multi-material problems, and utilise it 

for the design of convectively cooled multi-material heat-sinks (Chapter 8). 

 

1.3 State of the Art 

 The state of the art in topology optimisation will be fully outlined in the review chapter 

of this thesis. However, a brief overview is given in this section. The Density method 

and level-set method are the two popular methods used for topology optimisation of 

fluid flow problems. The density method based fluid flow optimisation started with the 

pioneering work of Borrvall and Petersson [3] whereas the level-set based fluid flow 

optimisation started with the work of Duan [4]. It is reported in the literature that, for 

fluid flow problems, the level-set method is better as it can crisply capture the material 

boundary between the solid and fluid. But apart from this qualitative comparison no 
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back-to-back comparison has been made between the two methods for any practical 

design problem analysing in terms of the objective value of the results obtained, 

computational time, etc. 

 Though the density method and level-set method are conceptually very different, they 

both use a gradient based optimising strategy. For finding the gradient or sensitivity of 

the objective with respect to the design variables, the adjoint sensitivity method is very 

cost effective. Othmer [5] has evaluated the sensitivity for Navier-Stokes (NS) flows 

and this has been used widely in conjunction with the density method but very few 

researchers have used the adjoint sensitivity for the level-set topology optimisation.  

 The level-set TO is slowly evolving and it is still not extensively utilised for designing 

complex coupled fluid flow and heat transfer applications. For example, currently heat 

exchangers or heat recovery channels are designed by conventional design 

techniques. The use of level-set TO in combination with the adjoint sensitivity, for 

designing heat recovery channels, can yield significantly better shapes at low 

computational cost.  

 Since the TO has the possibility to produce superior designs compared to 

conventional design methods, it is increasingly applied in various physics, namely 

structures, structural dynamics, mechanisms, optics, materials, etc. Further, TO 

methods are also suitable for designing multi-material structures, i.e., using more than 

one solid material for the design. In this case, the TO not only optimises the outer 

shape but also determines internal distribution or layout of each of the solid materials 

involved. Sigmund [6] and Wang [7] pioneered this approach respectively for density 

method and level-set method for structural problems. The developments taking place 

in 3D printing technology, especially the selective deposition technique, enables the 

manufacturability of multi-material structures. Currently most of the heat sinks are 

made up of aluminium; though copper heat sinks are superior in performance, it is 

sparingly used because of the cost constraints. Hence there is a strong need for 

designing copper-aluminium or copper-steel composite heat sinks, as this will improve 

the heat sink performance yet keeping the cost low. So exploring the TO technique for 

the design of multi-material heat sinks can pave the way for the design of low cost 

copper-aluminium heat sinks with superior performance. 
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1.4 Novel contributions 

 

The summary of novel contributions of this thesis are given below. 

 Performance assessment of Density and Level-set method for 3D heat sink 

design 

 Developed Comsol and Matlab based numerical framework for Density and Level-set 

based TO methods. By using these frameworks, 3D convectively cooled heat sinks 

were designed for two different material set. Assessed the performance of the two 

methods in terms of the quality of the design, objective value, computation time taken 

and robustness.  

 Application of the Level-set TO to the design of heat recovery channels 

 Heat exchange or heat recovery channels, which are used in the transportation and 

energy industry to recover the waste heat, are designed using the adjoint sensitivity 

based Level-set TO for different solid-fluid conductivity ratios and for different flow 

Reynolds numbers in 2D and 3D. The design of these channels are challenging as the 

heat exchange capability has to be maximised without penalising the pumping 

pressure requirements. Deeper insights on the effect of solid-fluid thermal conductivity 

value and Reynolds number on the shape of optimised channels have been provided. 

Capability and limitations of the Level-set method to this application are also 

discussed. 

 Application of the Level-set TO to the design of multi-material heat sinks 

 Extended the multi-material level-set optimisation techniques which are currently 

used in the field of structural mechanics, to the design of two and three solid material 

convectively cooled heat sinks. This will pave the way for the design of composite 

copper-aluminium or copper-steel heat sinks which will be cheap but yet very effective 

in heat dissipation. Effect of solid-to-solid and solid-to-fluid thermal conductivity ratio 

on the optimised heat sink shape is studied in detail. Effect of the solid material volume 

constraint is also studied in detail. 
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Publications 

 The research presented in this document has contributed to 2 journal papers and 3 

conference papers and they are listed below. An additional journal article titled “Adjoint 

based Level-set Topology Optimisation for Heat Recovery Channel Design” is under 

preparation. 

 

i. “Performance assessment of Density and Level-set Topology Optimisation 

methods for 3D Heat sink design”, Journal of Algorithms and Technology, 

June, 2018. 

ii. “Multi-material Heat sink Design using Level-set Topology Optimisation”, Journal 

article submitted to IEEE Transactions on Components, Packaging and 

Manufacturing Technology, on Aug., 2018. 

 

Conference Papers: 

i. “On the application of Topology optimisation techniques to the thermal 

management of microelectronics systems”, 17th EurosimE IEEE conference, 

Montpellier, 2016. 

ii. “Level-set based topology optimisation of convectively cooled heatsinks” 

Comsol Conference, Rotterdam, Netherlands, Oct, 2017. 

iii. “Multi-material Level-set based topology optimisation of convectively cooled heat 

sinks”, ECCM-ECFD 2018 conference, Glasgow, June, 2018. 

 

 

1.5  Thesis outline 

 

This document is split into nine chapters and the schematic outline of this thesis is 

given in Figure 1-3. The first chapter gives an overview of the topology optimisation 

process and presents aims and objectives of this research work. The second chapter 

contains the literature review and considers the current state of the art in topology 
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optimisation methods and their application to various fields and in particular to fluid 

flow and heat transfer. 

 

The third chapter discusses the theory behind the density method and level-set 

method. Further, different optimisation algorithms are explained in detail along with a 

brief note on finite element methods.  

 

The fourth chapter presents the density and level-set method numerical framework 

and their validation on standard test cases. The fifth chapter concerns the use of the 

density and level-set method in designing three dimensional convectively cooled heat 

sink and the performance assessment of the two methods. 

 

The sixth chapter discusses the various features implemented in the Level-set TO 

framework. Implementation details about the re-initialisation of level-sets, adjoint 

based shape sensitivity evaluation and topological derivative for fluid flow cases are 

presented and the results of validation cases are also explained.  

 

The seventh chapter discusses the design of heat recovery channels using the level-

set method. The eighth chapter discusses the design of multi-material convectively 

cooled heat sink design using the level-set method. 

 

The ninth chapter summarises the other chapters and also discusses possible 

potential extensions of the present work. 
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Figure 1- 3    Thesis Outline
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2 Literature Review 

 

 

2.1 Background 

Currently, topology optimisation techniques find lots of applications in structural 

mechanics mainly for compliance minimisation of structures. Recently, this method is 

being applied to other fields, including structural dynamics, heat transfer, fluid flows, 

electromagnetics, optics and their combinations. A seminal paper on numerical 

topology optimisation was published by Bendsoe and Kikuchi in 1988 [8]. This was a 

finite element method based topology optimisation using a homogenisation method 

wherein the heterogeneous medium is replaced with a homogeneous medium to 

compute the solution. Following this, many researchers worked in this area to propose 

new methods for topology optimisation and to extend the existing TO methods to new 

physics. The popular TO methods are the density method, level-set method, 

evolutionary shape optimisation and topology derivative method. In this section, each 

of the methods is briefly described and an elaborate review of the TO work carried out 

in fluid flow and heat transfer is also reported.  

 

2.2 Topology Optimisation methods 

 In the following chapters the literature pertaining to different topology optimisation 

approaches and optimisation algorithms are reviewed and discussed. 

 

2.2.1  Density method  

 This method was introduced by Bendsoe in 1989 [9].  It is a relatively simple and fast 

method. In this method, critical parameters of physics and the objective function are 

modelled as a function of material density (), which acts as the design variable for 

the optimisation problem. In earlier days, the optimisation problem was solved as a 

variable thickness problem for compliance constraints. The topology optimisation 
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method could be thought of as an improvement over variable thickness optimisation. 

Here, thickness is replaced with density of the material in a given finite element cell 

and the density is made to take a 0 or 1 value by penalising the intermediate density 

values. A density value of 0 represents no material and 1 represents material in the 

given finite element cell. Bendsoe proposed a simple and effective power law 

approach for penalisation (Eqn 2.1). 

𝐸 = 𝐸𝑜𝜌𝑖
𝑃  

 

(2. 1) 

 
Where Eo is the material property and ‘p’ is the power factor and it generally takes a 

value of 3. This method of penalisation of intermediate densities is called Solid 

Isotropic Material with Penalisation or SIMP. 

 The Density method is mostly implemented using finite element solvers. In the finite 

element method, each mesh element stores state variables and density variables and 

they are solved during each iteration. For given initial values of density, the physics of 

the problem is solved, then the objective function and sensitivity of objective function 

with respect to density are calculated. A gradient based optimiser solves for the new 

density values based on the sensitivity information. This procedure is repeated until 

change in density distribution becomes negligible. The various steps involved in the 

density based topology optimisation [10] is depicted in Figure 2-1.  

 

 Sensitivity analysis is the process of finding the rate of change of objective value with 

respect to design variable. This information is fed into the gradient based optimiser to 

find the new set of design variables. Regularisation is a process, in which intermediate 

density values are filtered out to get discrete 0-1 densities. To carry out each step of 

the TO, different methods are available. For instance, sensitivity analysis can be 

performed by the adjoint method, finite difference method and regularisation can be 

performed by the neighbourhood method, PDE based filtering, density filtering 

methods and optimisation can be performed by any of the gradient based optimisers.   

 As mentioned earlier for structural mechanics problems, Young’s modulus is 

modelled as a function of density. Likewise, for fluid flow problems material 

impermeabiltiy and for thermal problems thermal conductivity, are modelled in terms 

of the design variable. Two noted drawbacks of this method are intermediate density 

regions or grey regions found in the final design and pressure diffusion found across 
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solid walls formed by the TO in fluid flow problems. The pressure diffusion leads to 

inaccuracies in the final value of the objective function (viscous loss, total pressure, 

etc.). More details about this method and the steps involved can be found in section 

3.1. 

 

 

Figure 2-1 Density based Topology optimisation process flowchart 

 

2.2.2 Level-set methods 

  The level-set functions (LSF) were initially used to model crack propagation and 

evolution of interphases [11]. Later, Osher [12] and Sethian [13] used these functions 

for topology optimisation. The currently used level-set based topology optimisation 

was first proposed by Allaire [14] and Wang [15] independently. In mathematics, “level-

set” is a function which can take a set of possible values but one value at a time. 

Usually Signed Distance Functions (SDF) are used as level-set functions. The level-

sets are topologically flexible, they can form holes, split to form multiple boundaries or 
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merge with other boundaries to form a single surface.  In topology optimisation, a 

positive value of the level-set is modelled to represent a material domain and a 

negative value is modelled to represent a void. The domain boundary is evolved in 

time in the direction of maximum descent of the objective function till convergence is 

achieved.  

 The level-sets are evolved in time by solving the Hamilton Jacobi (HJ) equation (Eqn 

2.2) and the boundary evolving direction is found through shape sensitivity analysis. 

Shape sensitivity is the response of an objective function to changes of the shape of 

the material domain. Changes to the material domain are made in infinitesimal 

amounts in the normal direction to the boundary. In the simplest level-set topology 

optimisation formulation, the material properties (Young’s modulus, Impermeability, 

etc.) are projected on to the level-set function through a Heaviside function. The 

Heaviside function is a step function which takes value 1 in the material domain and 

0 in the void domain.  

 

𝜕𝜓

𝜕𝑡
− 𝑉𝑛|∇𝜓| = 0 

(2. 2) 

 
 

The speed of evolution or normal velocity Vn, of the level-set function is equal to the 

shape sensitivity of the Lagrangian. From the solution of the physics of the problem, 

shape sensitivity is evaluated. 

Allaire [14] and Wang [15] independently applied the level-set methods for the 

topology optimisation of compliance minimisation problems. The idea is to move the 

design boundary represented by the level-set model according to its shape sensitivity 

in the decreasing direction of objective function. The Hamilton Jacobi equation is 

solved using an upwind scheme to find the new evolved level-set shape. The time step 

for time marching the HJ equation should satisfy the Courant-Friedrichs-Lewy (CFL) 

number criteria with respect to mesh size. As the level-set functions are evolved in 

time, their gradient changes from 1. This leads to inaccuracies in interface boundary 

and formation of grey regions in the design. To avoid this, their gradient is brought 

back to 1 by a process called re-initialisation.  
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 The HJ equation doesn’t have a capability to nucleate new holes in the material 

domain in two dimensions. So the final optimised shape obtained depends very much 

on the initial level-set function used. To alleviate this difficulty, a topology gradient (key 

concept of Bubble method) term is added to the HJ equation. The topology gradient 

can be defined as the measure of change in the objective function when an 

infinitesimal hole is inserted in the design domain. The level-set method is slightly 

more complicated than the density method and there are multiple ways to do each 

step of the optimisation process. A vast amount of research is currently taking place 

in this field.  

 For nucleating new holes in the material domain, the HJ equation in (2.2) is modified 

to have a topology derivative term in addition. The modified HJ equation is shown in 

Eqn 2.3 and it was suggested by Allaire [16] in 2005. He has tested this method for 

different 2D and 3D structural problems and also for mechanisms design. 

𝜕𝜓

𝜕𝑡
+ 𝑉. ∇𝜓 = −𝑤𝐺 

(2. 3) 

 
 

 

Figure 2-2 Level-set based Topology optimisation process flow chart 
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In the equation (2.3), ‘w’ is a weighting factor and ‘G’ is a topology derivative.  Different 

steps involved in the level-set based topology optimisation is given in Figure 2-2. For 

mapping the geometry and the level-set function to a mechanical model two different 

approaches are used: they are density method approach and extended finite element 

method (xFEM) approach. The density method like approach is also called an ersatz 

material mapping. Each step in the topology optimisation process could be carried out 

in multiple ways and each way has its own merits and demerits (refer to chapter 3.2). 

 Yamada [17] proposed a new level-set method wherein the level-sets are evolved 

using a Reaction Diffusion equation (Eqn 2.4) and the method is regularised using a 

fictitious interface energy. Unlike the HJ equation based level-set evolution, this 

method has the capability to nucleate new holes in the solid domain and the final 

optimised shapes obtained are smooth and has less dependency on the initial level-

set function.  

𝜕𝜓

𝜕𝑡
= −𝐾(𝜓) (−

𝜕𝐹

𝜕𝜓
− 𝜏∇2𝜓)    𝑖𝑛 𝐷 

𝜕𝜓

𝜕𝑛
= 0   𝑜𝑛 𝜕𝐷\𝜕𝐷𝑁 

 

𝜓 = 1   𝑜𝑛 𝜕𝐷𝑁 

 

(2. 4) 

 

 

Where K is a proportionality constant and ∂F/∂ is equivalent to the topological 

derivative. The final term of the equation (2.4) denotes the interfacial energy term. 

Note that a shape derivative is not used in this method so it is not considered as a 

pure level-set method by some researchers. Compared to the density method this 

converges slowly but it is more advantageous for fluid flow TO because the interface 

boundary can be crisply captured. By using the extended finite element method along 

with the level-set method, pressure diffusion across the solid walls can be avoided. 

Further, the no-slip boundary condition on the solid wall can also be effectively 

imposed. 
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2.2.3 Topological derivative method 

 The idea of this method is to predict the influence of introducing an infinitesimal hole 

at any point ‘x’ in the design domain on the objective function and use this as the driver 

for the generation of new holes. This method is also known as the “Bubble method” 

and Eschenauer first postulated this method [18]. Topological derivatives determine 

where to place new holes and to either modify the shape of the boundaries of existing 

holes, or to update the presence of holes element-wise. This is more like a shape 

optimisation method rather than a topology optimisation method. Amsutz [19] pointed 

out that for common choices of material properties the topological derivative 

corresponds to the standard density gradients. He also noticed that the results of the 

density gradient method and the topology gradient method are equal for suitably 

chosen penalisation factors. The critical review of this method and its strength and 

weakness in relation to other methods of optimisation are given in reference [20]. 

  

 

2.2.4 Phase field approaches 

 In this method, similar to the level-set method, the optimised topology is obtained 

through evolution of implicit functions. This method is in use, for tracking the interface 

of different materials and in crack propagation, since the 1960s. Unlike the level-set 

interface, here the interface has finite thickness. So the interface is “diffused” here. 

The equation used for the evolution of the implicit function is Allen–Cahn equation 

[21]. 

𝜕∅

𝜕𝑡
= 𝑀(∅)(𝜀∇2∅ − (

1

𝜀
) 𝑓′(∅)) 

(2. 5) 

 
 

where f() is an implicit function called a double well function and M is a mobility 

parameter. The speed of propagation of the interface is determined by the difference 

between two minimum values of the double well function which is determined by 

sensitivity analysis. This method doesn’t require the re-initialisation of the function as 

required by the level-set methods [22]. 

 This method has some similarity to the density methods in the sense that they directly 

act on the density variables. This method penalises intermediate densities by 

minimising a function which contains a double well function. Phase field methods have 
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slow convergence rate compared to other methods. The critical review of established 

topology optimisation methods was done by Rozvany in [23]. 

 

2.2.5 Evolutionary structural optimisation method (ESO) 

 This method was first proposed by Xie and Steven [24]; Based on the steps involved, 

this method may also be called ‘Sequential element rejections and admissions’ [23]. 

In this method, some finite changes are done on the shape/topology, on the basis of 

certain heuristic criteria, which may not be based on sensitivities. An appropriate 

‘criterion function’ (eg. Mises stress or energy density [23]) is calculated for each 

element and in each iteration some elements with the lowest criterion function value 

are eliminated. This procedure is repetitively carried out till convergence.  

 Along with element elimination, new elements could also be added on the cells where 

the criterion function is above a certain threshold value. This improved method is 

called bi-directional ESO or BESO method [25]. 

 

2.3 Optimisation algorithms  

  Topology optimisation problems can be classified as constrained optimisation 

problems. Governing partial differential equations and material volume constraints are 

the typical constraints specified during optimisation. The minimum of an unconstrained 

objective function is calculated from the condition that at the minimum the first order 

derivative of the objective function is equal to zero and second order derivative is 

positive. Similarly for a constrained objective function, at the minimum, the first order 

derivative of its Lagrangian is equal to zero.  

 In general, the Lagrangian for the constrained optimisation problem is defined as, 

𝐿(𝑥, 𝜆) = 𝑓(𝑥) − ∑ 𝜆𝑖
𝑖=1,..𝑛

𝑐𝑖(𝑥) 
(2. 6) 

 
 

 where f(x) is the objective function, c(x) is the constraint and  is the Lagrangian 

multiplier. If x* is the solution where the objective function f is minimum then it should 

satisfy the following condition. 
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0 = ∇𝑥𝐿(𝑥
∗, 𝜆∗) = ∇𝑓(𝑥∗) − ∑ 𝜆𝑖

∗

𝑖=1,..𝑛

∇𝑐𝑖(𝑥
∗) 

(2. 7) 

 
 

 Generally in a TO problem, the number of design variables solved for, is higher than 

the number of constraints. Hence for solving these type of problems, non-gradient 

based solvers are not suitable and they are prohibitively expensive. So gradient based 

non-linear programming methods are more widely used to solve these type of 

optimisation problems. Typically used optimisers are Sequential linear programming 

(SLP), Sequential quadratic programming (SQP), Optimality criteria method, Convex 

linearisation (CONLIN) and Method of Moving Asymptotes (MMA). Details of these 

optimiser algorithms are given in Chapter 3. 

 

2.4 Applications of the Density method 

2.4.1 Structural problems 

The numerical topology optimisation method was first invented for structural 

compliance minimisation problems. Different types of beams were considered, like the 

MBB beam, L beam with different loading conditions and supports. Later this 

optimisation technique was applied to many different fields such as structural 

dynamics problems [26] and compliant mechanism design [27]. Deaton and Grandhi 

[28] in their review article listed the application of each method of topology optimisation 

(Density, Level-set etc) to various fields.  

  

2.4.2 Fluid flow problems 

 Fluid optimisation problems were first solved by Borrvall and Petersson [3] wherein 

they used a fictitious porous term to optimise for Stokes flows. The porous term is 

modelled in terms of the impermeability factor () in such a way that in a solid region 

the impermeability factor takes a very high value and in a fluid region it takes value 

zero. Intermediate values of alpha are penalised by using a convex expression for it. 

 Olesen et al. [29] extended Borrvall’s work to optimise slightly higher Reynolds 

number Navier-Stokes flows. They have used Brinkmann’s or the porosity approach 

to represent and model the fluid flow. As per this model, fluid flow is modelled with an 

additional force term in the Navier-Stokes equation. 
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(. 𝑢) = 0 (2. 8) 

 

(𝑢.𝑢) = −𝑝 + . {µ{𝑢}} − 𝑢 (2. 9) 

 
 

here the ‘u’ represents the Brinkmann term. In order to suppress intermediate  

values, the following interpolation function is used. 

∝ () =∝𝑈+ (∝𝐿−∝𝑈)
1 + 𝑞

+ 𝑞
 

(2. 10) 

 
 

Olesen et al. used FEMLAB software to solve for the fluid problem and for computing 

the sensitivities. The FEMLAB results are called in Matlab along with the MMA 

optimiser to execute the topology optimisation iterations. This paper paved the way 

for the industrialisation of topology optimisation methodology to many diverse physics 

problems using the FEMLAB software. Deng [30] carried out the density based 

topology optimisation of unsteady NS flows. He has used a continuous adjoint method 

for sensitivity evaluation and demonstrated the methodology with relevant examples. 

 The TO of thermo-fluidic problems started with Dede [31], who optimised the liquid 

cooling channels of a rectangular domain with volumetric heat source. Combined 

minimum pressure loss and minimum thermal compliance is considered as the 

objective. The TO is carried out on COMSOL multi-physics package combined with a 

MMA optimiser. As material properties were not interpolated, the solid region created 

in the optimisation had zero or low thermal conductivity and the fluid region had high 

thermal conductivity. 

 Yoon [32] carried out the design of a heat dissipating structure subjected to forced 

convection and for the first time he interpolated the thermal conductivity and other 

relevant material properties with respect to design variables. Thereby the resulting 

solid regions had a non-zero thermal conductivity. Koga et al. [33] carried out a study 

similar to Dede [31], using their own FEM code and then validating the optimisation 

results with a 3D computation. Stokes equation is considered to define the fluid flow 

and material properties are interpolated. The mathematical expression of minimum 

flow compliance or minimum pressure loss objective and minimum thermal 
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compliance objective are given in Eqn. 2.11 and 2.12 respectively. The final objective 

for this study was combination of these two with some weighting factors. 

∅ =
1

2
µ∫𝑢.𝑢 𝑑Ω

Ω

+
1

2
∫∝ ()𝑢. 𝑢 𝑑Ω
Ω

−∫𝑓. 𝑢 𝑑Ω
Ω

 
(2. 11) 

 

Γ =
1

2
∫ [𝑘𝑇.𝑇 + 𝜌𝑚𝐶𝑝(𝑢.𝑇)]𝑑Ω
Ω

−∫𝑓𝑇𝑇 𝑑Ω
Ω

 
(2. 12) 

 
 

 Burger et al. [34] carried out the topological optimisation of positioning of high 

conductivity material in low conductivity material to maximise the overall thermal 

conductivity subjected to constraints on the percentage of high conductivity material 

used. For intermediate density penalisation, SIMP method was used. For sensitivity 

analysis the adjoint method was used. The MMA algorithm was used for optimisation 

and FVM was used for solving the heat conduction equations. The optimisation was 

carried out for different boundary conditions, thermal conductivity ratios and volumetric 

constraints. The results showed that the high conductivity material distribution 

resembles a tree structure with primary branches leading to the furthest corners. 

Van Oevelen et al. [35] applied the topology optimisation to the design of micro heat 

sinks for cooling a constant temperature heat source. Heat is extracted and removed 

from the source through convective heat transfer (by water) in the micro heat sink 

which is attached on the top of the source. The optimisation was done in a two 

dimensional context using Brinkmann’s approach. The design objective is to maximise 

the total heat transfer Q from the heat source to the heat sink. The governing equations 

are discretised using FV formulation. It is observed that, for the objective of maximising 

the heat transfer, the optimised heat sinks have a tree-like network of channels. 

 The first work on natural convection cooled heat sink was carried out by Alexandersen 

[36], [37]  who optimised heat sink designs for various Grashof numbers by fully 

solving the thermo-fluidic governing equations. This study also validated the obtained 

results through a CFD study.  Alexandersen [38] also optimised forced convective heat 

transfer problems, but they were simple and academic test cases in nature. Matsumori 

[39] designed liquid cooling channels for constant input power by introducing an 

additional equation to calculate the inlet pressure and that pressure was kept constant 

during TO.  He designed the channels for two types of heat sources namely 

temperature dependent heat sources and temperature independent heat sources.  
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JHK Haertel optimised the heat sink for minimum temperature objective for the 

prescribed pressure drop of horizontal flow forced convection. This 2D study was 

carried out using the density method in Comsol software [40]. Extending this work he 

has topologically optimised the airside surface of power plant condensers for fluid 

dynamically and thermally fully developed laminar flows in [41]. The condensers are 

additively manufactured with polymers containing thermally conducting metal 

filaments and the optimisation is conducted for varying exchanger thermal conductivity 

and flow pressure drops. It was found that optimised designs tend to require finer 

feature sizes with increasing polymer conductivities. 

Alberto [42] optimised the layout of highly conductive material embedded in a 

phase change material to maximise the performance of heat exchanger. He handled 

energy minimisation and time minimisation approaches and both of them converge to 

the same pareto front of results in 2D. But optimised designs in 3D had features which 

were not visible in 2D. He maximised the steadiness by optimising the highly 

conductive material layout and relaxing the discharge time. He observed that an 

increase in discharge time resulted in an increase of the steadiness. 

Alexanderson [43] designed passive coolers for light emitting diodes in horizontal 

and vertical orientations and compared their effectiveness with a lattice fin design and 

simple pin-fin design. From the optimisation study, he recommends not to have fins at 

the core, in order to achieve high velocity of natural convection and hence to have 

better cooling. He also suggests aerofoil shape for fin cross section, instead of circular 

section, to reduce drag and to increase the convection velocity. But he has not 

accounted for the radiative heat transfer and the flow is limited to laminar regime; 

turbulent flow is not considered. Zhou et al. [44] presented an industrial application of 

the TO for combined conductive and convective heat transfer problems. Flow solution 

is carried out in SIMULIA-Abaqus and optimisation is carried out by SIMULIA-Tosca 

and design dependent convection is modelled. The methodology is validated for 

different heat sink designs. 

C B Dilgen [45] presented a method to optimise turbulent flow problem using automatic 

differentiation to solve discrete adjoint system of RANS equations. He has compared 

the frozen turbulence model with a fully resolved k- turbulence model and S-A 

turbulence model. He has proved that automatic differentiation can be used to 

calculate exact sensitivities of 2D and 3D large scale turbulent flows. He has observed 
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that improved preconditioners are necessary for more robustness of the solution. 

Dbouk [46] did consolidated review of all the heat transfer related topology 

optimisation work done till 2016. He has classified the works based on type of problem 

handled, sensitivity evaluation type and TO method type.   

 One of the disadvantage of density based topology optimisation methods is that a no-

slip condition is not strictly imposed on the solid walls. So power dissipation computed 

is not very accurate. 

 

2.4.3 Multi-material optimisation problems 

 The simple topology optimisation technique considers two phases, namely material 

and void. Sigmund [6] extended the technique to optimise physics involving two 

different phase or two different materials, so in this case the optimisation domain will 

have material1, material2, and a void. He has modified the power law as follows, 

𝐸(𝜌) = 𝜌1
𝑝(𝜌2

𝑝𝐸1 + (1 − 𝜌2)
𝑃𝐸2) (2. 13) 

 
 

Where 1 and 2 are two design variables and E1 and E2 are material properties of 

material 1 and 2 respectively. The volume constraint of material 1 and 2 are given as, 

∑𝜌1
𝑒𝜌2

𝑒

𝑁

𝑒=1

𝑉𝑒 ≤ 𝑉1 

(2. 14) 

 

∑𝜌1
𝑒(1 − 𝜌2

𝑒

𝑁

𝑒=1

)𝑉𝑒 ≤ 𝑉2 

(2. 15) 

 

 

 

2.5 Applications of the Level-set method 

2.5.1 Structural problems 

Challis [47] has written a simple Matlab code to demonstrate the level-set 

based topology optimisation for compliance minimisation problems. The work is mostly 

based on Wang and Allaire’s algorithm but the topological derivative for nucleation of 

new holes is also implemented in the code. The LSF is evolved in time by solving the 
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HJ equation. This is a discrete level-set method where material density can take either 

 or 1 and hence the derivative of density distribution with respect to the level-set 

function is calculated through a variational problem instead of directly from the 

distribution. 

Liu et al. [48] implemented the level-set based topology optimisation 

formulation in FEMLAB. He solved the Navier’s equation of structural mechanics and 

the HJ equation in a coupled manner. An additional stabilizing diffusion term is added 

to the HJ equation as it is solved in a finite element method instead of an upwind finite 

difference method. A volume penalty parameter is added to the Lagrangian in order 

to satisfy the volume constraint. For the velocity extension purpose a radial basis 

function of few mesh cell width is used. The optimised solution had grey regions as 

the re-initialisation of LS was not carried out. 

 

  Kawamoto [49] has modelled a Reaction Diffusion (RD) equation based level-set TO 

in Comsol. The level-set function doesn’t require explicit re-initialisation as it was taken 

care of by an additional term present in the RD equation. The model used an ordinary 

differential equation to update the Lagrangian multiplier. The model was demonstrated 

for 2D and 3D compliance minimisation problems.  

 

2.5.2 Fluid flow problems 

Recently, Duan et al. [4] have applied a variational level-set method to the 

shape and topology optimisation of fluid flow problems. The method was 

demonstrated with two-dimensional examples and proposed a new evolution equation 

for the level-set function, in order to achieve a smooth evolution without re-

initialisation. Zhou and Li [50] have also applied the level-set method for the topology 

optimisation of steady-state Navier–Stokes flows in both two and three dimensions. 

The drawback of Duan and Zhou’s approach is that the domain needs to be re-meshed 

after the evolution of the level-set, which is computationally expensive.  

Challis and Guest [51] have applied the level-set based topology optimisation 

method with topology derivative for Stokes flows without the need of remeshing. Both 

the shape sensitivity and topology sensitivity of Stokes flow, are used in this level-set 

method. The topology derivative is used for new solid creation in the fluid domain. 

Kreissl [52] carried out the level-set based topology optimisation of fluid problems 
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using extended Finite element (xFEM) based geometry mapping. The results showed 

that the LS with xFEM doesn’t experience boundary resolution problems (grey cells) 

as did by the TO with Brinkmann’s approach. Further he also showed that, the solids 

created using Brinkmann’s approach has pressure diffusion within it, but that is absent 

in solids created using the LSM with xFEM approach. 

Deng carried out the level-set topology optimisation of steady Navier Stokes 

flow subjected to body forces [53] and also the optimisation of unsteady NS flows [54].  

He computed the shape sensitivity through the continuous adjoint method and the 

topology derivative through the asymptotic expansion method. He updated the level-

set function taking topology derivative as an additional source term in the HJ equation 

similar to Burger [55] and Challis [47] approach. The Lagrangian multiplier and the 

penalty factor are updated algebraically from a random initial guess and are not solved 

analytically. 

 

2.5.3 High Reynolds number flow problems 

 Because of the use of a porosity model for modelling solids, there is a limit on the 

Reynolds number of flow that can be optimised without any instability. Recently 

suitable models were developed to simulate turbulent topology optimisations. Othmer 

[5] has derived adjoint NS equations and the sensitivity for cost functions like viscous 

dissipation and flow uniformity at the outlet. The results are applicable to laminar flow 

and also to turbulent flow with frozen turbulence. Here frozen turbulence means the 

eddy viscosity is not computed but assumed constant throughout the flow domain.  

 Zymaris [56] derived the adjoint equations for Spallart-Almaras (SA) turbulence model 

and thereby enabled the calculation of shape sensitivity for turbulent flows. Papoutsis 

[57] and Kontoleontos [58] derived adjoint equations for Spallart-Almaras turbulence 

model for coupled NS and energy equations considering additional constraints. They 

considered surface integrated cost function namely minimum total pressure drop and 

temperature difference between inlet and outlet. Papoutsis validated and applied this 

model to industrial flow problems in [59]. 

 While Papoutsis and Kontolentis tested the derived equations for density based 

topology optimisation, Georgios [60] applied the equations for Level-set based 

topology optimisation for fluid flow problems.  
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 Yoon [61] demonstrated the TO of turbulent flow using SA turbulence model in the 

density method. He modified the SA equation to satisfy additional boundary conditions 

during topology optimisation. Similar to the Brinkmann term for penalising velocity, a 

penalising term for turbulence, (*t) is included in the SA equation to make the eddy 

viscosity zero on the wall region. The turbulence model implementation requires 

knowledge of nearest wall distance from the computational grid element. To calculate 

the wall distance, Eikonal equation is solved.  

It has to be noted that though, the turbulence model is modified to enforce the zero 

eddy viscosity in wall, the turbulence computation may not be accurate. For accurate 

turbulence calculation boundary layer mesh is necessary; since during TO the 

geometry is evolving, the boundary layer mesh should also evolve. This requires 

remeshing of the design domain after every iteration which is computationally 

expensive. 

 

2.5.4 Thermal problems 

Yamada [62] solved generic design dependent heat transfer problems (eg. 

Problem involving pressure loads) using the LSM with RD equation. This level-set 

method allows specifying the boundary conditions on the available level-set surfaces 

and it also allows the increase and decrease of the number of holes. The objective 

function is written as a sum of actual objective function and an interfacial energy term 

to regularise the optimisation.  

Yaji [63] applied the RD equation based level-set topology optimisation to 

coupled heat transfer and fluid flow optimisation problem similar to Koga [29] and 

Dede [27]. But his objective function is not combined minimum thermal compliance 

and minimum fluid power dissipation, instead maximum internal heat generation in the 

design domain. Instead of the inlet velocity boundary condition fixed pressure 

difference is imposed. They also proposed a Tikhonov based regularisation scheme 

that enables the qualitative control of the geometric complexity of the optimal 

configurations. By varying the regularisation parameter, optimised geometries with 

different levels of complexity are generated. One of the limitations of this work is that 

the solid and fluid are modelled through a porosity approach which has a pressure 

diffusion problem across the solid walls. 
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 Coffin [64], carried out the topology optimisation of cooling device by approximating 

convective fluxes through Newton’s Law of cooling using the LSM with xFEM. He has 

compared the results of LSM with xFEM with LSM with porosity approach and the 

Density method results.  He used an explicit feature size control method to prevent 

the formation of small geometries and to avoid the re-initialisation. The results 

obtained are better than the density method and LSM with porosity approach but for 

the convective flux modelling he recommends solving the entire fluid flow equations 

instead of using Newton’s law of cooling. Subsequently Coffin [65], solved natural 

convection TO problems by solving full flow equations using a LSM with xFEM 

approach. Coffin also optimised a 3D heat sink subjected to steady low Grashof 

number natural convection and observed that the optimisation of high Grashof number 

steady and all unsteady problems are highly computationally expensive. 

Yaji [66] presented a new TO method using a Lattice Boltzmann equation and its 

adjoint equation to optimise the heat exchange channels. He has demonstrated the 

method for two problems, one for pressure drop minimisation and the other for heat 

exchange maximisation. However, more details could be given about physical input 

values (velocity, pressure, temperature etc) considered in his results. 

2.5.5 Multi-material optimisation problems 

 MY Wang [7] extended the level-set method to multi-material optimisation problems. 

It requires ‘m’ level-set functions to represent a structure of ‘2m’ different material 

phases. The level-set function and Heaviside function are treated as vector quantities 

and each level-set function is evolved by solving a separate HJ equation. So the 

computation involves coupled solution of all the HJ equations. Material property at a 

point is interpolated between different materials properties as follows.  

𝐸(𝜌) = 𝐻(𝜓1)(𝐻(𝜓2)𝐸
1 + (1 − 𝐻(𝜓2))𝐸

2) (2. 16) 

 
 = [𝜓1, 𝜓1, . . 𝜓𝑚] 𝑎𝑛𝑑 𝐻(𝜓) = [𝐻(𝜓1), 𝐻(𝜓2), . . 𝐻(𝜓𝑚)] (2. 17) 

 
where E1 and E2 are Youngs modulus of two different materials and their 

corresponding Heaviside functions are H1 and H2. For the two material case, the 

possible combination values for H1 and H2 (denoted as [H1,H2]) are [1,1], [1,0], [0,1] 

and [0,0]. 
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 Chungang [67] extended the multi-material topology optimisation to heat conduction 

problems following MY.Wang’s work. He derived the Lagrange multipliers from the 

augmented Lagrangian equation. By solving these equations in coupled manner, 

multipliers are evaluated. Y Wang [68] devised a scheme for design of meta materials 

using multiphase level-sets. Using the method he has designed materials with 

negative Poisson’s ratio and negative thermal expansion coefficients. 

 

2.6 Applications of other TO methods 

 Li et al [69] designed heat conducting fields using the ESO method. Thermal 

conductivity of an individual finite element is considered as a design variable and 

discrete temperature sensitivity is used as a criterion function. Design is evolved by 

sequentially removing the element with most negative temperature sensitivity from the 

design domain.  

 Bornoff et al [70] proposed a new method for the heat sink design. The heat sink is 

designed by sequentially adding material at the maximum temperature region. This 

method is slightly similar to the ESO method; the difference is, instead of removing 

the material depending on a criterion function, material is sequentially added, in this 

method. The criterion function used here is temperature, where as in ESO generally 

temperature sensitivity is used as the criterion function. The performance of the 

designed heat sink is within 5% of the parametrically designed plate fin heat sink. 

Bornoff et al [71] carried out another study in which ‘thermal bottle neck’ number is 

used as a criterion function, and material is removed sequentially wherever the bottle 

neck number is lowest. Bottle neck number is the dot product of the heat flux and 

temperature gradient vectors and it identifies flow path that carry high heat with high 

resistance. 

 

2.7 Summary 

 This literature review shows that the Density method and Level-set method have been 

the most widely researched for the topology optimisation of fluid flow and heat transfer 

applications, while other methods have not developed to this stage. In spite of wide 

research, density and level-set methods have not developed to the stage of designing 
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industrial heat sinks and heat exchangers. TO is applied to the design of multi-material 

structures but it is still not applied to the design of multi-material heat sinks. So 

exploring topology optimisation for the design of multi-material heat sinks could be 

rewarding.  

 Going forward, algorithm of the density and level-set methods will be studied in detail 

and numerical modelling of simple fluid flow and heat transfer optimisation test cases 

will be carried out.  

 



 

48 
 

 

 

3 Theory of Topology Optimisation Methods 

 

 

 In the previous section, an overview of the TO, including different methods of TO and 

their applications to various fields were covered. In this chapter detailed algorithms for 

the Density method and Level-set method are presented. In this research work, finite 

element method (FEM) is used to solve the physics involved. Hence a brief 

introduction to FEM is also provided in this chapter. 

 

3.1 Density method 

 

3.1.1 Methodology 

In general, topology optimisation is an iterative optimisation process, where the 

objective and sensitivity are calculated by solving the physics of the problem through 

FE method and the optimisation is generally carried out through gradient based 

optimisers. In the density method, the element density ( is considered as a design 

variable and it is combined with a suitable parameters of the physical problem. For 

instance in structural problems, element density is combined with the Young’s 

modulus as, 

 

E() = pE0 (3. 1) 

 
 

in fluid flow problems it is combined with a material impermeabilty term as, 

()= p  (3. 2) 
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Where E is the elemental Young’s modulus which depends on the value of  E0 

denotes the material Young’s modulus and ‘p’ designates a penalisation factor. When 

the density variable  = 0, the phase is assimilated as void, while  = 1 indicates the 

presence of material. Meanwhile, during the optimisation process,  can take 

intermediate continuous values. These intermediate density values are penalised by 

taking p ≥1 and mostly p=3 is found to be the ideal value, to obtain just solid and void 

regions. Typically a topology optimisation problem will have an equality constraint 

(governing equation) and a non-equality constraint coming from the material volume 

constraint. Initially while starting the iterative solution, the material density of all the 

cells can be initialised to any value between 0 and 1. As the solution progresses, the 

cells falling under the optimum layout will have the density value of 1 and rest of the 

cells will have the value of 0.  

Sigmund published an educational article [10] in 2001, to explain the process 

of topology optimisation using the density method. The major steps involved in the TO 

are,  

1 Initialize the design variable (density) throughout the design domain. 

2 Solve for state variables by solving the physics in FEM. 

3 Evaluate the objective function and the sensitivity of objective function 

with respect to design variable. 

4 Update the design variables using optimiser. 

5 Repeat the process from step-2 to step-4 till convergence of the design 

variables. 

Typically convergence is decided based on the integrated difference in the 

design variable value for a range of consecutive iterations. Since gradient based 

optimisers are used the final solution obtained depends on the initial value. Hence the 

entire procedure needs to be repeated with different initial values of design variables 

to conclude that the solution has actually reached the global minimum and not a local 

minimum [72]. 

3.1.2 Penalisation technique 

 From the continuous design variable which can take values between 0 and 1, a 

discrete solution of design variable with either 0 or 1 value is obtained by penalising 
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the intermediate design variables. Power law or Solid Isotropic Material with 

Penalisation (SIMP) approach is commonly used for penalising the intermediate 

densities (Eqn 3.1). Power factor value p = 3 is usually considered as a good value for 

convergence of 0-1 solutions. For compliance minimisation problems, the optimisation 

with p=1 is convex in nature hence it is a good practice to start the optimisation with 

p=1 and gradually increasing to p=3. This approach is called continuation approach 

and it is used not only in compliance minimisation problems but in other physics 

optimisation also.  

 Stolpe and Svanberg [73] proposed an alternative interpolation or penalisation 

scheme (Eqn 3.3) known as the Rational Approximation of Material Properties 

(RAMP). A desirable feature of the RAMP model is that, unlike the SIMP, it has 

nonzero sensitivity at zero density (Figure 3-1). As a result, the RAMP material model 

has been shown to remedy some numerical difficulties in problems related to very low 

density values in the presence of design dependent loading. However this doesn’t 

seem to play a strong role for practical problems. 

𝐸(𝜌𝑖) =
𝜌𝑖

1 + 𝑞(1 − 𝜌𝑖)
𝐸𝑜 

(3. 3) 

 
 

 

Figure 3-1 Comparison of SIMP and RAMP interpolation functions 

 

where ‘q’ is the tuning parameter. For the fluid flow optimisation problems, Borrvall [3] 

proposed a convex interpolation formula for impermeability factor in terms of a 

tuning parameter ‘q’. He has proven that when  is a linear function, the optimal 

distribution is fully discrete valued. Following this, Olesen suggested an interpolation 

formula for Navier-Stokes flows, which is given in Eqn (3.4). For large values of ‘q’ the 
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interpolation is almost linear and hence a discrete interface is expected. The 

interpolation function is plotted for different values of q in Figure 3-2. 

𝛼(𝜌𝑖) = 𝛼𝑚𝑖𝑛 + (𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛)
𝑞[1 − 𝜌𝑖]

𝑞 + 𝜌𝑖
 

(3. 4) 

 
 

 

Figure 3-2 Convex interpolation function for fluid flow 

 

3.1.3 Sensitivity evaluation 

The derivative of the objective function with respect to design variables (density 

vector) is required to march towards the minimum objective value. The objective 

function will be an implicit function of the solution vector, so to find the sensitivity of 

the problem, the physics has to be solved as many times as the size of the design 

variable vector. To avoid this, the adjoint sensitivity method is evolved, which only 

requires solving the problem physics once and solving the adjoint problem once.  

For structural mechanics problem, sensitivity of compliance ‘c’ with respect to 

design variable ‘’ can be calculated as, 

𝑑𝑐

𝑑𝜌𝑖
=

𝜕𝑐

𝜕𝑢
 
𝑑𝑢

𝑑𝜌𝑖
  𝑤ℎ𝑒𝑟𝑒    𝑐 = 𝑢𝑇𝐾𝑢   (3. 5) 

 
Where ‘u’ is the state variable and ‘K’ is the stiffness matrix. Evaluation of state 

variable’s derivative with respect to each design variable, calls for an individual 

solution of physics. Hence this step has to be avoided and this is possible if we 

calculate a variable  which satisfies the following relation. 

𝐾𝑇𝜆 = −(
𝜕𝑐

𝜕𝑢
)𝑇 

(3. 6) 
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Where  is the adjoint variable or Lagrange multiplier. The above equation is solved 

to calculate the adjoint variable and using this sensitivity (Eqn 3.5) is calculated as 

given below. 

𝜕𝑐

𝜕𝜌
= 𝜆𝑇

𝜕𝐾

𝜕𝜌
𝑈 

(3. 7) 

 
 

 Additional information about the adjoint sensitivity method is presented in section 

3.2.2. Van Kuelen et al [74] conducted a review of different methods for structural 

sensitivity calculation and Tortorelli [75] has written a review article on sensitivity 

analysis wherein he has given simple tutorials on sensitivity evaluation which can be 

extended to complex systems. 

 

3.1.4 Regularisation 

The process of ensuring that the stable solution is reached through optimisation 

by means of filtering, is called regularisation. In order to ensure the existence of a 

solution to the problem, some sort of restriction or filtering technique is introduced. 

Numerous previous applications have proved that the filtering produces mesh 

independent designs in practice. The sensitivity filter is a popular filter used in the 

density method, this modifies the sensitivity of grid cell as follows. 

𝜕𝑐

𝜕
= 

1

∑ 𝐻𝑓
𝑁
𝑓=1

∑𝐻𝑓𝑓
𝜕𝑐

𝜕
𝑓

𝑁

𝑓=1

 

(3. 8) 

 

 

Where ‘Hf’ is a convolution operator or weight factor, which decays linearly from the 

centre of the point to chosen radius of averaging ‘r’.  There are many other filtering 

techniques like perimeter filtering, density filtering etc.  Reference [72] gives more 

details about these techniques. 

Another popular problem faced by the density method is an alternating solid 

and void pattern found in some cells during the iteration process. This phenomenon 

is known as the ‘Checker board’ problem. The checker-boarding is merely a 

discretisation error of the FE method, which has nothing to do with the SIMP. This 

error results in an overestimation of the stiffness. A highly efficient but partially 

heuristic solution to this problem is the filtering method, suggested by Sigmund [72], 
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[10]. The sensitivity filter is the popular filter used to prevent checker-boarding but the 

disadvantage of this is it leaves a grey zone of width equal to the filtering radius. An 

alternative to sensitivity filtering is density based filtering. Bruns [76] suggested a 

density filter, whose principle is similar to the weighted averaging of density in a 

neighbourhood of radius r. 

  

Filtered density = 
∑ 𝜌𝑗𝜔𝑗𝑗

∑ 𝜔𝑗𝑗
, where j = max (1 −

(𝑥𝑗−𝑥𝑖)
2+(𝑦𝑗−𝑦𝑖)

2

𝑟
, 0) 

(3. 9) 

 
Where wj is weightage, xi, yi are centroidal coordinates of concerned elements, and xj, 

yj are coordinates of surrounding element and ‘r’ is the filter radius. This filter gives 

weightage inversely proportional to the distance from the concerned cell. If the cell is 

outside the filter radius it gets zero weightage. Alexanderson [36] used this filter to get 

rid of small features which are created during 3D coupled thermal and fluid 

optimisation problems. 

  In order to avoid the grey zone associated with filtering, projection schemes (Guest 

[77]) have been proposed. These methods operate on 3 fields namely design field, 

filtered field and projection field. The latter field is obtained by smoothed Heaviside 

projection. An extension of this method is called robust optimisation, wherein minimum 

and maximum length scales are imposed on the optimised shape. 

 

 

3.2 Level-set method 

 

  A Level-set of a differentiable function ‘f’ corresponding to a real value ‘c’ is the 

set of points which satisfies the condition f=c. For a quadratic function in 2D, level-set 

is a plane curve and in 3D it is a level surface. For example, if the level-set function is 

f=x2+y2 and the real value of ‘c’ equals to 4, then the level-set is a circle with radius 2 

(Figure 3-3).  

 The level-set field can either be mapped on to material properties or a geometric 

interface description between solid and void. The values taken by the level-set 

functionon different material regions is given below. 
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𝜓 = {

= 0 ∀𝑥 ∈ 𝜕Ω (boundary)

> 0 ∀𝑥 ∈ Ω+ (𝑠𝑜𝑙𝑖𝑑 𝑟𝑒𝑔𝑖𝑜𝑛)
< 0 ∀𝑥 ∈ Ω− (𝑣𝑜𝑖𝑑 𝑟𝑒𝑔𝑖𝑜𝑛)

 

(3. 10) 

 

 

 

 

Figure 3-3 Level-set function boundary (left) and full function (right) 

The Signed Distance Function (Illustrated in Figure 3-4) is a commonly used level-set 

function. This function measures the Euclidean distance of a given point relative to a 

boundary and it takes positive values if the point is inside the boundary and takes 

negative values if the point is outside the boundary (or vice versa).  The signed 

distance function and its one particular level-set curve, ‘a disk’ are shown in Figure 3-

4. Radial basis function is another function which is also used as a level-set function. 

Evolution of the geometry interface (represented by level-set function) is obtained by 

solving the Hamilton-Jacobi equation. The underlying principle of HJ equation is that 

material derivative (w.r.t. time) of the level-set function is zero. 

𝜕𝜓

𝜕𝑡
+ 𝑉. ∇𝜓 = 0 

(3. 11) 

 
Where V is the velocity with which the level-set is advected and the normal vector of 

level-set function is,  

𝑛 = −
∇𝜓

|∇𝜓|
 

(3. 12) 

 
where ∇𝜓 is the gradient of the level-set function and |∇𝜓 | is its magnitude and ‘n’ is 

the normal vector.  Substituting the value of 𝛻𝜓 in equation (3.11), the HJ equation 

becomes 



 

55 
 

 

 

Figure 3-4 Signed distance function (red cone) of a disk (grey colour) 

 

𝜕𝜓

𝜕𝑡
− 𝑉. 𝑛|∇𝜓| = 0 

(3. 13) 

 
 

𝜕𝜓

𝜕𝑡
− 𝑉𝑛|∇𝜓| = 0 

(3. 14) 

 
 

where Vn is the normal velocity of the level-set curve with which it propagates. 

Typically the velocity of propagation Vn, is found through shape sensitivity analysis. 

 

Figure 3-5 Design domain and the level-set model 

  Typical procedure followed in the level-set based topology optimisation is given 

below. 
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1. Mesh the initial structure. 

2. Initialize the level-set function to a signed distance function. 

3. Map the positive and negative level-set values to the parameters of the 

physics. (Eg. Youngs modulus, Material conductivity, etc.) 

4. Repeat until convergence: 

(a) Calculate the solution to the governing equation for the current level-set 

domain. 

(b) Calculate the shape sensitivity and topological sensitivity based on the 

solution. 

(c) Evolve the level-set function using the HJ equation to find a new shape. 

(d) Reinitialize the level-set function to an approximate signed distance 

function when necessary (typically after every 5 iterations). 

 

3.2.1 Geometry mapping 

The evolved level-set geometry has to be mapped on to the finite element 

mesh. This can be done by 3 different methods, namely i) Conformal discretisation, ii) 

Density based mapping and iii) Immersed boundary technique or XFEM based 

mapping. In conformal meshing, each time the level-set function is evolved the 

material domain is remeshed and void region is excluded from computation. 

Remeshing is expensive but enables the interface geometry to be very crisply 

captured and excluding the void region from computation might save some 

computational cost.  

The density based mapping is similar to the density method where parameters 

of the physics are modelled as a function of level-set function with the help of a 

Heaviside function. Heaviside function is a unit step function which takes zero value 

when the LSF is negative and unit value when the LSF is positive. An example of 

density mapping is given in Equation (3.15). 

E()=(Eo-Emin)H()+Emin 
 

(3. 15) 

 
In the material domain, when H value is one, Youngs modulus becomes Eo and in the 

void region where H value is zero,Youngs modulus is equal to Emin. A polynomial 

expression is used for the Heaviside function, so that a finite derivative exists at the 
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boundary. The derivative of the Heaviside function is a delta function and the 

expressions for Heaviside and delta functions are given below. 

𝐻(𝜓) =  
1

2
+
15

16
(
𝜓

ℎ
) −

5

8
(
𝜓

ℎ
)3 +

3

16
(
𝜓

ℎ
)5 

(3. 16) 

 
 

𝛿(𝜓) =
15

16ℎ
(1 − (

𝜓

ℎ
)2)2 

(3. 17) 

 
 

The material domain integration and boundary integrations can be calculated using 

the below formulas which use Heaviside and delta functions. 

∫𝑓(𝑥)𝑑𝑆 = ∫𝑓(𝑥)𝐻(𝜓)𝑑Ω
Ω𝑆

 
(3. 18) 

 
 

∫ 𝑓(𝑥)𝑑Γ = ∫𝑓(𝑥)𝛿(𝜓)|∇𝜓|𝑑Ω
ΩΓ

 
(3. 19) 

 
 

Like the density method, density mapping method of level-set TO also has grey 

regions in the optimised geometry. 

 

 EXtended FEM (XFEM) is a technique developed for computing crack propagation in 

materials under loading. In this method, an additional ‘enrichment’ term is added to 

the finite element shape function, in order to predict these discontinuities. Suitable 

enrichment functions are available to predict the growth of a crack and movement of 

an interface between two materials. This enrichment function avoids the need for 

remeshing the region to capture these discontinuities. Further, the boundary 

conditions at the material interface, like the no-slip condition on a solid-wall, can be 

effectively imposed in this mapping method. Developing an XFEM solver is difficult 

and time consuming. 

 

3.2.2 Adjoint method for topology optimisation 

The adjoint method stems from the mathematical theory of ‘Functional 

analysis’. In the field of aeronautical CFD, Jameson pioneered the use of the adjoint 

method for optimal aero shape design [78].  Typically in engineering optimisation 

problems, a large number of design variables are involved and this is proportional to 

the mesh size of FEM. To calculate the sensitivity of all these design variables (say n) 
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by means of the finite difference method, n+1 simulations will be required. This is 

highly expensive, but in the adjoint method only 2 simulations are required to find the 

sensitivities irrespective of the number of design variables. Because of this significant 

advantage, this method is increasingly used in engineering optimisation problems [79].  

 A small recap is provided of some of the Functional analysis terminologies here.  

Banach space: Normed space, note norm can be defined in any fashion. 

Hilbert space: Complete inner product space. 

Every inner product space is a normed space; Every Hilbert space is a Banach space, 

but the converse need not be true. 

Lebesgue space: Function space defined using natural generalisation of ‘p’ norm for 

finite dimensional vector spaces. 

Sobolev space: Vector function space of weak form solutions. 

Frechet derivative: Strong derivative; generalisation of the gradient of vector space. 

Usual derivative is known as the Gateaux derivative. 

 

 Suppose that the objective function, F= gTu and ‘u’ is the state variable which satisfies 

the equilibrium equation, Au =f. Then as per adjoint theory, there exists an adjoint 

variable ‘v’ such that, F= vTf and it satisfies the equation, ATv=g. The adjoint problem 

is also known as the dual problem.  

 Depending on whether the adjoint form is calculated using an analytical form of 

governing equation or using a discretised form of the governing equations, it is 

classified as a continuous adjoint method or discrete adjoint method.  

For homogenous governing equations with homogeneous boundary conditions, 

the adjoint equation can be calculated as below. Let the notation (V,U) denote the 

integral inner product over some domain Ω. 

(V,U) = ∫ 𝑉𝑇𝑈𝑑Ω
Ω

 (3. 20) 

 
Then the adjoint operator L*, can be calculated through 
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(V,LU)= (L*V,U) 
 

(3. 21) 

 
Or the more general form for problem with homogeneous boundary condition, 

(V,LU)Ω+(C*V,BU)∂ Ω = (L*V,U) Ω + (B*V,CU) ∂ Ω 
 

(3. 22) 

 
where LU=f is the equilibrium equation for the primal problem. By performing the inner 

product integration of LU with V, the governing equation for the adjoint variable ‘v’ can 

be found. It is worth mentioning that, the Laplacian problems are mostly self-adjoint; 

that is the state variable is equal to the adjoint variable. This simplifies the shape 

sensitivity calculation very much. For structural compliance minimisation problems the 

shape sensitivity is equal to negative of structural compliance and for Stokes flow for 

viscous dissipation minimisation problem the shape sensitivity is equal to negative of 

viscous dissipation.  

 

 Generally, shape sensitivity is calculated from the augmented Lagrangian of a given 

problem (section 3.2.3). Typically it will be of the form, 

F’(Ω)(ϴ)=∫ vϴ. nds
Γ𝑁

 (3. 23) 

 
making use of ‘v’ from the above equation, the ‘Vn’ of the HJ equation can be 

calculated as, 

Vn =  −v +   −  (∫𝐻(𝜓)𝑑
Ω

Ω −  Volume_req) 

 

(3. 24) 

 

where  and  are Lagrange multiplier and area penalty factor respectively. 

 Some of the objective functions involve only surface integration over the boundaries 

of the domain rather than volume integration. For example, the total pressure loss in 

a diffuser only involves surface integration of total pressure at the boundaries. These 

objectives influence the adjoint equation system only in the adjoint boundary condition. 

The objective function involving volume integration will affect the adjoint equation 

meaning objective related terms will be present in the adjoint equation itself. Adjoint 

analysis is also useful to find topological sensitivity and the details are given in section 

3.2.4. 
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3.2.3 Shape sensitivity evaluation 

 The shape derivative of the objective function (F(Ω)) is a directional derivative of the 

objective function under some small perturbation of the design boundary (∂Ω). It 

evaluates the change in objective function for a small change in the design boundary 

[80]. 

 
 The shape derivative or sensitivity indicates the velocity with which the level-set 

boundary needs to be evolved. It is like steepest descent direction of the optimisation 

problem. The shape sensitivity is calculated from the augmented Lagrangian of a 

given problem. The augmented Lagrangian includes objective function and constraints 

as given in Eqn (3.25).  

𝐿 = 𝐹(𝑥) + 𝜆(𝑉 − 𝑉𝑟𝑒𝑞)  +
1

2Λ
[𝑉 − 𝑉𝑟𝑒𝑞]

2 
(3. 25) 

 

Lagrangian also includes a penalty term ‘’ which accounts for the difference in value 

of the initialised material volume and the required material volume. The Lagrange 

multiplier takes the following final form, 

𝜆 = −
∫ 𝑣𝑑𝑠
𝜕Ω

∫ 1𝑑𝑠
𝜕Ω

 

(3. 26) 

 
 

 The shape derivative of the volume constraint can be calculated and its value is unity. 

So the normal velocity for evolving the level-set becomes, 

𝑉𝑛 = 𝐹′(𝑥) + 𝜆 +
1

Λ
[𝑉 − 𝑉𝑟𝑒𝑞] 

(3. 27) 

 
  

Shape Sensitivity of Laplacian Equation: 

 

Let the objective function be, 

F(Ω)= ∫ 𝑗(𝑢)𝑑𝑥 + ∫ 𝑙(𝑢)𝑑𝑠
𝜕ΩΩ

 

 

(3. 28) 

 
where ‘j’ is a volume integrated objective and ‘l’ is a surface integrated objective. 

Then the shape sensitivity will be of the form, 

F’(Ω)(ϴ)=∫ vϴ. nds
Γ𝑁

 

 

(3. 29) 
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Suppose the governing equation is a Laplacian, as in the case of a structural 

mechanics problem,  

−∇.Ae(u) = f (3. 30) 

 

Boundary conditions are,       𝐴𝑒(𝑢)𝑛 = 𝑔   𝑜𝑛 Γ𝑁 (3. 31) 

 

𝑢 = 0  𝑜𝑛 Γ𝐷 (3. 32) 

 
where ‘e(u)’ is Strain, ‘u’ is displacement and ‘A’ is Young’s modulus. 

Then the corresponding adjoint equations [14] are, 

 

−∇. Ae(p) = −j′(u) (3. 33) 

 
𝐴𝑒(𝑝)𝑛 = −𝑙′(𝑢)   𝑜𝑛 Γ𝑁 (3. 34) 

 

𝑝 = 0  𝑜𝑛 Γ𝐷 (3. 35) 

 
The shape derivative is, evaluated from the Frechet derivative of the objective 

function. 

 

𝐹′(Ω) =  ∫ (𝑗(𝑢) + 𝐴𝑒(𝑢). 𝑒(𝑝) − 𝑓. 𝑝 −
𝜕𝑔. 𝑝

𝜕𝑛
− 𝐻𝑔. 𝑝)ϴ. nds

Γ𝑁

+ ∫ (𝑗(𝑢) − 𝐴𝑒(𝑢). 𝑒(𝑝))ϴ. nds + 
Γ𝐷

∫ (
𝜕𝑙(𝑢)

𝜕𝑛
+ 𝐻𝑙(𝑢))ϴ. nds 

𝜕Ω

 

(3. 36) 

 

 

Where ‘H’ is curvature term equal to .n 

 

 The shape derivative expression has 3 terms, the first one for the volume objective 

with Neuman type boundary condition the second term for the volume objective with 

Dirichlet type boundary condition and the third term accounting for the boundary 

objective function. 

 For compliance minimisation problem with a boundary traction load, the body 

force f is zero. Further this is a self adjoint problem with p=-u, and ϴ. n = 0 on D and 

on 𝜕Ω where g 0 (Figure 3-6). Then the shape sensitivity equation (3.36) simplifies 

to, 
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𝐹′(Ω) =  ∫ [2 (𝑓. 𝑢 +
𝜕𝑔. 𝑢

𝜕𝑛
+ 𝐻𝑔. 𝑢) − 𝐴𝑒(𝑢). 𝑒(𝑢)]ϴ. nds + ∫ (𝐴𝑒(𝑢). 𝑒(𝑢))ϴ. nds 

Γ𝐷Γ𝑁

+∫ [2(𝑓. 𝑢 +
𝜕𝑔. 𝑢

𝜕𝑛
+ 𝐻𝑔. 𝑢) − 𝐴𝑒(𝑢). 𝑒(𝑢)]ϴ. nds 

Γ𝑜

  

(3. 37) 

 

 

 

 

Figure 3-6 Cantilever problem with boundary conditions 

where Neumann and Dirichlet boundary integral terms vanish and traction load ‘g’ is 

zero on the free boundary. This gives, 

𝐹′(Ω) =  ∫ (−𝐴𝑒(𝑢). 𝑒(𝑢))ϴ. nds 
Γ𝑜

 
(3. 38) 

 
 

If volume force ‘f’ is present then shape sensitivity is, 

𝐹′(Ω) =  ∫ (2(𝑓. 𝑢) − 𝐴𝑒(𝑢). 𝑒(𝑢))ϴ. nds 
Γ𝑜

 
(3. 39) 

 
 

where o is a traction free boundary. 

 For the conductive tree optimisation problem, if volumetric heat source is 

applied, then f 0. For this self adjoint problem (applying ϴ. n = 0 on D and N) the 

shape sensitivity is, 

𝐹′(Ω) =  ∫ (2(𝑓. 𝑇) − 𝐴(∇𝑇). (∇𝑇)𝑇)ϴ. nds 
Γ𝑜

 
(3. 40) 

 
 

Note, both state and adjoint variables are represented by ‘T’, the temperature. The 

level-sets have to be propagated in the decreasing direction of objective function, 

which is found to be equal to negative of the shape derivative.  

 

 

u=0
q=0

D N

O

g

g=0



 

63 
 

3.2.4 Topological sensitivity evaluation 

Generally, engineering optimisation problems will have more than one local 

optimum in the solution domain. The optimiser needs to be flexible enough to search 

all possible topologies, to find the globally optimum shape from the set of available 

optimum shapes. The shape sensitivity based level-set evaluation of the HJ equation, 

can only vary a solid region boundary but cannot create a void region inside the solid 

region. Hence, the optimised shape obtained will depend on the initial distribution of 

level-sets. To enable the hole/void nucleation inside the solid region, the HJ equation 

should also have a topology gradient term. 

The topological sensitivity measures the change in objective function for the 

introduction of an infinitesimal hole in the material domain. It is evaluated through the 

topological asymptote method in which the objective function is expanded in a series, 

as given in Eqn (3.41). 

  

𝐹(Ω𝑟) = 𝐹(Ω) + 𝑓(𝜀)𝐷𝑇𝐹(𝑥𝑜) + 𝑜(𝑓(𝜀)) (3. 41) 

 

where, 𝐷𝑇𝐹(𝑥𝑜) is the topology derivative and ‘’ is the hole radius. The topological 

derivative value is very specific to the objective function, state equations and the 

boundary condition imposed on the boundary of a new hole. The topology derivative 

of a simple compliance minimisation problem is given as [16], 

 

𝑔 =  { 

𝜋(𝜆1 + 2𝜇1)(4𝜇1𝑆𝐸 + (𝜆1 − 𝜇1)𝑡𝑟𝑎𝑐𝑒(𝜎)𝑡𝑟𝑎𝑐𝑒(𝜖)

2𝜇1(𝜆1 + 𝜇1)
+ 𝜆(−𝜋)            𝑖𝑓 𝜓 > 0 (𝑠𝑜𝑙𝑖𝑑)

0                                                             𝑖𝑓      𝜓 < 0 (𝑣𝑜𝑖𝑑)

 

(3. 42) 

 

 

where  and  are Lame’s constants, ‘SE’ is the strain energy and ‘trace’ stands for 

the trace of a matrix. In this problem, a new hole boundary has a Neuman boundary 

condition. During optimisation, topology sensitivity of the Lagrangian function has to 

be used. The Lagrangian is equal to the sum of the objective function, volume 

constraint and other constraints. The topology sensitivity of the volume constraint is 

given as 

 

DT V (x) = −|ω| 

 

(3. 43) 
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where  is the volume of the inserted hole. 

 

 Allaire [16] suggested that alternating the evolution of level-sets based on shape 

derivative and topology derivative will work well to obtain the global optimum. The HJ 

equation with both shape and topology derivative is given below.  

 

𝜕𝜓

𝜕𝑡
+ 𝑉. ∇𝜓 = −𝑤𝐺 

(3. 44) 

 

Where ‘G’ is the topological sensitivity and ‘w’ is a positive parameter indicating the 

weightage of topology derivative.  Allaire also recommended, to do one topology 

derivative based iteration for every 5 iterations with shape derivative, to obtain better 

results. 

 Challis [47] in her Matlab code, simultaneously used both the shape and topology 

derivative terms for the level-set advection. Researchers observed that more frequent 

nucleation of holes will slow down the convergence and the solution may lead to local 

minima. 

 Topological derivative, in the case of fluid optimisation problems represents inserting 

an obstacle (solid) in the design domain. Generally, if only, the change in objective 

function is negative, then a hole will be introduced in the material domain.  

 Topological derivative for Stokes flow is evaluated by Guillaume [81] through 

asymptotic expansion method and the same for Navier-Stokes flow is evaluated by 

Amstutz [82], for different objective functions. Alternatively by using augmented 

Lagrangian and adjoint equations, Othmer [5] evaluated the topological derivative of 

the ducted flows. The duct flow topology derivative is a function of state variables and 

adjoint variables. By solving the state equations and adjoint equations topological 

derivative can be evaluated (Eqn. 3.45).  

 

𝜕𝐿

𝜕𝛼
= (𝑢.𝑤) ∗ 𝑉𝑜𝑙 

(3. 45) 

 

where ‘u’ and ‘w’ are state and adjoint velocity vectors and ‘Vol’ is the volume of hole 

inserted. Topological derivative for 2D NS equation is, 

𝑑𝑇𝐹(Ω) = 4𝜋𝜌𝜇(𝑢. 𝑤) + 𝑑𝑇F(Ω) − (λ − Λ ∗ Vol. Difference)𝑑𝑇𝑉(Ω) (3. 46) 
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where the second term on the RHS accounts for the topological derivative of objective 

function and third term accounts for the topological derivative due to difference in 

volume between the present material volume to the required material volume. 

Substituting the topological derivative for the viscous dissipation objective function, in 

Eqn. 3.46, a complete expression for the topology derivative is obtained and it is 

shown in Eqn. (3.47) [53]. 

 

𝑑𝑇𝐹(Ω) = 4𝜋𝜌𝜇𝑢.𝑤 + 4𝜋𝜌𝜇𝑢. 𝑢 + 𝜋[λ − Λ(Vol. Difference)] (3. 47) 

 

 

3.2.5 Solving the Hamilton-Jacobi equation 

Generally, the HJ equation (Eqn 3.14) is solved using a finite difference 

method. Since the HJ equation is hyperbolic in nature, upwind differencing schemes 

are used to solve it. The explicit scheme used for time marching is given below. 

𝜓𝑖𝑗𝑘
𝑛+1 = 𝜓𝑖𝑗𝑘

𝑛 − Δ𝑡[max(𝑉𝑛𝑖𝑗 , 0) ∇
+ +min(𝑉𝑛𝑖𝑗, 0) ∇

−] (3. 48) 

 

Where superscript ‘n’ denotes the time level and subscript i,j,k denotes the mesh node 

numbering in x, y and z directions. 

∇+= [max (𝐷𝑖𝑗𝑘
−𝑥, 0)2 +min (𝐷𝑖𝑗𝑘

+𝑥 , 0)2 +max (𝐷𝑖𝑗𝑘
−𝑦
, 0)2 +min (𝐷𝑖𝑗𝑘

+𝑦
, 0)2

+max (𝐷𝑖𝑗𝑘
−𝑧 , 0)2 +min (𝐷𝑖𝑗𝑘

+𝑧 , 0)2 ]1/2 

(3. 49) 

 

 

∇−= [max (𝐷𝑖𝑗𝑘
+𝑥, 0)2 +min (𝐷𝑖𝑗𝑘

−𝑥 , 0)2 +max (𝐷𝑖𝑗𝑘
+𝑦
, 0)2 +min (𝐷𝑖𝑗𝑘

−𝑦
, 0)2

+max (𝐷𝑖𝑗𝑘
+𝑧 , 0)2 +min (𝐷𝑖𝑗𝑘

−𝑧 , 0)2]1/2 

(3. 50) 

 

 

𝐷𝑖𝑗𝑘
+𝑥: 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑥 

𝐷𝑖𝑗𝑘
−𝑥: 𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑥 

The formula for backward and forward difference are given in Eqn. 3.55 to 3.60. The 

time step should satisfy the CFL criteria given below. 

Δ𝑡 ≤
ℎ

max |𝑉𝑛𝑖𝑗𝑘|
 

(3. 51) 
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The level-set () takes Neumann boundary condition on the boundaries.  

Xing [83] solved the HJ equation in FE formulation without switching to FD method 

and without adding diffusion terms to the HJ equation. He has used the stabilised FEM 

(Streamline Diffusion FEM) to solve the HJ equation. He also reinitialized the level-set 

function by solving the Eikonal equation and this is also solved through SDFEM. While 

solving the Eikonal equation, an additional diffusion term is added, to improve the 

stability near the boundary. The accuracy of FEM method is compared with the FDM 

method and observed that FEM is comparable to accuracy of first order FDM methods. 

He pointed out that adding diffusion terms to the HJ equation causes too much 

dissipation in the cross wind direction. 

 

3.2.6 Re-initialisation methods 

  Typically signed distance functions are used to represent level-set function. The 

gradient of this function is 1. But when the level-set boundary is updated during the 

optimisation the gradient of the SDF changes from 1, it could become either steep or 

very flat. From the steep or flat function obtaining the material boundary (zero level-

set function) could be erroneous, hence the SDF needs to be re-initialised frequently 

in order to ensure its gradient lies close to 1. The frequent re-initialisation also has a 

disadvantage; it discourages the nucleation of new holes in the material domain. 

  The Eikonal equation (3.51) is solved to re-initialise the level-set function [84]. The 

unsteady equation is time marched till steady state is obtained, the steady state 

ensures the gradient of level-set equals to one. 

𝜕𝜓

𝜕𝑡
+ 𝑤. ∇𝜓 = 𝑆(𝜓𝑜) 

(3. 52) 

 

𝑤 = 𝑆(𝜓𝑜)
∇𝜓

|∇𝜓|
 

(3. 53) 

 

 

where S is smoothed sign function. 

𝑆()𝑖,𝑗 =

𝑖,𝑗

√
𝑖,𝑗
2 + ((

𝑎 + 𝑏
2 )2 + (

𝑐 + 𝑑
2 )2 + (

𝑒 + 𝑓
2 )2) ∗ ∆𝑥2 + 𝜀

 
(3. 54) 
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Gradients calculated through forward and backward difference formulas are used to 

solve the equation. Difference formula used for time marching is given below. 

𝑎 = 𝐷𝑥
−

𝑖𝑗𝑘
=

𝑖,𝑗𝑘

− 
𝑖−1,𝑗𝑘

∆𝑥
 

(3. 55) 

 

𝑏 = 𝐷𝑥
+

𝑖𝑗𝑘
=

𝑖+1,𝑗𝑘

− 
𝑖,𝑗𝑘

∆𝑥
 

(3. 56) 

 

𝑐 = 𝐷𝑦
−

𝑖𝑗𝑘
=

𝑖𝑘,𝑗

− 
𝑖𝑘,𝑗−1

∆𝑦
 

(3. 57) 

 

𝑑 = 𝐷𝑦
+

𝑖𝑗𝑘
=

𝑖𝑘,𝑗+1

− 
𝑖𝑘,𝑗

∆𝑦
 

(3. 58) 

 

𝑒 = 𝐷𝑧
−

𝑖𝑗𝑘
=

𝑖𝑗,𝑘

− 
𝑖𝑗,𝑘−1

∆𝑧
 

(3. 59) 

𝑓 = 𝐷𝑧
+

𝑖𝑗𝑘
=

𝑖𝑗,𝑘+1

− 
𝑖𝑗,𝑘

∆𝑧
 

(3. 60) 

Δ𝑡 = 0.2 ∗ min (∆𝑥, ∆𝑦, ∆𝑧)/max (𝑎𝑏𝑠(𝑆)) (3. 61) 


𝑖,𝑗
𝑁+1 = 

𝑖,𝑗
𝑁 − Δ𝑡([max(𝑆, 0) ∗ ∇+ +min(𝑆, 0) ∗ ∇−] − 𝑆)  (3. 62) 

 

 

 Due to re-initialisation, the mean line of the boundary might be slightly moved or there 

may be a phase lag. The nucleation of new holes is not possible if the integration is 

performed only on the boundary of the level-set function. Hence the level-set 

propagation velocity needs to be naturally extended in to the interior domain so that 

new holes can be nucleated. Even then the new holes will be first nucleated only near 

the domain boundary then they will move to the centre of the domain.  

 

3.2.7 Hole nucleation methods 

The HJ equation without the topological derivative term is not capable of 

nucleating new holes in the design domain, in 2 dimensions. Two strategies are 

proposed to introduce holes using topological gradients. One strategy is after 

marching the HJ equation only with the shape sensitivity term for a few iterations, if 

convergence level remains stationary then the HJ equation is time marched with 

topology gradient term. During the latter evolution, wherever the topology gradient is 

minimum, there a small hole is introduced and then again the HJ equation is time 
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marched with shape sensitivity term. This process is repeated till convergence is 

achieved. The second approach is solving the HJ equation (Eqn 3.44) always with 

both the gradient terms.  

Burger [55] studied the different approaches to use topological gradient for the 

TO and their effect on convergence. Based on this, he suggested that for every few 

TO iterations (say 5) with shape sensitivity, an iteration with topology sensitivity should 

be run. The two different LS evolutions are alternated till final shape is obtained. In the 

topology sensitivity based evolution, wherever topology gradient is minimum and 

negative, there a hole is introduced.  

 

3.2.8 Thickness control 

 On many occasions, it is desired to control the thickness of the optimised shape so 

that the resulting shape is manufacturable or free of disconnected shapes. To achieve 

this, many feature size control methods are available. Chen [85] employed a quadratic 

energy functional in the objective of the topology optimisation, to introduce interactions 

between different points on the structural boundary to favour a strip like shape of 

specified width. Allaire [86] while comparing different thickness control methods 

suggested to use the energy functional method (with fine mesh) as its shape derivative 

can be easily computed. The quadratic energy function given by Chen is,  

𝐸𝑞(𝐶) = −∬𝑑𝑝 𝑑𝑝′𝑡(𝑝). 𝑡(𝑝′)𝜓(|𝐶(𝑝) − 𝐶(𝑝′)|) 
(3. 63) 

 

 

where   is the weighting function and 𝐶(𝑝′) is the coordinates of point p. 

Allaire has formulated an energy function in terms of SDF as given below. 

𝐸(Ω) = −∫𝑑Ω(𝑥)
2

Ω

[(𝑑Ω(𝑥) +
𝑑min
2
)+]2𝑑𝑥 

(3. 64) 

 

 

Where 𝑑Ω(𝑥) represents SDF, (..)+ represents maximum of the bracketed quantity and 

‘dmin’ is the required minimum size of the optimised structure. The optimisation problem 

is, 
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min
Ω
∫𝑑𝑥 + 𝑙𝐸
Ω

 𝐸(Ω) 
(3. 65) 

 

 

𝑠. 𝑡 ∫ 𝑔. 𝑢𝑑𝑠 ≤ 𝑔𝑚𝑎𝑥
∂Ω

 
(3. 66) 

 

 

‘u’ is the solution of the structural problem and gmax is the maximum force applied on 

the Neuman boundary. The nature of the optimal shape obtained is more influenced 

by the weighting factor ‘lE’.  This quadratic energy method is mostly used for minimum 

size control rather as a maximum size control.  

 Guo et al [87] proposed a feature control method based on medial surfaces.  The 

medial surface is set of all centres of the closed maximal balls which is also called as 

‘skeleton’. Combined Minimum and maximum thickness constraint functional is given 

as, 

𝑔𝜖 = ∫ ℋ(𝜓, 𝑑,̅
MS(Ω)

 𝑑)𝑑𝑉 
(3. 67) 

 

With,  

ℋ(𝜓, 𝑑,̅ 𝑑) =  {
(𝜓 − 𝑑)2, 𝑖𝑓 𝜓 > 𝑑̅

(𝜓 − 𝑑)2, 𝑖𝑓 𝜓 <  𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(3. 68) 

 

 

where, ḏ represents the minimum thickness, đ represents the maximum thickness and 

ℋ(s) represents the medial surface. The shape derivative of the above constraint 

function is evaluated and used along with the shape derivative of objective function 

during optimisation. 

 

3.2.9 Parametric level-set methods 

 

  The level-set algorithm using the HJ equation had the drawbacks of unability to 

handle multiple constraints and the necessity of re-initialization after every few time 

steps. So, Zhen Luo [88] discretised the HJ equation into a series of algebraic 
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equations with unknown coefficients. Then the unknown coefficients are calculated 

through mathematical programming (MMA) methods. Thereby solving the HJ equation 

by time marching is avoided. Other researches including Kreissl [52] and Ottomori [89] 

also used a mathematical programming approach instead of time marching the HJ 

equation. 

  The parameterisation of level-set changes the shape optimisation problem into 

simple size optimisation problem of finding the right values of the level-set function 

expansion coefficients. 

 

3.3 Optimisation algorithms 

Optimisation algorithms form the backbone of topology optimisation methods. In this 

section a review of constrained optimisation methods and gradient based optimiser 

algorithms are presented. A brief overview of the FE based solution of Partial 

Differential Equations is also presented. 

 

3.3.1 Constrained optimisation methods  

 

Mathematically, based on the nature of the objective function the optimisation problem 

can be classified as Linear or Non-linear. The objective function can have two types 

of constraints i) equality constraints or ii) in-equality constraints. Equality constraint 

problems can be solved with Lagrangian multipliers. Lagrangian multipliers provide 

the necessary condition for the solution of equality constrained optimisation problems. 

 Similar to the Lagrangian condition, Karush, Kuhn and Tucker (KKT) [90] have 

derived a necessary condition for in-equality constrained optimisation problems. 

These necessary conditions also become sufficient conditions if the objective function 

is convex and separable. A function will be said to be convex, if a line connecting any 

two points within the domain also lies within the domain. The Lagrangian L of an 

objective function go and constraints gi is written as, 

𝐿(𝑥, ) = 𝑔𝑜(𝑥) +∑𝑖𝑔𝑖(𝑥)

𝑙

𝑖=1

 

(3. 69) 

 

The KKT conditions for ‘L’ are, 
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𝜕𝐿(𝑥, )

𝜕𝑥𝑗
= 0 𝑖𝑓 𝑥𝑗

𝑚𝑖𝑛 < 𝑥𝑗 < 𝑥𝑗
𝑚𝑎𝑥 

(3. 70) 

 

𝑖𝑔𝑖(𝑥) = 0,   𝑔𝑖(𝑥) ≤ 0,  𝑖 ≥ 0 (3. 71) 

 
 Approximating the nonlinear objective function through Taylors series, yields a 

method for solving the nonlinear optimisation problem. Sequential Linear 

programming (SLP) and Sequential Quadratic Programming (SQP) are based on 

these ideas. In SLP, the linearisation approximation is only valid closer to the design 

variable x, so the size of design changes (dx) has to be restricted. So, this is not 

considered to be a good method for engineering applications. Standard books on 

optimisation [91] , [92] covers the SLP method with examples. 

 Different algorithms used for optimisation are optimality criteria method, convex 

linearisation method and method of moving asymptotes. In this section, brief 

description of different algorithms used for optimisation are explained. 

3.3.2 Sequential Quadratic Programming (SQP) 

 In this method the objective function is approximated with a Taylor’s series upto the 

second order term and the constraints are linearly approximated. For the given 

optimisation problem (objective function f, quadratic objective function ‘Q’ and design 

variable X), the search direction S is found by the following quadratic problem. 

𝑄 = ∇𝑓(𝑋)𝑇𝑆 +
1

2
𝑆𝑇[𝐻]𝑆 

(3. 72) 

 

subject to 


𝑗
𝑔𝑗(𝑋) + ∇𝑗𝑔𝑗(𝑋)

𝑇𝑆 ≤ 0, 𝑗 = 1,2, . . 𝑚 (3. 73) 

 

𝛽̅ℎ𝑘(𝑋) + ∇ℎ𝑘(𝑋)
𝑇𝑆 = 0, 𝑘 = 1,2, . . 𝑝 (3. 74) 

where [H] is a positive definite matrix that is taken initially as the identity matrix and is 

updated in subsequent iterations so as to converge to the Hessian matrix of the 

Lagrange function and ‘g’ is the constraint function. In the above equations, βj and 𝛽̅ 
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are constants used to ensure that the linearised constraints do not cut off the feasible 

space completely. Typical values of these constants are given by 

𝛽 ≈ 0.9; 𝛽𝑗 = {
1 𝑖𝑓 𝑔𝑗(𝑋) ≤ 0

𝛽 𝑖𝑓 𝑔𝑗(𝑋) ≥ 0
 

(3. 75) 

This sub-problem can be solved by any of the quadratic programming methods and 

the solution gives the search direction S. Then the design vector is updated as 

Xj+1 = xj +*S (3. 76) 

where * is the optimal step length found using a penalty function approach. After 

finding Xj+1, for the next iteration, the Hessian matrix is updated to improve the 

quadratic approximation using a Broyden-Fletcher-Goldfarb-Shanno type formula 

[91]. With the new Hessian matrix the next iteration is carried out till the optimum X is 

reached. 

 SQP is well-suited method for optimisation with significant non-linearities but it is 

computationally more expensive. 

3.3.3 Convex linearization method (CONLIN) 

 In most engineering problems, the objective function and constraints are complex and 

they may not be explicit functions of the design variables. In these cases, a sequence 

of explicit sub problems of the original problem are generated and solved. Convex 

linearization, proposed by Fleury [93], is one such method. 

  In this method, some of the objective function and constraints are linearized in terms 

of xi and others are linearized in terms of 1/xi. The constraint function is approximated 

as, 

𝑔𝑖
𝐶,𝑘(𝑥) = 𝑔𝑖(𝑥

𝑘) + ∑ 𝑔𝑖𝑗
𝐿,𝑘

𝑗∈Ω+

(𝑥) + ∑ 𝑔𝑖𝑗
𝑅,𝑘

𝑗∈Ω−

(𝑥) 
(3. 77) 

where, 
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Ω+ = {𝑗 ∶
𝜕𝑔𝑖(𝑥

𝑘)

𝜕𝑥𝑗
> 0}  𝑎𝑛𝑑 Ω− = {𝑗 ∶

𝜕𝑔𝑖(𝑥
𝑘)

𝜕𝑥𝑗
≤ 0} 

(3. 78) 

 

Superscript L (on g) represents linearization in xi, this is done when the gradient is 

positive, and superscript R represents linearization in 1/xi and this is done when the 

gradient is negative. This approximation is actually the most conservative 

approximation, i.e, 

𝑔𝑖
𝐶,𝑘(𝑥) ≥ 𝑔𝑖

𝑅𝐿,𝑘(𝑥) (3. 79) 

These approximations are first order approximations, that is gi and their first order 

derivatives are exact. Further the gi
C,k are convex and separable. Therefore, the KKT 

condition becomes the necessary and sufficient condition for optimality. This makes 

Lagrangian duality a suitable solution method for the approximation. A brief description 

of the Lagrangian dual method is given below. 

Consider a minimisation problem (primal problem) given below.   

𝑚𝑖𝑛𝑥  𝑓
𝑇𝑥  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {

𝐴. 𝑥 = 𝑏
𝑥 + 𝑠 = 𝑢
𝑥 ≥ 0, 𝑠 ≥ 0

 

(3. 80) 

Where ‘s’ is a primal slack variable. 

Solving the primal problem is equivalent to solving the dual problem, which is given 

below.  

max [𝑏𝑇 𝑦 − 𝑢𝑇 𝑤]  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {
𝐴𝑇 . 𝑦 − 𝑤 + 𝑧 = 𝑓
𝑧 ≥ 0,𝑤 ≥ 0

 
(3. 81) 

 

where y and w are dual variables and ‘z’ is a dual slack. The optimality condition of 

both the primal and dual problem can be written as, 

𝐹(𝑥, 𝑦, 𝑧, 𝑠, 𝑤) = 0 =

{
 
 

 
 

𝐴. 𝑥 − 𝑏
𝑥 + 𝑠 − 𝑢

{
𝐴𝑇 . 𝑦 − 𝑤 + 𝑧 − 𝑓

𝑥𝑖𝑧𝑖
𝑠𝑖𝑤𝑖 }

 
 

 
 

 

(3. 82) 
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𝑥 ≥ 0, 𝑧 ≥ 0, 𝑠 ≥ 0,𝑤 ≥ 0 

The quadratic equations xizi=0 and siwi=0 are called complementarity conditions and 

the other equations are called feasibility conditions. By solving this matrix equation, 

the solution to the primal problem can be obtained. These kinds of methods are known 

as the primal-dual method or the Lagrangian dual method.  

3.3.4 Method of Moving Asymptotes (MMA) 

 This method is an improvement over Convex Linearization, such that the degree of 

conservatism can be controlled to achieve better convergence of optimisation 

problems. Since the advent of this method (by Svanberg [94]), this has been widely 

used in topology optimisation of structural problems. In this method, the given problem 

is approximated as,  

𝑔𝑖
𝑘(𝑥) = 𝑟𝑖

𝑘 + ∑(
𝑝𝑖𝑗
𝑘

𝑈𝑗
𝑘 − 𝑥𝑗

−

𝑛

𝑗=1

𝑞𝑖𝑗
𝑘

𝑥𝑗 − 𝐿𝑗
𝑘 ) 

(3. 83) 

 

 

 

where 

𝑝𝑖𝑗=
𝑘 {

(𝑈𝑗
𝑘 − 𝑥𝑗

𝑘)2
𝜕𝑔𝑖(𝑥

𝑘)

𝜕𝑥𝑗
 𝑖𝑓 

𝜕𝑔𝑖(𝑥
𝑘)

𝜕𝑥𝑗
> 0 

0                     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(3. 84) 

 

𝑞𝑖𝑗=
𝑘

{
 
 

 
 0                                        𝑖𝑓 

𝜕𝑔𝑖(𝑥
𝑘)

𝜕𝑥𝑗
≥ 0 

−(𝑥𝑗
𝑘 − 𝐿𝑗

𝑘)2
𝜕𝑔𝑖(𝑥

𝑘)

𝜕𝑥𝑗
                     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(3. 85) 

 

𝑟𝑖
𝑘 = 𝑔𝑖(𝑥

𝑘) −∑(
𝑝𝑖𝑗
𝑘

𝑈𝑗
𝑘 − 𝑥𝑗

−

𝑛

𝑗=1

𝑞𝑖𝑗
𝑘

𝑥𝑗 − 𝐿𝑗
𝑘  ) 

(3. 86) 

 

 

‘k’ denotes the iteration. ‘g0’ is the objective function and ‘g1’, ‘g2’, etc. are constraints. 

‘j’ denotes the element in the design space and it varies from 1 to n, where n is the 

size of the design variable vector. Lj and Uj are moving asymptotes that are changed 
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during the iterations such that xj is always bounded between Lj and Uj. Suitably 

changing the values of Lj and Uj changes the level of conservatism and rate of 

convergence. This convex separable problem can be solved using Lagrangian duality. 

In broader terms, the sequence of sub problems are solved according to the following 

iterative scheme. 

STEP (0) A starting point x(0) is chosen for iteration k = 0 

STEP (I) For a given iteration, k, the following are determined: 

(i) Constraint function value: g1(x(k)) 

(ii) Gradients (in terms of x) of the cost function as well as the constraint 

functions: ∇g0(x(k)) and 𝛻g1(x(k)) 

STEP (II) Generate a sub-problem based on the original problem by replacing the 

original implicit functions with approximating explicit functions based on the 

results of STEP (I). 

STEP (III) Find the optimal solution of the sub-problem and let this solution be the next 

iteration point x(k+1). Go to STEP (I) and repeat until the convergence criterion 

is met. 

 From the lower bound and upper bound of the design variables, Uj and Lj values can 

be calculated for any problem as, 

𝐿𝑗
𝑘 = 𝑥𝑗

𝑘 − 𝑠𝑖𝑛𝑖𝑡(𝑥𝑗
𝑚𝑎𝑥 − 𝑥𝑗

𝑚𝑖𝑛) (3. 87) 

 

𝑈𝑗
𝑘 = 𝑥𝑗

𝑘 + 𝑠𝑖𝑛𝑖𝑡(𝑥𝑗
𝑚𝑎𝑥 − 𝑥𝑗

𝑚𝑖𝑛) (3. 88) 

    

where sinit is a fixed real number and its value can be altered depending on the nature 

of solution progress. That is, its value can be suitably chosen to prevent any oscillation 

in the solution, as well as to improve convergence and monotonicity. 

 

This method works excellently for structural optimisation problems, but still 

convergence cannot be guaranteed in some cases. So to improve convergence, 

Svanberg [95] came up with Globally Convergent MMA or GCMMA. Svanberg named 

this class of methods as Conservative Convex Separable Approximation (CCSA) and 

MMA is the most famous one. Though this class of methods also solves convex sub-

problems, unlike SQP and CONLIN, the method introduces curvature in the objective 

function and constraints, in order to make it conservative. Thereby this method doesn’t 
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need any line search. In a line search strategy, the minimum of a function is found 

(iteratively) by calculating the descent direction and the step size of the design 

variable. The major advantage of CCSA is that it can be successfully applied to 

problems with a very large number of design variables.  

3.3.5 Optimality criteria method  

This method was developed by Prager and extended by Venkayya, Khot and Berke 

[96]. This method is an iterative method based on the optimality condition which is 

derived from Kuhn-Tucker conditions. For instance, let the optimisation problem be 

stated as follows: 

  Find X which minimises, 

𝑓(𝑥) =∑𝑐𝑖𝑥𝑖

𝑛

𝑖=1

 

(3. 89) 

 

subject to     ∑
𝑎𝑖

𝑥𝑖
= 𝑦𝑚𝑎𝑥

𝑛
𝑖=1  (3. 90) 

 

where ci are constants, ymax is the maximum permissible displacement, and ai depends 

on the force induced in member i due to the applied loads, length of member and 

Young’s modulus of member. The Lagrangian function can be defined as, 

𝐿(𝑥, ) =∑𝑐𝑖𝑥𝑖

𝑛

𝑖=1

+ (∑
𝑎𝑖
𝑥𝑖
− 𝑦𝑚𝑎𝑥)

𝑛

𝑖=1

 

(3. 91) 

 

 

At the optimum solution, we have 

𝜕𝐿

𝜕𝑥𝑘
= 𝑐𝑘 − 

𝑎𝑘

𝑥𝑘
2 + ∑

1

𝑥𝑖

𝜕𝑎𝑖
𝜕𝑥𝑘

𝑛

𝑖=1

= 0, 𝑘 = 1,2, … 𝑛 

(3. 92) 

 

 

From the above relation the optimality criteria that must be satisfied at the optimum 

solution of the problem can be derived and are given as, 

𝑥𝑘 = (
1

𝑦∗
√
𝑎𝑘

𝑐𝑘
∑ √𝑎𝑖𝑐𝑖
𝑛
𝑖=1 ), k=1,2, ..n 

 

(3. 93) 

 

This equation can be used to iteratively update the design variable xk as, 

𝑥𝑘
𝑗+1

= (
1

𝑦∗
√
𝑎𝑘

𝑐𝑘
∑ √𝑎𝑖𝑐𝑖
𝑛
𝑖=1 ), k=1, 2, ..n 

(3. 94) 
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Where j denotes the iteration number. In each iteration the components ak and ck are 

assumed to be constants. Optimality criteria methods work very well for single 

constraint problems. The difficulty of the optimality criteria method for multiple 

constraints lies in the evaluation of multiple Lagrangian multipliers. More details about 

this method can be found in the reference [96]. 

 

3.4 Finite element method 

 

 The finite element method is a powerful numerical method used to solve complicated 

physics and PDEs. In this method, the geometry domain of a problem is represented 

as a collection of simple subdomains called finite elements. Over each finite element, 

algebraic equations are deduced from the governing differential equation of physics. 

Finally, equations of all elements are assembled appropriately and the matrix of 

equations are solved [97].  

 The order of an element refers to the degree of polynomial used to represent the 

solution over the element. As the order of an element increases accuracy increases 

but computational cost increases. For fluid flow problems, mixed or penalty finite 

elements can be used. In mixed finite elements, the interpolation polynomial used for 

pressure must be at least one order lower than that used for the velocity field because 

pressure is like a Lagrange multiplier which enforces incompressiblity equation. So (in 

mixed finite elements) velocity uses quadratic interpolation and pressure uses linear 

interpolation functions (Figure 7-6). Finite elements using these types of descretisation 

for velocity and pressure are called Taylor-Hood elements. Linear elements or 

discretisation can also be used for both velocity and pressure along with streamwise 

diffusion stabilisation. 

 Most of the research on TO is based on the finite element method, though few works 

are published based on the finite volume method. The primary focus of this research 

work is to develop and apply the TO methods for fluid flow applications but not to 

develop solvers for fluid flow equations. Among the commercial solvers available, finite 

element based solver Comsol, gave lots of freedom to solve user specified equations, 

coupled multiphysics problems and to modify the material properties as liked. Further, 
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some of the popular optimising algorithms are already available in Comsol and it is 

easy to couple the Matlab programming language with Comsol. So this research work 

is carried out using Comsol finite element solver. 

 In Comsol, options are available to solve the governing equations in a segregated 

manner or coupled manner. The linear system of equations are solved using 

Generalised Minimal RESidual (GMRES) solver. For the coupled solution of fluid flow 

equation and the HJ equation in Comsol, time step size of a particular iteration is 

chosen automatically by the Comsol software, depending upon the stability of the 

numerical system.  

3.1 Summary 

 In this section, the algorithm of density and level-set methods and its various 

formulations proposed by different researchers are reviewed in detail. For the level-

set method, XFEM based geometry mapping is more accurate, but its 

implementation is difficult and time consuming, whereas density-based mapping is 

slightly approximate but it is simple to implement. For the level-set front 

propagation, the HJ equation and RD equations are used, but the RD equation 

doesn’t make use of shape-sensitivity term. The HJ equation based level-set 

method is widely researched and a wealth of literature is available for this. 

Parametric level-set methods are gaining popularity but this requires an optimiser 

algorithm like MMA or SQP in addition to the physics solver. 

  The adjoint method is computationally cheap and accurate for shape sensitivity 

calculation. There are only few researchers who have used this method for the 

topology optimisation of fluid flow and heat transfer problems. So there are enough 

opportunities for further research in this area and its application to topology 

optimisation methods.  
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4 Density and Level-set Method Implementation 

 

 

4.1 Introduction 

Though there are many methods for topology optimisation, Density and Level-set 

methods are the popular and most widely used methods. A literature review indicates 

that the density method is popular because of its simplicity and faster convergence, 

while the level-set method is popular because of its crisp interface capturing ability. In 

this section, simple numerical models for both the methods will be developed and 

applied to the optimisation of simple test cases. 

 

4.2 Density method based convectively cooled heat sink design – Case 

1 

 In this study topology optimisation of a coupled multi-physics problem is solved using 

the density method. The convectively cooled heat sink design involves coupling of fluid 

flow and heat transfer. A simple density based TO model is developed in Comsol, 

using the MMA optimiser which is in-built in the software, to design the heat sinks. 

 

4.2.1 Numerical model 

 The objective of this problem is to design two dimensional convectively cooled heat 

sinks, which minimises the thermal compliance of the given design domain. Thermal 

compliance is quite similar to structural compliance in concept and this objective tries 

to uniformly distribute the temperature throughout the design domain. This objective, 

in effect will bring down the maximum temperature in the design domain.  

As mentioned in the literature review, the density method is based on a design 

variable ‘’, which takes value between 0 and 1. In this case, a  value of 1 indicates 

(porous) solid and 0 indicates fluid. In pure heat conduction problems, the thermal 

conductivity is modelled as a function of . For topology optimisation of fluid flow 
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problems, flow impermeability term is modelled as a function of  based on the 

Brinkman approach (Eqn 4.1). This impermeability based force term is added 

additionally to the flow momentum equation and it is modelled to take very high value 

(max is 1e6) in the solid regions ( and a zero value in the fluid regions (. 

() = 𝑚𝑎𝑥
3 (4. 1) 

 Since it is a coupled fluid flow and heat transfer problem, along with an impermeability 

factor, the thermal conductivity, specific heat capacity and density are also 

interpolated with respect to the design variable gamma as given in Table 4-1.  

Name Expression 

k (ks- kf)*3 + kf 

Cp (Cps- Cpf)*3 + Cpf 

 (s- f)*3 + f 

Table 4-1 Material property values 

 

The governing equations for the fluid flow and heat transfer are: 

𝜌𝛾(. 𝑢) = 0 (4. 2) 

𝜌𝛾(𝑢.𝑢) = −𝑝 + . {µ{𝑢 + (𝑢)𝑡𝑟}} − 𝑢 (4. 3) 

𝜌𝛾𝐶𝑝𝛾(𝑢.𝑇) = . (𝑘𝛾𝑇) (4. 4) 

Heat flux Boundary condition: (𝑘𝛾𝑇). 𝑛 = 𝑄 (4. 5) 

 

Equation (4.2) is the continuity equation (for steady, incompressible flow) with ‘u’ being 

the velocity vector. The thermal properties, k, Cp, and  are modelled as given in Table 

4-1. The momentum conservation equation is given in equation (4.3), which has an 

additional force term to differentiate (porous) solid and fluid. In (porous) solids, ’s 

value is 1, hence the force term takes a very high value and in fluids 's value is 0, so 

the force term vanishes. 

The property interpolation given in Table 4-1 follows the SIMP approach, this 

ensures that when gamma is 1, the parameters are equal to solid material properties 

and when gamma is zero, these are equal to fluid material properties. The power factor 

of 3 has been used to penalise intermediate values of gamma. The optimisation 

problem is defined as given below. 
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Objective: 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 = ∫ 𝑘𝛾 ∗ (∇𝑇)
2𝑑Ω (4. 6) 

Constraint: ∫ 𝛾𝑑𝑉 O 0.40V  (4. 7) 

  Governing equations 4.2 to 4.5 

Note, that since the objective is thermal compliance, the effect of heat transfer due to 

convection is not considered.  

At the start of the optimisation, the chosen initial value of gamma, is assigned on 

all the finite elements of the design domain. Based on this initial gamma value, physics 

equations are solved and the objective (thermal compliance) are calculated. Then the 

optimiser calculates the gradient of objective with respect to design variable and 

evaluates the optimum distribution of design variable (gamma) to minimise the 

objective function. This procedure is repeated till convergence is achieved. 

 

4.2.2 Computational details 

 The 2D computational domain used for this study is shown in Figure 4-1. The design 

domain is rectangular in shape and at its base a 5 mm thick section of strip of solid 

material representing a microelectronics heat source is heated by a heat flux of 100 

W/m2. The top surface of the computational domain is defined as a fluid inlet with a 

prescribed constant velocity matching the Reynolds number of the study. The fluid 

inlet temperature (ambient temperature) is 293.15K. The two vertical sides are fluid 

outlets. The bottom side (excluding the heat source) is considered to be an adiabatic 

no slip wall. 

 

Figure 4-1 Computational domain details 

For these types of problem, the thermal conductivity ratio between fluid and solid 

and Reynolds number of the flow are the most influential parameters. The materials 
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used in this particular study are copper and air, resulting in a conductivity ratio of 

1.5603e+4. The influence of Reynolds number on the optimal design is studied by 

conducting the simulations at Re=12 and Re=70 corresponding to velocities 6.171e-4 

and 3.6e-3m/s respectively. The design domain length is considered as the 

characteristics length (0.3m). The Reynolds number (Re) plays a significant role in 

choosing the value of ; If Re is low, higher values of  can be used thereby solid can 

be accurately modelled but if Re is comparatively large, higher  values poses 

problems with flow start and flow convergence. Because of this flow instablility reason 

optimisation is not carried out at higher Reynolds numbers. For these low Re studies, 

Peclet number, which is a ratio between inertial diffusion to thermal diffusion, is very 

low compared to Peclet number usually observed in industrial applications. Generally, 

a low value of Peclet numbers are only observed in microchannel cooling problems.  

The parameter values used in the optimisation are tabulated below. 

Parameter Value 

max 1e6 

kf/ks 15603 

s/f 8920/1.225 

Cps/Cpf 385/1005 

Table 4-2 Parameter values used for Heat sink design 

 

The volume fraction of solid material is constrained at 0.4. The domain is discretised 

with triangular cells using a Delaunay triangulation method. Typically meshes of the 

order of 50,000 elements were used, with refinement used to concentrate cells on the 

design domain of the computational domain.  

The approach adopted in this work can be prone to: the checkerboard problem and 

convergence issues. In order to attempt to mitigate against these, gradient of gamma 

is limited through imposition of equation (4.8). The global objective value in the design 

domain is also monitored. Typically in a converged run the relative change in control 

variable gamma is less than 1e-5. 

(
𝜕𝛾

𝜕𝑥
)2 + (

𝜕𝛾

𝜕𝑦
)2  ≤ 150 

(4. 8) 
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4.2.3 Results 

  The topological optimisation is an iterative process with the heatsink shape and 

resulting thermal compliance evolving during the solution process. Figure 4-2 shows 

the evolution of solid material for the two dimensional simulation at Re=12. The 

iterative process is continued until the change in the global objective value decrease 

below a critical value, defined as 1e-3, in this study. 

The convergence of global objective function is shown in Figure 4-3. Figure 4-4 

shows the optimised shape ((porous) solid material layout) for the Re=12 case, while 

results for the Re=70 case are shown in Figure 4-5. The optimal solid material layout 

resembles a tree-like structure, with the main branch leading towards the corner of the 

design domain and other secondary branches extending towards the edges of the 

design domain. The optimal tree shape is in agreement with the constructal theory of 

Bejan [98], wherein he states that a system will evolve in such a way that it provides 

easier access to the imposed currents that flow through it. Near the edge of the design 

domain the branch expands like a fan covering almost the entire length of the domain 

edge with solid material. This could be to effectively enhance the convective cooling 

happening by the downward air stream.  

 

The objective value achieved for the optimisation at both Reynolds numbers are of 

the same order, with results given in Table 4-3. This is because the objective function 

doesn’t account for the convective heat transfer. Simulations with different gamma 

initialisation lead to different optimal values and the given result had the minimum 

compliance among all the runs. The results show that values of the design variable  

lie between zero and unity in number of cells, leading to a blurring of the interface. 

This intermediate region, known as a grey region, is one of the drawbacks of the 

density methodology.  

Case 
Thermal Compliance 

(WK/m) 

Re 12 0.0933 

Re 70 0.0961 

Table 4-3 Thermal compliance results 
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Figure 4-2: Evolution of heat sink shape during the optimisation process 

 

 

Figure 4-3: Convergence plot of objective function 
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Figure 4-4: Optimised (porous) solid material layout with velocity contour (top) and temperature 
contours (bottom) for Re=12 
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Figure 4-5: Optimised (porous) solid material layout with velocity (top) and temperature contour 
(bottom) for Re=70 

 

4.2.4 Summary 

  The design of a copper heat sink subjected to forced convective cooling by air has 

been demonstrated. Material properties are interpolated following the SIMP approach. 

 The heatsink design problem was investigated at two different Reynolds numbers. 

The optimal heatsink shapes resemble tree-like forms as expected. It was found that 

the Reynolds number variations didn’t alter the shape of the optimised heat sink. This 

is because the objective function only includes thermal compliance and the heat 

transfer due to fluid velocity is not accounted for.   

 

4.3 Density method based convectively cooled heat sink design – Case 

2  

 In the preceding section a heat sink is designed for highly conductive solid (copper) 

cooled with air convection. In this section, a heat sink will be designed for fluid to solid 

conductivity ratio (kf/ks) of 0.1. In heat transfer involving liquid metal cooling, this kind 

of conductivity ratio is possible. For example, in copper metal and Gallium liquid 

cooling, the conductivity ratio is 40.6/401, which is equal to 0.1. 

4.3.1 Numerical model 

  The governing equations and density methodology used are same as in section 4.2. 

Refer to section 4.2 for complete numerical model details. 
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4.3.2 Computational details 

  The computational domain of the previous study is used here, but the domain is 

discretised with Cartesian cells. The study is conducted at a Reynolds number of 60 

(velocity 2e-4m/s) and Prandtl number of 104.6. The other thermal properties of solid 

and fluid used for this simulation are tabulated below. 

Parameter Value 

max 1e6 

kf/ks 0.04/0.4 

s/f 8920/1000 

Cps/Cpf 385/4184 

Table 4-4 Parameter values used for Heat sink design 

  

The simulations are carried out at design domain mesh size of 26x78 (coarse) and 

50x150 (fine) to establish the mesh independency.  

4.3.3 Results 

 The topology optimisation simulations are carried out at  initial value of 0.2 with 

coarse mesh and fine mesh. The optimised shape and temperature contour obtained 

are shown in Figure 4-6 and 4-7. The coarse mesh results show a shape with steps, 

clearly indicating the mesh needs further refinement. The finer mesh simulation result 

shows a smooth shape and the objective and maximum temperature values have 

dropped by 2.3% and 1.5% respectively from the coarse mesh results. Doubling the 

mesh size from 50x150 to 100x300 didn’t improve the solution (shape & objective 

value) much, hence the remaining optimisations are conducted with 50x150 mesh. 

 

 

Figure 4-6 Optimised shape and Temperature contour with coarse mesh for kf/ks=0.1at initial=0.2 
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Figure 4-7 Optimisation results with fine mesh for kf/ks=0.1at initial=0.2 

 

 As the optimisation result depends on the initialization, the study is conducted for  

initial values of 0.2, 0.5, 0.7 and 1.0. The optimised shape obtained for  initial values 

of 0.5, 0.7 and 1.0 are shown in Figure 4-8. The objective values obtained for all the 

simulations are shown in Table 4-6. Results shows that a  initial value of 0.5 has given 

the lowest objective value.  

 

 

 

Figure 4-8 Optimised shapes for  initial values of 0.5 (Top), 0.7 (Centre) and 1.0 (Bottom)  

 

 Initial Thermal compliance (WK/m) 

0.2 2707 

0.5 2560 

0.7 2569 

1.0 2580 

Table 4-5 Objective values of different  initial simulations 
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The convergence of the objective value for the  initial value of 0.5 run and the 

corresponding temperature contours are shown in Figure 4-9. The maximum 

temperature attained in the design domain is 616K.  

 

Figure 4-9 Convergence history for  initial= 0.5 case, and the corresponding Temperature contour 

 

4.3.4 Summary 

 The mesh independency study showed that, as the mesh refined the shape becomes 

smoother without any staircase like structure but the overall shape of optimum remains 

the same. And as the solid-to-fluid thermal conductivity ratio is decreased from 15000 

to 10, the optimal shape doesn’t resemble a tree-like branched structure. Further the 

grey regions are decreased in this case compared to the high conductivity solid case 

tested in section 4.2. So for better accuracy of shape capture, grey regions should be 

avoided and this is possible by implementing density or sensitivity based filters [72]. 

 

4.4  Coupled Level-set method using Hamilton-Jacobi equation 

 

 A simple HJ equation based level-set topology optimisation model is developed in 

Comsol using the relevant physics module and general form PDE module present in 

Comsol. The later module is used to solve the time-dependent HJ equation. The 

density based TO problem is solved as a steady problem while the level-set based TO 

problem is solved as an unsteady problem.  
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4.4.1 Optimisation of Stokes flow diffuser 

 This problem is aimed at identifying the diffuser shape which will increase the flow 

velocity by 3 times, while keeping the viscous dissipation to a minimum for the Stokes 

flow. The design domain is a simple square with inlet on the left hand side and outlet 

on the right hand side. The velocity boundary conditions are specified at inlet and 

outlet. For the inlet velocity, a parabolic velocity profile is specified. This is a coupled 

modelling where the HJ equation and flow physics are solved in Comsol software. The 

coupled LS formulation is based on the work of Liu et al. [48].  

4.4.2 Level-set formulation 

 A signed distance function (SDF) is used as the level-set function. The positive value 

of SDF is considered to represent a fluid and the negative value of SDF is considered 

to represent a solid. This is enforced by the ersatz projection approach, using the 

Heaviside function.  

𝜓 = {

= 0 ∀𝑥 ∈ 𝜕Ω (boundary)

> 0 ∀𝑥 ∈ Ω+ (𝐹𝑙𝑢𝑖𝑑 𝑟𝑒𝑔𝑖𝑜𝑛)
< 0 ∀𝑥 ∈ Ω− (𝑠𝑜𝑙𝑖𝑑 𝑟𝑒𝑔𝑖𝑜𝑛)

 

(4. 9) 

Brinkman’s porosity term () is used to differentiate the solid and liquid and it is added 

to the Stokes equation. 

= (max - min)*(1-H) + min 
 

(4. 10) 

 Here, H is the Heaviside function, which takes a unit value when the LSF is positive 

(fluid region) and takes a zero value when the LSF is negative ((porous) solid region) 

and it has a smooth transition between the two levels, in order to enable its’ 

differentiability. The value of max= 1e5 and min = 0. The expression for the Heaviside 

function in terms of the LSF is given in Eqn 3.16. 

 

Problem definition: 

The problem statement is, 

Objective: min.  0.5 ∗ ∫ 𝜇 ∗ ((
𝜕𝑢

𝜕𝑥
)2 + (

𝜕𝑢

𝜕𝑦
)2 + (

𝜕𝑣

𝜕𝑥
)2 + (

𝜕𝑣

𝜕𝑦
)2)𝑑Ω (4. 11) 

Subjected to,      𝜇∇2𝑢 =
𝜕𝑝

𝜕𝑥
+ 𝑢 

 

(4. 12) 
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𝜇∇2𝑣 =
𝜕𝑝

𝜕𝑦
+ 𝑣 

(4. 13) 

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0 

(4. 14) 

        Area constraint =0.50 

Where ‘u’ and ‘v’ are velocity components in x and y directions. 

Figure 4-10, shows the design domain with boundary conditions.  

 

Figure 4-10 Design domain and boundary conditions 

 

Uin =0.2y(1-y) 
 

(4. 15) 

Uout =5.411(y-0.3333)(0.6667-y) (4. 16) 

 

 At the outlet centre point, pressure of 100Pa is specified to reach a unique solution 

else multiple pressure combinations are possible for the specified velocity boundary 

conditions. The Reynolds number of this Stokes flow based on the inlet condition is 

0.0333. 

The other parameters and their values used for this simulation are given in Table 4-6. 

Parameter Value 

Density 1 kg/m3 

Viscosity 1 Pa.s 

max 1e5 

Average inlet velocity 0.0333m/s 
Table 4-6 Parameter values used for the coupled level-set optimisation 
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4.4.3 Solution methodology 

The Hamilton Jacobi equation is marched in time to update the level-set function 

in the decreasing direction of the objective value. This is done by taking the velocity 

of convection equal to sum of shape sensitivity, Lagrange multiplier and area 

constraint term. The Stokes flow with minimum viscous dissipation objective is a self 

adjoint problem and its shape sensitivity is obtained from [81]. 

𝜕𝜓

𝜕𝑡
= 𝑉𝑛|∇𝜓| 

(4. 17) 

𝑉𝑛 = (0.5 ∗ 𝜇 ∗ ((
𝜕𝑢

𝜕𝑥
)2 + (

𝜕𝑢

𝜕𝑦
)2 + (

𝜕𝑣

𝜕𝑥
)2 + (

𝜕𝑣

𝜕𝑦
)2) +  𝜆

+ Λ(𝐴𝑟𝑒𝑎 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒)) 

(4. 18) 

 

Where  is the Lagrangian multiplier calculated using Euler-Lagrange equation [91]. 

𝜆 = −
∫ [0.5 ∗ 𝜇 ∗ ((

𝜕𝑢
𝜕𝑥
)2 + (

𝜕𝑢
𝜕𝑦
)2 + (

𝜕𝑣
𝜕𝑥
)2 + (

𝜕𝑣
𝜕𝑦
)2)] 𝛿(𝜓)|∇𝜓|𝑑Ω

Ω

∫ 𝛿(𝜓)|∇𝜓|𝑑Ω
Ω

 

(4. 19) 

 

And  is the area penalty factor, which needs to be suitably selected to ensure the 

area constraint is met. This is achieved by trial and error and the suitable value for this 

problem is -10. It should be noted that the Lagrange multiplier only preserves the area 

or it assumes that the initial level-set distribution satisfies the area constraint.  

 The simulations are carried out in Comsol 5.1 on two different mesh sizes (51x51 and 

101x101) to identify the ideal mesh size for this optimisation study. Allaire [16] has 

noted that even if a new hole nucleation capability is introduced in the topology 

optimisation process, the final optimum shape depends on the initial level-set 

distribution. So to reach the global optimum it is necessary to do topology optimisation 

with different initial level-set distributions. Here, in this study, 3 different initial level-set 

distributions are tried and they are shown in Figure 4-11. They are namely, uniformly 

distributed circles (left figure), square domain initialized with full fluid (middle figure) 

and square domain with solid material in the top and bottom rectangle and fluid in the 

middle rectangle (right figure). Note that shades of red indicate fluid and shades of 

blue indicate solid region. 
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Figure 4-11 Different LS initialisations tried in this study: Uniform circles (left), Full fluid 

(centre) and Fluid in the middle rectangle (right). (Blue=solid, Red=fluid) 

 

4.4.4 Results 

 Figure 4-12 to 4-14, show the optimised diffuser shape and velocity contour for the 3 

different LS initialisations mentioned earlier. From the figures it can be observed that, 

middle fluid LS seems to converge to optimum diffuser shape. The objective value 

(viscous dissipation) obtained for different cases are given in Table 4-7. Full fluid LS 

case has comparatively lower dissipation value, but optimum shape has (porous) solid 

wall near the inlet. Since the solid created are actually porous solid, by increasing the 

inlet pressure significantly, required inlet flow velocity is imposed on the inlet. The 

optimiser tries to reduce the velocity gradient by transforming the parabolic inlet 

velocity profile into uniform velocity profile by distributing the porous solid at the inlet. 

This is supported by the lower viscous dissipation value reported by these 

configurations than the middle fluid LS case. The same phenomena is also reported 

by Lee [99] as one of the drawbacks of Brinkmann approach. The uniform circle LS 

case has lower dissipation than the middle fluid LS case but here a larger (porous) 

solid region is created near the inlet and this can be inferred by comparing the velocity 

contour obtained during TO with velocity contour of straight walled subsonic nozzle 

case given in Figure 4-17. Comparatively, middle fluid LS case seems to achieve a 

better optimised shape and further the velocity contour of this case looks very close 

to the CFD case (Figure 4-16). The time where objective function reaches minimum 

and area constraint is satisfied is considered as the optimised solution, for this case 

this happens at time 0.4sec.  
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Figure 4-12 Optimised shape & Velocity contour obtained for uniform circle LS 

 

Figure 4-13 Optimised shape & Velocity contour obtained for full fluid LS 

 

Figure 4-14 Optimised shape & Velocity contour obtained for middle fluid LS on mesh 51x51 
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Figure 4-15 Optimised shape & Convergence plot obtained for middle fluid LS on 101x101 mesh 

 

Figure 4-16 Pressure and Velocity contour for middle fluid LS on 101x101 mesh 

The viscous dissipation of optimised shape is comparatively higher than the equivalent 

CFD case, mainly because the solid region is not completely impermeable, hence flow 

diffuses to larger area than the specified 50% fluid domain.  As the fluid to solid contact 

area is overall higher, the viscous dissipation value is also higher. 

 Integrated Viscous Dissipation (N/s) 

Uniform circles LS 0.099913 

Full fluid LS 0.043242 

Middle fluid LS (51x51 mesh) 0.10150 

Middle fluid LS (101x101 mesh) 0.1003 

CFD result 0.064188 

Table 4-7 Minimum Objective value obtained in different simulations 
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Figure 4-17  Velocity contour on CFD simulation of approximately equivalent diffuser shape 

 

4.4.5 Mesh sensitivity 

 The mesh sensitivity on the optimised shape is studied for one of the LS initialisation 

(middle fluid LS) with mesh sizes of 51x51 and 101x101. The results are shown in 

Figure 4-14 and 4-16. Though the optimum shape is obtained with coarse mesh, the 

velocity contour shows more non-smoothness and wiggles. Whereas fine mesh results 

are acceptable as velocity and pressure contours are smooth and have a reasonable 

agreement with the equivalent CFD simulation. 

 

4.4.6 Summary  

 The Stokes flow diffuser was designed through level-set based topology optimisation. 

No-slip condition is not imposed on the solid walls and further flow seepage is 

observed inside the (porous) walls. Hence the viscous dissipation value is higher by 

71% compared to the CFD case. New holes or solid regions are not created inside the 

fluid region during level-set update, as a topology sensitivity term is not included in the 

HJ equation.  Hence, the final optimum shape obtained depends very much on the 

initial level-set distribution. Therefore different initializations need to be tried to achieve 

global optimum. Further, re-initialising the level-sets at regular intervals will improve 

the accuracy of interface prediction. 
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4.5 Summary 

 A simple numerical model for the density and level-set method are developed and the 

topology optimisation of simple test cases are conducted. From this study following 

points are noted. 

1. The developed numerical model of density method makes use of SIMP based 

material interpolation for penalising the intermediate design variables. Further, 

the numerical model makes use of the MMA optimiser which is already available 

in Comsol software. It is observed that the optimised shapes contain some grey 

cells of intermediate density values and relatively, the density method converges 

faster than the level-set method. 

2. The level-set method numerical model is developed, based on the Hamilton 

Jacobi equation. This method captures solid boundary properly and for better 

optimisation results, different LS initialisations had to be tested. The optimised 

diffuser shapes have solid material distributed at the inlet, which is practically 

wrong and it is one of the draw backs of porosity approach for modelling solids. 

LS method with XFEM geometry mapping will be free from this disadvantage, 

but developing an XFEM solver is difficult and time consuming. 

3. Further, the LS method is slightly more advantageous for optimising moderate 

Reynolds number flows because during the LS initialisation, suitable solid and 

fluid layout can be chosen to successfully start the flow computation whereas 

density method faces severe convergence issues hence it is difficult to do 

optimisation for moderate Re flows. 

4. Similar to the density method, the coupled level-set method also has grey cells 

in the design domain. Regular re-initialisation of the level-set is necessary for 

accurate interface capture. 
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5 Performance Assessment of Density and Level-set 

Methods 

 

  In this section, numerical models of the density method (DM) and level-set method 

(LSM) are applied to optimise the topology of a 3 dimensional heat sink subjected to 

forced convection. The reason for choosing this problem is, it is a three dimensional 

problem so comparison can give realistic use of these methods. Since the problem is 

a coupled multiphysics problem the results of the study may be considered universal. 

The topology optimisation is carried out in Comsol software. The heat sinks are 

designed for two different material sets or for two different fluid to solid thermal 

conductivity ratios kf/ks=0.001 (Highly conductive solid) and kf/ks =0.1 (Less 

conductive solid). The latter case is significant here because, convective heat transfer 

will be of comparable magnitude to conductive heat transfer, whereas the former case 

will be mostly conduction dominant. The optimised heat sinks performance are 

evaluated and validated through an independent CFD study. 

 

5.1 Heat sink design through density method 

 This topology optimisation is carried out in Comsol using the Method of Moving 

Asymptote optimiser present in it. The modelling details and results are given in the 

following sections. 

Problem formulation 

 The governing equations of this topology optimisation study are given below. 

𝜌𝛾(. 𝑢) = 0 (5. 1) 

𝜌𝛾(𝑢.𝑢) = −𝑝 + . {µ{𝑢 + (𝑢)𝑡𝑟}} − 𝑢 (5. 2) 

𝜌𝛾𝐶𝑝𝛾(𝑢.𝑇) = . (𝑘𝛾𝑇) (5. 3) 

Heat flux Boundary condition: (𝑘𝛾𝑇). 𝑛 = 𝑄 (5. 4) 



 

99 
 

Where ‘’ is the effective impermeability, and it is zero in the fluid domain and takes 

higher value (105) in case of solid domain. Along with impermeability, thermal 

properties like, thermal conductivity, specific heat capacity, and density are varied 

depending on whether the grid element becomes solid or fluid. In the Density method, 

the value of design variable  determines whether the element is fluid (=0) or solid 

(=1). The interpolation of thermal and fluid properties are given in Table 5-1 (Yoon 

[32]).  

 Name Expression 

k (ks- kf)*3 + kf 

Cp (Cps- Cpf)*3 + Cpf 

 (s- f)*3 + f 

() 𝑚𝑎𝑥
3 

Table 5-1 Material property interpolation relations for the Density based 3D heat sink design 

 

Name Value 

𝑚𝑎𝑥 1e5 

Volume fraction 0.25 

ks 40 [W/(mK)] (kf/ks =0.001) 
0.4 [W/(mK)] (kf/ks =0.1) 

s 8920 [kg/m3] 

Cps 385 [J/(kg*K)] 

kf 0.04 [W/(mK)] 

f 1000 [kg/m3] 

Cpf 4184 [J/(kg*K)] 

f 1.002e-3 [Pa.s] 

Table 5-2 Parameter values used for the Density based 3D heat sink design 

 

The numerical values of the thermal properties of (porous) solid and fluid are given in 

Table 5-2. The optimisation problem can be stated as below. 

Objective function: min ∫ 𝑘𝛾 ∗ [(
𝜕𝑇

𝜕𝑥
)2 + (

𝜕𝑇

𝜕𝑦
)2 + (

𝜕𝑇

𝜕𝑧
)2]

Ω
𝑑Ω (5. 5) 

Subjected to  

Governing equations (5.1) to (5.4) 

Volume constraint: ∫ 𝛾𝑑Ω ≤ 0.25
Ω

*V 

where V is the design domain volume. 
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 Heat flux is applied at the centre part of the bottom surface and an ideal heat sink has 

to effectively transfer the heat throughout the design domain to keep the thermal 

compliance at a minimum. 

Computational details 

 The computational domain considered for the study is shown in Figure 5-1. The 

computational domain considered is 1 quadrant of the total domain, making use of 

symmetry boundary condition on the two sides. The design domain is of size 

0.1x0.1x0.1m whereas the computational domain is of size 0.7x0.7x0.3m. Heat flux is 

applied at the front corner of the bottom wall (10000W/m2 at an area of 0.01x0.01m2). 

Top of the computational domain is assigned velocity inlet (4e-5 m/s) boundary and a 

pressure outlet condition is assigned on the two side walls, which are adjacent to 

symmetry boundaries. The fluid inlet temperature (ambient temperature) is kept as 

293.15K. The bottom wall is kept insulated, except for the heat flux boundary region. 

The volume fraction of solid material is constrained at a 25% of design domain volume 

and the design domain is discretised with 35x35x35 cells. The whole computational 

domain, which encloses the design domain, is discretised with 0.147millions grid 

elements.  

 

Figure 5-1 Computational domain of 3D heat sink design study 

 Since the MMA is a gradient based optimiser, in order to find the global optimum, the 

optimisation study is carried out with different initial values namely 0.10, 0.25, 0.45 

& 0.55. For details about the MMA optimiser please refer to section 4.4. 

Finite element solver details: 

 Linear discretisation is used for both velocity and pressure. Temperature and 

optimisation variable  are also discretised linearly. The governing equations are 
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solved in segregated manner. The linear system of equations are solved using 

GMRES solver. A run is assumed converged if the change in objective value between 

consecutive iterations remains less than 0.01 for a few iterations. 

 

5.2 Results of the density method 

High conductivity solid: 

 The density simulation for kf/ks =0.001 is carried out at initial gamma values of 0.10, 

0.25, 0.45 and 0.55. Simulation for gamma initial value higher than 0.55 failed because 

higher gamma indicates higher solid volume in the domain that leads to lower fluid 

permeability and hence causing flow instability problems. The simulations are carried 

out on a design domain mesh of size 35x35x35. In order to assess the sensitivity of 

the results to mesh, optimisation is carried out on a mesh of 20% lower size.  The 

comparison of the results showed that in both the studies similar optimised shapes 

were obtained and the difference in the objective value was very small.  This ensures 

that 35x35x35 mesh is free from mesh sensitivity effects. 

Figure 5-2 to 5-3 show the optimised heat sink shape for different gamma initial values. 

It has to be noted that the solution contains some grey regions, hence in the figures  

value of 0.6 is used as a threshold value. The green square surface at the bottom of 

the heat sink shape indicates the region where the heat flux is applied. The 

comparison of the objective values and maximum temperature in the domain (given in 

Table 5-3) shows that =0.25 has given better optimised solution. The full view (4 

quadrant) of this heat sink is shown in Figure 5-4 and the temperature contour in the 

design domain is shown in Figure 5-5. For this case, the objective (thermal 

compliance) value is the minimum among the other optimisation results and the 

objective value is 4.146.  
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Figure 5-2  Density method optimised heat sink for kf/ks =0.001 at initial  of 0.1 and 0.25 

 

  

 

Figure 5-3 Density method optimised heat sink for kf/ks =0.001 at initial  of 0.45 and 0.55 
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Figure 5-4 Full view of the best optimised heat sink (Isometric, Top view) by Density method for 
kf/ks =0.001. 

 

Figure 5-5 Temperature contour in the design domain for kf/ks =0.001 at initial  of 0.55 

 

Low conductivity solid case: 

 The density method optimisation results for kf/ks =0.1 are shown in Figure 5-6 to 5-7. 

Note that the shapes corresponds to a  threshold value of 0.9. In heat transfer 

involving liquid metal cooling, this kind of conductivity ratio is possible. For example, 

in copper metal and Gallium liquid cooling, the conductivity ratio is equal to 0.1. The 

optimised shape nearly remains the same for different optimisation runs with a gamma 

initial value of 0.25 and higher. A gamma initial value of 0.55 yields minimum objective 

among the tested values. The full view of this optimised heat sink is given in Figure 5-

8 and the corresponding temperature contour is shown in Figure 5-9. The 
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convergence plot of the objective value for kf/ks=0.001 and kf/ks=0.1 are shown in 

Figure 5-10. The correct symmetry boundary condition which has to be imposed on 

the side walls of the design domain is given in Eqn. 5.6. 

n.k()(T)=0 (5. 6) 

But, since the symmetry boundary condition is not editable in Comsol, instead of k(), 

k of the fluid material is used. Hence the optimised shapes have a peak near the 

symmetry plane. 

  

Figure 5-6 Density method optimised heat sink for kf/ks =0.1 at initial  of 0.1 and 0.25 

    

Figure 5-7 Density method optimised heat sink for kf/ks =0.1 at initial  of 0.45 and 0.55 
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Figure 5-8 Full view of best optimised heat sink by Density method for kf/ks =0.1 

 

Figure 5-9 Temperature contour in the design domain for best optimised heat sink by DM for 
kf/ks=0.1 (Top & Bottom view) 

 

 Figure 5-10 Convergence of objective function for kf/ks 0.001(initial=0.25) and kf/ks 0.1(initial=0.55) 
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Table 5-3 Summary of density method results 

  

Effect of heat flux on the optimised shape: 

 The topology optimisation study was also carried out with a 5500W/m2 heat flux. 

Comparison of optimised shape for a heat flux of 10000W/m2 and 5500W/m2 show 

that the optimised shape didn’t change much for the considered heat flux values. 

 

5.3 Heat sink design through coupled level-set method 

 

The level-set based topology optimisation of 3D heat sink was carried out in Comsol 

in a coupled manner following the works of Liu [48]. The design domain is a cube, with 

a heat source at the bottom surface and convective cooling surrounding the domain. 

The design domain and the computational domain are exactly the same as the one 

used for the density method.  

Level-set formulation: 

 The level-set method using the HJ equation is used to optimise the heat sink shape. 

A signed distance function is used as the level-set function. The region with positive 

SDF (𝜓) value is considered to represent (porous) solid and the region with negative 

kf/ks 

Thermal 

compliance 

(WK) 

  
Maximum 

Temperature (K) 
Iterations 

Computational time 

0.001 

6.50 0.10  384 184 32 hours 58mins 

4.146 0.25  378 216 53hours 49mins 

5.091 0.45  379 193 27hours 44mins 

7.70 0.55  382 140 24hours 21mins 

0.1 

190.51 0.10  573 159 32hours 19mins 

159.24 0.25  545 140 32hours 19mins 

150.66 0.45  534 140 39hours 55mins 

149.5 0.55  532 135 24hours 41mins 
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SDF value is considered to represent fluid. This is enforced by the ersatz projection 

approach [14], using the Heaviside function (H).  

𝜓 = {

= 0 ∀𝑥 ∈ 𝜕Ω (boundary)

> 0 ∀𝑥 ∈ Ω+ (𝑆𝑜𝑙𝑖𝑑 𝑟𝑒𝑔𝑖𝑜𝑛)
< 0 ∀𝑥 ∈ Ω− (𝐹𝑙𝑢𝑖𝑑 𝑟𝑒𝑔𝑖𝑜𝑛)

 

(5. 7) 

Governing equations are the same as the ones used for topology optimisation by the 

density method. Brinkman’s porosity term () is used to differentiate solid and liquid 

regions by modelling as given below.  

= (max - min)*H + min 
 

(5. 8) 

Where, max =1e4 and min =0.001. A very low min value is chosen instead of zero to 

avoid any singularity problems while solving for the physics. The Heaviside function 

has a smooth transition between the two levels in order to enable differentiability. 

𝐻(𝜓) =  
1

2
+
15

16
(
𝜓

ℎ
) −

5

8
(
𝜓

ℎ
)3 +

3

16
(
𝜓

ℎ
)5 

(5. 9) 

𝛿(𝜓) =
15

16ℎ
(1 − (

𝜓

ℎ
)2)2 

(5. 10) 

 

At any point within the design domain, the thermal properties k, Cp and  take values 

based on the values of ‘’ and ‘H’ as given in Table 5-4.  

Property Expression 

k (ks- kf)*H + kf 

Cp (Cps- Cpf)*H + Cpf 

 (s- f)*H + f 

Table 5-4 Thermal properties interpolation formula in LS method 

 

Problem definition: 

Objective function: 𝑚𝑖𝑛 ∫ 𝑘𝛾 ∗ [(
𝜕𝑇

𝜕𝑥
)2 + (

𝜕𝑇

𝜕𝑦
)2 + (

𝜕𝑇

𝜕𝑧
)2]

Ω
dΩ 

Subjected to,  

Equations (5.1) to (5.3) 

Volume constraint = 0.25 
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Level-set update scheme: 

 The HJ equation is marched in time to advect the level-set function in the decreasing 

direction of the objective value. This is done by taking the velocity of advection equal 

to the sum of the shape sensitivity, Lagrange multiplier and area constraint terms. 

Stokes flow equation is self adjoint in nature. Since the flow Re of the present study 

(Re=8) is of similar order to the Stokes flow Re, this study is also assumed to be self 

adjoint. The shape sensitivity of this problem is given below. 

HJ equation :    
𝜕𝜓

𝜕𝑡
= 𝑉𝑛|∇𝜓| 

 

(5. 11) 

 𝑉𝑛 = [(𝑘𝑠 − 𝑘𝑓) ∗ ((
𝜕𝑇

𝜕𝑥
)2 + (

𝜕𝑇

𝜕𝑦
)2 + (

𝜕𝑇

𝜕𝑧
)2) +  𝜆 + (∫ 𝐻(𝜓)𝑑𝛺 −  𝑉 ∗ 𝑉𝛺𝛺

] (5. 12) 

 

where  is the Lagrange multiplier calculated through, 

𝜆 = −
∫ [(𝑘𝑠 − 𝑘𝑓) ∗ ((

𝜕𝑇
𝜕𝑥
)2 + (

𝜕𝑇
𝜕𝑦
)2 + (

𝜕𝑇
𝜕𝑧
)2)] 𝛿(𝜓)|∇𝜓|𝑑Ω

Ω

∫ 𝛿(𝜓)|∇𝜓|𝑑Ω
Ω

 

(5. 13) 

 

and  is the area (volume) penalty factor, which needs to be suitably selected to 

ensure the area constraint is met. This is achieved by trial and error and a suitable 

value for this problem is -50. It should be noted that the Lagrange multiplier only 

preserves the volume or it assumes that the initial level-set distribution satisfies the 

volume constraint.  

Typical procedure followed in the level-set based topology optimisation is given below. 

1. Mesh the initial structure. 

2. Initialize the level-set function to a signed distance function. 

3. Map the level-set function values to parameters of the physics. 

4. Repeat until convergence: 

(a) Calculate the solution to the governing equations for the current level-set 

defined fluid & (porous) solid domain. 

(b) Calculate the shape sensitivity. 
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(c) Evolve the level-set function by solving the HJ equation to find a new 

structure. 

 

Note that the re-initialisation of the level-set function is not carried out in the present 

study and even in the density method filters are not implemented to reduce the grey 

regions. This study can be used to obtain a quick first estimate of the topology 

optimised shape.  

Computational details: 

 The computational domain used for the study is the same as the one used for the 

density method (Figure 5-1). Since the problem is symmetric with respect to the x and 

y axes, only one quarter of the domain is modelled. The design domain is discretised 

with 43x43x43 mesh cells and initially 10 uniform spheres of level-sets are modelled 

in the design domain. 

 Three-dimensional simulations are carried out at Re=8 (velocity=4e-5m/s) and at 

Pr=104.6. The fluid inlet temperature (ambient temperature) is kept as 293.15K. The 

material properties used for this simulation are the same as those used in the Density 

method, except max is taken as 1e4 (Table 5-2).  

 

 

Figure 5-11 Initial Level-set distribution (A) in the design domain (Red- solid, Blue-Fluid) 
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 Allaire [16] has observed that even with the implementation of a hole nucleation 

capability in the topology optimisation process, the final optimum shape depends on 

the initial level-set distribution. Since, the method is sensitive to initialisation, two 

different initialisation strategies have been assessed, namely a uniform distribution of 

spheres (A) as shown in Figure 5-11 and a uniform distribution of cubes (B) as shown 

in Figure 5-12. 

 The cube like SDFs are created using the function,  

= -cos(x**N/L)*cos(y**N/L)*cos(z**N/L) (5. 14) 

where x,y,z are coordinate values and N is the number of level-set cubes and ‘L’ is the 

side length of the design domain. The computational time taken for this simulation was 

23 days and 1 hr on ten real cores/twenty hyper threaded cores on a Dual Xeon CPU 

cluster node. 

 

Figure 5-12 Cube like level-set initialisation (B) 

 

5.4 Results of the level-set method 

 The final optimised shape for kf/ks 0.001, with initialisation A, is shown in Figure 5-13, 

along with the convergence plot. The time at which volume constraint is met is 

considered as the optimised shape, but the optimised shape obtained is not-smooth 

at that time. So simulation is run for additional time to obtain a smooth optimised shape 

for the CFD validation run.  
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Figure 5-13 Optimised shape for kf/ks =0.001 through Level-set method with initialisation A and the 
convergence plot 

 The topology optimisation is repeated for the level-set initialisation B. The optimised 

shape obtained and the convergence history for the high conductive solid case are 

given in Figure 5-14. This shape overall resembles the optimised shape of the density 

method (Figure 5-4), but it has many gaps or holes between the radial arms. The 

shape resembles a web connecting the 3 outer edges of the design domain with the 

heat flux boundary. In addition to the main web, there are two smaller web-like 

structures created in the LS design, which were absent in the density design. These 

additional features make the LS optimised design superior to that obtained using the 

density method. 

     

Figure 5-14 Optimised shape for kf/ks =0.001 through Level-set method with initialisation B 
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Figure 5-15 Temperature contour on design domain for kf/ks=0.001 through LSM with initialisation B 

 For the low conductivity solid case, optimisation is started with an initial solid volume 

of 50% and the required volume constraint is 25%, but the minimum objective reached 

during the optimisation corresponds to a volume constraint of 43%. The optimised 

shape is given in Figure 5-16. 

 

 

Figure 5-16 Optimised shape for kf/ks =0.1 through Level-set method with initialisation B 

 

 It is worth noting that, in the density method, the optimised shape of the high 

conductivity case has more grey regions compared to the low conductivity case. While 

time marching in the high conductivity solid case, LS front has substantially deviated 

from the 45o slope, but in the low conductivity solid case, LS front is relatively less 

deviated from the 45o slope. 
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 The Table 5-5 shows the comparison of the density and LS optimised heat sink 

performance for the two different conductivity ratios considered. For the kf/ks=0.001 

case, the LS yields a much lower objective value than the density method; even the 

maximum temperature within the design domain is lower for the LS shape. However, 

it should be noted that both the density and LS optimised shapes have grey regions 

which can impact the final objective value. A CFD validation could better evaluate the 

effective performance of these designs. 

 

Thermal compliance 
(WK) 

Maximum 
Temperature (K) 

Kf/Ks LS DM 
 
LS DM 

0.001 2.045 4.146 
 
376 378 

0.1 163.17 149.5 
 
546.54 532 

Table 5-5 Comparison of DM and LS results (Volume fraction 0.25) 

 

5.5 CFD based validation 

 It is necessary to validate the optimised shape obtained because i) gradient based 

optimisers which are prone to initialization effects are used in the DM, ii) The LS 

method also has an initialization effect and iii) the threshold parameter for demarcating 

the (porous) solid from fluid regions is chosen by visual judgement rather than by 

scientific support. For the purpose of validation, it is planned to compare the cooling 

effectiveness of the DM and LS optimised heatsinks with a standard heat sink through 

a Comsol based CFD study.  

 The standard heat sink is designed based on an article by Yang [100]. He has 

designed an optimum Pin fin heat sink cooled by air impingement using the Taguchi 

method. But since, the Reynolds number in the present optimisation study is very 

much lower than Yang’s study, a uniform inter-fin spacing is selected in this study.  

 

5.5.1 Validation of the highly conductive solid case (kf/ks =0.001)  

 

  As mentioned earlier, the DM result for kf/ks=0.001 has more grey regions. To 

demarcate the (porous) solid and fluid regions, the threshold gamma of 0.5 was 
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chosen. The resulting heatsink shape has a material volume of 19% of design domain 

volume. Hence, the standard heat sink is also designed to have a material volume of 

19%. In order to compare it with the equivalent DM result, an additional topology 

optimisation run with a gamma initial value of 0.25 (which yielded best optimal results 

earlier) & volume constraint of 19% is carried out in the DM method.  

 The DM optimised heat sink geometry used in the CFD study is a relatively simplified 

one to enable the meshing. Figure 5-4 denotes the actual optimised shape, but from 

this shape, unattached regions are removed and very thin plates attached with 

branches are removed to carry out the meshing. It should be noted that, in general 

mesh generation over a thin surface will increase the mesh density significantly 

without increasing the accuracy of the results. Hence, normally thin edges and 

surfaces are removed while meshing. The simplified geometry obtained is shown in 

Figure 5-19. A tetrahedral mesh is generated over the geometry, which has 3 different 

material domains, namely copper near the heatflux region, the (porous) solid region 

created through optimisation (k=40 W/m/k, density and Cp are same as copper) and 

the fluid created through optimisation (k=0.04 W/m/k, density and Cp are the same as 

water). In total, 1.3 million tetrahedral elements were used to discretise the DM heat 

sink, including the outer flow domain. It should be noted that the DM based heat sink 

geometry had few unconnected surfaces and few very thin sheet like surfaces near 

the boundaries which were ignored to enable the mesh generation in Comsol. 

 The pin-fin heat sink is designed in such a manner that it occupies 19% of the design 

domain volume in order to compare it with the DM heatsink. Geometric details of the 

pin-fin heat sink are given in Figure 5-17. Each fin has a square cross section of side 

0.00703m and a height of 0.1m including the fin base of height 0.01m. The inter-fin 

space is kept uniform at 0.0125m and the domain is meshed with 1.3 million 

tetrahedral cells. Total mesh size is kept the same for all the CFD studies to alleviate 

the mesh effect. 

 The LS optimised shape has a more complex geometry with many small surfaces and 

gaps. Conducting a CFD simulation on the actual TO geometry is nearly impossible in 

Comsol5.1, with the current geometry import features. Hence a simplified geometry 

has been analysed. However, the mesh and CFD setup are very similar to the DM and 

pin-fin design.  From the CFD study, the thermal compliance of the design domain 
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(0.1x0.1x0.1m cube) is computed for all the 3 heat sinks and they are compared (Table 

5-5) against the values obtained during topology optimisation. The temperature 

contour of the standard heat sink, DM and LS shape are given in Figures 5-18, 5-19 

and 5-20 respectively. The following points can be observed from the table. 

 

 

Figure 5-17 3Dimensional Pin-fin heat sink geometry 

 

1. The thermal compliance and maximum temperature of the standard heat sink 

and DM heat sink are of similar order but the LS heat sink values are slightly 

higher. 

2. The thermal compliance obtained in the CFD study is higher than the 

compliance obtained during the optimisation study. 

3. The maximum Temperature obtained through the CFD study is lower than the 

temperature obtained during the optimisation study. 

 DM 

optimisation 

results 

LS 

optimisation 

results 

CFD result of 

Standard HeatSink 

CFD result of 

DM shape  

CFD result 

of LS 

shape 

Thermal 

compliance (WK) 

6.518 2.05 9.498 10.10 13.86 

Maximum 

Temperature (K) 

383.9 378.58 313.89 315.89 314.68 
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Temperature rise 
(Max. Temp. - 
Ambient Temp.) 

90.75 85.43 20.74 22.74 21.53 

Table 5-6  Validation of DM TO results for kf/ks =0.001 for volume fraction 19% 

      

Figure 5-18 Temperature distribution from CFD study on Standard heatsink for kf/ks =0.001 

 

  

Figure 5-19 Temperature distribution from CFD study on DM heatsink for kf/ks =0.001 
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Figure 5-20 Temperature distribution from CFD study on LS heatsink for kf/ks =0.001 

 

 The reason for the CFD study on the DM shape reporting a higher objective value is 

because of the grey regions present during the topology optimisation. The grey cells 

which act like half-solid (good conductivity) distribute heat effectively within the 

domain, thereby reducing the objective value during TO. Alexandersen [37] observed 

a 20% difference in the objective value between the optimisation result and the CFD 

result. The difference observed in the present study (54.9%) is higher than the value 

reported by [37], mostly because of the lower max (1e5) value used during this 

simulation. This means that in the CFD, solid is perfectly represented as solid: that is 

with no slip condition, impermeability, and exact thermal conductivity but in the 

optimisation study solid is approximately modelled. 

 The surface area exposed to convective cooling is calculated for the 3 heat sinks as 

obtained in the TO and the simplified shape used for the CFD validation. Table 5-6 

shows the comparison.  

 

 
Table 5-7 Surface area of different heat sinks for volume fraction 19% 

Heat sink Surface Area (m2) (volume fraction 19%) 

TO shape CFD shape 

Standard pin-fin - 0.06525 

Density based heat sink 0.05308 0.04427 

LS based heat sink 0.0820 0.03907 
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  It is noted again that the optimum shape given by the LS is relatively complicated 

with so many small surfaces. It was difficult to import that geometry in to COMSOL 

and to do the CFD simulation. Hence a simplified shape with reduced surface area is 

taken for CFD validation. In the present CFD analysis, both the LS and Density TO 

shape perform less well than the standard pin-fin. This is because of the geometry 

simplification carried out to perform the CFD study in COMSOL. It is to be noted that 

the DM shape, though has 32% less surface area than the pin-fin, its thermal 

compliance is only 6.3% lower than the standard pin-fin. Hence if the CFD simulation 

were carried out on the actual TO shape, they would perform better than the standard 

pin-fin shape but it should also be mentioned that the pin-fin shape used here is not 

particularly optimised for this flow conditions. So a marginal improvement might be 

possible by topology optimisation methods. 

 Figure 5-21 shows, the temperature gradient on the heat sink surfaces obtained 

through the CFD study. Heat transfer is higher on the outer top edges of the cubic 

domain when subjected to fluid injection from the top. The DM heat sink has more 

solid on the outer edges, so as to decrease the temperature gradient. The LS heat 

sink also has more solid on outer edge, but the simplified LS shape (given in this 

Figure) didn’t have much solid near the top edges. The maximum temperature 

observed within the domain is 2oK higher for the DM heat sink than the standard heat 

sink.  

  

 
Figure 5-21 Temperature gradient comparison between Standard heatsink, DM & LS heatsinks for 

kf/ks =0.001 
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5.5.2 Validation of low conductivity solid case (kf/ks =0.1)  

 

 Since, the LS method did not give an optimised shape for this case, the CFD 

simulations are only carried out for the standard heat sink and DM heat sink 

geometries.   The DM heat sink geometry with a gamma threshold value of 0.925 had 

a material volume of 25%. It has to be noted that the DM topology optimisation result 

for the present case, has less grey cells than the kf/ks =0.001 case. A tetrahedral mesh 

is generated over the computational domain, which has 3 different material domains 

as mentioned earlier, but now the thermal conductivity of the heat sink material is (Ks) 

0.4W/m/K. The total number of tetrahedral elements are 0.72million. Using the 

conjugate Heat transfer module in Comsol, CFD simulations are carried out. 

 Standard heat sink geometry is the same that is used for the kf/ks =0.001 case, but 

now the solid has a thermal conductivity value of ks=0.4W/m/K. From the CFD study, 

the thermal compliance of the design domain is computed for both the heat sinks and 

they are compared (Table 5-7) against the value obtained during topology 

optimisation. The temperature contour of the DM heat sink and standard heat sink are 

given in Figure 5-22. The following points can be observed from the Table. 

1. The DM designed heat sink performs better, that is it attains much lower thermal 

compliance than the standard heat sink. 

2. As for the earlier case, here again, the objective value computed through the 

CFD simulation of DM heat sink is higher than the value obtained during 

topology optimisation. The maximum temperature computed through the CFD 

simulation is lower than the temperature obtained during topology optimisation. 

 

 DM optimisation 

results 

CFD result of 

Standard Heat Sink 

CFD result of DM  

shape 

Thermal compliance 

(WK) 

149.5 248.12 157.74 

Maximum 

Temperature (K) 

532 555.81 455.16 

Temperature rise 
(Max. Temp. - Ambient 
Temp.) 

238.85 262.66 162.01 

Table 5-8 Validation of DM TO results for Kf/Ks=0.1 for volume fraction 25% 
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Figure 5-22 CFD based Temperature contour of Standard and DM heat sinks 

 

 The difference observed in thermal compliance can be explained from the plot of the 

temperature gradient given in Figure 5-23. A high value of the temperature gradient is 

observed near the heat source and a moderate value is observed at the top of the 

heat source due to convective heat transfer. The DM heat sink has more solid material 

near the heat source so as to decrease the temperature gradient value. Eventually, 

the thermal compliance of the design domain also decreases for the DM heat sink 

than the standard heat sink which has uniform material distribution throughout the 

design domain.   

 As the DM heat sink effectively diffuses the heat throughout the design domain it has 

lower maximum temperature than the Standard heat sink. 

 

Figure 5-23 Temperature gradient comparison between Standard heatsink and DM heatsink for 
Kf/Ks =0.1 
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5.6 Discussion  

 

 In this study, the density method has provided optimised solutions for both the 

conductivity ratios tested. The level-set method has given an optimised solution for 

the high conductivity ratio case but for the lower conductivity case, only the cubic 

initialisation yields a solution but this is inferior to the density based solution. In 

general, the run time of level-set simulation takes longer time than the DM, but the DM 

requires many different gamma initialisations to be assessed in order to identify the 

better optimal solution. If the continuation approach is followed for then its value 

can be gradually increased to higher values (1e6) thereby the accuracy of modelling 

of solids can be improved. 

 Grey cell regions are observed in both the DM and LS with density-based mapping. 

The spread of grey cells will come down in LS if the level-set functions are re-initialised 

frequently. Similarly in DM, by using regularization techniques, the amount of grey 

cells can be decreased. Alexanderson interpolated the thermal properties using a 

convex natured relation and also followed the continuation approach to reduce the 

grey regions and to reach the global optimum. The amount of grey regions present 

also depends on the nature of the optimisation problem, that is how close it is to a 

convex optimisation problem. For instance, the kf/ks =0.1 case had less grey regions 

than the kf/ks =0.001 case. This indicates that the former case could be a convex 

problem. 

 It is worth noting that the LS method used here did not use topology sensitivity. 

Though for a 3D problem without topology sensitivity, holes will emerge through 

pinching of walls, it is not sufficient to definitely reach a better optimal solution. So to 

reach a better optimal it is necessary to run LS optimisation with different initialisations.  

 The LS topology optimisation for the kf/ks =0.001 case is to some extent similar to the 

3D LS topology optimisation carried out by Coffin [64], but they have considered a 

hemi-spherical domain and a simple model for heat transfer computation (Newton’s 

law of cooling). The Biot number in their case is 0.1, whereas in this case it is 

computed to be 0.03. The Biot number for the kf/ks =0.1 case is calculated to be 524. 

This indicates that convective heat transfer is relatively stronger than the conduction 

heat transfer in the latter case.  
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 Optimised shapes obtained from both the DM and LS methods have some 

disconnected regions. During CFD validation those regions are neglected for ease of 

meshing. Also, in a practical heat sink, those disconnected regions are meaningless. 

Implementing regularisation or thin feature control mechanism in the optimiser, will 

prevent the formation of the disconnected regions and more details about this can be 

found in reference [72] and [17]. 

 From the optimised heat sinks of kf/ks =0.001 & kf/ks =0.1 some interesting insights 

can be obtained. Former case is more conduction dominant, so the heat sink is 

extended to 3 outer edges of cubic domain. Whereas the latter case is not conduction 

dominant or convection plays a role in spite of Re being very low. Hence in the latter 

case heat sink is compact dome like shape to maximise the heat transfer. It is 

interesting to see that the TO on its own, without any guideline shape, lead to a 

suitable heatsink shapes depending on the physics of the problem.  

 

5.7 Summary  

 

 The Topology optimisation of three dimensional heat sink cooled by laminar forced 

convection is conducted through the i) Density method and ii) Level-set method. Two 

different types of heat sink materials are considered one with high solid thermal 

conductivity (kf/ks =0.001) and the other with low thermal conductivity solid (kf/ks =0.1) 

and minimum thermal compliance is considered as the objective for optimisation. 

Complete thermo-fluidic model equations are solved. The Density based optimisation 

is carried out with the MMA optimiser and the Level-set method used density-based 

mapping. The optimised shape obtained for high conductivity solid resembles like a 

web connecting the outer edges of cube with the heat source. The optimised shape is 

conceptually same in both the methods but there are some differences in the finer 

details. The LS shape has multiple gaps though maintaining the overall outer shape 

same, thereby it has much higher surface area for the same material volume. This 

makes it very difficult to conduct CFD validation simulation on the obtained optimal 

shape in Comsol. For the low conductivity solid case, the density based method gave 

good results whereas LS seems to reach a local minima, for the two different 

initialisations tried.  



 

123 
 

 The optimised shapes are validated through comparison of their CFD performance 

against the CFD result of standard pin fin heat sink. The CFD validation of kf/ks =0.1 

case shows that, the TO heat sink preforms better than standard pin-fin heat sink. In 

the kf/ks =0.001 case, optimised shapes are performing equally to the standard pin-fin 

heat sink shape. Since the TO heat sink shapes are not directly amenable for CFD 

simulation, some extent of geometry simplifications or smoothings are made. The 

simplification reduced the surface area of the optimised shapes considerably. If 

simulations are performed on the actual un-simplified TO shapes, they might well have 

a superior performance than the standard one. Further, the objective value calculated 

through CFD simulation is much higher than that through optimisation study, mainly 

because of the grey cells present during the optimisation study which understates the 

objective value significantly. But, this could be avoided by regular re-initialisation of 

level-set functions. 

 This performance assessment study also shows that, 

1.  The LS gives better quality design with much lower objective function value, 

though the Density method is found to be the robust one. 

2. The Density method faces more flow instability problems for 3D problems at 

moderate Reynolds numbers; because of this optimisation runs with initial gamma 

value higher than 0.55 could not be carried out. The LS is slightly better as 

optimisation can be started with suitable solid/fluid area initialisation without 

destabilising the fluid flow.  

3. Computational time taken by the coupled LS method is higher than the DM, but 

LSM’s computational time can be significantly reduced by carrying out the LS 

advection separately in Matlab and using Comsol only for solving the physics. 

 This study conducted on a simple numerical framework, indicates that while both the 

methods experience grey cells, the DM is faster in convergence and robust but the 

LSM gives better quality design. But more importantly, the DM has more flow 

instability problems, hence the LSM is chosen as a better method for studying the 

fluid flow and heat transfer problems. Going forward, the LSM numerical framework 

will be developed to state-of-the-art level. 
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6 Enhancement of Level-Set Optimisation Framework 

 
  

6.1 Introduction 

 In the previous chapter it was shown that the Level-set Method gives better quality 

design with lower objective value than the DM. Hence this method is chosen for further 

study and it is also planned to improve the LS numerical model in terms of 

computational time, grey cells and shape sensitivity evaluation. It is planned to do the 

following changes to the LSM numerical model. 

1. De-coupling the solution of physics and advection of LS, in order to reduce the 

computational time. Consequently, advection of LS will be carried out using the 

Finite difference method and solution of physics will be carried out using the FE 

method. 

2. Re-initialisation of LS function, in order to reduce the grey cells in the final 

optimised design.  

3. Implementation of adjoint shape sensitivity evaluation. 

4. Implementation of Topological derivative based LS advection. 

 

6.2 Level-set advection 

 The LS function is advected by solving the HJ equation (Eqn 5.11). Solving the HJ 

equation coupled with the problem physics, takes more computational time in Comsol. 

Hence the HJ equation is solved separately in Matlab and a new LS function (which 

is the solution of the HJ equation) is passed on to Comsol, to solve for the physics. 

The HJ equation is solved using an explicit first order upwind scheme. The level-set 

function is evolved on a grid with ghost elements; the ghost elements surround the 4 

sides of the design domain. The physics is solved on the actual design domain mesh. 

Figure 6-1 shows the design domain with surrounding ghost elements (dotted lines) 

used for the LS advection. Refer to section 3.2.5 for the finite difference formulas used 

for the LS time evolution. The time step for time marching the HJ equation should 
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satisfy the CFL criterion for stability. Every time the physical problem is solved, the HJ 

equation is marched in time several time steps (~20) in order to obtain the new shape 

or new level-set function.  

 

Figure 6-1 Design domain mesh with surrounding ghost elements used for LS advection 

 

6.3 Re-initialisation of level-sets 

 As the LS are propagated during the TO iterations, they become steep or slant. But 

for accurate interface prediction, the gradient of LS has to be unity; so to bring back 

the gradient of LS to unity, re-initialisation of LS has to be carried out at regular 

intervals. In order to re-initialise the LS, the Eikonal equation (6.1) is solved. This 

unsteady equation is time marched till steady state is obtained and the steady state 

ensures that the gradient of the level-set has become equal to 1. 

𝜕𝜓

𝜕𝑡
+ 𝑤. ∇𝜓 = 𝑆(𝜓𝑜) 

(6. 1) 

 
 

𝑤 = 𝑆(𝜓𝑜)
∇𝜓

|∇𝜓|
 

(6. 2) 

           

Where S is the smoothed sign function. For a two dimensional case, the expression 

for S is given below, 

𝑆()𝑖,𝑗 =

𝑖,𝑗

√
𝑖,𝑗
2 + ((

𝑎 + 𝑏
2 )2 + (

𝑐 + 𝑑
2 )2) ∗ ∆𝑥2 + 𝜀

 
(6. 3) 
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where x is the grid spacing in the x direction and  is a very small number (1e-5). 

Gradients calculated through forward and backward difference formulas are used to 

solve the equation. The difference formula used for time marching is given below. 

 

 

𝑎 = 𝐷𝑥
−

𝑖,𝑗
=

𝑖,𝑗
− 

𝑖−1,𝑗

ℎ
 

(6. 4) 

 

𝑏 = 𝐷𝑥
+

𝑖,𝑗
=

𝑖+1,𝑗

− 
𝑖,𝑗

ℎ
 

(6. 5) 

 

𝑐 = 𝐷𝑦
−

𝑖,𝑗
=

𝑖,𝑗
− 

𝑖,𝑗−1

ℎ
 

(6. 6) 

𝑑 = 𝐷𝑦
+

𝑖,𝑗
=

𝑖,𝑗+1

− 
𝑖,𝑗

ℎ
 

(6. 7) 

Δ𝑡 = 𝐶𝐹𝐿 ∗ min (∆𝑥, ∆𝑦)/max (𝑎𝑏𝑠(𝑆)) (6. 8) 


𝑖,𝑗
𝑁+1 = 

𝑖,𝑗
𝑁 − Δ𝑡([max(𝑆, 0) ∗ ∇+ +min(𝑆, 0) ∗ ∇−] − 𝑆)  (6. 9) 

            

 Where ‘i’ is the node numbering along the x direction, ‘j’ is the node numbering along 

the y direction and ‘CFL’ is the Courant-Friedichs-Lewy number based on which time 

step is calculated. The expressions for + and  - are given in Eqn. (3.49) and (3.50). 

The time marching is continued till the stopping criteria described by Sussman [84] is 

satisfied. The re-initialisation has been implemented in Matlab and typical procedure 

followed for the topology optimisation with LS re-initialisation is described in the next 

section.  

 

6.3.1 Numerical implementation 

 The level-set Topology optimisation with the re-initialisation of level-sets at regular 

intervals is carried out in Comsol software in combination with Matlab Livelink. The 

various steps involved in this process are given in Figure 6-2, in which the steps 

enclosed within the dashed line box are carried out in Comsol and the rest of the steps 

are carried out in Matlab Livelink. It should be noted that in this formulation both the 

HJ equation and Eikonal equation are solved in Matlab. These equations are solved 

using an explicit first order upwind scheme. The written Matlab code is inspired from 

the MATLAB code (TOPLSM) written by Wang [101], which demonstrates the various 
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steps involved in the level-set based topology optimisation for a simple structural 

mechanics problem.  

 In this formulation, first the design domain is initialised with some initial guess of LSF 

in Matlab and then it is exported to Comsol to solve for the physics. 

 

 

Figure 6- 2 Level-set topology optimisation procedure 

In order to import the LS in Comsol from Matlab, “Interpolation” function is used. Since 

the mesh remains the same and only the level-set function is evolving, no accuracy 

will be lost due to interpolation. By solving the physical problem in Comsol, the shape 

sensitivity is calculated and then it is retrieved in Matlab Livelink using the command 

‘mpheval’. 

 The level-set distribution before and after re-initialisation at one instant of optimisation 

is shown in Figure 6-3. It could be noted that due to re-initialisation, the mean line of 

the LS boundary is slightly moved.  
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Figure 6- 3 Level-set function before and after re- initialisation 

The evolved level-sets are again fed back to Comsol, and this procedure is repeated 

till convergence. 

 

6.4 Heat sink design with re-initialisation of level-set 

 In this study Two & Three dimensional heat sinks are developed for two different solid-

to-fluid thermal conductivity ratios for the objectives of minimum thermal compliance 

(TC) and viscous dissipation (VD). The level-set formulation is similar to the one 

described in previous test cases but now re-initialisation is additionally carried out and 

the HJ equations are solved in the finite difference setup rather than in the finite 

element setup.  

6.4.1 Computational details 

 The design domain is rectangular in shape, with heat source at the bottom of the 

domain and liquid convection injected from the top of the computational domain as 

shown in Figure 6-4. The two sides of the computation domain act as outlets.  

 

Figure 6- 4 2D Computational domain details 
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 The design domain is discretised with 150x50 rectangular elements. The initial level-

set used for the computation is a series of circles. A liquid flow of velocity 0.002m/s 

and of temperature 293K is applied at the Inlet. The inlet velocity corresponds to a 

Reynolds number of 600 and a heat flux of 700W/m2 is specified as heat source in the 

bottom wall and zero pressure boundary condition is applied at the outlet. No-slip 

condition is approximately imposed by initialising the velocity equal to zero in solid 

regions i.e., where H is equal to 1. 

H()u=0 (6. 10) 

 

 At any point on the design domain, material properties are calculated through 

interpolation based on their Heaviside function value. In this study H=1 denotes 

(porous) solids, so the interpolation expressions are formulated as given in Table 6-1.  

 

Property Name Expression 

Thermal conductivity k (ks- kf)*H + kf 

Specific heat capacity Cp (Cps- Cpf)*H + Cpf 

Density  (s- f)*H + f 

Impermeability factor  (max - min)*H+ min 

Table 6- 1 Material interpolation formulas 

 The TO is carried out for two different material sets i.e., fluid to solid conductivity 

ratios. The material properties are given in Table 6-2. 

Parameter Value 

kf /ks 0.04/40 & 0.04/0.4 

f /s 1000/8920 

Cpf /Cps 4184/385 

f 1.02e-3 Pa.s 

Table 6- 2 Material properties for 2D heat sink design 

 The computational domain used for the 3D study is shown in Figure6-5. The 

computational domain considered is 1 quadrant of the total domain, making use of the 

symmetry boundary condition on the two sides. The design domain is a cube of side 

0.1m length and it is discretised by 43x43x43 mesh elements. The heat flux of 

10,000W/m2 is applied at the bottom corner of area 1.353e-4 m2 of the design domain 
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base and a fluid flow of velocity 4e-5m/s is applied at the top surface of the 

computational domain. The volume fraction of solid material is constrained at 25%. 

The objective functions of this optimisation study are given below. 

Objective TC:  𝑚𝑖𝑛 ∫ 𝑘𝛾 ∗ (∇𝑇)
2𝑑Ω

Ω
 

 

(6. 11) 

Objective VD:  min 𝜇 ∫ (
𝜕𝑢𝑖

𝜕𝑥𝑗Ω
)2 𝑑Ω       

 

(6. 12) 

 

 The optimisation is carried out by time marching the HJ equation (Eqn.5.11). The 

velocity of propagation of LSF is equal to the sum of shape sensitivity, Lagrange 

multiplier and volume penalty factor (Eqn 6-13). The shape sensitivity of the above 

objectives are equal to the negative of their objective function values. This is an 

assumption and this will be true at Stokes flow Reynolds numbers, but in this study 

the Re (600) is slightly higher than the Stokes flow Re, hence the sensitivities could 

be slightly erroneous. 

𝑉𝑛 = 𝐹′() +  𝜆 + (∫𝐻(𝜓)𝑑𝛺 −  𝑉 ∗ 𝑉𝛺)
𝛺

 
(6. 13) 

 

The Lagrangian multiplier and Area penalty factor are updated as follows. 

𝜆𝑘 = 𝜆𝑘−1 − Λ𝑘−1 (𝑉𝑜𝑢𝑚𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒) (6. 14) 

Λ𝑘 =
1

𝛽
Λ𝑘−1 

(6. 15) 

 

The value of  is 0.9, and the same value is used for all simulations irrespective of the 

objective of the study but the value of Lagrangian multiplier , and the area penalty 

factor , are chosen differently for different objectives. The reason for choosing 

different value is the difference in magnitude of the objective values. Suitable value of 

these factors were chosen by a trial and error method. 
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Figure 6- 5 Three dimensional computational domain 

For solving the physics, linear elements are used for both velocity and pressure along 

with stream wise diffusion stabilisation for finite element solution. In the two 

dimensional case, the governing equations are solved in a coupled way and for three 

dimensional case, the equations are solved in segregated way. Simulation meeting 

the area constraint and the objective not varying significantly for a range of iterations 

is considered as a converged solution.   

 

6.4.2 2D Heat sink results and discussion  

  Considering only the TC as objective, the TO is carried out for 2 fluid to solid 

conductivity ratios kf/ks=0.001 and 0.1. Since the flow Reynolds numbers are low 

(Re=600), it is expected that at least for the latter case, the convective heat transfer 

will play a comparable role to conduction. Results obtained for TC minimisation, VD 

minimisation and combined TC & VD minimisation are given in this section. It is again 

noted that, though the Re is slightly higher than Stokes flow Re, the sensitivities of 

Stokes flow are used for the optimisation. 

Heat sink of higher solid conductivity case (kf/ks=0.001): 

 The optimised shape for higher solid thermal conductivity case, resemble like a tree 

shape and it is shown in Figure 6-6. The temperature is uniformly distributed 

throughout the design domain except near the peripheries. The convergence of 

Lagrange Multiplier, Area difference and Thermal compliance are shown in Figure 6-

7.  
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Figure 6- 6 Optimised shape for higher solid conductivity case and Temperature (K) distribution 

 

Heat sink of lower solid conductivity case (kf/ks =0.1): 

 The optimised shape and the temperature distribution within the design domain are 

shown in Figure 6-8. Unlike the high solid conductivity case, this doesn’t have many 

branches but the primary branch connects the heat flux with the corners of the design 

domain. The objective and maximum temperature observed in the design domain are 

given in Table 6-3. 

 

Figure 6- 7 Convergence history of 2D heat sink design using re-initialised LSM 
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Figure 6- 8 Optimised shape for lower solid conductivity case (kf/ks=0.1) and Temperature (K) 
distribution 

kf/ks 

Thermal 

Compliance(WK/m) 

Maximum 

Temperature (K) 

Temperature rise 

(Max. Temp. - 

Ambient Temp.) (K) 

0.001 202.507 523.10 229.95 

0.1 3154.40 631.60 338.45 

Table 6- 3 Results of minimum thermal compliance objective optimisations 

 

Combined TC and VD objective: 

  For this case, the objective for the topology optimisation problem is defined as, 

Objective = F1* TC + F2* VD (6. 16) 

 

Where F1 and F2 are weighting factors and when F1 is equal to zero, the optimisation 

becomes pure VD minimisation problem and when F2 is zero it becomes pure TC 

minimisation problem.  

 Before optimising the heat sink for combined thermal compliance and viscous 

dissipation, an optimisation is carried out for pure VD minimisation case. The 

optimised shape and the velocity field in the design domain are shown in Figure 6-9.  

     

Figure 6- 9 Optimised shape for minimum viscous dissipation and Velocity (m/s) contour 
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 The VD magnitude is many orders lower than TC, as the fluid viscosity (1.02e-3Pa.s) 

and Re are low. Hence for combined objectives run, F1 is taken as 1e-9 and F2 as 1, 

so that both the objectives will influence the optimisation. The optimised shape 

obtained is shown in Figure 6-10. In order to allow the smooth flow passage, branched 

structure has changed into a rectangular block on top of heat source and two islets of 

(porous) solid region acting like a guide vane for the incoming flow. The optimised 

shape along with the velocity and Temperature contour are given Figure 6-10.  

 

 

Table 6- 4 Combined TC and VD optimisation results 

  

 

Figure 6- 10 Results of combined TC and VD optimisation: Shape, velocity (m/s) and temperature 
(K) contours 

 

6.4.3 3D Heat sink results and discussion 

A three dimensional heat sink is optimised for the TC objective for the conductivity 

ratio of kf/ks=0.001 subjected to laminar forced convection of Re=8. The temperature 

of the cooling fluid (ambient temperature) is 293.15K. The computational domain is 

(F1,F2) 
Thermal Compliance 

(WK/m) 
Viscous Dissipation 

(N/s) 

(0, 1) - 7.9642e-8 

(1e-9,1) 2357.12 8.8307e-8 
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exactly the same as the one used in Chapter 5.1. Note in this case, a heat flux of 

20kW/m2 and a solid thermal conductivity of 400W/(mK) are used. The optimised heat 

sink shape, velocity, temperature distribution and convergence history are given in 

Figure 6-11 and 6-12 respectively. This study required about 80 optimisation iterations 

to converge with a total run time of 140hours on a 10 Xeon core workstation.  

  

Figure 6- 11 Front and top view of 3D optimised heat sink 

 

The optimised heat sink has two distinct parts, namely the bulk mass of (porous) solid 

material on top of heat flux boundary and the second part is a flat disk like part near 

the top of the design domain facing the oncoming fluid injection. The shape is well 

captured in the complete view of the heat sink.  

         

Figure 6- 12 Temperature (K) distribution in the diagonal plane and convergence history 
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Discussion 

 The heat sink shapes obtained for the higher solid conductivity case agrees with the 

tree like shape reported in the literature. Because of the reduced thermal conductivity, 

branches are missing in the low solid conductivity case, which is understandable. 

Similarly for the combined TC and VD minimisation case, the optimiser tried to avoid 

sharp changes in temperature and velocity throughout the domain.  

The 3D heat sink has an inverted wine glass shape. The central part with short 

branches promotes the conductive heat transfer while the top disk like part promotes 

the convective heat transfer. 

 

6.4.4 Summary 

 The level-set based topology optimisation is applied to the design of 2D and 3D 

convectively cooled heat sinks for different material sets. In this formulation, the 

evolution and re-initialization of level-set are carried out in Matlab while physics is 

solved in Comsol. This formulation ensures crisp boundary capture and no-slip 

condition also approximately imposed on the (porous) solid boundaries. The heat sink 

shape obtained for 2D and 3D higher solid conductivity case agree with the tree 

like/dendritic shape.  

 

6.5 Adjoint based shape sensitivity evaluation 

 The sensitivity of the objective function with respect to the design variable is the key 

factor which drives the evolution of shapes. Though sensitivity can be evaluated 

through Finite difference method, it is very costly as it requires a number of simulations 

equal to mesh size plus one. The adjoint method is a cheap and easy method, wherein 

the adjoint equation system has to be solved in addition to the state equations to 

evaluate the shape sensitivity. The shape sensitivity will be a function of state 

variables and adjoint variables. 

 For some simple state equations, state variables are equal to adjoint variables. If the 

state equation is Laplacian type equation then it will be self-adjoint in nature. Stokes 

flow problem governed by Stokes equation is an example of this, and here, for the 
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objective of viscous dissipation, the sensitivity is also equal to negative of viscous 

dissipation. 

 If the objectives are volume integrated objectives then the objective related terms will 

be present in the adjoint equations. On the other hand, if the objectives are surface 

integrated objectives then its derivative terms will be present in the adjoint boundary 

conditions. The adjoint equations for the NS equations and combined NS & energy 

equations are given in this section. 

Adjoint equations for Navier-Stokes flow: 

The adjoint Navier Stokes equation and its boundary conditions depend on the 

objective function. For the viscous dissipation objective the adjoint NS and its 

boundary conditions based on frozen turbulence assumption are given below [102]. 

Objective function, 𝐽(Ω) =  𝜇 ∫ (
𝜕𝑢𝑖

𝜕𝑥𝑗Ω
)2 𝑑Ω (6. 17) 

 

Taking ‘u’ as the state velocity vector and ‘p’ as the state pressure, the adjoint 

equations are, 

−(𝑢. ∇)w + w. (∇u) = −∇q + νΔw − 2νΔu (6. 18) 

−∇.w = 0 (6. 19) 

Boundary conditions at Inlet: 𝑤 = 0 𝑜𝑛 Γ𝐷 and wall 
 

(6. 20) 

Boundary conditions at Outlet:(𝜈∇w + qI)n =  −(u. n)w + 2ν∇u. n  on Γ𝑁 
Domain boundary is, 𝜕Ω =  Γ𝐷 𝑈 Γ𝑤𝑎𝑙𝑙 𝑈 Γ𝑁 

 

(6. 21) 

 

Where, ‘w’ & ‘q’ are adjoint variables for the velocity vector and pressure. Shape 

derivative for this problem is, 

𝐽′(Ω) = 𝜇[(
𝜕𝑢𝑖
𝜕𝑛
)2 − (

𝜕𝑢𝑖
𝜕𝑛
) (
𝜕𝑤𝑖
𝜕𝑛

)] 
(6. 22) 

 

Adjoint equations for the combined NS & energy Equation: 

 Generally, adjoint equations are derived from the augmented Lagrangian of the 

optimisation problem. Kontoleontos [58] formulated the adjoint system for turbulent 

NS equation with energy equation. Hinterberger [103] derived the adjoint equations 
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for laminar fluid flow with scalar transport, where the scalar variable can be 

temperature or species concentration. Following these works, the adjoint system is 

deduced for laminar NS equation with energy equation in this study. For instance, 

consider the optimisation problem, 

Minimise  F = -F1*Temperature_Drop + F2* Total Pressure_Drop                                                   (6. 23) 

 

Temperature Drop=      ∫ 𝑇𝑢. 𝑛𝑑𝐴𝐼
+ ∫ 𝑇𝑢. 𝑛𝑑𝐴

𝑂
             (6. 24) 

Total Pressure Drop= ∫(𝑝 + 0.5𝜌𝑢2)𝑢. 𝑛𝑑𝐴𝐼
+ ∫ (𝑝 + 0.5𝜌𝑢2)𝑢. 𝑛𝑑𝐴𝑂

  (6. 25) 

 

Subjected to,  

(𝑢.𝑢) = −𝑝 + . {µ{𝑢 + (𝑢)𝑡𝑟}} − 𝑢 (6. 26) 

(. 𝑢) = 0 (6. 27) 

𝐶𝑝(𝑢.𝑇) = . (𝑘𝑇) + 𝑄𝑜𝑇 (6. 28) 

H()u=0 (6. 29) 

Volume Constraint,  ∫ 𝐻()𝑑Ω ≤ 𝑉
Ω

∗ 𝑉Ω (6. 30) 

 

where VΩ is the domain volume, ‘V’ is the volume fraction and Qo is the volumetric 

heat source/sink per unit temperature (W/(m3.K). ‘F1’ and ‘F2’ are weighting factors for 

each of the objectives. The augmented Lagrangian of this problem is, 

𝐿𝑎𝑢𝑔 = 𝐹 +∫𝑞𝑅𝑝𝑑
Ω

Ω +∫𝑤𝑅𝑢𝑑
Ω

Ω +∫𝑇𝑎 ̂𝑅𝑇𝑑
Ω

Ω 
(6. 31) 

 

 where q, w, and Ta ̂ are the Lagrangian multipliers or adjoint variables to satisfy the 

state continuity, momentum and energy equations and ‘F’ is the objective function. Rp, 

Rv and RT are continuity, momentum and energy equations. The variation of 

Lagrangian with respect to porosity variable is, 

𝛿𝐿𝑎𝑢𝑔

𝛿𝛼
=
𝛿𝐹

𝛿𝛼
+ ∫ 𝑞

𝜕𝑅𝑝

𝜕𝛼
𝑑

Ω

Ω +∫ 𝑤
𝜕𝑅𝑢
𝜕𝛼

𝑑
Ω

Ω +∫ 𝑇𝑎 ̂
𝜕𝑅𝑇
𝜕𝛼

𝑑
Ω

Ω 
(6. 32) 
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The above equation has to be expanded by substituting state equations and using 

Gauss divergence theorem. From this, adjoint equations are derived by eliminating all 

field integrals which depends on 
𝜕𝑝

𝜕∝
,
𝜕𝑢

𝜕∝
 𝑎𝑛𝑑 

𝜕𝑇

𝜕∝
.   

 Since the objectives are surface integrated objectives in this study, the influence of 

objective is only felt in the boundary conditions of adjoint equations which are given in 

Eqns (6.33 to 6.42).  

Considering ‘w’ as the adjoint velocity vector, ‘q’ as the adjoint pressure and ‘Ta ̂’ as 

the adjoint temperature the adjoint equations are given as, 

((𝑢)𝑤 − 𝑢. ∇𝑤) = −𝑞 + . {µ{𝑤 + (𝑤)𝑡𝑟}} − 𝑤 + 𝐶𝑝𝑇∇𝑇𝑎  ̂ (6. 33) 

 

(. 𝑤) = 0 (6. 34) 

𝐶𝑝(𝑢.𝑇𝑎̂) = −. (𝑘𝑇𝑎̂) + 𝑄𝑜𝑇𝑎̂ (6. 35) 

Boundary conditions:  

Wall:  w=0 and Ta ̂=0 

 

(6. 36) 

Outlet:   
(𝑤−𝑞𝐼)𝑛


= −(𝑢. 𝑛)𝑤 − (𝑢. 𝑤)𝑛 − 𝐶𝑝(𝑇𝑇𝑎̂)𝑛 −

𝜕𝐹

𝜕𝑢
 (6. 37) 

(𝑘𝑇𝑎̂)𝑛 = −𝜌𝐶𝑝(𝑢. 𝑛)𝑇𝑎̂ −
𝜕𝐹

𝜕𝑇
 (6. 38) 

Inlet:  𝑤. 𝑛 = −
𝜕𝐹

𝜕𝑝
 , Ta ̂=0 and wt=0  (6. 39) 

𝜕𝐹

𝜕𝑝
= 𝐹2𝑢. 𝑛 

(6. 40) 

𝜕𝐹

𝜕𝑢
= 𝐹2((0.5 ∗ 𝜌𝑢

2 + 𝑝). 𝑛 + 𝑢(𝑢. 𝑛)) − 𝐹1𝑇𝑛 (6. 41) 

𝜕𝐹

𝜕𝑇
= −𝐹1𝑢. 𝑛 (6. 42) 

 

Where ‘n’ is the normal vector, wt is the tangential component of adjoint velocity vector. 

From the solution of state equations Eqns. (6.26 to 6.28) and adjoint equations Eqns. 

(6.33 to 6.35), the topology sensitivity can be calculated using the below formula [58], 
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𝐹′(Ω) =  −∝𝑚𝑎𝑥 (𝑢. 𝑤) − 𝑄𝑜(𝑇. 𝑇𝑎̂) (6. 43) 

Othmer [5] has shown that the shape sensitivity for the NS problem is equal to the dot 

product between tangential flow velocity and tangential adjoint velocity which is quite 

similar to the topology sensitivity expression given in Eqn 3.45, without the 

temperature terms. 

6.6 Topology optimisation of ‘Bend channel’ using adjoint sensitivity 

In order to demonstrate the applicability of adjoint based shape sensitivity, topology 

optimisation of 90o bend channel design is considered. Geometry is a square domain 

with inlet on left side wall and outlet at bottom wall (Figure 6-13). Minimum viscous 

dissipation is considered as the objective and this is a volume integrated objective. 

            

Figure 6- 13 Design domain geometry for 90o bend channel and initial LS distribution 

 

6.6.1  Computational details 

The design domain is descritized by 100x100cells. The re-initialized Level-set 

framework described in the previous section is used for this optimisation. The initial 

level-set distribution is given in Figure 6-13. The volume constraint is set as 21%. In 

the design domain, density and impermeability factor are interpolated based on the 

Heaviside function (H) value. Here, H=1, denotes fluid, so formulas in Table 6-1, are 

modified accordingly.  

The adjoint equations for this objective are given in Eqn.(6.18) to (6.21). The State NS 

equation and adjoint NS equations are modelled using general form PDE model in 

Comsol5.2. One PDE model to solve for velocity and another one for pressure, so 

totally 4 PDE models are used including 2 for state NS and 2 for adjoint NS equations.  

First state equations alone are solved, then adjoint NS are solved using the state NS 
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solution, as the adjoint NS equation involves state variable terms. This is done 

because there is only one way coupling present between NS and adjoint NS 

equations. The shape sensitivity is calculated from the state and adjoint variables 

using the below equation. 

𝐹′(Ω) = 𝜇((
𝜕𝑢𝑖
𝜕𝑥𝑗

)2 − (
𝜕𝑢𝑖
𝜕𝑥𝑗

)(
𝜕𝑤𝑖
𝜕𝑥𝑗

)) 

 

(6.44) 

 

 

Figure 6- 14 Adjoint velocity and adjoint pressure at an instant during optimisation 

 The contour of adjoint variables at one instant of optimisation are given in Figure 6-

14. The adjoint variables doesn’t have any physical meaning but the contours are 

produced here to get a feel for these variables.  

 The level-set function is advected by solving the HJ equation as mentioned earlier 

and the level-sets are re-initialised at regular intervals. The optimisation is carried out 

for different Reynolds numbers from 5.33 to 622. Beyond this Re, laminar flow 

becomes unstable and flow doesn’t converge in the present problem setup.  

6.6.2 Results 

 The optimisation is carried out for different Reynolds numbers namely 5.33, 266.7 

and 622.2. The obtained shapes are shown in Figure 6-15. As reported in the 

literature, at lower Reynolds numbers for minimum viscous dissipation objective, the 

optimum flow path, a straight line connecting the inlet and outlet, is obtained. For the 

same objective, at higher Re, a parabolic arc like flow path is obtained and this is also 

in agreement with the literature. 
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Figure 6- 15 Optimised level-set function distribution at Re5.33, Re266.7 and Re622.2 

 

 

Figure 6- 16 Velocity contours on optimised shapes for Re5.33 and Re 622.2 

The pressure contours on the optimised shape at these 3 Reynolds numbers are given 

in Figure 6-17. Since the solids formed during optimisation are porous solid, pressure 

diffusion occurs and this is clearly evident in the contours. Another interesting thing to 

note is, the pressure levels are higher than the pressure that would be required to 

maintain a flow of the given Reynolds numbers. This is because small islets of (porous) 

solid regions are formed near the inlet and outlet and to maintain the required inlet 

velocity, inlet pressure is increased. High inlet pressure makes the flow pass through 

the porous solid at the required velocity condition. This increases the pressure drop 

required to maintain a flow of given velocity. Combined minimum pressure drop and 

minimum viscous drop objective may prevent the formation of these (porous) solid 

regions at the inlet. Alternatively imposing an additional constraint on inlet pressure 

(Pin< 100Pa) in the optimisation problem might avoid this problem. 
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Figure 6- 17 Pressure (Pa) distribution over optimised shape at Re5.33, Re266.7 and Re622.2 

 

 

6.7 Topology derivative based optimisation 

 

 One of the drawbacks of the LS TO is, the final optimum shape obtained is sensitive 

to the initial level-set function used. This is because new holes cannot be generated 

during the convection of level-set by the solution of the HJ equation. This drawback, 

restricts the optimiser, as it cannot fully change the design topology. By adding a 

topology derivative term in the HJ equation as a reaction term (Eqn 3.44), new holes 

can be generated in the design domain during the LS evolution. 

 The topology derivative at a point is defined as the change in objective value occurred 

when an infinitesimal hole is inserted at that point. For fluid flows, hole insertion is 

equivalent to inserting a solid obstacle in the fluid domain. Updating the level-set 

function considering both the shape sensitivity and topology derivative will give more 

chance to reach to global optimum but still that cannot be guaranteed. In this section, 

the topology optimisation of fluid flow problem considering the topology derivative has 

been carried out and the results are discussed. 

 The topology derivative of a given problem can be evaluated by topological asymptote 

method and Amstutz [82] derived the topological derivative for the NS flows. That is 

given as, 

𝑑𝑇𝒥(Ω) = 4𝜋𝜌𝜇𝑢.𝑤 + 4𝜋𝜌𝜇𝑢. 𝑢 + 𝜋[λ − Λ(Vol. Difference)] (6.45) 
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Where ‘u’ is state velocity vector and ‘w’ is adjoint velocity vector. The optimisation 

problem is solved by updating the LSF using the Eqn 6.46. Note, this equation is 

obtained by omitting the shape sensitivity term from the complete HJ equation (3.49). 

𝜕

𝜕𝑡
= −𝑤 ∗ 𝑑𝑇𝒥(Ω) 

(6.46) 

 
 The same, first order upwind difference method, which is used to solve the HJ 

equation is used to solve the above equation. The geometry and computational setup 

are same as the one given in section 6.6. The flow velocity corresponds to Re 31. To 

successfully run the simulation, the weighting factor ‘w’ has to be suitably selected. 

This factor influences the amount of (porous) solid regions created while time 

marching the Eqn. (6.46). After few trial and errors, suitable ‘w’ value is found to be 

‘1200’.  

 

Figure 6- 18 Convergence history 

 The optimisation run is started with full fluid initialisation in the design domain. The 

the convergence plot is shown in Figure 6-18 and the obtained optimal shape is shown 

in Figure 6-19.  
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Figure 6- 19 Optimised pipe bend and the velocity contour 

 

6.8 Topology optimisation of irregular design domain 

 So far most of the optimisation problems were carried out on a simple square or 

rectangular domains, which are easy for meshing and for advecting the level-set 

functions with ghost elements. In this section, an irregular geometry is considered for 

the topology optimisation. The main challenges in this problem are meshing the 

geometry, generating the ghost elements surrounding the geometry and advecting the 

level-set function within the design domain.  

Problem details: 

 The problem considered here, is the design of a straight duct from an initially given 

complex geometry. The design domain considered is shown in Figure 6-20, wherein 

the flow enters and leaves the domain with the same velocity. Minimum viscous 

dissipation is considered as the objective for this optimisation. As the focus of this 

work is to generate mesh for this irregular domain and for the LSF advection, this 

optimisation problem is simplified by considering the Stokes flow. The Stokes flow 

equation is self-adjoint in nature for which shape sensitivity is given as, 

𝐹′(Ω) = 0.5 ∗ 𝜇 ∗ (((
𝜕𝑢

𝜕𝑥
)2 + (

𝜕𝑢

𝜕𝑦
)2 + (

𝜕𝑣

𝜕𝑥
)2 + (

𝜕𝑣

𝜕𝑦
)2)) 

(6.47) 

 

 

The flow Reynolds number considered in this study is 0.004. 
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Figure 6- 20 Irregular geometry for topology optimisation 

 

Implementation and results: 

  The computational domain is meshed in multi-block structured way. The throat region 

of the channel is split into suitable quadrilateral blocks and the mesh is generated in 

Matlab (Figure 6-21). Over the mesh, additional single layer mesh is generated on all 

edges to create the ghost elements. These are used for advecting the LSF. 

   

Figure 6- 21 Multi-block mesh and initial level-set distribution in the design domain 

 

The optimised flow path and the pressure contour are shown in Figure 6-22. The 

pressure drop between inlet and exit is found to be 1.505Pa, which is a reasonable 

value for Stokes flow with Re=0.004. This study validates that the developed LS TO 

framework is capable to do optimisation for irregular geometries also. 
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Figure 6- 22 Optimised flow path shape and its pressure (Pa) contour 

 

6.9 Summary 

 The enhanced level-set framework produces better results than the level-set 

framework discussed in chapter 5. The re-initialisation enables crisp capture of the 

interface boundary, reduces grey cell regions and the LS advection in Matlab has 

reduced the computational time significantly. 

 The adjoint sensitivity calculation for the coupled NS and energy equation is 

implemented in the framework and it is validated with a 90o pipe bend optimisation. 

The topology derivative based optimisation is also demonstrated. Topology 

optimisation of irregular geometry also made possible through multi-block meshing of 

the given geometry in Matlab.  

 In the subsequent sections, the enhanced LS TO model is used to optimise some of 

the novel fluid flow and heat transfer coupled applications. 

 



 

148 
 

 

 

7 Topology Optimisation of Heat Recovery Channel 

 

7.1 Introduction 

 Heat recovery channels are used in engine exhausts of automobiles and power plants 

to recover the residual heat leaving the system. This heat could be later used to 

generate electricity using thermo-electric generators (TEG). Thermo-electric 

generators are solid state devices, made up of thermoelectric materials which convert 

temperature difference into electricity. The challenge in the heat recovery channel 

design is that the fluid should exchange maximum heat with the solid and at the same 

time the pressure difference required to maintain the flow has to be minimum. Hence, 

the ‘temperature drop’ maximisation and ‘total pressure drop’ minimisation together 

are considered as the objective for this optimisation. 

In heat exchangers, the amount of heat exchange depends on the solid-to-fluid 

thermal conductivity ratio (ks/kf). Hence this thermal conductivity ratio can influence 

the optimum shape of the heat recovery channels significantly. Another important 

factor which can influence the heat recovery channel shape is the flow Reynolds 

number (Re). So, in this study, the effect of thermal conductivity ratio and Re on the 

optimised heat recovery channel shape has been studied in 2D. Apart from this, for 

the ks/kf=1 case, the effect of actual thermal conductivity value of the material on the 

optimised shape is also studied in detail (in 2D and 3D). Since the value of 

‘temperature drop’ objective is much lower than the value of ‘total pressure drop’ 

objective, two different weightage factors for the ‘temperature drop’ objective are 

studied. Two and three dimensional studies are conducted using fictitious materials of 

different thermal conductivity values.  

 Unlike Yaji [63], who considered maximising the heat generation rate as an objective, 

in this study, maximising the temperature drop and minimising the total pressure drop 

between the inlet and outlet is considered as the objective. Further, he has used the 

RD equation based LSM, but in this case the HJ equation based LSM is used. The 

computational details of the 2D study are given in section 7.2 and corresponding 
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results are given in section 7.3. The computational details and results of the three 

dimensional study are given in section 7.4 and the study is summarised in section 7.5.  

7.2 Two-dimensional optimisation  

 The combined temperature drop and total pressure drop is considered as the 

objective for this optimisation. The optimisation problem is stated below. 

Temperature Drop=      ∫ 𝑇𝑢. 𝑛𝑑𝐴
𝐼

+ ∫ 𝑇𝑢. 𝑛𝑑𝐴
𝑂

       (7. 1)  

Total Pressure Drop= ∫(𝑝 + 0.5𝜌𝑢2)𝑢. 𝑛𝑑𝐴
𝐼

+ ∫ (𝑝 + 0.5𝜌𝑢2)𝑢. 𝑛𝑑𝐴
𝑂

  (7. 2)  

Objective, F = -F1*Temperature Drop + F2*Total Pressure Drop                                                     (7. 3) 

Volume Constraint, ∫ 𝐻()𝑑Ω ≤ 𝑉
Ω

∗ 𝑉Ω (7. 4) 

 

The governing equations for this coupled fluid flow and heat transfer problem are given 

in below equations. 

𝜌𝛾(. 𝑢) = 0 (7. 5) 

𝜌𝛾(𝑢.𝑢) = −𝑝 + . {µ{𝑢 + (𝑢)𝑡𝑟}} − 𝑢 (7. 6) 

𝐻 ∗ 𝜌𝛾𝐶𝑝𝛾(𝑢.𝑇) = . (𝑘𝛾𝑇) + 𝑄𝑜𝑇 (7. 7) 

 

 The shape sensitivity is evaluated through continuous adjoint method. The adjoint 

equations, given in section 6.5 are reproduced here and the variables w, q and Ta ̂ 

are adjoint variables for velocity, pressure and temperature respectively. 

𝜌((𝑢)𝑤 − 𝑢. ∇𝑤) = −𝑞 +. {µ{𝑤 + (𝑤)𝑡𝑟}} − 𝑤 + 𝜌𝐶𝑝𝑇∇𝑇𝑎 ̂ (7. 8) 

𝜌(. 𝑤) = 0 (7. 9) 

𝐻 ∗ 𝜌𝐶𝑝(𝑢.𝑇𝑎̂) = −. (𝑘𝛾𝑇𝑎̂) + 𝑄𝑜𝑇𝑎 ̂ (7. 10) 

Qo = Qo1*(1-H) (7. 11) 

= max *(1- H)   (7. 12) 

 

The thermal properties, density, thermal conductivity, specific heat capacity in the 

above equations are expressed as given in Table 7-1. These relations ensures that, a 

given element takes either solid or fluid material properties depending on its Heaviside 
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function value. Since this is a heat recovery problem, a temperature dependent heat 

sink term (Qo [W/(K.m2)]) is present in the energy equation. The temperature 

dependent heat sink ensures that the heat extraction rate at a given point is 

proportional to the fluid temperature at that location. Further, to ensure that the thermal 

convection is present only in the fluid region and not in the (porous) solid region, the 

convective term of the energy equation is multiplied with the Heaviside function (H) as 

given in Eqn. (7-10). Note that, in this study H=1, denotes a fluid and H=0 denotes a 

(porous) solid and a similar modification is also done on the convection term of the 

adjoint energy equation. 

Name Expression 

k (ks- kf)*(1-H) + kf 

Cp (Cps- Cpf)*(1-H) + Cpf 

 (s- f)*(1-H) + f 

Table 7-1 Thermal properties interpolation for heat recovery channel design 

 

 The expression for the shape sensitivity is given in Eqn (7.13). 

𝐹′(Ω) =  −∝𝑚𝑎𝑥 (𝑢. 𝑤) − 𝑄𝑜(𝑇. 𝑇𝑎̂) (7. 13)  

where  is the material impermeability and Qo is the heat generation/extraction rate in 

solids. The optimisation is carried out by time marching the HJ equation and the 

velocity of propagation of LSF is evaluated using the equation (7.15). 

HJ equation :    
𝜕𝜓

𝜕𝑡
= 𝑉𝑛|∇𝜓| 

 

(7. 14) 

𝑉𝑛 = 𝐹
′(𝛺) +  𝜆 +  (∫𝐻(𝜓)𝑑𝛺 −  𝑉 ∗ 𝑉𝛺

𝛺

) 
(7. 15) 

 
 The rest of the steps in the optimisation are very similar to the one described in section 

6.4. 

Two-dimensional numerical model  

 The computational domain used for the study is shown in Figure 7.1. The domain is 

square in shape with the inlet width being 1/3rd of the domain width. At the inlet, a 

specified velocity and temperature are imposed and at the outlet, a zero pressure 

condition and zero heat flux condition are imposed. The inlet velocity has a parabolic 

velocity profile as in a fully developed laminar flow. The inlet temperature of the fluid 

is 360K. A temperature dependent heat source (Qo) is considered only in the solid 
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region and its heat flux value is -1500W/(K.m2). To reduce the computational cost, 

only half of the design domain is computed using the symmetry boundary condition at 

the midline of the domain. The boundary conditions for the adjoint equation system, 

which are imposed on the design domain are shown in Figure 7.2. The derivative of 

the objective function with respect to state variables, which are used in the boundary 

conditions of adjoint equations are given in Eqn (6.40) to (6.42). 

 

Figure 7- 1 Computational domain of 2D study and initial LS function 

 

 

Figure 7- 2 Computational domain with boundary conditions for adjoint equations 

    The domain is discretised with square cells of size 1/132 units. For the adjoint 

equations, a flux or source boundary is applied at the outlet and the Dirichlet boundary 

condition is applied at the inlet as given in Figure 7-2. The state momentum equations 

are non-linear but they are not coupled with the energy equation whereas adjoint 

momentum equations are linear but they are coupled with their energy equation. A 

quadratic discretization for velocity and a linear discretization for pressure and all other 

variables are used for the computation. The schematic of quadratic and linearly 

discretised finite elements are shown in Figure 7-3. The state and adjoint equations 

are solved in Comsol using general form PDE modules. 
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Figure 7- 3 Schematic of Quadrilateral and Linear elements for Finite element discretisation 

 

 The initial level-sets used for the computation is a series of circles as shown in Figure 

7-1. A positive LS function represents a fluid and a negative LS function represents a 

(porous) solid. The level-set function is evolved on a mesh with ghost elements, these 

elements surround the 4 sides of the design domain. The HJ equations are solved by 

finite difference method and the re-initialization of level-set is applied for every 6 

iterations. A fluid volume constraint of 45% of the design domain volume is imposed.   

 The optimisation is carried out for solid-to-fluid conductivity ratios (ks/kf) of 10 and 1. 

The ks/kf =1 case denotes, both solid and fluid have same thermal properties. In this 

case the effect of changing the thermal conductivity of the materials (ks=kf) on the 

optimised shape is studied for 3 different values, they are 4, 0.4 and 0.04 W/m/K. The 

two dimensional simulations are carried out at the Reynolds numbers (Re) of 70, 174, 

326 and 521 (Reference length is 0.3m).  Since the value of the ‘temperature drop’ 

objective is much lower than the ‘total pressure drop’ value, two different weightage 

factors (F1=1 &100) for ‘temperature drop’ objective are studied. The thermal 

properties of the solid and fluid, which are used in this study are given in Table 7-2.  

Name Value 

max 1e5 

Volume fraction 0.45 

ks/kf 10 and 1 

s/f 8.92 and 1 

Cps/ Cpf 9.20 and 1 

f 0.08 [Pa.s] 

Table 7- 2 Properties of solid and fluid used in the 2D heat recovery channel design 
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  A typical convergence history of the TO run is given in Figure 7-4. Generally in the 

augmented Lagrangian method, as the iterations proceed, the material volume 

oscillates and finally settles to the required material volume. At this point, the objective 

value might also become stationary and at this point, the optimisation is considered to 

be converged. But in general, a flat or invariant curve in material volume and objective 

function indicates the presence of a local optimum.  

 

 

Figure 7- 4 Convergence history of a TO run 

Validation of the numerical framework: 

 The LS TO numerical framework with adjoint NS and energy equation system is 

validated by performing a single objective optimisation of total pressure drop 

minimisation, for which the analytical solution is a straight line duct. The optimisation 

is carried out at Re=140 for a fluid volume fraction of 35%. The optimisation yielded a 

straight line duct and that is shown in Figure 7-5. The optimised objective value 

(Pressure drop) for this channel is 59.69Pa. 



 

154 
 

 

Figure 7- 5 Optimised shape (LSF contour) and velocity contour for total pressure drop minimisation 
at Re=140 

 

7.3 Two-dimensional results and discussion  

In this section the effect of thermal conductivity ratio and Re are studied for 2D 

channel design. In addition, the effect of actual thermal conductivity of the materials in 

the ks/kf=1 case, is also studied. 

 

7.3.1 ks/kf=10 case: 

 This study is conducted for ks/kf =10 for the Reynolds numbers 35 and 70. The 

optimisation is carried out with weightage factors F1 and F2 equal to 1.  

 Results: 

 The results obtained for ks/kf=10 at Re=35 and Re=70 along with its temperature 

contours are shown in Figure 7-6.  It is surprising to see that, the optimised shape has 

got (porous) solid material at the inlet and exit. This is because the solid is having 

higher thermal conductivity than the fluid; hence the (porous) solid is distributed 

directly at the inlet face, so that heat transfer can be maximised and yet since the solid 

is porous, by increasing the pressure, the required flow rate can be maintained. 

Because of this, almost all of the heat transfer has happened near the inlet, as 

observed in the temperature contour (Figure 7-6). This is the drawback of modelling 

solid as a porous material in topology optimisation and this leads to un-practical design 

solutions for the internal flow problems. Similar results are expected for other thermal 

conductivity ratios (ks/kf>1) also. Hence they were not carried out.  
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Figure 7- 6 Optimised shapes and corresponding temperature contour for Re=35 (Left) and Re=70 
(Right) for ks/kf = 10 

 In order to get realistic shapes and to avoid the formation of (porous) solid at the inlet, 

few optimisations are carried out with the ‘pressure drop’ objective weightage factor, 

F2, set as 1e4 and 1e5. These results are shown in Figure 7-7. In spite of using such 

a high weightage for the pressure drop objective, thin (porous) solid layer is still 

distributed at the inlet and outlet. The objective values of the optimised shapes are 

given in Table 7-3. Though the shape corresponding to F2=1e5 appears to be a poor 

local optima, its pressure drop value is realistic.  

 

Figure 7- 7 Optimised shapes for Re=70 with F2=1e4 (Left) and F2=1e5 (Right) for ks/kf = 10 
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Table 7-3 Objective values of optimised shapes for ks/kf=10 

 

7.3.2  ks/kf=1 case:  

 In this case both solid and fluid have same thermal conductivity, hence it is expected 

that the optimiser might give some practically usable channel designs compared to 

the ks/kf=10 case. Even when the solid and fluid have same thermal conductivity, 

depending upon its actual value, the heat recovery from fluid to solid could vary. To 

study this, the optimisation is carried out for thermal conductivity values of 4, 0.4 and 

0.04[W/m/K]. For each of the thermal conductivity value, topology optimisation is 

carried out for different Reynolds numbers and different ‘Temperature drop’ objective 

weightage factors (F1). 

 

Thermal conductivity kf=ks=4 [W/m/K]: 

 The optimal shapes obtained for different Reynolds numbers and different weightage 

factor F1 values are shown in Figure 7-8. The corresponding temperature contours are 

shown in Figure 7-9. For this case, unlike the ks/kf=10 case, realistic channel shapes 

are obtained. The shape obtained for Re=174, F1=1 resembles a channel flow over a 

cone-cylinder body. As the Re is increased, channel becomes more lengthy and curvy. 

But when the weightage factor F1 is increased to 100, the optimised shape has 

(porous) solid material distributed at the inlet and exit. Even though, the solid has the 

same thermal conductivity as the fluid, heat exchange to the solid will be more when 

flow passes through it (like in porous medium flow) than the flow passing over the 

solid. This could partially explain the reason for distributing the (porous) solid at the 

inlet and exit. Another reason for this is, the amount of heat transferred to solid is 

inversely proportional to fluid inertia. If the fluid inertia ‘uL’ is lower then higher heat 

exchange is possible. So by blocking the exit, flow velocity/inertia is decreased and 

hence the heat exchange is increased. Flow velocity contour for Re=174, F1=100 
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shown in Figure 7-10 supports this argument. The optimised objective values are 

given in Table 7-4. 

 

 

 

Figure 7- 8 Optimised shapes for Re=174 (Left) and 521 (Right) for F1=1 (Top row) and 100 
(Bottom row) for k =4 [W/m/K]. 
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Figure 7- 9 Temperature (K) distribution on optimised shapes at Re=174 (Left) and 521 (Right) for 
F1=1 (Top row) and 100 (Bottom row) for k =4 [W/m/K] 

  

Figure 7- 10 Velocity contour in the design domain for Re=174, F1=100 for kf =4 [W/m/K] 

 By conducting the optimisation for different weightage factors, F1, a Pareto of optimal 

shapes and results are obtained. In a practical situation depending upon the 

requirement of temperature drop and pressure drop, suitable optimised shape can be 

chosen and used. 

 

Table 7- 4 Optimised objective values of optimised shapes for kf =4 [W/m/K] 

 

7.3.3 ks/kf=1 case with ks=kf=0.4 [W/m/K]:  

 The optimised shapes obtained for Re=70, 174 and 326 are shown in Figure 7-11. 

Generally, the optimised shape obtained depends on the initial level-set distribution, 

initial Lagrange multiplier and its rate of updatement and volume penalty factor. The 

results shown here are obtained from the carefully chosen Lagrange multiplier and its 
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updatement, so as to reach a better optimised shape; yet a much better result or a 

global optimum could also be obtained, by refining these parameters further.  

 The optimised shape for Re=70 is a flow around a centre body as observed for kf=4 

case. The optimised shape of Re=174 for F1=1, is a through channel, the shape is a 

local minima which is good in terms of the ‘pressure drop’ objective but not good in 

terms of the ‘temperature drop’ objective. In two objective optimisation problems, the 

optimiser tends to do a trade-off and may give more importance to the first objective 

or to the second objective, depending on the problem nature and objective’s 

magnitude.  An interesting feature to note in these cases is that the optimised channels 

have a dead flow region, and the observation at the corresponding temperature 

contour (Figure-7-12) shows that, these regions aid in heat exchange from the fluid to 

solid. The isolated fluid region in the optimised shape of Re=174 and F1=100, is an 

impractical solution, and it is obtained because of the porous nature of the solid 

modelled. 

 Generally, in the augmented Lagrangian method, as the iteration proceeds, the  

 

 

Figure 7- 11 Optimised shapes for Re=70 (Left), Re=174 (centre) and 326 (Right) for F1=1 (Top 
row) and 100 (Bottom row) for kf =0.4 [W/m/K] 
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Figure 7- 12 Temperature (K) distribution on optimised shapes at Re=70 (left), Re=174 (centre) and 
Re=326 (right) 

 

material (fluid) area will oscillate around the required amount and will finally settle to 

the required value. However, in some cases, material volume continuously decrease 

and become zero, then it cannot increase due to the lack of solid insertion capability 

is this numerical model. The initial values of the Lagrange multiplier and volume 

penalty factor, play an influential role in deciding the convergence nature. The 

objective values of the optimised shape for kf=0.4 case are given in Table 7-5. 

 

Table 7- 5 Objective values of optimised shapes for kf =0.4 [W/m/K] 

 

 

7.3.4 ks/kf=1 case with kf=ks=0.04 [W/m/K]:  

 The optimised shapes obtained for Re=70, 174 and 326 for the F1 values of 1 and 100 

are shown in Figure 7-13 and the corresponding temperature contours are shown in 

Figure 7-14. The objective values corresponding to the optimised shapes are given in 
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Table 7-6. 

  

 

 

Figure 7- 13 Optimised shapes for Re=70 (Left), Re=174 (Centre) and 326 (Right) for F1=1(Top 
row) & 100 (Bottom row) for kf =0.04 [W/m/K] 

  

 

Figure 7- 14 Temperature (K) distribution on optimised shapes for Re=70 (Left), Re=174 (Centre) 
and 326 (Right) for F1=1(Top row) & 100 (Bottom row) at kf =0.04 [W/m/K] 
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Table 7- 6 Objective values of optimised shapes for kf =0.04 [W/m/K] 

 

  From the convergence plot of Re=70, F1=100, given in Figure 7-15, it is observed 

that it has more than one local optimal shape. The first two shapes haven’t met the 

volume constraint but they have considerably higher temperature drop. Among the 

three shapes, middle shape requires the lowest pressure drop yet it yields 

considerable temperature drop (Table 7-7). This shape is almost a through channel 

with least amount of porous solid at the inlet and exit and hence could be a practically 

feasible solution.  

 

Table 7- 7 Objective values of optimised shapes for ks/kf=1000, F1=100 at Re=70 

 

A Comparison of the optimised objective values for the materials with different thermal 

conductivity values shows that, material with highest thermal conductivity has highest 

heat recovery; which is on the expected lines. As the material thermal conductivity 

decreases, temperature drop decreases. As the flow Re is increased, temperature 

drop decreases, this indicates that less heat transfer has taken place from the fluid to 

solid at high Re.  

 The level-set framework used for this study, doesn’t have a capability to insert a solid 

in the fluid region. The HJ equation, used in this study, only has the shape sensitivity 

term and not the topology gradient term. As this problem domain has many local 

minima, a solid insertion capability (by using topology gradient term) could improve 

the result and hence slightly better shapes could be obtained. The optimised shapes 

with solid at the inlet and outlet are not practically acceptable solutions. These 

solutions are obtained because solids are modelled using porosity approach.  
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Figure 7- 15 Evolution of optimised shapes during optimisation for ks/kf=1000, F1=100 at Re=70 

 

 

7.4 Three-dimensional optimisation  

7.4.1  Three-dimensional numerical model  

 The three-dimensional heat recovery channels are designed for ks/kf=1 case with two 

different thermal conductivity values. The computational domain used for the 3D study 

is shown in Figure 7-16. The inlet of the domain has an extended channel in order to 

let the development of the laminar profile velocity to some extent. The region excluding 

the extended channel comprises the design domain. It has a square cross section of 

side length 20cm and a depth of 6.67cm. A symmetry boundary condition is used to 

model and solve only one-quarter of the domain in order to save the computation time.  
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Figure 7- 16 Full domain with initial LSF and computational domain for 3D heat recovery channel design 

 

The 3D heat recovery channel optimisation is conducted for ks/kf=1. The solution of 

state and adjoint equations for low viscosity fluid like water takes very high time in 

Comsol (>20hrs) hence a slightly low viscous, glycol is used as the working material. 

Glycol finds more application in heat exchanger design because of its high specific heat 

capacity and very low freezing point. As one of the objective of this study is to analyse 

the effect of thermal conductivity of the material (fluid) on the heat recovery channel 

shape, along with glycol a fictitious fluid of lower thermal conductivity is also considered. 

The thermal properties of both the materials are listed in Table 7-8.  

Working Material Density 

(Kg/m3) 

Specific heat 
capacity 

(J/(kg-K)) 

Thermal 
conductivity (ks=kf) 

(W/(m-K)) 

Glycol 

Low conductivity 
fictitious fluid 

1113.2 

1113.2 

2470 

2470 

0.258 

0.00258 

Table 7- 8 Thermal properties of materials used for 3D heat recovery channel design 

 

The inlet temperature of the fluid is set as 360K and a heat flux of -5000W/m3 is applied 

on the solid regions. In this 3D study, both the objective values are of same order, hence 

the weightage factors F1 and F2 are taken as 1. The volume fraction of the fluid is 

constrained at 45% of the design domain volume. The design domain is discretised by 

90x45x15 hexahedral cells. The study is conducted at two different Reynolds numbers, 

19 and 38. Note that, the reference length is 0.067m for calculating the Re. The design 

domain is initialised with sphere like LS distribution (Figure 7-16). The state and adjoint 
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equations are solved using the finite element method.  

At convergence, the volume constraint is satisfied and the objective become invariant 

for a range of 5-10 iterations. Each iteration takes about 52mins and the number of 

iterations required for convergence depends on the Lagrange multiplier and volume 

penalty factor used for the simulation. So a simulation requiring 125 iteration will take a 

run time of 108.3 hours on ten real cores / twenty hyper-threaded cores on a Dual Xeon 

CPU cluster node. In a single iteration, major time taking steps are solving for the state 

and adjoint equations. The time taken for solving the state and adjoint equations will vary 

depending upon the nature of flow passage and Reynolds number. 

 

7.4.2  Three-dimensional results and discussion (ks/kf=1) 

 The results obtained for 3D optimisations along with the mean velocity iso-contour 

shapes are shown in Figure 7-17 and 7-19 for glycol and fictitious fluid respectively. 

By making use of the fact that the Heaviside function value of 1 denotes a fluid and 0 

denotes a (porous) solid, the iso-surface of both fluid and solid are plotted with the 

fluid in grey colour and the solid in black color. Since the flow can take place even 

through the (porous) solid, for better understanding of the channel shape, the iso-

contour of 40% of the inlet velocity is plotted next to the shape. Choosing an higher 

velocity to plot the iso-contour velocity profile may lead to a discontinuous shape, as 

the porous solid at the exit is slowing down the flow. The results show that, like in 2D, 

the 3D optimised shapes also have a solid material at the exit but at the inlet (porous) 

solid distribution is slightly reduced. Apart from this, the comparison of shapes for 

Re=19 and Re=38 show that, as Re increases channel length increases to maximise 

the heat transfer. Since it is a 3D study, to understand the channel shape in third 

dimension (depth), the velocity contour on vertical planes for Re=38, is plotted in 

Figure 7-18. The figure also contains the corresponding temperature contour. 
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 Figure 7- 17  Optimised shapes for glycol (ks=kf) at Re=19 (Top) and Re=38 (Bottom) and their 

velocity iso-surface. 

 

  

Figure 7- 18  Velocity and temperature contour for glycol (ks=kf) at Re=38  

 Heat recovery channel for lower thermal conductivity (fictitious) material has more 

number of channels than the optimised shape of glycol. This behaviour is observed 

for both the Reynolds numbers. The final objective values for all the four cases are 

given in Table 7-9. The table shows that, at a given Reynolds number, low conductiivty 

fictitious fluid recovers more heat than glycol. This is in contrast to the results obtained 
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for 2D cases and with the common knowledge. The anomoly could be because this 

design problem has got many local optima, and the optimised shape obtained for low 

conductiivty material is a better one than the optimised shape obtained for glycol. But 

these shapes require higher pressure drop than the shapes corresponding to glycol to 

maintain the flow. Hence the low conductivity fluid is reporting a better performance.  

  

  

 

Figure 7- 19 Optimised shapes for low conductiivty material (ks=kf) at Re=19 and Re=38 and its 

velocity iso-surface  

 

  Temperature 
Drop (K) 

Total pressure 
Drop (Pa) 

Glycol, Re=19   -47.83 13.56 

Glycol, Re=38   -27.45 33.78 

Low conductivity 
fictitious fluid, Re=19   

-53.87 15.75 

Low conductivity 
fictitious fluid, Re=38   

-28.39 34.28 

Table 7- 9 Objective values obtained for optimised 3D heat recovery channels 
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7.5 Summary 

 In this study, heat recovery channels are designed for different thermal conductivity 

ratios (ks/kf) and for different Reynolds numbers for a fully developed laminar flow. The 

effect of actual thermal conductivity of the material on the optimised channel shape 

for ks/kf=1 case is also studied. The combined objective of maximum temperature drop 

and minimum total pressure drop between the inlet and outlet is considered as the 

objective. Since the two objectives’ magnitudes are very different, weightage factor for 

temperature drop objective is increased from 1 to 100 and its effect on the optimised 

shape and objective values are also studied. The level-set method uses density-based 

mapping and the shape sensitivity is calculated through the continuous adjoint 

method. Following conclusions are drawn from this study. 

1. As the flow Re increases, the temperature drop (heat recovery) decreases in 

both 2D and 3D. As the Re increases, the inertial diffusivity increases (in 

comparison to thermal diffusivity), hence the flow has to take a lengthy route to 

enable heat transfer, before the flow exits out of the design domain. But if the Re 

increases further, since the domain size is fixed, the channel length cannot be 

increased further. In these cases, the optimiser distributes the (porous) solid 

material at the inlet and outlet to slow down the flow velocity and thereby to 

increase the heat recovery.  

2. The porosity modelling of solid used in this LSM prevents or discourages the 

design of practically feasible channel shapes when the solid-to-fluid thermal 

conductivity ratio (ks/kf) is greater than 1. Since the solid has higher thermal 

conductivity (than the fluid) in this case, the optimiser distributes more (porous) 

solid materials at the inlet and exit to improve the heat recovery. Hence these 

shapes become practically unfeasible. 

3. For ks/kf=1 case, practically feasible heat recovery channels shapes are 

obtained. As expected, in this case if actual thermal conductivity of the material 

is higher, then higher heat recovery is possible.  

4. As expected, when the ‘temperature drop’ weightage factor increases, higher 

temperature drops are achieved in most of the cases (Exception Re=70 design). 

This is achieved by having dead flow regions in the channel or by slowing down 

the flow velocity by placing the (porous) solid at the inlet and exit. On the similar 
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lines, increasing the ‘pressure drop’ weightage factor leads to straight line 

channel designs (in most of the cases) to achieve lower pressure drop objective.  

5. The 3D study is conducted for ks/kf=1 case and this also confirms that with 

increase in Re, the temperature drop decreases. But an interesting feature is that 

as the Re increases, the channel length increases to improve the heat recovery. 

6. The HJ equation, used in this study, only has the shape sensitivity term and not 

the topology derivative term. But using both the terms in the HJ equation, will 

enable to insert a solid material inside the fluid region during the optimisation 

process; this could improve the result and hence slightly better shapes could be 

obtained. Alternate option is introducing additional constraint (upper limit) on the 

inlet total pressure values. 

7. The distribution of solid materials at the inlet and exit is the drawback of porosity 

modelling and this is observed mostly in the internal flow optimisation problems 

but not in the external flow optimisation problems. The LS method with an xFEM 

mapping, is more accurate for solid modelling, hence this method can provide 

practically suitable shapes for these flow problems. 

 Overall, in this study heat recovery channels are designed for different scenarios and 

the influence of the ks/kf and Re on the heat recovery channel shape is clearly brought 

out. The study also highlighted the drawback of the porosity approach for internal flow 

problems. 
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8 Topology Optimisation of Multi-material Heat Sink 

 

 

8.1 Introduction 

 The rapid development taking place in additive manufacturing, enables multi-material 

manufacturing, with spatial variation in material properties achieved through selective 

deposition. Topological optimisation techniques can be utilised to determine the 

optimal distribution of one or more materials within a given design space for a 

prescribed set of constraints. However, this technique has so far not been applied to 

the design of multi-material convectively cooled heat sinks. This study is important as 

it will pave way for the design of composite copper-aluminium or copper-steel heat 

sinks which will be cheap and very effective in heat dissipation. This study is 

challenging as it has more than one volume constraint to be satisfied at the optimal 

solution. In this chapter, LS TO is used to design two and three solid material heat 

sinks. The design is carried out for different combinations of solid and fluid properties. 

Section 8.2 describes the optimisation formulation for 2 materials and section 8.3 

describes the optimisation formulation for 3 materials. Section 8.4 describes the 

computational details. Two dimensional and three dimensional study results are 

presented in sections 8.5 and 8.6 respectively. A summary of this study is given in 

section 8.7. 

 

8.2 Two-material topology optimisation formulation 

 Topology optimisation has been used for multi material structural optimisation for 

more than 2 decades [104]. This technique is particularly useful for multi-material 

optimisation as it can simultaneously change the shape and layout of the materials. 

Sigmund [6] used the density method for the topology optimisation of 3 phase thermal 

expansion materials. Hvejsel and Lund [105] generalised the density method material 

interpolation schemes for an arbitrary number of pre-defined materials with given 
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properties. Wang [7] presented a level-set based multi-material topology optimisation 

method for structural optimisation, wherein he used ‘l’ level-sets for modelling ‘2l‘ 

distinct material phases. There are alternate ways for modelling multi-phase materials 

using level-sets including Wang’s [68] proposed model wherein ‘l-1’ level-sets are 

used to model ‘l’ phases of materials. 

Allaire et al. [106] gave a more rigorous shape derivative for multi-material level-set 

topology optimisation problems. Generally in multi-material TO, the material interface 

between two solids is assumed to be perfectly bonded, but this need not be the case 

in practice. Michailidis [107] gives a description of different methods for modelling the 

material interface with relevant numerical examples. Liu et al. [108] presented an 

optimisation strategy considering the cohesive constitutive relationship of the interface 

for the level-set method with XFEM geometry mapping. This model enables possible 

separation of material interfaces, which is realistic in nature.  

  Apart from the density and level-set methods, other methods are also used for multi-

material TO. Notable ones are the peak function method of Yin and Ananthasuresh 

[109] and the bi-value coding parameterisation scheme of Gao et al. [110]. Bruyneel 

[111] proposed a new parameterisation based on shape functions. Phase-field 

approaches based on the Cahn-Hilliard equation are also used for multi-material TO. 

Tavakoli and Mohseni [112] implemented an alternative active-phase algorithm for 

multi-material problems in a MATLAB code. Zhou and Wang [113] introduced a 

general method for multi-phase material TO using the phase field method. The main 

drawback of phase-field approaches is their slow convergence rate. Typically 

thousands of iterations are required for a good level of convergence. 

  In this section, the multi-material level-set model of Wang [68] is extended to two-

material convectively cooled heat sink design. To model two different solids and a 

fluid, two level-set functions are used. A positive SDF (𝜓1) is considered to represent 

a solid and negative SDF is considered to represent a fluid (Figure 8-1). The second 

level-set function 𝜓2 is used to differentiate the two solids. The region where both the 

SDFs are positive represents solid2 and the region where 𝜓1  is positive and 𝜓2 is 

negative indicates solid1, as illustrated in Figure 8-1. 
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Figure 8- 1 Design domain with level-set representation for two-material structure 

 

 At any point within the design domain, the thermal properties k, Cp and  take values 

based on the values of 1, 2 and their respective Heaviside functions, as given in 

Table 8-1. H1 is the Heaviside function corresponds to 1 and H2 is the Heaviside 

function corresponding to 2. In this chapter, subscript 1 refers to property 

corresponding to solid 1 and subscript 2 refers to property corresponding to solid2.  

 

Name Expression 

k H1*(H2*ks2+(1-H2)*ks1)+kf*(1-H1) 

Cp H1*(H2*cps2+(1-H2)*cps1)+cpf*(1-H1) 

 H1*(H2*s2+(1-H2)* s1)+ f*(1-H1) 

 

Table 8- 1 Thermal properties interpolation formula for two-material LSM 

 

 In single material LS TO, level-sets are updated by solving a single Hamilton Jacobi 

(HJ) equation. Here, since more than one LS function is used, each LSF is updated 

by solving its respective HJ equation. The shape sensitivity of each of the LSF is 

calculated and the velocity of advection of the LSF is equal to the sum of shape 

sensitivity, Lagrange multiplier and area constraint terms as per the augmented 

Lagrangian method of optimisation (Eqn-3.24). For the heat sink design, minimum 

thermal compliance is considered as the objective and the constraints are governing 

thermo-fluidic equations (Eqn 5.1 to 5.4) and volume constraints of respective solids. 
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The objective of optimisation and its augmented Lagrangian are given in following 

equations. 

Objective F()= ∫ 𝑘𝛾 ∗ (∇𝑇)
2𝑑Ω ( 8. 1) 

 
   𝐿 = 𝐹(𝛺) + 𝜆1(∫ 𝐻(𝜓1)𝑑𝛺 − 𝑉1 ∗ 𝑉𝛺𝛺

) + 𝜆2(∫ 𝐻(𝜓1)𝐻(𝜓2)𝑑𝛺 − 𝑉2 ∗ 𝑉𝛺𝛺
) 

 

( 8. 2) 

 
The HJ equations of the two LSF are given below and they are solved using an explicit 

first order upwind scheme. The same solution methodology described in previous 

chapters are followed for solving them. 

  

HJ equation:     
𝜕𝜓1

𝜕𝑡
= 𝑉𝑛1|∇𝜓1| 

 

( 8. 3) 

 
𝜕𝜓2
𝜕𝑡

= 𝑉𝑛2|∇𝜓2| 
( 8. 4) 

 
 

 The velocity of advection of LSF is obtained by differentiating the Lagrangian with 

respect to corresponding LSF.  

𝑉𝑛1 = 𝐹1
′(𝛺) + 𝜆1 + 𝜆2𝐻(𝜓2) + 1(∫𝐻(𝜓1)𝑑𝛺 − 𝑉1 ∗ 𝑉𝛺

𝛺

) 
( 8. 5) 

 

𝑉𝑛2 =  𝐹2
′(Ω) + 𝜆2𝐻(𝜓1) + 2(∫𝐻(𝜓1)𝐻(𝜓2)𝑑Ω − 𝑉2 ∗ 𝑉Ω

Ω

) ( 8. 6) 

 

In the above equations, F1’(Ω), F2’(Ω) are shape sensitivities, 1, 2 are Lagrangian 

multipliers and 1, 2 are volume penalty factors. V1 is the volume constraint of total 

solid material, V2 is the volume constraint of solid2 alone and V is the design domain 

volume. Shape sensitivities are obtained by differentiating the objective function with 

respect to the corresponding LS functions. Since the flow Reynolds number is of 

comparable order to Stokes flow, the self-adjoint nature of Stokes flow equations are 

exploited and the contribution of the NS and energy equations to shape sensitivity is 

ignored though the equations are solved to evaluate the state variables. 

F1’(Ω)= (H2*ks2+(1-H2)*ks1-kf)* 1∗ (∇𝑇)2)  ( 8. 7) 

 
F2’(Ω)= (ks2-ks1)*H1*2∗ (∇𝑇)2) ( 8. 8) 
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The Lagrangian multiplier and volume penalty factor are updated similar to single 

material LS TO. Also, the two LSFs are re-initialised at regular intervals by solving 

respective Eikonal equations. 

8.3 Three-material topology optimisation formulation 

For optimising three solids and a fluid, three level-set functions are used. The definition 

of 3 solid materials in terms of the 3 level-set function values are depicted in Figure 8-

2. Each of the three LSFs are evolved by solving their respective HJ equation. Thermal 

conductivity definition is given in Eqn (8.9), and following this definition other thermal 

properties like Cp and  are also defined. 

  k = H1*(H2*((1-H3)*ks2+H3*ks3)+(1-H2)*ks1)+kf*(1-H1)    (8. 9) 

 The augmented Lagrangian of this problem is given as, 

𝐿 = 𝐹(𝛺) + 𝜆1 (∫𝐻(𝜓1)𝑑𝛺 − 𝑉1 ∗ 𝑉𝛺
𝛺

) + 𝜆2 (∫𝐻(𝜓1)𝐻(𝜓2)(1 − 𝐻(𝜓3)𝑑𝛺 − 𝑉2 ∗ 𝑉𝛺
𝛺

)

+ 𝜆3 (∫𝐻(𝜓1)𝐻(𝜓2)𝐻(𝜓3)𝑑𝛺 − 𝑉3 ∗ 𝑉𝛺
𝛺

) 

( 8. 10) 

 

 

 

Figure 8- 2 Design domain with level-set representation for three-material structure 

Velocity of advection for the three LSFs are obtained by differentiating the Lagrangian 

and adding the volume penalty terms. 

𝑉𝑛1 = 𝐹1
′(𝛺) + 𝜆1 + 𝜆2𝐻(𝜓2)(1 − 𝐻(𝜓3)) + 𝜆3𝐻(𝜓2)𝐻(𝜓3)

+ 1(∫𝐻(𝜓1)𝑑𝛺 − 𝑉1 ∗ 𝑉𝛺
𝛺

) 

( 8. 11) 
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𝑉𝑛2 = 𝐹2
′(𝛺) + 𝜆2𝐻(𝜓1)(1 − 𝐻(𝜓3)) +   𝜆3𝐻(𝜓1)𝐻(𝜓3) + 2(∫𝐻(𝜓2)𝑑𝛺 − 𝑉2 ∗ 𝑉𝛺

𝛺

) 

( 8. 12) 

 

𝑉𝑛3 = 𝐹3
′(𝛺) − 𝜆2𝐻(𝜓1)𝐻(𝜓2) +  𝜆3𝐻(𝜓1)𝐻(𝜓2) + 3(∫𝐻(𝜓3)𝑑𝛺 − 𝑉3 ∗ 𝑉𝛺

𝛺

) 
( 8. 13) 

 

In the above equations, F1’(Ω), F2’(Ω), F3’(Ω) are shape sensitivities, 1, 2, 3 are 

Lagrangian multipliers and 1, 2 , 3 are volume penalty factors. V1 is the volume 

constraint of total solid material, V2 is the volume constraint of solid2 alone, V3 is the 

volume constraint of solid3 alone and V is the design domain volume. The shape 

sensitivities of the 3 LSFs are given in below equations. 

F1’(Ω)= H2*(H3* ks3+(1-H3)*ks2)+(1-H2)*ks1 - kf)*1* (𝛻𝑇)2 
( 8. 14) 

F2’(Ω)= H1*( H3* ks3 +(1-H3)*ks2 )- ks1)* 2*(𝛻𝑇)2 
( 8. 15) 

F3’(Ω)= H1*H2*(ks3 – ks2)*3*(𝛻𝑇)2 
( 8. 16) 

For optimisation, the HJ equation of all 3 LSFs are solved and all the LSFs are re-

initialised at regular intervals to maintain their slope. The rest of the formulation is 

similar to two material TO formulation given in the previous section. 

 

8.4 Computational details 

Two dimensional study: 

 The design domain is same as the one used for heat sink design in Chapter 4. It is 

rectangular in shape, with heat source at the bottom of the domain and liquid 

convection injected from the top of the computational domain as shown in Figure 8-3. 

The two sides of the computation domain act as outlet.  

 

Figure 8- 3 Computational domain and initial distribution of two LSFs 
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 The design domain is discretised with 150x50 rectangular elements. The initial level-

set used for the computation is a series of circles. The level-set function is evolved on 

a grid mesh with ghost elements. A liquid flow of velocity 0.002m/s and temperature 

293K is applied at the inlet. The inlet velocity corresponds to a Reynolds number of 

600 and a heat flux of 3500W/m2 are specified; zero pressure boundary condition is 

applied at the outlet. The properties of the solid and fluid materials used in this study 

are shown in Table 8-2.  

Property Value 

Cps1 385 J/(kgK) 

Cps2 770 J/(kgK) 

Cps3 460 J/(kgK) 

Cpf 4184 J/(kgK) 

s1 8920 kg/m3 

s2 4460 kg/m3 

s3 7800 kg/m3 

f 1000 kg/m3 

Volume fraction 0.4 

Solid2 volume fraction 0.2 

max 1e4 

Table 8- 2 Material properties 

 The TO are carried out for 1 single material, 6 two material and 1 three material cases; 

the thermal conductivity and volume fractions of solid and fluid for each of the cases 

are listed in Table 8-3. The total solid volume is constrained at 40% of design domain 

volume. Among the two solids, two different volume ratios are considered between 

solid1 to solid2: 50:50, and 20:80. The thermal conductivities of the three solids, 

considered in this study are 400 W/(mK), 200 W/(mK) and 40 W/(mK). Note that they 

closely represents the thermal conductivities of copper (Cu), aluminium (Al) and steel 

respectively. A single material heat sink is designed with high thermal conductivity 

material (copper) and this results will be used to benchmark the results obtained for 

other multi-material heat sinks. The thermal conductivity of fluid considered is 0.4 

W/(mK), which closely represents water. Only for two cases (case4 and case5), an 

artificially high conductivity fluid of thermal conductivity 4 W/(mK) is considered. 
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Table 8- 3 Thermal conductivity used in different simulations 

 The typical convergence history of two material TO run is given in Figure 8-4 and the 

evolution of heat sink shape with respect to iterations is given in Figure 8-5.  At 

convergence, the area constraint of both the solids are satisfied and both area 

difference and thermal compliance remain stationary at the convergence point. 

 

Figure 8- 4 Convergence history of two material topology optimisation 

Single 

Material
Three Material case

Vsol id1=0.4V

Vs1=0.06 Vs2=0.12 

Vs3=0.22V

Case 1 Case2 Case3 Case4 Case5 Case6 Case7 Case 8

ks1 400 400 400 400 400 400 400 400

ks2 - 40 200 40 200 40 200 200

ks3 - - - - - - - 55

kf 0.4 0.4 0.4 4 4 0.4 0.4 0.4

Vsolid1=0.20V, Vsolid2=0.20V Vsolid1=0.08V , Vsolid2=0.32V

Two Material cases
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Figure 8- 5 Evolution of two-material heat sink shape with iterations 

 

3D Computational details: 

The computational domain used for the 3D study is the same as the one shown in 

Figure 6.5. Fluid velocity corresponding to a Re of 8 and heat flux of 20kW/m2 is 

applied at the bottom corner of the design domain. The mesh size and boundary 

conditions are the same as the one used in section 6.4. Initial level-sets are spherical 

in shape and level-sets of different radii are tried to reach the better optimised shape. 

 Three dimensional optimisation study is carried out to design two material copper-

aluminium and copper-steel heat sinks. Their performance are compared against 

single material (copper) heat sink designed in section 6.4.3. In these optimisations, 

solid1 (copper) and solid2 (aluminium or steel) material volumes are constrained at 

10% and 15% of design domain volume respectively. 
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8.5 Two dimensional study results 

Single material copper heat sink (Case1): 

Single material heat sink is designed with copper and its material volume is 

constrained at 40% of design domain volume. The heat sink shape obtained along 

with the temperature distribution in the design domain is shown in Figure 8-6. 

 

 

Figure 8- 6 Optimised shape and the Temperature contour (K) for single material heat sink 

 

Two material, equal solid volume ratio heat sinks (Case2 & 3): 

 In case2 to case5, solid1 and solid2 material volumes are constrained at a ratio of 

20:20. The optimised shape obtained for these cases along with their temperature 

distributions are given in Figures 8-7 to 8-10. The objective value achieved and 

maximum temperature in the design domain are tabulated and given in Table 8-4. The 

following points are observed from the results. 

 In the copper-steel two material heat sink (case2), the high conductivity copper tends 

to have a branched structure and the steel is mostly distributed surrounding the copper 

and also over the heat flux boundary. The shape obtained for copper-aluminium two 

material heat sink (case3) is slightly different from this. Overall, this heat sink has 



 

180 
 

smooth and branched structure but there are subtle differences which can be 

observed from Figures 8-7 and 8.8.  

 

 

Figure 8- 7 Optimised shape and its temperature contour for case2  

 

 

 

Figure 8- 8 Optimised shape and its temperature contour for case3 
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Table 8- 4 Summary of 2D multi-material heat sink design results 

 

Two material disparate solid volume ratio heat sinks (Case 6 & 7): 

 In these cases, solid1 and solid2 material volumes are constrained at a ratio of 8:32. 

These cases relate to economic heat sink design with a small fraction of highly 

conductive solid used along with a low cost medium conductivity solid. So the results 

yield economic, water cooled heat sink shapes. Results obtained for case6 and case7 

are shown in Figures 8-9 and 8-10 respectively.  

 The results show that in spite of very low usage of highly conductive copper, these 

two material heat sinks are performing on par with a single material copper heat sink 

of the same material volume. The maximum temperature of the disparate solid volume 

Cu-Al heat sink is only 1.3oK higher than the single material Cu heat sink, and on 

similar lines, the maximum temperature of the Cu-steel heat sink is only 3.5oK higher 

than the Cu heat sink. This point proves the heat dissipation capability of multi-material 

heat sinks. Another point to be noted is, the shape of disparate volume ratio heat sinks 

are quite similar to equal solid volume ratio heat sinks, but only the copper has taken 

a thinner shape now. 
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Figure 8- 9 Optimised shapes and its temperature contour for case6  

 

 

 

Figure 8- 10 Optimised shapes and its temperature contour for case7  

 The results obtained for the LS TO depend on the initial LS distribution, indicating that 

many local minima appear to be present. So the shapes have to be investigated further 

to determine the global optima.  

Two material heat sinks for high conductivity fluid (Case4 &5): 

 Two optimisations are carried out with fluid thermal conductivity of 4 W/(mK), to study 

the effect of solid-to-fluid thermal conductivity ratio. Since the fluid conductivity is 

increased, the convective heat transfer is expected to play a significant role in these 

cases. The results obtained are shown in Figure 8-11 and 8-12. 
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Figure 8- 11 Optimised shape and its temperature contours for case4 

 

 

 

Figure 8- 12 Optimised shape and its temperature contour for case5 

These heat sinks tend to have more flat base than the other cases. The optimised 

shape obtained for case5 is non-intuitive in nature with highly conductive solid placed 

at specific places discretely and fluid gaps are present within the heat sink structure.  

 

Three material heat sink: 

 The three solid material heat sink design is carried out considering copper, aluminium 

and steel. The volume of 3 solids are constrained at 6, 12 and 22% of design domain 
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volume. The volume constraint of copper is minimum in order to make the heat sink 

cost minimum. The heat sink shape is shown in Figure 8-13. From Table 8-4 it can be 

observed that the maximum temperature of 3 material heat sink is only 1oK higher than 

the single material heat sink, in spite of using only 6% copper. This is a remarkable 

result which shows that multi-material heat sinks are very effective in heat dissipation 

and yet can be made very cheaply by using small quantities of costly, high conductivity 

material.  

 

 

Figure 8- 13 Optimised shape and its temperature contour for case8  

 

8.6 Three dimensional study results:  

 Results obtained for three dimensional two-material optimisation study are compared 

with single material (Cu) heat sink optimisation results (Case 1) already reported in 

section 7.4.3. The optimised shape is reproduced in Figure 8-14, for ease of 

comparison. Each 3D optimisation run takes about 140 hours (for 75 iterations) on ten 

real cores/twenty hyper threaded cores on a Dual Xeon CPU cluster node, while 2D 

runs take about 7 hours on the same machine for 600 iterations. Table showing the 

details of different 3D TO carried out is given in Table 8-5. 

Two material (copper, aluminium) heat sink (Case 2&3): 

  The three dimensional, two material (Cu-Al) heat sink design is carried out with 2 

different initial LSF set-ups. In the first set-up (A), solid1 is considered as copper and 
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solid2 is considered as aluminium/steel. In the second set-up (B) solid1 and solid2 

materials are swapped. That is, solid1 is considered as aluminium/steel and solid2 is 

considered as copper; this is illustrated in the Figure 8-15. 

   

Figure 8- 14 Optimised shape of single material (Cu) 3D heat sink (Front view & Top view) (Case1) 

 

 
Figure 8- 15 Illustration of initial set-up ‘A’ (left, Case2) and initial set-up ‘B’ (right, Case3) 

 

The optimised two material (Cu-Al) heat sink shape for initial setup ‘A’ and ‘B’ are 

given in Figure 8-16 and 8-17 respectively. It can be observed that, for set-up ‘A’, the 

low conductivity aluminium has occupied the region above the heat flux boundary and 

high conductivity copper has branching structure connecting the aluminium boundary 

with all corners of the design domain. This shape is quite opposite to the heat sink 

shape obtained for initial set-up ‘B’, where copper is placed on top of the heat source 

and aluminium is distributed everywhere (Figure 8-17). In the figure, for the sake of 

clarity, the layout/shape of aluminium and copper are separately visualised then a 

complete view of Cu-Al heat sink is also provided. 

The thermal compliance, maximum temperature and rise in temperature relative to the 

ambient temperature (293.15K) in the design domain for these two shapes are listed 
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in Table 8-5. Comparison shows that the shape of setup ‘B’ is the best optimised shape 

compared to that of setup ‘A’. The maximum temperature of setup ‘B’ shape is 0.6oK 

lower than the setup ‘A’ shape. 

       

 

Figure 8- 16 Optimised copper-aluminium heat sink shape for set-up ‘A’ (Case2). Top row: Front & 
topview of Al layout; Bottom row: Complete view and diagonal plane view of Cu-Al heat sink 

 

 

   

Figure 8- 17 Optimised copper-aluminium heat sink shape for set-up ‘B’(Case3). Top row: Copper 
layout and aluminium layout; Bottom row: Complete view & diagonal plane view of Cu-Al heat sink. 

 



 

187 
 

 

Table 8- 5 3D multi-material heat sink design results 

 

Two material (copper, steel) heat sink (Case 4 & 5): 

 The optimised heat sink shape for the copper-steel combination with initial set-up ‘A’ 

is shown in Figure 8-18. The shape is similar to the copper-aluminium heat sink of 

setup ‘A’, but with some minor differences. The centre part of the steel heat sink is 

thicker and shorter than the aluminium and this is because steel is less conductive 

material than aluminium. Copper takes a prominent disk like shape near the top 

region. Since the conductivity of steel is less, the optimiser tries to improve the 

convective cooling (by forming a thicker disk near the top surface) to maximise the 

heat dissipation capability of the heat sink. The design of a copper-steel heat sink with 

the initial setup ‘B’ could not be successfully completed, as the optimisation failed in 

the Comsol flow solver. Porosity modelling used for the topology optimisation also 

complicates the flow solution.  

 

Case 

Name 

 

Description 

Thermal 

Conductivities 

Volume 

Fraction 

Thermal 

Compliance (WK) 

Maximum 

Temperature (K) 

 Temperature Rise 

(Max. 

Temperature- 

Ambient 

Temperature) (K) 

Case1 

Single 

material 400, 0.4 0.25 2.300 316.5 

 

23.35 

Case2 

Cu-Al 

(setup A) 400, 200, 0.4 0.10,0.15 3.52 317.1 

 

23.95 

Case3 

Cu-Al 

(setup B) 400,200, 0.4 0.10,0.15 2.16 316.5 

 

23.35 

Case4 

Cu-Steel 

(setup A) 400, 40, 0.4 0.10,0.15 13.91 321.8 

 

28.65 

Case5 

Cu-Steel 

(Kf=4,80kW) 

setup B 400, 40, 4 0.10,0.15 42.60 306.8 

 

13.65 
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Figure 8- 18 Optimised copper-steel heat sink shape for set-up ‘A’(Case4). Top row: Front & 
topview of steel; Bottom row: Complete view and diagonal plane view of Cu-steel heat sink. 

 

In order to make the problem more benign and solvable, fluid thermal conductivity 

is increased from 0.4W/(mK) to 4 W/(mK). The fluid considered, is a fictitious one, 

chosen mainly for academic interest. Results obtained for this case are shown in 

Figure 8-19. With setup ‘B’, copper occupies the centre region on top of the heat 

source (as in copper-aluminium case with set-up ‘B’) and steel takes the disk-like 

shape on top and also branches are formed connecting the copper part with the top 

disk. Since the fluid conductivity is higher in this case, convective heat transfer is 

significant hence, the copper takes a shorter shape. 

 The maximum temperature in the design domain for copper-steel heat sink of setup 

‘A’ is 5.3oK higher than the single material copper heat sink. If optimisation for setup 

‘B’ was successful, it might have given much lower maximum temperature than setup 

‘A’ case, because for copper-aluminium heat sink design, setup ‘B’ has produced 

better shape than setup ‘A’. 
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Figure 8- 19 Optimised copper-steel heat sink for high conductivity fluid with initial set-up ‘B’ (Case5). 
Top row: Copper front & top view; Bottom row: Complete view and diagonal plane view of Cu-steel heat 
sink. 

 Discussions: 

 The study shows that for 3D applications, two material Cu-Al heat sink performance 

is equivalent to that of single material copper heat sink. Hence by the two-material 

heat sink design, copper of 15% design domain volume can be saved and instead the 

same volume of a cheaper material like aluminium or steel can be used. This will 

definitely lead to considerable cost reduction provided manufacturing technology 

enables this at a nominal cost. 

 The optimised 3D heat sink shape had few disconnected (porous) solid regions. 

Practically, these are unsupported solid mass hence not manufacturable. Formation 

of these isolated (porous) solid regions could be avoided by optimising for a relaxed 

objective function. Purpose of these isolated regions is to minimise the thermal 

compliance further, so by optimising for a shape corresponding to a relatively higher 

objective value, then a connected shape – free from isolated regions, can be obtained. 

Alternatively, regularisation techniques such as perimeter filtering [114], Tikhonov 

regularization [17] or sensitivity filtering [72] could be integrated into the algorithm.  

 Further, it is observed that Heaviside functions, H1*H2 and H1*(1-H2) are taking 

intermediate values between 0 and 1 and this led to slight in-accuracy in the material 
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boundary definition. This could be avoided by further refining the design domain mesh 

and by frequent re-initialisations. But due to the limitation on computational resources 

available, much finer meshes are not studied.  

  

8.7 Summary 

 The design of two and three solid material convectively cooled heat sinks is carried 

out at low Reynolds numbers for minimum thermal compliance objective. The 

optimisation is carried out for different solid-solid and solid-fluid thermal conductivity 

ratios. Overall, the study results show that, the heat dissipation capability of a single 

material (copper) heat sink is achievable by a multi-material heat sink even with very 

low percentage use of copper in it. 

 The two material two dimensional Cu-Al heat sink has a smooth branched structure 

extending from the heat source location to the farthest corners of the design domain. 

Whereas in the copper-steel heat sink, copper takes a branching structure and steel 

is mostly distributed surrounding the copper, on top of the heat source location. 

 In the 3D study, the single material copper heat sink shape approximately resembles 

an inverted ‘filled-wine glass’. The disk-like shape near the top side of the design 

domain enhances the convective cooling. In two material 3D heat sink, high 

conductivity solid (copper) takes a branching structure on top of the heat flux 

boundary. The low conductivity solid (aluminium/steel) forms a disk like shape near 

the top of the design domain and also connects the copper structure with the disk. The 

two material Cu-Al heat sink performance is exactly equivalent to the single material 

copper heat sink inspite of using 15% less copper. If a technology enables the 

manufacture of these designs, considerable cost reduction can be achieved by saving 

the high conductivity, costly materials. 

 Since the study minimises only thermal compliance and does not consider convective 

cooling, the shapes may not be the optimal for high Reynolds number flows where 

convective cooling will be predominant. 

 To summarise, the multi-material heat sink design technique opens the possibility of 

using copper at minimal amounts in combination with aluminium or steel to enhance 

its performance while keeping the cost low. 
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9 Conclusions and Future Work 

 

 In this study, after assessing the performance of two popular TO methods, a 

numerical model for better performing TO method, for fluid flow and heat transfer 

application, has been developed. Using this framework, heat recovery channels and 

the novel multi-material convectively cooled heat sinks are designed.  

 Two popular topology optimisation methods namely the Density method and Level-

set method (coupled formulation) are assessed for the quality of design results, 

computational time and robustness by designing 3 dimensional convectively cooled 

heat sinks. The results have shown that both the methods with their basic numerical 

formulation gave optimised shapes with grey cells. Among them, the level-set method 

yields a better quality design and the density method is found to be more robust in 

yielding the results. Because the LS with re-initialisation captures crisp material 

boundaries and is less susceptible to flow instabilities at moderate and high Reynolds 

numbers, the level-set method is chosen and the numerical framework for this 

technique is developed further.  

 The level-set TO numerical framework is based on the HJ equation for advecting the 

level-sets and it uses the density-based material mapping. The framework is 

developed in Matlab and it uses Comsol for solving the PDE equations of physics. The 

following state-of-the-art features are implemented in the level-set numerical model. 

1. The re-initialisation of level-sets by solving Eikonal equations. 

2. Adjoint based shape sensitivity evaluation for NS and energy equations. 

3. Topology derivative based optimisation.   

4. Capability for handling multi-material topology optimisation problems. 

Using the developed LS TO numerical framework, heat recovery channels and multi-

material convectively cooled heat sinks are designed. 

Heat recovery channels design: 

 The heat recovery channel design which requires heat recovery maximisation without 

penalising the pump pressure requirements was carried out for different solid-to-fluid 

thermal conductivity ratios and flow Reynolds numbers. The optimisation studies are 
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carried out in 2D and in 3D and the effect of Reynolds number, conductivity ratio and 

objective function weightage factor on the channel shape are critically studied. Further, 

heat transfer model is fully solved in this study, without resorting to simplified 

convective cooling models.  

 As the flow Reynolds number is increased, the heat recovery and temperature drop 

are decreasing. But at high Re, the optimised shape has more number of lengthy flow 

channels than at low Reynolds number. In the ks/kf=1 case, increasing the thermal 

conductivity of the material leads to increase in heat recovery of the channel. Since, 

the porosity approach is used for solid modelling, the optimiser distributes (porous) 

solid at the inlet and outlet to reduce the flow velocity and thereby to increase the heat 

exchange. This may not be a practically suitable design solution and it is one of the 

drawbacks of the porosity approach. 

Multi-material convectively cooled heat sink design: 

 Multi-material convectively cooled heat sinks are designed for the minimum thermal 

compliance objective at low Reynolds numbers. This study envisions the design of 

heatsinks using copper and aluminium or copper and steel at right proportions to 

achieve excellent cooling performance while keeping the cost low. 

 The optimisation is carried out for different solid-fluid material conductivities and 

volume constraints in 2D and 3D. The thermal conductivity ratio of solid-to- solid and 

solid-to-fluid play a significant role in the shape of the final optimum. The study shows 

that, even with very low percentage use of the high conductivity material (copper), the 

multi-material heat sinks can perform equivalent to the single material copper heat 

sinks. So, for the same heat dissipation capability, the amount of high cost copper 

used can be decreased leading to cost reduction of the heat sinks.  

 This research study has significantly broadened the understanding of the application 

of topology optimisation to fluid flow and heat transfer problems. Further study is still 

necessary to approach a wide range of heat exchanger design problems.  

 

Future work: 

 The following can be taken as an extension of the present study. 
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 It is observed that during the convectively cooled heat sink design, the optimiser 

yields designs with isolated (porous) solid regions. Though theoretically this 

may reduce the thermal compliance of the design domain, practically these 

heat sinks are not manufacturable. Hence, to avoid this, regularisation or thin 

feature control mechanism has to be implemented in the numerical framework.  

 The topology optimisation field is rapidly growing and a number of researchers 

are working on coupled fluid flow and heat transfer problems. So, soon the 

design of industrial heat exchanger problem has to be handled. For this a 

turbulent flow optimisation capability has to be implemented. Turbulent flows 

call for increased mesh refinement near the solid walls hence these 

optimisation runs will involve increased computational cost. 

 In relation to the preceding point, currently solved optimisation problems are 

benign (well-posed) problems. The material properties are so chosen that the 

optimiser runs without divergence and yields a well-defined optimum solution. 

Therefore, to handle industrial geometries and materials, the optimisation 

algorithm needs to be improved and made more robust, to handle a wider range 

of problems.  

 All of the topology optimisations were carried out using the density-based 

material mapping method and hence the solids created are porous solids. A 

drawback of this method is that, no-slip condition cannot be properly imposed 

on the solid walls and there will be pressure diffusion across the solid walls. 

The LS method with an xFEM mapping is free from these disadvantages, hence 

implementation of an xFEM mapping would be a natural future extension of this 

study.  

 In this study, the augmented Lagrangian method is used for the level-set 

optimisation. It is observed that, for the multi-material optimisation problem, the 

rate of convergence of this method is very low and it takes approximately 600 

iterations (for 2D problem) to yield a converged solution. Hence, it is necessary 

to develop a numerical strategy to increase the convergence rate of this 

method. 

 The optimisation work can be extended to the design of heat exchangers like 

shell and tube heat exchanger, and co-flow and counter flow heat exchangers. 
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