
Journal of Cleaner Production



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

1 

A novel energy systems model to explore the role of land use and 

reforestation in achieving carbon mitigation targets: A Brazil case study

Iván García Kerdana,*, Sara Giarolab, Adam Hawkesa

a Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, 

SW7 2AZ, UK 
b Department of Earth Science & Engineering, Imperial College London, South Kensington Campus, 

London, SW7 2AZ, UK 

Abstract 

Due to its low global share of direct energy consumption and greenhouse gas emissions (1-2%), the 

implications of technological transitions in the agricultural and forestry sector on the energy system 

have been overlooked. This paper introduces the Agriculture and Land Use Sector module part of the 

ModUlar energy System Environment (MUSE), a novel energy system simulation model. The study 

presents a generalisable method that enables energy modellers to characterise agricultural technologies 

within an energy system modelling framework. Different mechanisation processes were characterised 

to simulate intensification/extensification transitions in the sector and its wider implications in the 

energy and land use system aiming at providing reliable non-energy outputs similarly to those found in 

dedicated land use models. Additionally, a forest growth model has been integrated to explore the role 

of reforestation alongside decarbonisation measures in the energy system in achieving carbon 

mitigation pathways. To illustrate the model’s capabilities, Brazil is used as case study. Outputs 

suggest that by 2030 under a 2°C mitigation scenario, most of Brazil agricultural production would 

move from ‘transitional’ to ‘modern’ practices, improving productivity and reducing deforestation 

rates, at the expense of higher energy and fertiliser demand. By mid-century Brazil has the potential to 

liberate around 24.4 Mha of agricultural land, where large-scale reforestation could have the capacity 

to sequester around 5.6 GtCO2, alleviating mitigation efforts in the energy system, especially reducing 

carbon capture and storage technology investments in the industry and power sector.  
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Nomenclature 

Sets 

f set of fuel types

r set of regions

s set of service type

t set of technology types

Parameters 

a regression coefficient a [-]

b regression coefficient b [-]

average distance of data i to all the data observations within the cluster of which data i [-

]

lowest average distance of data i to all the data observations within the cluster of which 

data i is not a member [-]

service demand in region r of service s [PJ]

fuel demand in region r of fuel type f [PJ]

emission factor for fuel f [tCO2 PJ-1]

actual emissions in region r [tCO2]

technologies available for service type s [-]

data belonging to cluster [-]

demand share of service s covered by technology type t [%]

efficiency of technology t for service s [%] 

mean value of data assigned to cluster [-]

Variables 

cluster k [-]

fuel consumption in region r, of fuel type f by technology type t [PJ]

installed capacity in region r of technology type t [PJ year-1]

modelled emissions in region r [tCO2]

silhouette width of a data point i [-]

slack (emissions) for region r and fuel type f [tCO2]

treeage age of new forest [years]

difference in emissions in region r [tCO2]

Subscripts and Superscripts 
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agr agriculture

cap capita

mod modern

mod_ren modern renewable

trad traditional

trans transitional

Abbreviations 

2DS two-degree scenario

AB above ground biomass

Ag&LU agriculture and land use sector

ASM average silhouette method

BAU business as usual

BB below ground biomass

BECCS bioenergy with carbon capture and storage

C carbon

CAPEX capital costs

CCS carbon capture and storage

DOM dead organic matter

E exponential

ESM energy systems model

GDP gross domestic product

ISM integrated assessment model

L linear

LL log-log

MCA market clearing algorithm

Mha mega hectares

MUSE ModUlar energy System Environment

NPV net present value

OP optimisation problem

OPEX operational costs

PJ petajoules

REF reforestation

SL semi-log

SOC soil organic carbon
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1. Introduction 

It is expected that future climate change will severely disturb society and terrestrial ecosystems 

(Walther et al., 2002). Kang et al. (2009) investigated the negative effects of climate change on water 

availability and agricultural production and its wider implications on food and the environment. 

During the COP-21 conference, 195 country members have agreed to set up a plan to limit global 

warming to well below 2°C compared to pre-industrial levels (UN, 2015). Current estimations suggest 

that the remaining carbon budget for an increase of 2°C stands between 590–1,240 GtCO2 (Rogelj et 

al., 2016), and with current annual emission rates (~40 GtCO2 year-1) there is a high probability that 

the budget will be depleted by mid-century. It is evident that strategies to reduce global greenhouse 

gas (GHG) emissions must be put in place rapidly. 

In 2015, the agriculture, forestry and land use sector (AFOLU) demanded 8,142 PJ year-1 of energy,

with diesel (4,395 PJ year-1) and electricity (2,120 PJ year-1) responsible for almost three quarters of 

the global sector energy share (FAO, 2017; IEA, 2017). This represented 0.88 GtCO2 year-1 or 1.5-

2.0% of global annual GHG emissions. However, if the whole food and agriculture supply chain is 

considered (including agrochemicals production and application, food transportation and processing, 

and land use dynamics), the sector is responsible for up to 30% of global emissions (Vermeulen et al., 

2012). Therefore, introduction of modern technologies and practices in the sector is central to limiting 

global climate change (Woods et al., 2010).

Increasing food demands, land competition, unexpected climates, unsustainable bioenergy policies, 

and income inequality could have major implications for the sector’s dynamics (Cirera and Masset, 

2010). Rathmann et al. (2010) found that the emergence of large-scale dedicated energy crops has 

altered land use dynamics, switching from food-based towards biofuels-based production, 

subsequently impacting food prices in the short term. Nowadays, emerging economies are 

experiencing dynamic transitions within their energy systems and land use mainly due to high 

economic growth rates. Together with developed economies they are causing major disruptions over 

terrestrial emissions with high probability of being the main cause of global warming (IPCC, 2014b).

Projections in agricultural commodities suggest that either intensification or land use expansion will 

be required to meet future demands (Baruah and Bora, 2008). Current average yield growth rates 

(<1.6% year-1) might be insufficient to meet rising demands, where more land will be necessary to 

overcome production shortages, potentially causing environmental degradation (Ray et al., 2013). 

1.1 Land management strategies for carbon mitigation 

Several research regarding carbon neutral or carbon negative emission strategies in the AFOLU sector 

can be found in the literature (Minx et al., 2017). For example, large-scale bioenergy production and 
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utilisation has been identified as a promising measure to reduce fossil-fuel dependency and achieve 

carbon targets. Bioenergy crops, either for biofuels or power generation, have the capability of 

reducing emissions along the energy supply chain. In the literature, estimates of global bioenergy 

supply potential vary considerably. Past estimates of a global bioenergy supply potential of over 1000 

EJ year-1 (Smeets et al., 2007) have been considered too optimistic (Haberl et al., 2010). Recently 

more conservative estimates were given (lower than 400 EJ year-1) (Deng et al., 2015). If only 

marginal and degraded lands were considered, the technical potential would be even lower than 200 EJ 

year-1 (Nijsen et al., 2012). However, the extent of the benefit of bioenergy to the overall energy mix, 

is surrounded by many uncertainties related to its carbon life cycle. Added to this, there is not a

universal method for the quantification of indirect land use change (iLUC) and the impacts of 

agrochemicals utilisation (Plevin et al., 2010).

The role of biomass and the associated emissions, become even more crucial, when climate change 

mitigation plans largely rely on combining bioenergy with carbon capture and storage (BECCS) (Azar 

et al., 2010). BECCS has been found to have the highest abatement potential in the power and 

industrial sectors. However, one of the main limitations for large-scale implementation is its current 

capital and operational costs. Although BECCS can be considered as a carbon negative strategy, the 

ecosystems and energy systems dynamics suggest its abatement potential might not be as large as 

anticipated (Muratori et al., 2016). Apart from evidence needed from operational CCS technologies as 

these have yet to be deployed at large-scale, the extensive use of bioenergy might lead to significant 

iLUC emissions and price pressure for other agricultural commodities due to land competition 

(Muratori et al., 2016). 

There are other land management techniques that could play a role in carbon mitigation strategies as 

they directly affect the carbon cycle. Studies have shown that the carbon abatement potential of 

restoring degraded lands to their original state can have larger benefits than converting these marginal 

lands to agricultural production (Evans et al., 2015). Nevertheless, either the potential from 

reforestation/afforestation or energy crops to reduce GHG could be compromised by food security and 

other environmental goals. Smith et al. (2013) considered that consumption-based or demand side 

measures such as changing food diets, have a greater reduction land potential than supply side 

measures such as intervening in land management. In the last decades, optimal land use management, 

new technologies and genetically crop upgrading have allowed the sector to double its production 

without requiring extreme land expansion, allowing for degraded lands to be reforested (FAO, 2017; 

IPCC, 2014a). Measures such as biochar, soil carbon sequestration (SCS) and 

reforestation/afforestation recently have been broadly discussed in policy making due to its 

affordability and potential large-scale implementation (Minx et al., 2017). However, the 
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implementation of the aforementioned measures comes with high uncertainties in price, costs and 

risks, as few generalisable projects have reached maturity levels. 

1.2 Agriculture and land use in energy system models 

For energy planning, energy system models (ESMs) are typically used to provide insights into 

technological implementation, often alongside socio-economic and environmental implications (Riahi 

et al., 2017). In recent years, most of ESM research has been focused in investigating decarbonisation 

pathways in different sectors. For instance, for the industry, Bataille et al. (2018) analysed the sector’s 

technical potential to reduce GHG emissions from energy intensive processes aiming at reaching Paris 

agreement targets. Similarly, Griffin et al. (2018) analysed the potential to reduce energy demand and 

GHG emissions from the UK pulp and paper industry by investigating different energy sources and 

technologies. For buildings, García Kerdan et al. (2017) used an exergy-based stock model to calculate 

the potential of different low carbon technologies to reach sectoral emission targets in the UK while 

Sachs et al. (2019) implemented a novel agent-based model within an bottom-up ESM aiming at 

characterising different type of investors and understand their role in regional and national large-scale 

decarbonisation efforts. In the transport sector, Dhar et al. (2018) used the MARKAL ESM to study 

transition decarbonisation pathways in the Indian passenger and freight subsectors while Siskos et al. 

(2018) used PRIMES ESM to understand the implications of delaying decarbonisation in the European 

Union (EU) transport sector. In addition to the demand sectors, power sector decarbonisation has been 

widely investigated. Recently, Kefford et al. (2018) studied the challenge of early decommissioning of 

fossil-based power plants to reach carbon reduction targets. Outputs show that this would create more 

than US$ 500 billion worth of stranded assets only in the USA, China, EU and India.  

On the other hand, due to the low global share of direct energy use in agriculture (IEA, 2017), ESMs 

have overlooked the implications of decarbonisation policies in the agricultural and forestry sector and 

its wider implications in the energy system. Similar to other sectors, agricultural production can be 

modelled as a collection of discrete physical processes, as presented in Walker (1984). Jones et al. 

(2017) provided an extended summary of agricultural systems models, demonstrating their 

multidisciplinarity and the importance in decision-making. Some research groups have provided links 

between energy and land use models (Wise et al., 2014); however, the AFOLU sector still lacks a

comprehensive technological representation in ESMs. One of the most common approaches to assess 

the implications of the technological changes in agriculture onto the energy systems are based on 

using a soft-link between energy and land use models. 

IMAGE (IMAGE-contributors, 2019), considered as an ecological-environmental modelling 

framework, has been soft-linked to TIMER (Bert J.M. de Vries et al., 2001) to assess energy supply 

and demand. The energy model provides a limited representation of the agriculture sector (represented 
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as “Other” sectors), where it uses structural elasticity to determine the sectoral energy demand.

Moreover, the details of the agricultural sector is modelled using a third model, the agro-economic 

model MAGNET (G.B. Woltjer et al., 2014), which is a computable general equilibrium (CGE) model 

connected via a soft-link to IMAGE. Although it has the strength of modelling prices of production 

factors, resource availability and technological progress, energy demand is not accounted for.

MAgPIE (Dietrich J et al., 2018) is a popular global agricultural and land use allocation model, which 

is connected to the grid-based dynamic vegetation model LPJmL (Schaphoff et al., 2018). The model 

is able to forecast the demand of agricultural commodities based on regional economic conditions,

modelling technological development, production, spatially explicit yields and land use. To account 

for energy demand and supply, a soft-link has been done with REMIND (Luderer et al., 2015), a

global energy system multi-regional optimisation model. The model uses ‘constant elasticity of 

substitution approach’ (CES) to model future competition of technologies. Although the tool has the 

capacity to model several technologies in the energy sector, there is a lack of agricultural technologies 

representation.  

GLOBIOM is a recursive-dynamic partial-equilibrium agriculture and land use model (Krey et al., 

2016) that is able to represent land use competition including a spatially explicitly bottom-up

representation of the agricultural, forestry and bioenergy sector. The model has been soft linked to 

MESSAGE (Krey et al., 2016), a linear programming (LP) partial equilibrium energy model that aims 

to assess the role of different types of bioenergy sources in the wider energy system. One of the 

limitations of MESSAGE is that only distinguishes between three types of energy end-uses: transport, 

buildings and industry, leaving the agricultural sector with a limited representation in the energy 

system.  

GCAM (Calvin et al., 2019) has been able to integrate the energy sector along natural ecosystems and 

terrestrial carbon cycles models, dividing the world into 151 agro-ecological regions. The model uses 

sharing logit models to account for land use decisions with the possibility of using multiple 

management types for different crops, allowing the model to simulated price-based intensification in 

the sector. GCAM has been able to include multiple agricultural management practices, which enables 

to calculate intensification rates endogenously. However, the energy module lacks explicit agricultural 

technologies characterisation, limiting its capability to relate energy demand and land use implications 

from specific technological uptake. 

On one hand, soft-linking between energy and land use models have the capacity to address deeper 

sustainability dimensions, different systemic effects and precise biophysical interactions. On the other 

hand, soft-links could provoke a fragile internal model coherence and added complexity, where land 
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demand is usually modelled using economic approaches, with limited accounting for the impact of 

technological uptake. Additionally, these complex models might have high computational 

requirements. Novel approaches are necessary to overcome this long-standing limitation, aiming to 

create robust models without the need to soft-link independent models. 

In general, there are two main limitations in the development of agricultural models in ESMs: 1) a 

scarcity of energy and technological data, and 2) inadequate knowledge systems that effectively 

communicate model results to decision makers (Jones et al., 2017). As novel technologies in 

agriculture and changes in carbon taxes can easily impact land use allocation and energy consumption 

(Wise et al., 2009), novel models are required to gain insight into future energy, economic and 

environmental interactions.  

To the best of authors’ knowledge there is still a lack of an integrated modelling approach which can 

describe the interactions between the deployment of mechanisation in agriculture and the rest of the 

energy and land use system. The novelty of this study is to present a newly developed agricultural 

energy system model and to provide a generalisable methodological framework capable of 

characterising agricultural processes that eventually would be useful for energy and land use 

assessment in ESMs. Thus, the objective of the paper is twofold. Firstly, to describe the “Agriculture 

and Land Use” (Ag&LU) framework embedded within the MUSE energy system model, by proposing 

an alternative method to model agricultural technology productivity and future uptake based on 

mechanisation levels. The model intends to reduce complexity while still capturing major indicators 

such as intensification and land use. Secondly, using Brazil as a case study, the model is tested to 

determine the dynamics and interconnections between the land use and the energy system, exploring 

the role of agriculture and reforestation alongside the country’s energy system in reaching carbon 

mitigation targets.

This paper is organized as follows. First, the methodology and the development of the MUSE-Ag&LU 

global model is presented. Next, the case study is presented alongside the proposed modelling 

scenarios. Following, the paper will show the obtained results, followed by discussions considering the 

combined role of agriculture, land use and the energy system in achieving mitigation pathways. 

Finally, conclusions and suggestions for future work are presented. 
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2. Material and methods 

2.1 The MUSE model and the Ag&LU model structure

The ModUlar energy systems Simulation Environment (MUSE) is a new bottom-up integrated 

assessment model, implemented in Python, aiming to explore plausible long-term decarbonisation 

scenarios of energy systems (Giarola et al., 2019). MUSE is a partial-equilibrium simulation model 

with microeconomic foundations. The equilibrium is reached when supply and demand of 

commodities is attained in the market clearing algorithm (MCA). The global model considers demand, 

conversion and supply sectors, with a disaggregation of 28 regions. An overview of MUSE simulation 

environment can be found in Appendix A, while a detailed representation of the regions can be found 

in supplementary data S.1.

Specifically, the MUSE-Ag&LU model, is a technology-rich bottom-up agricultural model that 

simulates energy demand and land use requirements in the medium and long-term (up to 2030/2050 or 

2100). It aims to produce a time series of fuel demand, agrochemicals demand, land use, and 

emissions in order to meet four general agricultural services: a) crops, b) meat-based products, c) 

forestry products and d) bioenergy. Similar to other demand modules in MUSE, the Ag&LU model 

dynamically exchanges a set of variables with the MCA by sending information regarding fuel 

demand and emissions per region, time period and timeslice. Figure 1 illustrates a generic iteration in a 

generic time-period and time-slice.  
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Figure 1. Ag&LU model integration into MUSE and data flow with the MCA 

2.2 Simulation workflow 

The Ag&LU module dynamically exchanges a set of variables with the MCA of MUSE to determine 

the fuel demand in every region per time period and timeslice. The simulation is based in a two-step

approach.

2.2.1 Service demand forecast 

In a first step, the MUSE-Ag&LU model projects demand by energy content of each agricultural 

services. As the aim of the study is to present a methodological framework that could be easily 

generalisable to any agricultural commodity categorisation, for the purpose of this study and to keep 

the model computationally tractable and to reduce computational burden, commodities have been 

aggregated by the following four general agricultural services 

Crops have been modelled by aggregating the six major agricultural crops by global 

production: rice, wheat, maize, soybean, sugarcane and potatoes.  

Meat-based products: beef, pig, poultry and sheep. 
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Forestry products: round wood and wood fuel.  

Bioenergy: miscanthus, switchgrass, agricultural and meat-based residues, and forestry 

residues.

Service demands are derived from regression analysis defined from exogenously given macrodrivers 

(gross domestic product (GDP) and population). As agricultural data usually is collected in units of 

mass or volume (kg, tonnes, m3), these have been converted into energy units by applying the energy 

content value of each specific agricultural product. Food, forestry products and bioenergy demands are 

based on regional diets and past consumption trends (1970-2015). Data on GDP and population has 

been taken from the World_Bank (2017). A set of regression models have been tested, as proposed in 

the literature by Cirera and Masset (2010) and Tilman et al. (2011). In this study, similarly to van

Ruijven et al. (2016) approach, optimal fit for the demand of agricultural products has been identified.

The models tested are reported in the eqs. 1-4.

Linear (L) : C = a + b GDPpc (1)

Exponential (E) : C = a eb GDPpc (2)

Semi – log (SL) : C = a + b ln(GDPpc) (3)

Log – log (LL) : lnC = a + b ln(GDPpc) (4)

In which a and b are constants estimated in the regression and would serve as an input to MUSE. In 

agreement with similar studies such as Cirera and Masset (2010) which described the relationship 

between food consumption and income and Bodirsky et al. (2015) which analysed the functional 

relationships between income and food demand, the log-log function or Engel’s curve (eq. 4) has been 

identified as the most appropriate to estimate the demand for agricultural services. The outputs 

demonstrates that as per capita income increases, population demand for agricultural products would 

increase; however, the increase is under-proportional with income. In the case of food products, high 

income economies usually show to have reach a per capita saturation level and, in some cases, even a 

decrease in demand for meat-based products, subsequently switching to vegetable-based diets. The 

data and obtained regression coefficients by region and agricultural commodity can be found in the 

supplementary data (S.1).

For the case of bioenergy, the model endogenously calculates the necessary production based on 

demands from the rest of the sectors (industry, buildings, power, refinery, etc). In this way, dynamic 

supply curves are built for every iteration and time period until convergence is reached (Figure 2). 
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Figure 2. Endogenous bioenergy demand calculation in MUSE-Ag&LU  

2.2.2 Modelling technology investment  

As a second step, to model investment decisions and operating strategies, a merit order approach based 

on Net Present Value (NPV) is used to define technology market share and fuel mix. To represent the 

future state of the sector, the model selects technologies based on capital and operational costs, 

technology efficiency and environmental impact. Finally, the model ranks the technologies and 

decides which ones to operate in order to meet the demand of service. Depending on the technologies 

which are operating, the model calculates: fuel and agro-chemicals demand, the running operating 

costs (OPEX), environmental performance (GHG emissions), energy and residual crop supply and 

land use, per region, time period and timeslice. At the next iteration, the model will receive updated 

fuel and carbon prices from the MCA and will repeat the simulation.  

As illustrated in Figure 3, the simulation is broken up into several distinct mutually exclusive 

interactions. In this way, the model determines the necessary technological uptake, where appropriate 

actions such as dispatch, technological investment and land management is applied for each iteration.
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Figure 3. Flow chart of MUSE-Ag&LU simulation algorithm 
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2.3 Definition of agricultural technologies  

The main challenge in developing the model has been the characterisation of comprehensive processes 

that relate energy demand, agricultural production and land use. In this study, the proposed approach is 

based in associating specific technological processes based on mechanisation or intensification levels 

(Figure 4).  

Figure 4. Basic representation of different mechanisation levels combining agricultural 

technology, fuel share, production and land use demand.  

According to the European Commission (EC, 2019), the input intensity of an agricultural process can 

be defined as the level of inputs used per unit of factor of production. Overall, the intensity or 

mechanisation level of an agricultural process is the result of the combination of different inputs such 

as energy, fertiliser, technology efficiency and land use practices. Intensification or the uptake of 

higher mechanisation levels represents technological change through the adoption of non-human/non-

animal sources of power to undertake agricultural operations (Diao et al., 2014). For example, the 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

15

European Environment Agency (EEA, 2005) uses different mechanisation indicators (IRENA No. 15) 

to study agricultural intensification/extensification related to average expenditure, stocking rates and 

yields. The indicator has been applied to describe an increase in farm input intensity in different 

regions. The demand for farm mechanisation emerges at the point when it becomes cost-effective for 

farmers to use it over other available options. To characterise agricultural technologies in MUSE, a 

pre-processing six step approach combining qualitative and quantitative methods is proposed. Figure 5 

presents the framework, detailed in sections 2.3.1 and 2.3.2.

Figure 5. Framework to characterise agricultural processes based on qualitative and 

quantitative approaches
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2.3.1 Qualitative characterisation (Steps 1-3)

Without considering any economic or biophysical implication on yields, the qualitative method 

proposed by Opio et al. (2013) has been extended by integrating inferential statistics. As Step 1, data 

on total production by country has been collected for the main agricultural commodities (crops, meat, 

and forestry products) and converted into energy units. Following, land use demands have been 

obtained for each agricultural commodity per region (FAO, 2017). After aggregating total production 

and land use demand per type of commodity, it is possible to obtain yields in energy units per area (PJ

Mha-1). Distributions for each agricultural product on a global scale is shown in Figure 6 (Step 2).  

Figure 6. Distribution (bars) and the fitted probability distribution (lines) of global yields for 
different agricultural commodities. Source: FAO (2017).

These outputs have been used to get a first qualitative definition of mechanisation levels depending on 

empirically observed yields (Step 3). In this case, as detailed in Table 1, three different levels of 

mechanisation have been defined using the quartiles calculated from the distributions. This 

technological classification is similar to mechanisation levels defined by the Food and Agriculture 

Organization (FAO, 2000) (traditional, transitional, and modern) and by IRENA (EEA, 2005) (low 

level, intermediate level, and high level). 

Summary

Crops
(PJ Mha-1)

Meat-
based

(PJ Mha-1)

Forestry
(PJ Mha-1)

Min. 2.06 0.11 0.23
1st Qu. 8.01 0.52 3.88
Median 14.73 1.89 12.91
3rd Qu. 24.58 10.12 32.83

Max. 91.41 67.46 68.40
Mean 22.10 11.61 19.09

SD 23.98 19.10 18.04
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Table 1. Qualitative description of mechanisation levels in MUSE-Ag&LU model 

Mechanisation level
Yields

(Quartile)
Qualitative description

1. Traditional 
or Low level

Below the 

1st quartile

Represents the original method of farming that developed through 

the interaction of social and environmental systems with a minimum 

amount of mechanised equipment. Minimum energy inputs are 

characterised by the use of biomass, kerosene, coal and low 

integration of electricity. 

e.g. Traditional cropping countries: Nicaragua, Cameroon, Haiti 

(FAO, 2017).

2. Transitional or 
Intermediate 
level

Between 

the 1st and 

3rd

quartiles

Represents the introduction of mechanisation in more parts of the 

agricultural production chain. Tractors, tilling machines, mechanical 

heating/drying and irrigation using mainly electricity and other 

traditional fossil fuels such as diesel and gas are considered in this 

process. The use of fertilizers and agrochemicals is common. 

e.g. Transitional cropping countries: India, Russia, Brazil (FAO, 

2017).

3. Modern
or High level

Above the 

3rd

quartile

Describes a wide type of production practices employed by some 

developed countries. Apart from a fully mechanised supply chain, it 

makes use of technologically advanced equipment with higher 

energy demands for machinery, farm overhead, water irrigation, and 

fertilizers. 

e.g. Modern cropping countries: United States, Netherlands, Japan 

(FAO, 2017).

3.1. Modern-
Renewable$

Above the 

3rd

quartile

Same as ‘Modern’ but assumes that the process’ energy inputs are

based on ‘renewable’ sources such as biodiesel, bioelectricity and 

other biomass sources combined with more sustainable agricultural 

practices (micro-fertilisation)
$ An additional mechanisation level has been created representing a full renewable-based modern technology (with similar 

technology efficiency and yields as ‘Modern’).

2.3.2 Quantitative characterisation (Steps 4-6)

To quantitatively represent the proposed mechanisation levels, inputs on energy, land demand, and 

agrochemicals need to be assigned. However, as FAO (2017) and IEA (2017) balances do not provide 

comprehensive land or energy data separated by specific agricultural products or processes, a bottom-

up approach cannot be followed. Therefore, a hybrid approach using big data analysis has been 

selected. As Li et al. (2019) suggests, the application of big data techniques has the potential to reduce 

blind spots in ESMs, such as the presented problem of characterising agriculture technologies.
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First, to provide fuel share and land demand for each mechanisation process per agricultural product, a

cluster analysis has been implemented by locating countries with similar energy input/output ratios 

and yields per agricultural product (Step 4). Similar to Conforti and Giampietro (1997), the non-

hierarchical method approach, based on the separation of clusters at different levels of distance 

between observations, has been used to get a first subjective assessment for crops, meat and forestry 

products. Although several economic, social, environmental and biophysical indices can impact 

agricultural productivity, it has been decided to perform the cluster analysis based on yields and GDP 

agricultural share (% GDPagr), as population income (GDPcap) might not provide an adequate insight 

into the agricultural mechanisation development in a country.  

To reduce the total number of heterogeneous agricultural levels to be introduced into the model, k-

means clustering has been applied to categorise factors levels into groups with similar adoption 

preferences. To define the clusters, a minimisation problem based on the Hartigan-Wong algorithm

(Hartigan and Wong, 1979) aiming to reduce the within-cluster variation is performed:

(5)

where  is cluster k,  is a data belonging to cluster , and  is the mean value of data assigned to 

cluster  In this study, the desired number of groups has been set to three, as per the number of 

mechanisation levels defined in section 2.3.1. Later, the Average Silhouette Method (ASM) 

(Rousseeuw, 1987) is used to locate and justify the optimal number of clusters. The silhouette width of 

a data point i can be defined as follows: 

(6)

where  is the average distance of data i to all the data observations within the cluster of which data i

is a member, is the lowest average distance of data i to all the data observations within the cluster of 

which data i is not a member. High average values (close to 1.0) indicate that values are well 

clustered. Graphically, the optimal number of clusters k is located where the function  is maximised.

Figure 7 presents the outputs obtained for crops, meat and forestry products at a global scale. Global 

data used for the analysis as well as countries’ abbreviations can be found in supplementary data S.2. 
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Figure 7.  Cluster analysis (left) and silhouette scores (right) for agricultural commodities: crops, meat and forestry products
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Figure 7 illustrates the different clusters and the distance between them per agricultural product. The 

cluster results for crops demonstrate three very distinct groups: 

Cluster#1 (green), is represented by low- and medium-income economies (with low-medium 

GDP share from agriculture) with medium yields that could be considered as mainly having 

transitional agricultural processes for crop production.  

Cluster #2 (red), is represented by low income economies with high GDP share from 

agriculture that have the lowest yields and could be considered as mainly having a traditional 

mechanised sector. In these countries, some medium productivity levels are due to favourable 

geographical and climatic conditions. 

Cluster #3 (blue) is represented by high-income economies (with low GDP share from 

agriculture) and could be considered as highly mechanised with high levels of productivity.  

For meat, the clusters classification follows a similar outcome, as meat production mainly depends on 

external man-based inputs such as machinery, energy inputs and farm quality. 

Cluster #1 (blue) is represented by low-income economies with low yields, which can be 

categorised as traditional farming.  

Cluster #2 (red) is represented by medium-income economies with average production levels 

(transitional farming).  

Cluster #3 (green) is represented by industrialised economies with high yield meat production 

(modern farming).  

Forestry products follow a similar grouping as cropping due to the effect of local geographical 

conditions in productivity levels. The ASM outputs seem to agree with the predefined number of 

groups (k=3). However, for the case of forestry, the optimal number of clusters has been found at four, 

as cluster 1 could be separated into two smaller clusters. To keep consistency of mechanisation levels 

among agricultural services, three levels have been kept as the graph demonstrates that k=3 has the 

second highest ASM width value. 

Inputs bounds 

After grouping countries accordingly to MUSE regions, data on energy, fertiliser and land demand per 

unit product has been aggregated and probability distributions have been assigned to characterise those 

specific groups (Step 5). Therefore, for each mechanisation level and agricultural product, fuel share,

agrochemicals demand, and yields have been defined with lower and upper bounds. For the case of 

energy crops, the data obtained from typical crops has been used. The mean values for fuel (PJ/PJ),

emissions (CO2eq PJ-1) and yields (Mha PJ-1) per unit product outlined by mechanisation level, 

agricultural product and region can be found in the supplementary data (S.3).
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Installed capacities (technology calibration) 

Finally, it is necessary to calculate the total installed capacities by mechanisation level and by 

agricultural product (Step 6). In ESMs, accounting for the base-year technological installed capacity is 

important as it provides a mean to calibrate the model and understand whether the modelling 

assumptions are correct. For this, an optimisation problem (OP), based on integer linear programming 

(ILP) implemented in GAMS (GAMS_Development_Corporation, 2013) has been proposed 

considering that only data on total sectoral energy demand and emissions by region are available. It is 

important to mention that the proposed OP is used for calibration purposes, which means that it is built 

on the purpose of defining the stock of every single technology in the sector at the beginning of the 

simulation. Considering the uncertainty in the data available, it was concluded that is more effective to 

constrain the demand for agricultural products and the energy consumption of the sector, closing the 

remaining degree of freedom minimising the gap between actual emissions and estimated emission 

values by region. This is achieved by providing a series of lower and upper bounds for parameters 

such as energy demand by fuel type, fuel share, and technology efficiency. Depending on the region’s 

economic development and on its agricultural share of GDP, a share of each mechanisation level is 

assumed. As such, every country and region could have some mechanisation level, to greater or lesser 

extent. In this study, the assumed bounds for mechanisation share by type of economy are shown in 

Table 2. 

Table 2. Mechanisation share lower and upper bounds assumptions for different type of economies 

Type of Economies Traditional Transitional Modern Modern 
Renewable

Least Developed
(%GDPagr share > 0.16) 50-70% 10-20% 10-20% 1-2%

Emerging
(0.02< %GDPagr share <0.16) 10-20% 50-70% 10-20% 3-5%

Developed
(%GDPagr share < 0.02) 10-20% 10-20% 50-70% 5-10%

Along upper and lower bounds in other input parameters, the OP is formulated as follows.  

Objective function: 

The objective function is defined to minimise the difference between modelled emissions from real 

emissions in the sector: 
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(7)

where  is the difference in emissions, while  represents the aggregation of all calculated slack 

variables (for feasibility purposes) and  is the emission factor for fuel type f.

Emissions Difference  

The difference in emissions  is obtained by: 

(8)

where  represent the real emissions in region r (obtained from FAO or IEA), and  is the 

modelled emissions in region r given by the model.

Emissions of the Model 

The modelled emissions are calculated as follows: 

(9)

where  is the fuel consumption for region r and technology t, and  is the emission factor for 

fuel type f.

Constraints 

The OP is subject to the following quality and inequality constrains:  

Mass Balance  

First, the mass balance must be satisfied for every region, technology and agricultural service:

(10)

where  refers to installed capacity,  to service demand,  refers to region,  to technology 

mechanisation level, to service type and are the technology mechanisation levels available for 

service s. 

Service Demand 

The demand per service must be met by the sum of the share of production per mechanisation levels: 
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(11)

where  refers to the demand share covered by technology mechanisation level t.

Mechanisation level share 

The share of production per mechanisation level (  is obtained by dividing the demand met by 

specific mechanisation level over the total demand for service s: 

(12)

The share sum of mechanisation levels per service is constrained by the following equality: 

(13)

Fuel Balance  

The capacity per region and technology (  is calculated from the total fuel consumption by 

technology (PJ) multiplied by the technology yield or efficiency (PJ/PJ) :  

(14)

where  refers to fuel type,  to fuel consumption per region and technology, and  to efficiency 

of technology t for service s.  

Fuel Constraint  

The sum of fuel consumption by region and technology ( ) is constrained by the total fuel 

demand in the region:  

(15)

where is fuel demand f in region r, and is a slack variable added to make the problem 

feasible and fulfil the fuel constraints. 
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By solving the OP, all structural alternatives are evaluated, and the best solution can be identified. 

Following, the energy share must be adjusted to reflect the natural variations across regions, 

showcasing natural factors such as soil fertility, climate, and water availability. The GAMS source 

code and the obtained technologies installed capacities can be found in the supplementary data S.4 and 

S.5 respectively. The case study section will show the application of the OP in a single region.   

2.4 Fertiliser demand and non-CO2 emissions 

A similar approach has been followed to assign nutrient input and related emissions for each 

mechanisation level that accurately represents real farming practices and fertiliser inputs. Levels of 

fertiliser per ton of production have been obtained from FAO (2017) and USDA (2017). The 

methodology to determine these inputs requires information concerning country crop production 

(FAO, 2017), its nutrient consumption (USDA, 2017), and the yield associated with each 

mechanisation level defined in the previous section. Similarly, methane (CH4) emissions (mainly from 

livestock management) are considered due to their significance in the agricultural sectors contribution 

to global GHG releases. For calibration purposes, the study from Pimentel (2009) which provided 

several baseline estimates of such levels has been used.  

2.5 Economic costs of mechanisation 

For the economic characterisation of each mechanisation level, data on costs and return estimates from 

USDA (2017) has been collected. These figures have been converted into USD per hectare using 

historic yield data  (FAO, 2017) and then to USD per PJ year-1 to obtain unit price for installed 

capacity. For illustration purposes, data on maize crops has been plotted against yields (Figure 8), and 

by locating the mechanisation level according to the yield, the capital, fixed and variable costs are 

assigned. 
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Figure 8 Costs per planted maize energy content, USD2010 PJ year-1. Data: USDA (2017) 

2.6 Land use and related emissions 

After the model calculates the required technologies to cover the agricultural demands, specific land 

requirements are obtained. These land values are then aggregated to obtain a final demand per land 

type, region, period and time slice. Table 3 shows the eight different land types modelled in MUSE.   

Table 3 Land types simulated in MUSE-Ag&LU 
Land type Description

Cropland
land suitable for or used for the cultivation of crops.

Pasture land
land typically used for grazing livestock

Forestry products
land for silviculture activities

Energy crops
land dedicated exclusively for bioenergy crops

Natural forest
land for primary and secondary forest

Non-arable land
land which is unsuitable for arable farming (desert, ice, tundra, rock)

Urban/Infrastructure
land for human settlements 

Available
cleared land potentially available for other agricultural commodities

If the current land available to meet the demand of a certain service (e.g. crops or meat) is not 

sufficient at a specific simulation period, this might become available either via a land use change 

through deforestation (e.g. forest land converted to pasture), or via a change in the destination of other 

land types that were liberated due to either service demand reduction or intensification. Table 4 shows 

the possible land use changes in the model. However, if there is no land available to cover the required 

demand or polices that limit deforestation are in place, the model will endogenously increase yields by 

increasing investment in higher yields mechanisation levels.  

Table 4. Possible changes in land use modelled in MUSE-Ag&LU 
Land Source Possible Land Destination
Cropland Available, Pasture, Forestry Land, Energy crops

Pasture Available, Cropland, Forestry Land, Bioenergy

Forestry Products Available, Cropland, Pasture, Energy crops

Energy crops Available, Cropland, Pasture, Forestry Products

Natural Forest Cropland, Pasture, Forestry Products

Available Natural Forest, Cropland, Pasture, Forestry Land, Energy crops

Regarding land use emissions, the calculation is based on the IPCC Tier 1 approach (IPCC, 2006) 

outlined in Appendix B.  
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2.6.1 Reforestation model 

A simple reforestation module has been integrated into MUSE-Ag&LU to assess its potential role 

alongside the energy system in reaching emission targets. In past years, several models have been 

designed aiming at understanding the potential role of reforestation in mitigation pathways. For 

instance, Silver et al. (2000) analysed the carbon sequestration potential of tropical reforestation 

considering the impact of previous agricultural land (crops or pasture), identifying different 

sequestration rates. Kraxner et al. (2003) developed a forest growth model in temperate regions to 

illustrate the potential of reforestation and bioenergy with CCS (BECCS) to permanently remove large 

amounts of carbon from the atmosphere. Similarly, Evans et al. (2015) calculated carbon sequestration 

potentials from biofuel production and reforestation on marginal lands. Albanito et al. (2016) 

integrated a spatial production allocation model and the IPCC Tier 1 method to assess carbon potential 

implications of switching land from food production to either energy crops or regenerated forest. 

Dwivedi et al. (2016) designed a forest growth model to analyse the carbon abatement of reforestation 

under different carbon markets. Krause et al. (2017) investigated optimal sequestration rates 

considering BECSS and afforestation in combination by accounting for diverse land biophysical 

properties such as nitrogen cycles, carbon dynamics between carbon pools and surface albedo. Most of 

reforestation studies have calculated that sustainable carbon management from forest is valued at 

around $25-50 tCO2
-1, while industrial CCS costs are estimated at around $100-$160 tCO2

-1 (Ni et al., 

2016).

In MUSE-Ag&LU, biomass growth models simulating reforestation taking place on marginal or 

abandoned land over a 100 year period have been developed. Biomass accumulation is modelled for 

aboveground biomass and carbon accumulation for soil, considering the tropical rainforest region as

case study. To develop the models, most of the data has been obtained from Silver et al. (2000). Table 

5 shows the growth models used in MUSE. These are related to tree age and differentiate between 

agriculture and pasture land as previous land use. 

Table 5. Forest biomass growth functions modelled in MUSE-Ag&LU. Source: Silver et al. 

(2000) 

Previous land Model R2

Biomass (above ground) in kg

Pasture -0.03* treeage
2 + 3.48* treeage + 13.69 0.44

Agriculture -0.03* treeage
2 + 4.09* treeage + 10.49 0.84

Soil Organic Carbon

Pasture 18.31*ln(treeage) + 1.73 0.66
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Agriculture 10.88*ln(treeage) + 31.24 0.22

Based on data from Ribeiro et al. (2015), the belowground biomass pool has been added by 

developing a relationship with the aboveground biomass pool. Then, an average carbon concentration 

in aboveground and belowground of 44.5% and 37.8% respectively has been assumed. Figure 9 

illustrates CO2 uptake models for the three carbon pools, assuming that new forest reaches a carbon 

saturation point at roughly after 50 years (Silver et al, 2000). 

Figure 9 Total CO2 accumulation by carbon pool after reforestation in different land types

For the economic evaluation of reforestation projects, land acquisition costs, operational costs, 

management, maintenance and supplements application costs have been obtained from Guitart and 

Rodriguez (2010). After adjusting them for inflation, cost of investments have been defined as 

follows: CAPEX as US$ 5,524 ha-1 and OPEX as US$ 51.7 ha-1. A discount rate of 5% is used as it is 

a common value for terrestrial carbon studies (Sullivan et al., 2005).

2.7 Summary: Model’s Inputs/Outputs  

To summarise the methodology section, Table 6 presents a summary of all the inputs to and outputs 

from the model in a generic iteration.  
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Table 6. Exchange data flow for the MUSE-Ag&LU model 

MUSE-Ag&LU Key Inputs MUSE-Ag&LU Key Outputs

-Techno-economic characterisation for each agriculture 

technology (mechanisation level) in each time period 

and region.

Energy input by source (PJ/PJ)

Conversion efficiency (%)

Energy emissions (ktCO2/PJ)

Agrochemicals emissions (N fertiliser) (ktCO2eq

/PJ)

Methane emissions (ktCO2eq /PJ)

Yields (Mha/PJ)

Land use type demand (-)

Unit capital and operational cost ($USD/PJ)

Existing stock for the model base year per region 

by technology type, including their retirement 

profile (PJ year-1)

-Policy framework and fiscal regimes.

-Macro-economic drivers’ projections (e.g. GDPcap,

population, urbanisation).

-Agricultural mechanisation index detail by time 

slice, technology type and region.

Fuel demand by source (PJ)

Agricultural commodity production 

(crops, meat and forestry products) (PJ)

Energy crop production (miscanthus, 

switchgrass) and other bioenergy residues 

outputs (agricultural residues, meat-based 

residues, forestry residues) (PJ).

Aggregated demand of agrochemicals (kt)

Land use demand by agricultural 

commodity and aggregated land demand 

by land (Mha)

Aggregated emissions due to direct energy 

use and land use change (kt)

Aggregate CAPEX and OPEX of new 

installed technologies (mechanisation) 

($USD), and retirement in capacity terms 

by time period, technology type and 

region

3 Case study and description of scenarios 

To illustrate the model capabilities, Brazil is used as a case study. The model is capable to simulate the 

energy and land use systems, projecting different emissions pathways depending on user-defined 

policy assumptions. To model the Brazilian energy system,  data from the Energy Research Company 

(EPE, 2017) has been the main source for calibration and validation. Supported with historical 

statistics from the International Energy Agency (IEA, 2017), service demands for each end-use has 

been projected. For agriculture, forestry and land use, data from the Brazilian Geographic and 

Statistics Institute (IBGE, 2018) and FAO (2017) is used. Land demand for different Brazilian forest 

separated by biome as well as areas for silviculture has been obtained from the Ministry of 

Environment (MME, 2018), while data for sugarcane crops from the Sugarcane Union Industry 

(UNICA, 2018).
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3.1 Agriculture demand projection 

To project service demands in agriculture, eq. 4 is used. Figure 10 shows correlated data for average 

daily crop and meat intake with household income for Brazil*. This data has been regressed to project 

demand for 2050 by using IIASA SSP2† scenario data on GDP and population (Fricko et al., 2017).

Figure 10. Relation in the consumption of food and average income per capita in Brazil (1970-

2010) and projections to 2050. Source: FAO (FAO, 2017).

3.2 Technology characterisation and land use representation 

Brazil, with average yields of 10.49 PJ Mha-1 for crops, 1.16 PJ Mha-1 for meat-based, and 7.66 PJ 

Mha-1 for forestry (FAO, 2017), can be found mainly with transitional mechanisation levels across all 

the agricultural services. This could also be explained by the share of agricultural production to the 

national GDP, which stands at 4.3% (FAO, 2017), thus being considered an emerging economy 

according to the classification presented in Table 2.  

By applying the optimisation problem (equations 7-15), installed capacity and fuel input per unit of 

service (PJ) for each agricultural service has been obtained. The OP model minimises modelled

emission against actual emissions from energy use, which stand at about 23.4 MtCO2 year-1 (FAO,

2017). The obtained installed capacity alongside the technoeconomic parameters are presented in 

Appendix C (Table C.1).  

                                                     
* Same function has been used to regress forestry products. 
† The SSP2 narrative describes a middle-of-the-road development in mitigation and adaptation 
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To account for carbon emissions and sequestration potential from land use, carbon densities are taken 

from the IPCC (2006) and other studies (Miteva et al., 2014; Opio et al., 2013; Sallustio et al., 2015).

These are characterised for each land use category in Table 7.

Table 7. Estimated average C values for each land use and carbon pool (IPCC, 2006; MMA, 
2017)

Land type Above 
Ground

( tC ha -1)

Below 
Ground
(tC ha -1)

Dead 
Organic 
Matter

(tC ha -1)

Soil Organic 
Carbon&

(tC ha -1)

Total

(tC ha -1)

Cropland 10.0 5.4 1.0 53.1 69.5
Pasture 7.6 1.1 0 78.9 87.6

Forestry prod.+ 62.0 12.8 1.8 42.0 118.6
Bioenergy* 16.0 14.3 1.0 33.5 64.8

Forest** 78.2 28.9 5.2 44.0 156.3
Non- arable - - - - 0

Urban - - - - 0
&Estimations from the topsoil layer (0-20 cm in depth) 
*Sugarcane, considering an average productivity (yield) of 60 t/ha 
+Eucalyptus plantation 
** Average values considering all six biomes have been considered (Amazonia, Caatinga, Cerrado, Mata Atlántica, Pampa 
and Pantanal).  

A split sample validation approach has been performed. Values on energy use, emissions, and land use 

have been calibrated using 2010 as base year. This year has been selected because of the existence and 

reliability of data for all the sectors as well as being a year without significant political, economic or 

environmental circumstances. A model validation has been performed using 2015 data on agricultural 

commodity demand and fuel consumption. 

3.3 Scenarios 

Three scenarios between 2015 and 2050 based on the SSP2 (Fricko et al., 2017) are modelled: 

Scenario 1 – Business as Usual (BAU): Explores a scenario where there is a lack of a carbon 

emission reduction target and current energy and land use policies are assumed. For example, power 

sector expansion plans (ANEEL, 2018), gasoline/ethanol blending mandates and oil and natural gas 

extraction rates (ANP, 2019)are modelled accordingly to current government plans and policies. Other 

main assumptions are related to agricultural productivity (FAO, 2017) and land use expansion (e.g. 

sugarcane expansion) (UNICA, 2018). Agricultural yields are kept to baseline values while new land 

for agricultural use is not constrained, therefore deforestation could take place.  

Scenario 2 – 2°C without reforestation (2DS-REF): Based on research from Rochedo et al. (2018),

this scenario contemplates a carbon budget for the period 2015-2050. This budget, which considers 

Brazil’s solely contribution to reach Paris agreement targets has been obtained by running several 
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global integrated assessment models (IAM). Originally, the authors have suggested an average carbon 

budget of around 24 GtCO2 (considering land and energy emissions only); however, in this study a 

budget of 35 GtCO2 has been considered, as the model also contemplates non-CO2 emissions from 

agriculture. A full range of technologies for decarbonising the energy sector are available. For 

instance, it is assumed electrification in most of the sectors by reducing costs on solar and wind power 

(Elshurafa et al., 2018), electric vehicles (Soares M.C. Borba et al., 2012) and efficient air 

conditioning systems (air source heat pumps) (Fortes et al., 2018) as well as limiting extraction of 

fossil fuels by 2030. Additionally, it is assumed agricultural sector intensification (e.g. from an 

average of 1.0 to 1.7 cattle heads per hectare (EPE, 2016)) and constraints in forest deforestation after 

2030 (MAPA, 2009). in this scenario, it is considered that liberated agricultural land remains 

abandoned throughout the analysed period.

Scenario 3 – 2°C with reforestation (2DS+REF): Similar to Scenario 2, but abandoned agricultural 

land is subject to a reforestation process.  

4 Results and Discussions 

4.1 Agriculture intensification: mechanisation share, energy use and emissions 

Figure 11 shows agricultural mechanisation share projections considering aggregated service demands 

(crops, meat, forestry products and bioenergy) for each analysed scenario. In the base year, 

agricultural production has the following mechanisation share:  traditional: 13%, transitional: 56%, 

and modern: 31%. Compared to the agro-environmental index (intensification – extensification) used

by the European Commission (EC, 2019), the Brazilian base year mechanisation share is similar to 

current practices in Central European countries such as the Czech Republic and Poland. By 2050, the 

share of modern mechanisation would reach 54% in a BAU scenario and up to 63% (2DS+REF) in a 

carbon constrained pathway. This would represent similar production of today’s Denmark (60%) and 

Germany (61%); however, still below to Belgium (77%) and the Netherlands (88%). Also, for both 

carbon constrained scenarios, a higher share of renewable-based modern mechanisation is expected. In 

Appendix D (Figure D.1), mechanisation share separated by agricultural service (crops, meat, forestry 

products and bioenergy) is illustrated. 
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Figure 11. Share of different agricultural mechanisation levels for each scenario 

Figure 12 illustrates the projected total agricultural energy demand by fuel as well as the direct energy-

related emissions. In the base year, the sector demands around 540 PJ year-1, reaching 1,349, 1,447 

and 1,477 PJ year-1 for BAU, 2DS-REF and 2DS+REF respectively. The main difference is the highest 

share of renewable sources in the 2DS scenarios. Agricultural residues, biogas and biodiesel will 

represent around 17-20% (251-288 PJ year-1), while in the BAU these would reach 11% (158 PJ year-

1) of the energy mix. However, diesel and electricity will still be the predominant energy sources (71-

78%).

Figure 12. Energy demand projections by fuel  and energy-related emissions for both scenarios 

In the base year, the energy use per hectare stands at 1.7 PJ ha-1, which is comparable to the lowest 

agricultural energy users in the European Union (Rumania and Bulgaria: 1.6 PJ ha-1 and Greece: 2.1 

PJ ha-1). By 2050, the model suggest that this metric will increase to 3.6 PJ ha-1 in BAU, 4.8 PJ ha-1 in 

2DS-REF and 5.0 PJ ha-1 in 2DS+REF. These values will be similar to current energy use in Spain 

(4.1 PJ ha-1), Sweden (4.6 PJ ha-1) and Hungary (5.1 PJ ha-1), and just below the current EU average 

index (5.4 PJ ha-1).  

Direct energy-related emissions will reach between 29.5-30.3 MtCO2 year-1; however, most of the 

sectoral emissions will come from CH4 and N2O. Today’s agricultural emissions (excluding energy 

use) stand at 451 MtCO2eq year-1 (FAO, 2017). CH4 from enteric fermentation and N2O from manure 
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management are responsible for 58% and 23% of the total emissions respectively, while 5% is related 

to N2O due to synthetic fertiliser application. In the BAU scenario, is expected an increase of 47% by 

2050, reaching a total of 659 MtCO2eq year-1. This value will be lower for the 2DS scenarios, reaching 

around 627-634 MtCO2eq year-1. Figure 13 illustrates the projected CO2eq emissions (including energy) 

from the agricultural sector for each modelled scenario. 

Figure 13 CO2, CH4 and N2O (CO2eq) emissions in each scenario 

4.2 Land use demand and emissions 

Figure 14 shows land use patterns for each scenarios. The amount of land devoted to growing all 

agricultural services increases by a concurrent decrease in other lands such as forest. 

Figure 14. Brazil’s land use demand projections for each scenario
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In the BAU scenario, it is expected that total agricultural land would grow from 302 to 375 Mha, while 

for the 2DS-REF agricultural land demand will be reduced to 301 Mha, and 294 Mha in 2DS+REF. In 

all three scenarios, due to a demand increase in meat-based products, pasture land would constantly 

increase until 2030, reaching 259 Mha for BAU, 209 Mha for 2DS-REF and 201 Mha for 2DS+REF. 

After 2030, pasture land would keep increasing in the BAU scenario, while for both 2DS scenarios, a 

peak demand would have been reached, liberating land at an average rate of 0.6% year-1 due to 

intensification in livestock production. On the other hand, crop land will constantly increase in all 

scenarios until the end of the simulation period at an annual rate of 0.8% year-1 between 2015 and 

2030. However, in the 2DS+REF, growth rates will slow down to 0.3% year-1 reaching 94 Mha by

2050, compared to 99 Mha in 2DS-REF and 100 Mha in BAU. Bioenergy land reaches a higher 

demand in 2DS scenarios, as larger requirements for energy crops are found; nevertheless, due to 

sector intensification, after 2040, bioenergy land will stabilise at around 12 Mha. The results show that 

compared to BAU, 2DS+REF could save around 57 Mha of forest by 2050 while also adding 24.4 of 

new forest land. 

Figure 15 illustrates the projected land CO2 flux for each scenario. As the simulation progresses in the 

BAU scenario, the carbon stock losses 13 GtCO2, reducing the 2015 national carbon stock from 340

GtCO2 to 327 GtCO2 by 2050, which represent the depletion of 37% of the carbon budget. The main 

carbon losses come from soil organic carbon (SOC) pools from pasture land and the above-ground 

biomass from deforested lands. For the 2DS-REF scenario, carbon stock gets reduced to 336 GtCO2 (9 

GtCO2 or 26% of the budget), while for the 2DS+REF, as soon as land becomes available (2030), new 

forest starts absorbing carbon at a rate of 0.09 GtCO2 year-1. The rate increases in the following 

periods, reaching a peak sequestration rate of 0.52 GtCO2 year-1 in 2040, to then stabilise around 0.40

GtCO2 year-1 by 2050. The higher rates in 2040 are due larger availability of former pasture land 

combined with higher sequestration rates of new forests plantations. By 2050, the total land carbon 

stock would reach 344 GtCO2, almost recovering carbon stock values to base year levels. 
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Figure 15. CO2 stocks dynamics by land type for each scenario  

4.3 Sectoral emissions  

4.3.1 Measures in the energy system and the role of land use 

Figure 16 presents Brazil emissions trajectory separated by land use, (non-energy) agriculture and the 

energy systems. In Appendix E, detailed emissions by sector in the energy system (Figure E.1) as well 

as the power sector energy mix (Figure E.2) is shown. 
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Figure 16 Total emissions projections by source for each scenarios 
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In the BAU scenario, minimum decarbonisation measures are enforced in the energy sector. Thus, 

from current emissions of 0.47 GtCO2 year-1, the energy sector reaches 0.78 GtCO2 year-1 by 2050, 

with the industry and transport sectors as major contributors (0.29 and 0.28 GtCO2 year-1 respectively). 

For the 2DS scenarios cross sectoral efficiency measures are introduced to reduce national emissions. 

In both 2DS scenarios, higher electrification is expected as illustrated in the power system in Figure 

E.2. While the BAU reaches an installed capacity of 239 GW, the 2DS-REF and 2DS+REF reach 271 

GW and 270 GW respectively. In all three scenarios, hydropower remains as the main source (44-

49%), reaching between 117-120 GW installed capacity. In both 2DS scenarios, more biomass and 

natural gas will be necessary to cover the extra demand; however, this will be in combination with 

carbon capture and storage (CCS). Gas with CCS would have an installed capacity of around 42 GW 

(16% of the total installed capacity) while BECSS would be about 18 GW (7%); however, in the 2DS-

REF, more investments in renewable sources such as on onshore wind farms would be required to 

further reduce sectoral emissions.    

For the rest of the sectors, in the 2DS-REF, higher decarbonisation efforts would be necessary in 

buildings, transport, and industry. It is expected that in the building sector, 42% of the lighting demand 

will be covered by LEDs, while air and ground source heat pumps (ASHP and GSHP) would cover 

49 % of the cooling installed capacity. In the transport sector, battery cars will cover 46% of the 

passenger demand, decommissioning some of the gasoline-ethanol flex fuel options. The industry 

sector would require the highest decarbonisation levels, as 98% of the production would require CCS 

(with special focus in the cement, iron and steel subsectors). When reforestation is considered 

(2DS+REF), the sectors are not as pressured to reduce its emissions. For example, although LED in 

buildings will also represent 42% of the artificial lighting capacity, heat pumps will reduce its share to 

38%. Similarly, electric cars will cover 39% of passenger demand, while CCS in industry will cover 

86% of the production. The carbon price in the 2DS-REF scenario has been calculated at US$ 1,480 

tCO2
-1, higher than the US$ 856 tCO2

-1 from 2DS+REF. 

4.3.2 Investments in industrial CCS and reforestation 

Figure 17 shows the required CCS investments per sector for both 2DS scenarios. Most of the 

investment in the energy and land sector takes place after 2030, when both 2DS scenarios already 

depleted 20-21 GtCO2 (60% of the 35 GtCO2 budget). Is after 2030, when high CCS investments in 

the industry, refinery and power arise. For the 2DS-REF, it takes 10 years and US$ 949 billion in CCS 

for the energy sector to reach negative emissions. However, to reach mitigation targets by 2050, an 

additional US$ 1,659 billion would be required, sequestering around 1.6 GtCO2 by 2050. For the 

2DS+REF, similar investments in industrial CCS are made by 2040 (US$ 942 billion). However, an
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initial investment of US$ 159 billion is made for reforestation between 2030 and 2040. This has two 

effects in the 2DS+REF energy system: i) delays negative carbon emissions in the energy sector until 

2045, and ii) reduces investments in CCS between 2040 and 2050 by 31%, saving US$ 506 billion.

Moreover, the combination of CCS and reforestation sequesters 3.9 GtCO2 between 2040 and 2050, 

achieving carbon targets at a lower cost. In this scenario, 86.9% of the total investment will be made in 

the industry, while reforestation would only require 10.5 % or US$ 237 billion, resulting in an average 

sequestration cost of US$ 47.8 tCO2
-1.

Figure 17 Reforestation and industrial CCS investment by sectors

4.4 Discussion 

For emerging economies such as Brazil, if crop, pasture, forestry and bioenergy production is to be 

increased by 2050, intensifying agriculture would be fundamental to achieve carbon mitigation goals 

with minimum effects on deforestation and crop competition.

While a BAU scenario, where no intensification is triggered, has projected agricultural lands to reach 

almost half of the country’s total land (375 Mha), 2DS scenarios constrained this expansion to about 

300 Mha. To validate this outputs, MUSE values have been compared against those from the 

GLOBIOM-Brazil model published in an INPE-UNEP report (INPE, 2015). In their BAU scenario, 

the report has projected an increase in agricultural area (crops, pasture, planted forest and bioenergy) 

from 278 Mha in 2010 to 334 Mha by 2050, which lies in between with the analysed scenarios. The 

main differences are found in the demand patterns from pasture land. While both models agree that 

around 2030, pasture land would reach a peak in demand, the 2DS scenarios have projected a higher 

land liberation rate until 2050, reaching as low as 194 Mha by 2050 in the 2DS+REF. GLOBIOM 

have projected a slower intensification reaching 208 Mha. Land productivity could also incentivise 

producers to further expand production to new lands; however, these land use dynamics are difficult to 

predict in presence of different stakeholders. Lastly, agricultural land abandonment, such as those 
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simulated in BAU and 2DS-REF, could have negative effects on biodiversity and increase its 

susceptibility to climate-driven natural disasters.  

Modern technologies have the capacity to increase productivity by having higher yields and 

conversion efficiencies. The study shows that agricultural emissions, mainly CH4 and N2O from 

enteric fermentation, manure management and fertiliser use will be difficult to reduce, as 

intensification would come with larger amounts of embodied emissions. In both 2DS scenarios, 

emissions from agriculture would reach 0.63 GtCO2 year-1, offsetting carbon sequestration rates from 

the energy and land use sector. These emissions can lead to a higher pressure on the environment, as 

the uncontrolled increase in fertiliser utilisation increases the risk of nutrient contamination into water 

bodies and soil. Appropriate land management practices are necessary to sustain soil fertility as well as 

appropriate management on livestock and manure left on pastures. In this sense, biogas production 

from agricultural residues and manure have the capacity to reduce methane emissions in agriculture, 

with potential to inject biomethane into the Brazilian gas grid.  

Careful decarbonisation of different sectors combined with appropriate land use management and 

forest recovery have the potential to support more sustainable policies. Reforestation could have an 

important role in reaching decarbonisation targets. As demonstrated in 2DS+REF, a policy to 

incentivise large-scale reforestation would result in the possibility to sequester large amount of carbon 

at a lower cost. However, for this to take place, the agriculture sector needs to intensify its production 

rapidly while reducing direct and indirect deforestation. In both 2DS scenarios, BECCS can only make 

a limited contribution to carbon mitigation goals, as bioenergy expansion in the first 15 years of the 

analysed period (2015-2030) would provoke indirect land use emissions by moving crop and pasture 

production to the agricultural frontier. Afterwards, when land becomes available, bioenergy starts 

competing with reforestation, where current uncertainties and high prices of BECCS limits its wider 

implementation in the energy system.   

The proposed method can be generalised to other regions.  The minimum data requirement is 

represented by two data types: national average agricultural productivity by commodity and sectoral 

energy use/emissions; which is available from international organisations (FAO, IEA). However, for a 

more reliable and feasible application other type of data is desirable such as spatial representation of

agricultural productivity per type of commodity as well as detailed data of energy consumption per 

unit production for specific agricultural technologies. Ideally, these data would come at a sub-regional 

level; nevertheless, as sub-regional data might be difficult to obtain, data sources mainly from local 

governmental and non-governmental organisations need to be investigated.
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5 Conclusion and future research 

The agriculture and land use sector is set to face some of its toughest challenges in the coming 

decades, not only due to increasing food demand but also rising pressures on bioenergy cultivation and 

the effects of climate change. Agricultural decarbonisation pathways are not widely discussed in 

energy modelling due to its small share in direct energy use and related emissions. Additionally, 

modellers have faced the challenges in modelling agricultural technology diffusion in ESMs. The 

sector is of greater importance in the wider energy and land use system and its understanding is vital in 

achieving decarbonisation targets.  

This paper has presented MUSE-Ag&LU, a new modelling framework that combines both energy and 

land use simulation without the necessity of soft-linking separate complex models. The developed 

modelling approach based on mechanisation levels, can explicitly track agricultural technology 

diffusion, simulating energy use, agrochemical demands and its implication in land use and energy and 

non-energy emissions. In previous research, the definition of mechanisation levels has been merely 

qualitative. In this study, the main focus has been to provide a quantitative approach based on 

inferential statistics, cluster analysis and optimisation. The approach has proved to be an effective tool 

when comprehensive data is not available for agricultural services and technologies.  

To test the technology characterisation framework as well as the MUSE-Ag&LU model, the Brazil 

case study explored the complex relationship between agriculture, deforestation and the energy system 

under three scenarios. For both 2DS scenarios, agricultural modernisation has been essential to reduce 

indiscriminate land expansions. Moreover, if the abandoned land could be used to regenerate the 

natural landscape, this could help the country to reach carbon mitigation pathways while alleviating 

decarbonisation efforts and reducing investments in the rest of the economy.   

The obtained results have shown that the presented framework has the capability to inform policy 

makers by showing the agricultural, forestry and land use landscape within the energy systems 

context.

This raises pertinent policy questions not only for Brazil, but globally, coupling both energy system 

development ambitions alongside agriculture and land use change concerns. Outputs have shown the 

importance of reforestation not only as a significant carbon sequestration process but also to reduce 

investments in CCS projects in the power and industry sectors as well as lowering decarbonisation 

efforts in the rest of the sectors. Nevertheless, detailed accounting of energy use in every sector as well 

as appropriate accounting of nitrous oxide and methane emissions from supply chain is necessary to 

provide an integrated view of the energy systems and the cross-sectoral effects of land use change.  
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Some limitations exist in the model and the selected methodology. The main one refers to decision 

uncertainty which involves the subjective choice by the modellers for representing agriculture 

technologies by mechanisation levels instead of explicit technologies. Some information could be lost 

as mechanisation levels have a fixed fuel share demand. Moreover, although the global model is 

characterised by several regions (28), in the presented case study where a single region is modelled, 

intraregional interactions have not been considered, meaning that the effect of trade is not accounted 

for. Additionally, land use and land use change processes are subject to large uncertainties. Brazil’s

ecosystem is diverse and carbon stocks per hectare might vary among regions and depth. Also, the 

selected land use calculation methodology (IPCC Tier 1 approach) does not consider explicit change 

between lands, where carbon pools’ dynamics are specific to land use conversion (e.g. tree growth 

rates, dead matter oxidation, etc.).  

For future research, the model would be expanded to characterise different crops, pasture, silviculture, 

and bioenergy products in different regions. Also, the model will be able to model more realistic 

dynamics in the land use, by simulating time delays between land use changes (e.g. forest to crops, 

pasture to bioenergy) and reforestation growth. Finally, the effect of trade (within and between 

regions) will be considered as this could have major implications in local production and resource 

utilisation.  

Acknowledgments 

The authors would like to acknowledge the Sustainable Gas Institute, Imperial College London and 

the Natural Environment Research Council (NERC) under the Newton Fund (NERC reference: 

NE/N018656/1) for funding this work. The authors also want to acknowledge the work from Imperial 

College students Andres Gonzalez-Garay, Ellis Skinner, Marin Tuleu, Anshul Bongirwar and Omar 

Abdulla for their work in data collection and analysis.

References 

Albanito, F., Beringer, T., Corstanje, R., Poulter, B., Stephenson, A., Zawadzka, J., Smith, P., 
2016. Carbon implications of converting cropland to bioenergy crops or forest for climate 
mitigation: a global assessment. GCB Bioenergy 8(1), 81-95.
ANEEL, 2018. Capacidade de Geração do Brasil (Brazil's Generation Capacity). 
ANP, 2019. Dados estatísticos. http://www.anp.gov.br/dados-estatisticos. 2019). 
Azar, C., Lindgren, K., Obersteiner, M., Riahi, K., van Vuuren, D.P., den Elzen, K.M.G.J., 
Möllersten, K., Larson, E.D., 2010. The feasibility of low CO2 concentration targets and the 
role of bio-energy with carbon capture and storage (BECCS). Climatic Change 100(1), 195-
202.



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

42

Baruah, D.C., Bora, G.C., 2008. Energy demand forecast for mechanized agriculture in rural 
India. Energy Policy 36(7), 2628-2636. 
Bataille, C., Åhman, M., Neuhoff, K., Nilsson, L.J., Fischedick, M., Lechtenböhmer, S., 
Solano-Rodriquez, B., Denis-Ryan, A., Stiebert, S., Waisman, H., Sartor, O., Rahbar, S., 
2018. A review of technology and policy deep decarbonization pathway options for making 
energy-intensive industry production consistent with the Paris Agreement. Journal of Cleaner 
Production 187, 960-973. 
Bert J.M. de Vries, Detlef P. van Vuuren, Michel G.J. den Elzen, Janssen, M.A., 2001. The 
Targetrs IMage Regional (TIMER) Model. Technical Documentation, The IMAGE Project. 
Department of International Environmental Assessment National Institute of Public Health 
and the Environment (RIVM). 
Bodirsky, B.L., Rolinski, S., Biewald, A., Weindl, I., Popp, A., Lotze-Campen, H., 2015. 
Global Food Demand Scenarios for the 21st Century. PLOS ONE 10(11), e0139201. 
Calvin, K., Patel, P., Clarke, L., Asrar, G., Bond-Lamberty, B., Cui, R.Y., Di Vittorio, A., 
Dorheim, K., Edmonds, J., Hartin, C., Hejazi, M., Horowitz, R., Iyer, G., Kyle, P., Kim, S., 
Link, R., McJeon, H., Smith, S.J., Snyder, A., Waldhoff, S., Wise, M., 2019. GCAM v5.1: 
representing the linkages between energy, water, land, climate, and economic systems. 
Geosci. Model Dev. 12(2), 677-698. 
Cirera, X., Masset, E., 2010. Income distribution trends and future food demand. 
Philosophical Transactions of the Royal Society B: Biological Sciences 365(1554), 2821-
2834. 
Conforti, P., Giampietro, M., 1997. Fossil energy use in agriculture: an international 
comparison. Agriculture, Ecosystems & Environment 65(3), 231-243. 
Deng, Y.Y., Koper, M., Haigh, M., Dornburg, V., 2015. Country-level assessment of long-
term global bioenergy potential. Biomass and Bioenergy 74(Supplement C), 253-267. 
Dhar, S., Pathak, M., Shukla, P.R., 2018. Transformation of India's transport sector under 
global warming of 2 °C and 1.5 °C scenario. Journal of Cleaner Production 172, 417-427. 
Diao, X., Cossar, F., Houssou, N., Kolavalli, S., 2014. Mechanization in Ghana: Emerging 
demand, and the search for alternative supply models. Food Policy 48, 168-181. 
Dietrich J, Bodirsky B, Weindl I, Humpenöder F, Stevanovic M, Kreidenweis U, Wang X, 
Karstens K, Mishra A, Klein D, Ambrósio G, Araujo E, Biewald A, Lotze-Campen H, A, P., 
2018. MAgPIE - An Open Source land-use modeling framework, 4.0 ed. 
Dwivedi, P., Khanna, M., Sharma, A., Susaeta, A., 2016. Efficacy of carbon and bioenergy 
markets in mitigating carbon emissions on reforested lands: A case study from Southern 
United States. Forest Policy and Economics 67, 1-9. 
EC, 2019. Agri-environmental indicator - intensification - extensification. 
https://ec.europa.eu/eurostat/statistics-explained/index.php/Agri-environmental_indicator_-
_intensification_-_extensification. (Accessed February, 19th 2019). 
EEA, 2005. Agriculture and environment in EU-15 — the IRENA indicator report, in: 
Agency, E.E. (Ed.) EEA Report  
Elshurafa, A.M., Albardi, S.R., Bigerna, S., Bollino, C.A., 2018. Estimating the learning 
curve of solar PV balance–of–system for over 20 countries: Implications and policy 
recommendations. Journal of Cleaner Production 196, 122-134.
EPE, 2016. Plano Nacional de Energia - 2050, in: Energética, E.d.P. (Ed.). Ministerio de 
Minas e Energia, Rio de Janeiro, Brazil p. 257. 
EPE, 2017. Balanço Energético Nacional 2016 (Transl:  
National Energy Balance 2016), in: Energética, E.d.P. (Ed.). Ministerio de Minas e Energia 
(Transl: Ministry of Mines and Energy), Rio de Janeiro, Brazil  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

43

Evans, S.G., Ramage, B.S., DiRocco, T.L., Potts, M.D., 2015. Greenhouse Gas Mitigation on 
Marginal Land: A Quantitative Review of the Relative Benefits of Forest Recovery versus 
Biofuel Production. Environmental Science & Technology 49(4), 2503-2511. 
FAO, 2000. The Energy and Agriculture Nexus, in: 4, E.a.N.R.W.P.N. (Ed.). UN Food and 
Agricultural Organization, Rome. 
FAO, 2017. FAOSTAT. (Accessed 10 August 2017). 
Fortes, A.F.C., Carvalho, M., da Silva, J.A.M., 2018. Environmental impact and cost 
allocations for a dual product heat pump. Energy Conversion and Management 173, 763-772.
Fricko, O., Havlik, P., Rogelj, J., Klimont, Z., Gusti, M., Johnson, N., Kolp, P., Strubegger, 
M., Valin, H., Amann, M., Ermolieva, T., Forsell, N., Herrero, M., Heyes, C., Kindermann, 
G., Krey, V., McCollum, D.L., Obersteiner, M., Pachauri, S., Rao, S., Schmid, E., Schoepp, 
W., Riahi, K., 2017. The marker quantification of the Shared Socioeconomic Pathway 2: A 
middle-of-the-road scenario for the 21st century. Global Environmental Change 
42(Supplement C), 251-267. 
G.B. Woltjer, M. Kuiper, A. Kavallari, H. van Meijl, J. Powell, M. Rutten, L. Shutes, Tabeau, 
A., 2014. The MAGNET model. Module description. LEI Wageningen UR (University & 
Research centre), Wageningen, , p. 146. 
GAMS_Development_Corporation, 2013. General Algebraic Modeling System (GAMS) 
Release 24.2.1. Washington, DC, USA.
García Kerdan, I., Raslan, R., Ruyssevelt, P., Morillón Gálvez, D., 2017. The role of an 
exergy-based building stock model for exploration of future decarbonisation scenarios and 
policy making. Energy Policy 105, 467-483.
Giarola, S., Crow, D.J.G., Hawkes, A., 2019. Simulating the carbon price trajectory in energy 
systems with imperfect foresight, in: IEA (Ed.) 2019 International Energy Workshop. Paris, 
France. 
Griffin, P.W., Hammond, G.P., Norman, J.B., 2018. Industrial decarbonisation of the pulp 
and paper sector: A UK perspective. Applied Thermal Engineering 134, 152-162. 
Guitart, A.B., Rodriguez, L.C.E., 2010. Private valuation of carbon sequestration in forest 
plantations. Ecological Economics 69(3), 451-458. 
Guo, L.B., Gifford, R.M., 2002. Soil carbon stocks and land use change: a meta analysis. 
Global Change Biology 8(4), 345-360. 
Haberl, H., Beringer, T., Bhattacharya, S.C., Erb, K.-H., Hoogwijk, M., 2010. The global 
technical potential of bio-energy in 2050 considering sustainability constraints. Current 
Opinion in Environmental Sustainability 2(5), 394-403. 
Hartigan, J.A., Wong, M.A., 1979. Algorithm AS 136: A K-Means Clustering Algorithm. 
Journal of the Royal Statistical Society. Series C (Applied Statistics) 28(1), 100-108. 
IBGE, 2018. Recursos Naturais e Estudos Ambientais - Cobertura e Uso da Terra (Transl: 
Natural Resources and Environmental Studies - Coverage and Land Use). 
https://ww2.ibge.gov.br/home/geociencias/recursosnaturais/usodaterra/default.shtm.
(Accessed 01/04/2018 2018). 
IEA, 2017. International Energy Agency Statistics. (Accessed 15 August 2017). 
IMAGE-contributors, 2019. Welcome to IMAGE 3.0 Documentation, 3.0 ed. IMAGE. 
INPE, 2015. Modelling land use changes in brazil 2000-2050. A report by the REDD-PAC 
project, in: Federal Ministry of Germany for the Environment, N.C., Building and Nuclear 
Safety (Ed.). 
IPCC, 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, in: Change, 
I.P.o.C. (Ed.). UNEP. 
IPCC, 2014a. Climate change 2014: Mitigation of Climate Change Working Group III 
Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate 
Change, in: Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

44

Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. 
Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (Ed.). United Kingdom and New York, 
NY, USA. 
IPCC, 2014b. Climate change 2014: Synthesis report. Contribution of working groups I, II 
and III to the 5th assessment report of the intergovernmental panel on climate change, in: 
IPCC (Ed.). 
Jones, J.W., Antle, J.M., Basso, B., Boote, K.J., Conant, R.T., Foster, I., Godfray, H.C.J., 
Herrero, M., Howitt, R.E., Janssen, S., Keating, B.A., Munoz-Carpena, R., Porter, C.H., 
Rosenzweig, C., Wheeler, T.R., 2017. Brief history of agricultural systems modeling. 
Agricultural Systems 155, 240-254. 
Kang, Y., Khan, S., Ma, X., 2009. Climate change impacts on crop yield, crop water 
productivity and food security – A review. Progress in Natural Science 19(12), 1665-1674. 
Kefford, B.M., Ballinger, B., Schmeda-Lopez, D.R., Greig, C., Smart, S., 2018. The early 
retirement challenge for fossil fuel power plants in deep decarbonisation scenarios. Energy 
Policy 119, 294-306. 
Krause, A., Pugh, T.A.M., Bayer, A.D., Doelman, J.C., Humpenöder, F., Anthoni, P., Olin, 
S., Bodirsky, B.L., Popp, A., Stehfest, E., Arneth, A., 2017. Global consequences of 
afforestation and bioenergy cultivation on ecosystem service indicators. Biogeosciences 
14(21), 4829-4850. 
Kraxner, F., Nilsson, S., Obersteiner, M., 2003. Negative emissions from BioEnergy use, 
carbon capture and sequestration (BECS)—the case of biomass production by sustainable 
forest management from semi-natural temperate forests. Biomass and Bioenergy 24(4), 285-
296. 
Krey, V., Havlik, P., Fricko, O., Zilliacus, J., Gidden, M., Strubegger, M., Kartasasmita, G., 
Ermolieva, T., Forsell, N., Gusti, M., Johnson, N., Kindermann, G., Kolp, P., McCollum, 
D.L., Pachauri, S., Rao, S., Rogelj, J., Valin, H., Obersteiner, M., Riahi, K., 2016. 
MESSAGE-GLOBIOM 1.0 Documentation. International Institute for Applied Systems 
Analysis (IIASA), Laxenburg, Austria. 
Li, F.G.N., Bataille, C., Pye, S., O'Sullivan, A., 2019. Prospects for energy economy 
modelling with big data: Hype, eliminating blind spots, or revolutionising the state of the art? 
Applied Energy 239, 991-1002. 
Luderer, G., Leimbach, M., Bauer, N., Kriegler, E., Baumstark, L., Bertram, C., 
Giannousakis, A., Hilaire, J., Klein, D., Levesque, A., Mouratiadou, I., Pehl, M., Pietzcker, 
R., Piontek, F., Roming, N., Schultes, A., Schwanitz, V.J., Strefler, J., 2015. Description of 
the REMIND Model (Version 1.6) (November 30, 2015). .
MAPA, 2009. Zoneamento Agroecológico da Cana-de-açúcar (ZAECana), in: Abastecimento, 
M.d.A.P.e. (Ed.). Rio de Janeiro, RJ, Brazil p. 58. 
Minx, J.C., Lamb, W.F., Callaghan, M.W., Bornmann, L., Fuss, S., 2017. Fast growing 
research on negative emissions. Environmental Research Letters 12(3), 035007.
Miteva, D.A., Kennedy, C.M., Baumgarten, L., 2014. Carbon biophysical parameters applied 
to the Brazilian Cerrado, The Nature Conservancy. 
MMA, 2017. Brazil’s Forest Reference Emission Level for Reducing Emissions from 
Deforestation in the Cerrado biome for Results-based Payments for REDD+ under the United 
Nations Framework Convention on Climate Change in: Environment, M.o.t. (Ed.). Brasilia, 
df, Brazil. 
MME, 2018. PROBIO - projeto de conservação e utilização sustentável da diversidade 
biológica Brasileira (transl: Project for the conservation and sustainable use of Brazilian 
biological diversity), Ministerio de Meio Ambiente (transl: Ministry of the Environment). 
(Accessed 10/04/2018 2018). 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

45

Muratori, M., Calvin, K., Wise, M., Kyle, P., Edmonds, J., 2016. Global economic 
consequences of deploying bioenergy with carbon capture and storage (BECCS). 
Environmental Research Letters 11(9), 095004. 
Ni, Y., Eskeland, G.S., Giske, J., Hansen, J.-P., 2016. The global potential for carbon capture 
and storage from forestry. Carbon Balance and Management 11(1), 3. 
Nijsen, M., Smeets, E., Stehfest, E., Vuuren, D.P., 2012. An evaluation of the global potential 
of bioenergy production on degraded lands. GCB Bioenergy 4(2), 130-147. 
Opio, C., Gerber, P., Mottet, A., Falcucci, A., Tempio, G., MacLeod, M., Vellinga, T., 
Henderson, B., Steinfeld, H., 2013. Greenhouse gas emissions from ruminant supply chains –
A global life cycle assessment, in: (FAO), F.a.A.O.o.t.U.N. (Ed.). Rome. 
Pimentel, D., 2009. Energy Inputs in Food Crop Production in Developing and Developed 
Nations. Energies 2(1), 1. 
Plevin, R.J., O’Hare, M., Jones, A.D., Torn, M.S., Gibbs, H.K., 2010. Greenhouse Gas 
Emissions from Biofuels’ Indirect Land Use Change Are Uncertain but May Be Much 
Greater than Previously Estimated. Environmental Science & Technology 44(21), 8015-8021. 
Rathmann, R., Szklo, A., Schaeffer, R., 2010. Land use competition for production of food 
and liquid biofuels: An analysis of the arguments in the current debate. Renewable Energy 
35(1), 14-22. 
Ray, D.K., Mueller, N.D., West, P.C., Foley, J.A., 2013. Yield Trends Are Insufficient to 
Double Global Crop Production by 2050. PLOS ONE 8(6), e66428. 
Riahi, K., van Vuuren, D.P., Kriegler, E., Edmonds, J., O’Neill, B.C., Fujimori, S., Bauer, N.,
Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J.C., Kc, S., Leimbach, M., 
Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, 
F., Da Silva, L.A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, 
J., Strefler, J., Drouet, L., Krey, V., Luderer, G., Harmsen, M., Takahashi, K., Baumstark, L., 
Doelman, J.C., Kainuma, M., Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, 
M., Tabeau, A., Tavoni, M., 2017. The Shared Socioeconomic Pathways and their energy, 
land use, and greenhouse gas emissions implications: An overview. Global Environmental 
Change 42(Supplement C), 153-168. 
Ribeiro, S.C., Soares, C.P.B., Fehrmann, L., Jacovine, L.A.G., von Gadow, K., 2015. 
Aboveground and belowground biomass and carbon estimates for clonal eucalyptus trees in 
southeast Brazil. Revista Árvore 39, 353-363. 
Rochedo, P.R.R., Soares-Filho, B., Schaeffer, R., Viola, E., Szklo, A., Lucena, A.F.P., 
Koberle, A., Davis, J.L., Rajão, R., Rathmann, R., 2018. The threat of political bargaining to 
climate mitigation in Brazil. Nature Climate Change 8(8), 695-698. 
Rogelj, J., Schaeffer, M., Friedlingstein, P., Gillett, N.P., van Vuuren, D.P., Riahi, K., Allen, 
M., Knutti, R., 2016. Differences between carbon budget estimates unravelled. Nature 
Climate Change 6, 245. 
Rousseeuw, P.J., 1987. Silhouettes: A graphical aid to the interpretation and validation of 
cluster analysis. Journal of Computational and Applied Mathematics 20, 53-65. 
Sachs, J., Meng, Y., Giarola, S., Hawkes, A., 2019. An agent-based model for energy 
investment decisions in the residential sector. Energy 172, 752-768. 
Sallustio, L., Quatrini, V., Geneletti, D., Corona, P., Marchetti, M., 2015. Assessing land take 
by urban development and its impact on carbon storage: Findings from two case studies in 
Italy. Environmental Impact Assessment Review 54(Supplement C), 80-90. 
Schaphoff, S., von Bloh, W., Rammig, A., Thonicke, K., Biemans, H., Forkel, M., Gerten, D., 
Heinke, J., Jägermeyr, J., Knauer, J., Langerwisch, F., Lucht, W., Müller, C., Rolinski, S., 
Waha, K., 2018. LPJmL4 – a dynamic global vegetation model with managed land – Part 1: 
Model description. Geosci. Model Dev. 11(4), 1343-1375. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

46

Silver, W.L., Ostertag, R., Lugo, A.E., 2000. The Potential for Carbon Sequestration Through 
Reforestation of Abandoned Tropical Agricultural and Pasture Lands. Restoration Ecology 
8(4), 394-407.
Siskos, P., Zazias, G., Petropoulos, A., Evangelopoulou, S., Capros, P., 2018. Implications of 
delaying transport decarbonisation in the EU: A systems analysis using the PRIMES model. 
Energy Policy 121, 48-60.
Smeets, E.M.W., Faaij, A.P.C., Lewandowski, I.M., Turkenburg, W.C., 2007. A bottom-up 
assessment and review of global bio-energy potentials to 2050. Progress in Energy and 
Combustion Science 33(1), 56-106. 
Smith, P., Haberl, H., Popp, A., Erb, K.h., Lauk, C., Harper, R., Tubiello, F.N., Pinto, A.S., 
Jafari, M., Sohi, S., Masera, O., Böttcher, H., Berndes, G., Bustamante, M., Ahammad, H., 
Clark, H., Dong, H., Elsiddig, E.A., Mbow, C., Ravindranath, N.H., Rice, C.W., Abad, C.R., 
Romanovskaya, A., Sperling, F., Herrero, M., House, J.I., Rose, S., 2013. How much land
based greenhouse gas mitigation can be achieved without compromising food security and 
environmental goals? Global Change Biology 19(8), 2285-2302. 
Soares M.C. Borba, B., Szklo, A., Schaeffer, R., 2012. Plug-in hybrid electric vehicles as a 
way to maximize the integration of variable renewable energy in power systems: The case of 
wind generation in northeastern Brazil. Energy 37(1), 469-481. 
Sullivan, J., Aggett, J., Amacher, G., Burger, J., 2005. Financial viability of reforesting 
reclaimed surface mined lands, the burden of site conversion costs, and carbon payments as 
reforestation incentives. Resources Policy 30(4), 247-258. 
Tilman, D., Balzer, C., Hill, J., Befort, B.L., 2011. Global food demand and the sustainable 
intensification of agriculture. Proceedings of the National Academy of Sciences 108(50), 
20260-20264. 
UN, 2015. Framework Convention on Climate Change: Adoption of the Paris Agreement. 
United Nations, 21st Conference of the Parties, Paris. 
UNICA, 2018. Unicadata - Brazilian Sugarcane Industry Association. (Accessed 03/03/2018 
2018). 
USDA, 2017. USDA food composition databases. https://ndb.nal.usda.gov/ndb/. 
van Ruijven, B.J., van Vuuren, D.P., Boskaljon, W., Neelis, M.L., Saygin, D., Patel, M.K., 
2016. Long-term model-based projections of energy use and CO2 emissions from the global 
steel and cement industries. Resources, Conservation and Recycling 112, 15-36. 
Vermeulen, S.J., Campbell, B.M., Ingram, J.S.I., 2012. Climate Change and Food Systems. 
Annual Review of Environment and Resources 37(1), 195-222. 
Walker, L.P., 1984. A method for modelling and evaluating integrated energy systems in 
agriculture. Energy in Agriculture 3, 1-27. 
Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, J.-
M., Hoegh-Guldberg, O., Bairlein, F., 2002. Ecological responses to recent climate change. 
Nature 416(6879), 389-395. 
Wise, M., Calvin, K., Kyle, P., Luckow, P., Edmonds, J., 2014. Economic and physical 
modeling of land use in gcam 3.0 and an application to agricultural productivity, land, and 
terrestrial carbon. Climate Change Economics 05(02), 1450003. 
Wise, M., Calvin, K., Thomson, A., Clarke, L., Bond-Lamberty, B., Sands, R., Smith, S.J., 
Janetos, A., Edmonds, J., 2009. Implications of Limiting CO2 Concentrations for Land Use 
and Energy. Science 324(5931), 1183. 
Woods, J., Williams, A., Hughes, J.K., Black, M., Murphy, R., 2010. Energy and the food 
system. Philosophical Transactions of the Royal Society B: Biological Sciences 365, 2991-
3006. 
World_Bank, 2017. World Bank Open Data. https://data.worldbank.org/. (Accessed 1 August 
2017). 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

47

Appendix A. MUSE - ModUlar energy systems Simulation Environment 

MUSE is a bottom-up technology-rich global model of the whole energy system (i.e. including 

demand, conversion and supply sectors), with a disaggregation into 28 geopolitical regions and a time 

slice disaggregation which varies depending on the sector. The MUSE general framework is illustrated 

in Figure A.1. MUSE follows a simulation approach coupled with an imperfect foresight to model the 

real-world decision making of investors as realistically as possible. This framework allows sector-

specific modelling and thus the use of the most appropriate methodology for each energy sectors. The 

main focus lies on an accurate description of the investment and operational decision making in each 

sector, where a variety of methods are implemented ranging from merit-order simulation methods to 

agent-based modelling. This is distinct in that most models either use a central planning approach to 

suggest optimal energy system changes, or use a single investment metric across the economy. The

focus on the investors view within the modelling results in an arguably more realistic presentation of 

the energy market transition compared with the normative pathways from optimisation models. 

Besides giving a new perspective on the energy system transitions, MUSE is designed to enable 

transparent and flexible analysis of all sectors of the energy market as a whole or separately. It 

includes all sources of CO2 emissions and shows the complex relationships within the energy system 

among technology, economics, and impact on the environment. The energy equilibrium of MUSE is 

given by the market clearing algorithm (MCA) which connects all parts of the model and is 

responsible for the information flow between all sectors. The solution algorithm of MUSE is given by 

an inner loop for each time period and an outer loop for the simulation horizon (e.g. 2050 or 2100). 

The MCA iterates between sector modules until price and quantity of each energy commodity 

converge. MUSE includes supply sectors, conversion (power and refinery) and demand sectors 

(residential, commercial, transport, industry, and agriculture). One of the main characteristics is its 

modular flexibility allowing representation of the specific drivers to technological investments and 

operation in each energy sector.  
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Figure A.1 Schematic representation of the MUSE Framework 

Appendix B.  Estimation of the land carbon stock and emissions 

Regarding land use emissions, the calculation is based on the IPCC Tier 1 simplified approach (IPCC, 

2006). This approach is a non-spatially method, which calculates net changes in land use categories 

over a period in time. The IPCC considers emissions and removals of CO2, based on changes in 

ecosystem carbon (C) stocks for each land use category‡. Four carbon pools have been quantified to 

determine the LUC: i) above ground biomass, ii) below ground biomass, iii) dead organic matter 

(DOM), and iv) soil organic carbon (SOC). To calculate carbon stock changes in any pool the stock-

difference method has been used. The method calculates the difference of carbon stocks per pool for a 

given land at two points of time: 

(B.1)

where  is the change between periods in carbon stocks in the pool l,   is the carbon stock at 

time 1 and  is the carbon stock at time 2.  To account for period carbon stock changes per land 

type, the following formula is used: 

                                                     
‡ Changes in C stock categories are converted to units of CO2 emissions by multiplying the C stock change by 44/12. This is 
based on the ratio of molecular weights.
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(B.2)

where is the change in carbon stock for land use type i (i= cropland, pasture, forest, etc.), AB

refers to above ground biomass, BB below ground biomass, DOM to dead organic matter and SOC to 

soil organic carbon. For the entire agriculture and land use sector, the sum of all carbon stock changes 

per land-use category is calculated as follows: 

(B.3)

where  is the total carbon stock change and  is the difference in carbon stock for i land type. 

As noted in the IPCC methodology, carbon flows are different depending on the original and final land 

use. For example, soil organic carbon (SOC) from reforestation in formerly crop land usually increases 

carbon stocks; however, reforestation from previously pasture land usually reduces SOC pools. Some 

of these values, used as input parameters in the model, are considered from Guo and Gifford (2002)  

(Table B.1). 

Table B.1 Soil carbon stock mean value response to different land use changes. Source: Guo and 
Gifford (2002) 

Land use Origin Land use Destination Δ SOC
Forest Pasture 8%
Pasture Secondary Forest -20%
Pasture Silviculture -10%
Forest Silviculture -13%
Crop Silviculture 18%
Forest Crop -42%
Crop Secondary Forest 53%
Pasture Crop -59%
Crop Pasture 19%
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Appendix D. Agricultural mechanisation by type of commodity  

Figure D.1 Share of different agricultural mechanisation levels per agricultural service for each scenario  
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Appendix E. Brazil’s energy emissions and power generation installed capacity 

Figure E.1 Energy sector emissions in 2015, 2030, and 2050 for each scenario

Figure E.2 Power sector installed capacity by source for each scenario
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 Mechanisation levels are characterised using cluster analysis and linear optimisation 
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