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Abstract 

Herewith, we report the influence of post-synthesis heat treatment (≤ 2350 °C and plasma 

temperatures) on the crystal structure, defect density, purity, alignment and dispersibility of 

free-standing large-area (several cm2) carpets of ultra-long (several mm) vertically aligned 

multi-wall carbon nanotubes (VA-MWCNTs). VA-MWCNTs were produced in large 

quantities (20-30 g/batch) using a semi-scaled-up aerosol-assisted chemical vapour 

deposition (AACVD) setup. Electron and X-ray diffraction showed that the heat treatment at 

2350 °C under inert atmosphere purifies, removes residual catalyst particles, and partially 

aligns adjacent single crystals (crystallites) in polycrystalline MWCNTs. The purification and 

improvement in the crystallites alignment within the MWCNTs resulted in reduced 

dispersibility of the VA-MWCNTs in liquid media. High-resolution microscopy revealed that 

the crystallinity is improved in scales of few tens of nanometres while the point defects 

remain largely unaffected. The heat treatment also had a marked benefit on the mechanical 
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properties of the carpets. For the first time, we report compression moduli as high as 120 

MPa for VA-MWCNT carpets, i.e. an order of magnitude higher than previously reported 

figures. The application of higher temperatures (arc-discharge plasma, ≥ 4000 °C) resulted in 

the formation of a novel graphite-matrix composite reinforced with CVD and arc-discharge-

like carbon nanotubes. 

1. Introduction 

Due to their unique anisotropic properties, vertically aligned carpets of multi-wall carbon 

nanotubes (VA-MWCNTs) are being investigated for a variety of applications such as 

composites 1–4, membranes and filters 5–8, thermal interface materials 9–11, electronic devices 

12 and supercapacitors 13–16. In most of these applications, high structural uniformity, low 

crystallographic imperfections, high purity and alignment of MWCNTs are sought after in 

order to achieve improved reinforcement, high electrical and thermal conductivity, etc. 

Despite intense research on optimising chemical vapour deposition (CVD) techniques, due to 

its relatively low cost, versatility, scalability, and efficiency, for the production of high-

quality VA-MWCNT carpets, the mechanical properties of individual CVD nanotubes17 are 

still inferior to the relatively defect-free arc-discharge MWCNTs. For instance, the Young’s 

modulus of arc-discharge MWCNTs was reported to be around 1 TPa 18–20, compared to the 

broad range Young’s moduli measured for CVD MWCNTs (10-100 GPa 21 and 50-350 GPa 

18,22). For applications such as MWCNT-reinforced composites, a number of reinforcement 

mechanisms are proposed including matrix toughening 23,24 through bridging and deflecting 

crack propagation and nanotube pull-out mechanism on the fracture surface 25. Since the 

potency of such reinforcements strongly depends upon the catalyst content, purity, and defect 

density of the reinforcing CNTs 26, maximising the crystallinity and purity of CVD 

MWCNTs are of prime importance. The quality of MWCNTs could be substantially 

improved by optimising the CVD conditions 27–30 or post-synthesis heat treatments 31–36. 
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Previous reports 33–35,37 suggest that at temperatures beyond 2000 °C, CVD MWCNTs are 

purified, residual catalyst particles are removed, and the samples exhibit more intense 

characteristic (002) X-ray diffraction (XRD) and Raman G and 2D peaks. However, since 

high-temperature (≥ 2000 °C) processing of MWCNTs supported on common CVD 

substrates such as alumina, silicon and quartz could melt the substrate, the MWCNT powder 

is often collected off the CVD substrates and placed into annealing crucible. This transfer 

disturbs the original on-substrate alignment of MWCNTs which means that even if the 

annealing treatments improve any aspect of the MWCNTs, exploitation of the asymmetric 

nature of the VA-MWCNTs in a target application is not an option anymore. In contrast, VA-

MWCNT carpets are often rigid enough and easily removable from the CVD substrates, if the 

thickness of the carpet is at least in the millimetre range 30,38–42. VA-MWCNT carpets of such 

thickness can be easily handled, treated, and still retain their original alignment. Considering 

the recent advancements in cost-effective synthesis of large-area (90 cm2 30 or up to c.a. 700 

cm2 43,44) carpets of ultra-long MWCNTs, evaluation of the effectiveness of post-synthesis 

heat treatment on the bulk properties of these relatively new macroscopic morphologies of 

MWCNTs seems essential. The work by Fujisawa et al. 32 highlights the effect of annealing 

on a bulk property of MWCNTs, e.g., their volume resistivity and their work is 

complementary to the aforementioned classic reports on the effect of annealing on structural 

properties (crystallinity, purity, etc.). Moreover, although prolonging the deposition time 

yields thicker carpets, the purity and crystallinity of individual tubes are reported to decrease 

during the course of CVD 29,30. Hence, the post-synthesis treatments on large-area carpets of 

ultra-long MWCNTs, which are generally of lower quality compared to short powder-like 

MWCNTs produced by means of CVD, appears even more crucial to study. 

In this work, we investigated the effect of heat treatment (2350 °C in argon atmosphere) on 

the properties of free-standing large-area (few cm2) carpets of ultra-long (few mm) VA-
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MWCNT such as self-integrity (the ability to remain intact), alignment, crystallinity, defect 

density, oxidation resistance, purity, dispersibility and bulk mechanical properties. In 

addition, we also exposed VA-MWCNT carpets directly to very high temperatures and 

helium-carbon plasma in order to study their behaviour under extreme arc-discharge 

temperatures.  

2. Experimental 

VA-MWCNT carpets were produced using a semi-scaled-up 30 aerosol-assisted chemical 

vapour deposition (AACVD) setup reported previously 27–30,45. Subsequently, the VA-

MWCNT carpets (thickness: 2-3 mm 30) were peeled off from a 10 cm by 9 cm silicon 

substrate for further post-synthesis treatment and characterisation (figure 1). 

 

Figure 1. Free-standing VA-MWCNT carpet. 

The heat treatment was carried out using a hot press (FCT Systeme GmbH) under constant 

30.0 mbar 10% helium / 90% argon atmosphere without applied pressure. The samples were 

heated at 20 °C/min up to 2350°C, and kept for 3 hours before cooling down. The 

compression moduli of samples were measured using a cantilever based nanoindenter (Piuma 

Nanoindenter by Optics11), with a spherical indentation tip of 72 µm. The nanoindenter uses 

fibre-based optical interferometry to measure the indentation force and displacement at 

nanometre level. Indentation depth was 5 µm for ‘shallow’ indentation and 15 µm for ‘deep’ 

indentation, with a maximum indentation velocity of 6.7 µm/s. Compression moduli of 
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samples was estimated from the load-indentation curves using the Oliver and Pharr method 

46, where the slope was estimated between 65% and 85% of maximum load. The plasma 

treatment was performed in an arc discharge reactor. The starting vacuum was 3×10-4 Torr 

and the chamber was subsequently filled with helium to a pressure of 50 mbar ensuring 

minimum presence of oxygen. Graphite rods supplied by Poco Graphite were used as the 

anode. The carpets were then wedged in a slit in the anode as shown in figure SI1 

(supplementary information), so that some MWCNTs are in contact with the anode, and some 

are suspended. The arc took place between the carpets and a robust graphite electrode. The 

conditions of the annealing were 200 A DC current and 20 s of arc discharge, repeated 3 

times. 

Scanning electron microscopy (SEM), high-resolution transmission electron microscopy 

(HRTEM), selected area electron diffraction (SAED), Raman, thermogravimetric analyser 

(TGA), XRD and X-ray photoelectron spectroscopy (XPS) were used to study the structural 

properties of MWCNT samples (for details see the supplementary information). 

3. Results and discussions 

3.1. Heat treatment of large-area carpets of ultra-long MWCNTs 

Figure 2 depicts the microstructure of the carpets before (a-c) and after (d-f) the heat 

treatment. Comparing the micrographs a and d in figure 2 reveals that at scales of around 100 

µm, the alignment of MWCNTs in the heat-treated carpets is improved. This can be 

ascertained from the majority of individual MWCNTs remaining straight and parallel to the 

direction of growth over few-tens-of-microns lengths. In contrast, the local arrangement of 

MWCNTs in sub-micron scales was not hugely altered as shown in micrographs e and f (to 

be compared with b and c respectively). 
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Figure 2. Scanning electron micrographs of the middle section of pristine (a, b and c) and 

heat-treated (d, e and f) carpets of VA-MWCNTs. 

It is noteworthy that the MWCNT bundles within both the pristine and heat-treated carpets 

were generally more compact and aligned at the roots compared to the tips (see figure SI2). 

Therefore, the middle section of the carpets was used in SEM study. Comparing the TEM 

micrographs a and d in figure 3 shows that at scales of around 100 nm, the internal structure 
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of individual tubes in the heat-treated carpets exhibit less morphological distortions (bending, 

wall rupture, non-tubular graphitic particles, etc.), suggesting an overall enhancement of 

crystallinity. However, at scales of a few nanometres (compare micrographs b and e in figure 

3), the arrangement of atoms in the lattice appeared unchanged. This implies that although the 

MWCNT crystallites have been partially annealed and aligned, full re-crystallisation of this 

type of CVD-grown MWCNTs is probably not achievable at these temperatures (2350 °C). 
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Figure 3. Transmission electron micrographs of pristine (a and b) and heat-treated (d and e) 

individual MWCNTs. Representative diffraction patterns of individual pristine (c) and heat-

treated (f) MWCNTs. 

This observation is in good agreement with the extensive studies of Franklin 47,48 who argued 

that graphitisation and growth of crystallites in graphitic materials are strongly dependant on 

the relative initial orientations of neighbouring crystallites, and further graphitisation 

predominantly occurs by rearrangement of graphitic layers rather than movement of 

individual atoms. Here, we can similarly reason that despite the partial alignment and 

enlargement of MWCNT crystallites, the severe misalignment of crystallites which originated 

from the uncontrolled phenomena involved during the CVD requires a much higher 

energy/annealing temperatures to overcome. The original size of crystallites in CNTs during 

the synthesis could not be controlled neither, as their formation mechanism is fundamentally 

different from other sp2 allotropes of carbon. For instance, unlike the case of CVD graphene, 

in which the size or morphology of crystallites (grains) can be controlled by the number of 

nucleation sites 49–52, crystallographic orientation of the underlying catalyst 53 and time 52,54,55, 

the crystallites in MWCNTs are likely to originate from the dynamics of the catalyst 

particles, as shown in a number of in situ microscopy studies 56–60. As the catalyst particles 

deform and/or change directions (in the case of tip-growth mechanism), new crystallites are 

born which are not necessarily in line with the preceding one(s). In order to avoid this, one 

might propose that new catalyst particles which are immobilised and do not exhibit constant 

deformation at temperatures below 1000 °C, yet showing good catalytic activities for CVD of 

MWCNTs should be engineered in future. 

Our microscopy observations are supported by a set of systemic comparisons of electron 

(local) and X-ray (bulk) diffraction patterns obtained from pristine and heat-treated carpets 

which are presented later in this section. The spacing between the atomic planes in the walls 
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of the pristine and heat-treated MWCNTs remained unchanged, certifying that the stacking of 

the graphitic layers is stress-free and fully relaxed even in pristine conditions. 

Comparison of SAED patterns of isolated individual pristine and heat-treated MWCNTs 

conclusively revealed that the heat treatment reduces the polycrystallinity of the MWCNTs. 

Random misorientations between different crystallites in MWCNTs results in arc-shaped 

(002) reflections in SAED patterns. Hence, measurements of the spot arc angle in the SAED 

patterns of untreated and heat-treated MWCNTs will provide an indication of the 

improvement of the crystalline quality after heat treatment. Examples are shown in Figure 3c 

and 3f and SI3. After removing the contribution of possible local tilts of the MWCNTs in the 

selected area for diffraction to the overall arc angle, it was concluded that there is a 60% 

improvement on average of the crystalline quality after the heat treatment, even though the 

standard deviation is large. As discussed earlier, the alignment of individual domains in the 

structure of MWCNTs which exhibit monocrystallinity is believed to be more energetically 

favoured than recrystallisation, and hence, is more probable. This local characterisation was 

supported by comparing the XRD patterns of bulk pristine and heat-treated carpets (figure 4). 

Both samples exhibited a sharp distinguishable (002) peak at around 26°, indicative of 

graphitic structure. The doubled intensity and 20% decrease in the full width at half 

maximum (FWHM) of the (002) peak confirmed improved crystallinity and increase in the 

size of crystallites in the heat-treated sample. The (100) and (004) peaks were also more 

pronounced in heat-treated samples while the elimination of the peaks associated to the 

residual catalyst particles (carbides and oxides 33,34, marked with asterisks) suggested 

purification of samples. Our SEM study (figure 2) and TGA results (figure 5a and 5b). 

Confirmed the purification. 
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Figure 4. X-ray diffraction patterns of pristine and heat-treated carpets of VA-MWCNTs. 

The heat treatment substantially improved the resistance of MWCNTs to oxidation in 

synthetic air. The temperatures of 20%, 50%, and 70% mass loss were all increased by ca. 

200 °C, while the maximum rate of mass loss was halved from -1.37 to -0.68 wt.%/°C. The 

improvement of oxidation resistance is believed to be mainly due to the decreased 

concentration of residual iron-containing catalyst particles [29,30] (concentration of iron 

before heat treatment: 2.0 wt.%; after heat treatment: 0.3 wt.%). The increased oxidation 

resistance of carpets probably has little to do with the defect density because, contrary to a 

similar study 37, our Raman results showed insignificant change in the D-band/G-band and 

2D-band/G-band ratios (figure 5c and 5d and SI4). We observed 20% decrease in the D-

band/G-band ratio in the Raman spectra taken from the bottom of the carpets. Since the heat 

treatment effectively removes the catalyst particles and the carpets were synthesised in a 

bottom-growth fashion, this decrease is probably associated with the removal of the catalyst 

particles. The Raman D-band/G-band ratio of the core of the carpets were fairly position-

dependant, but in average increased by around 0.2 after the treatment. The Raman 2D-
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band/G-band ratios for pristine and treated samples did not change substantially except for 

the core of the carpets, in which the 2D-band/G-band ratio decreased by around 0.14. The 

origin of this decrease in the average Raman 2D-band/G-band and increase of the average D-

band/G-band after the heat treatment is not fully understood yet, but given the relatively large 

uncertainty of the data and high sensitivity to the positions from which the spectra where 

taken, strong trends where not evident. Therefore, the annealing appears to be more effective 

in partial alignment of the crystallites of MWCNTs rather than healing the atomic-level 

defects. Due to the presence of relatively long and consequently heavily entangled MWCNTs 

in the carpets, dispersion of the samples could not be achieved and the carpets remained 

intact even after an hour of sonication using ultrasonic horn. Therefore, we were unable to 

drop-cast the samples and acquire average Raman spectra, representing the whole samples. 
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Figure 5. Oxidation resistance (a); oxidation rate (b); Raman D-band/G-band ratio (c) and 

Raman 2D-band/G-band ratio (d) of pristine and heat-treated carpets of VA-MWCNTs.  

Measurement of the compression modulus of carpets using nanoindentation revealed that the 

heat-treated carpets, on average, show higher compression elasticity. Although the results 

were fairly independent of the indentation depth, the bottom and top of the carpets exhibited 

completely different compression moduli. The moduli measured from the top of both pristine 

and heat-treated carpets were comparable to values in literature 38,61,62 (figure 6). However, 

the moduli measured from the bottom of the carpets were almost an order of magnitude 

higher than previously reported. This increase is not due to the presence of the catalyst 

particles at the bottom of the carpets nor is related to the defect density of individual 

MWCNTs, because the catalyst-free heat-treated samples showed even higher moduli (up to 

120 MPa) and according to Raman (figure 5c) MWCNTs are more defective at the bottom. 

Therefore, this increase is probably due to the fact that at the bottom of the carpets the 

arrangement of MWCNTs is denser, smoother, and hence, the resistance to indentation is 

higher. Since our measurements were carried out on free-standing carpets, we were able to 

measure the moduli on both sides of the carpet, compared to previous works which were 

performed on supported carpets. To the best of our knowledge, the compression moduli of the 

bottom of these carpets are the highest values reported so far for VA-MWCNTs. Considering 

the anisotropic nature of CNTs, It is noteworthy to mention that the geometry of the 

indentation tip, force, displacement speed, etc. could potentially have a significant impact on 

the reported moduli. Therefore, the current study preliminarily provides an indicative 

comparison of improved compression moduli over the values previously reported in 

literature. In this regard, a metrology study formulating a conversion table for translation of 

the compression moduli of VA-MWCNT carpets obtained from different indentation setups 
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seems to be a necessary investigation for more accurate comparison of the moduli across the 

literature. 

 

Figure 6. Compression moduli measured by nanoindentation on the bottom and top of the 

pristine and heat-treated carpets of VA-MWCNTs. ‘Shallow’ indentation: 5 µm; ‘Deep’ 

indentation: 15 µm (for representative original load-indentation graphs see figure SI5 in 

supplementary information). 

3.2. Plasma treatment of large-area carpets of ultra-long MWCNTs 

Development of graphite-element furnaces to anneal MWCNTs at temperatures beyond 3000 

°C is demanding 63,64. Alternatively, other sources of energy such as arc-discharge and laser 

could be considered to locally heat the carpets at temperatures as high as 10’000-20’000 K 

65,66. 

In our case, arc-discharge was used for localised heating of VA-MWCNT carpets. Arc-

discharge did not significantly alter the morphology of the portion of VA-MWCNT carpets 

wedged in the graphite anode, possibly because the carpets were not directly exposed to the 

arc, or because there is a significant temperature gradient even at short distances from the arc. 

On the other hand, the suspended carpets yielded a rather interesting composite consisting of 
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graphite, CVD MWCNTs and arc-discharge-like CNTs 67. The preliminary results are 

presented in the supplementary information. 

4. Conclusions 

Post-synthesis processing of free-standing large-area carpets of ultra-long MWCNTs was 

shown to favourably alter their microstructure and properties. Heat treatment of VA-

MWCNT carpets up to 2350 °C improved the overall sample purity and resulted in partial 

alignment of neighbouring crystallites only. It does, however, appear that full annealing of 

the material at nano and sub-nano scales, e.g. removal of point defects, is challenging. 

Nanoindentation on the VA-MWCNT carpets indicated a noticeable improvement in 

mechanical properties after heat treatment. However, it also showed that compression moduli 

of the bottom and top of the carpets (up to 100 MPa) varied significantly. This difference is 

not linked to the presence of catalyst particles or the defect density of individual tubes but it 

is due to the change in separation of the VA-MWCNTs at the root compared to the top 

surface. Exposure to arc-discharge plasma was found to largely transform the VA-MWCNTs 

into a novel carbon-carbon composite material which is of scientific interest in its own right, 

but beyond the scope of this present study. The development of processing procedures at 

higher thermal energies – than typical high-temperature furnaces provide – but less violent 

than plasma temperatures – to avoid evaporation and contamination – is essential to further 

improve the crystallinity and stiffness of the VA-MWCNT carpets and to exploit these in 

end-user applications. 
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