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Abstract 

Developmental disorders of language include developmental language disorder, motor-speech disorders 

such as articulation disorder and stuttering, and dyslexia. These disorders have been explained by various 

accounts, which generally focus on their behavioral rather than neural characteristics, their processing 

rather than learning impairments, and each disorder separately rather than together, despite their 

commonalities and comorbidities. Here we update and review a unifying neurocognitive account, the 

Procedural circuit Deficit Hypothesis (PDH). The PDH posits that abnormalities of brain structures 

underlying procedural memory (learning and memory that relies on the basal ganglia and associated 

circuitry) can explain numerous brain and behavioral characteristics, across learning and processing, in 

multiple disorders, including both commonalities and differences. We describe procedural memory, 

examine its role in multiple aspects of language, and then present the PDH and relevant evidence across 

language-related disorders. The PDH has substantial explanatory power, and both basic research and 

translational implications. 

Keywords: developmental language disorder (DLD), motor-speech disorders (articulation disorder, 
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INTRODUCTION 

Developmental disorders can impact various aspects of language. Developmental Language 

Disorder (DLD; superseding ‘specific language impairment’) broadly refers to childhood language 

problems not explained by factors such as hearing deficits or environmental deprivation (APA 2013; 

Bishop et al. 2017). Developmental dyslexia, by contrast, involves reading impairments (Goswami 2015), 

while motor-speech disorders, such as articulation disorder, childhood apraxia of speech (verbal 

dyspraxia), and developmental stuttering, affect the production of fluent speech (Alm 2004; Bernthal et 

al. 2009). These disorders are not uncommon (e.g., 7% prevalence for DLD) and can persist into 

adulthood, with important social and economic consequences (Leonard 2014; Elbro et al. 2011).  

Various accounts have been proposed to explain these disorders. DLD has generally been 

explained either by a processing deficit (capacity limitations on processing, or problems with working 

memory, phonological processing, or temporal processing) or a specific linguistic deficit, especially of 

grammar, which tends to be strongly affected in DLD (Leonard 2014; Ullman & Pierpont 2005). Dyslexia 

has often been accounted for by deficits related to phonology or magnocellular circuitry (Ramus et al. 

2003). Motor-speech disorders have generally been explained by impairments in the motor production of 

speech, with neural accounts for stuttering (Alm 2004; Bernthal et al. 2009).     

Though these accounts have some explanatory power (Bernthal et al. 2009; Leonard 2014; Ramus 

et al. 2003), important gaps remain. First, many of the accounts are essentially functional, in that they 

ascribe the problem to a particular function (e.g., working memory). Yet these disorders must ultimately 

be explained by neurobiological disruptions. Thus, neurocognitive accounts that unify neurobiological 

and cognitive aspects should have more explanatory power than purely functional (or purely 

neurobiological) accounts. Second, since these are developmental disorders, impairments in learning may 

play important roles, perhaps in addition to processing deficits – yet most of the accounts listed above 

focus on processing rather than learning. Third, most accounts focus on a particular disorder, yet many of 

the disorders’ symptoms overlap, and the disorders are often comorbid with one another (Leonard 2014; 

Bernthal et al. 2009). Thus, accounts that unify these disorders may be better positioned to advance the 

field.    
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The Procedural Deficit Hypothesis (PDH) attempts to address these gaps (Ullman, 2004; Ullman 

and Pierpont, 2005). The PDH was originally presented in depth for DLD (Ullman & Pierpont 2005). 

According to the PDH, DLD may be largely explained by abnormalities of brain structures underlying 

procedural memory, which is defined as the learning and memory that relies on the basal ganglia (BG) 

and its associated circuitry (although the cerebellum may interact with this circuitry we do not focus on 

the cerebellum here; see Bostan & Strick 2018; Ullman & Pierpont 2005). Reflecting the anatomical basis 

of the PDH, we henceforth refer to it as the Procedural circuit Deficit Hypothesis. The PDH of DLD was 

motivated by the grammar impairments in DLD, since grammar has been linked to procedural memory as 

part of the declarative/procedural model of language (Ullman 2004, 2016). According to the PDH, 

individuals with procedural circuit abnormalities should show deficits not only of grammar and procedural 

memory, but also of apparently non-procedural functions such as working memory that also depend on 

this circuitry. However, the PDH posits that declarative memory, defined as the learning and memory that 

relies on the medial temporal lobe (MTL) and its associated circuitry, remains largely normal in the 

disorder, and can compensate for procedural circuit deficits. Thus, although the PDH was motivated by 

functional problems (of grammar), it is a unifying neurocognitive account in that it posits neuroanatomical 

abnormalities that can explain patterns of spared and impaired learning and processing, across both 

language and non-language domains.  

It is also a unifying account in that it can explain multiple disorders. Although the PDH has been 

laid out in the greatest depth for DLD, it has also been proposed for dyslexia (Ullman 2004). Nicolson 

and Fawcett (2007) posited a related account for dyslexia, though they specifically implicate cerebellar 

circuits. The PDH has not previously been applied to motor-speech disorders, except in the case of the KE 

family, who are commonly diagnosed with verbal dyspraxia (Ullman & Pierpont 2005).  

Here we provide an up-to-date exposition of the PDH, unifying neural and functional 

characteristics, for both learning and processing, across DLD, motor-speech disorders, and dyslexia. First, 

we describe procedural memory with greater specificity than before, integrating findings from several 

fields. Building on this understanding of procedural memory, we then examine the predicted roles for this 

system in typical development across multiple aspects of language learning and processing. These prior 

sections provide the foundation for the PDH and its predictions, which we examine across different 

developmental disorders. Finally, we conclude with a brief discussion of implications and avenues for 

future investigation.   
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PROCEDURAL MEMORY: BASAL GANGLIA-BASED LEARNING   

What are the basal ganglia? 

The BG in humans and other primates include the striatum (nucleus accumbens, caudate nucleus, 

and putamen), the globus pallidus (external and internal segments), the subthalamic nucleus, and both the 

substantia nigra (pars compacta and pars reticulata) and ventral tegmental area in the midbrain (Hélie et 

al 2015). The BG receive inputs from much of cortex (which mainly project to the striatum), and provide 

outputs to frontal and other cortical regions, via the thalamus, as well as to subcortical structures. Within 

the BG, the circuitry is organized into ‘direct’ and ‘indirect’ pathways, which together (dis)inhibit frontal 

and other cortical activity, thereby underlying the selection of motor and other cortically-based 

representations (Frank 2005). Dopamine plays a key role, with the midbrain structures projecting 

dopaminergic neurons to the striatum.  

The circuitry running through the BG is organized into parallel circuits (partially topographically 

and functionally segregated ‘loops’), each of which receives somewhat different cortical inputs and 

projects to largely distinct frontal and other (e.g., temporal) cortical regions, which in turn feed back into 

their respective circuits (Middleton & Strick 1996). For example, somatosensory-(posterior) putamen-

frontal motor circuitry underlies motor functions; posterior parietal-anterior dorsal striatum (anterior 

caudate/putamen)-prefrontal circuitry subserves cognition, such as working memory and executive 

functions; while hippocampal/amygdala-ventral striatum (nucleus accumbens and ventral 

caudate/putamen)-orbitofrontal/anterior cingulate circuitry supports motivational functions (Draganski et 

al 2008; Seger et al 2010).   

How do the basal ganglia learn? 

BG-based learning involves generating predictions about associations, and then evaluating these 

predictions based on the ‘outcome’ (information about the correctness of the prediction) (Balleine & 

O'doherty 2010). In particular, learning in the BG occurs when such (dis)confirmatory information is 

promptly available after the prediction is generated. For example, the BG are involved when a rat learns 

to predict that when it sees a lever (stimulus) it should press it (response), with the goal of receiving an 
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immediately subsequent food reward (signaling the prediction was correct). Similarly, in categorization 

tasks such as the ‘weather prediction’ task, in which human participants select a (probabilistically) 

predictable ‘output’ stimulus (e.g., ‘rain’) based on an ‘input’ stimulus (particular cards), rapid 

(dis)confirmation (feedback) of the predicted association leads to BG-based learning, whereas slow 

feedback, or none at all, leads instead to learning in the MTL (Foerde & Shohamy 2011a, Poldrack et al 

2001). The knowledge learned in the BG appears to be implicit (not available to conscious awareness) 

(Janacsek & Nemeth 2012; Ashby et al. 2007).   

Both the input and output elements of the association learned in the BG can be either a stimulus 

or a response. Thus, one can learn not only stimulus-response and stimulus-stimulus pairs, as in the 

examples above, but also response-response pairs (e.g., after sneezing one should apologize) and response-

stimulus pairs (e.g., if I smile you will smile) (Balleine & O'doherty 2010, Foerde & Shohamy 2011b). In 

both animal and human experimental paradigms the feedback is generally separate from the association 

(as above), but it does not need to be: when predicting that a given stimulus or response should lead to a 

subsequent stimulus, the mere occurrence of the latter can serve as feedback (e.g., the next item in a 

sequence). More generally, the basic selection function of the BG (see above) may be thought of as 

selecting the predicted output, with learning occurring when information indicates that this selection was 

incorrect (Frank 2005).  

Indeed, BG-based learning ensues from generating incorrect predictions (if a prediction is correct, 

no learning is needed). Unpredicted outcomes (e.g., the rat failed to predict that pressing the lever will 

lead to a food reward) create/strengthen the input-output associations that should have been predicted, 

while incorrect predictions weaken them, respectively via increases or decreases of dopamine in the 

striatum (Frank 2005). Crucially, such learning occurs if the prediction is incorrect not only about the 

outcome itself but also when it will occur (e.g., if we incorrectly predict the next item of a sequence will 

occur immediately). Thus, the BG learn not only to predict what should occur, but also when it occurs.  

Because prediction errors are larger earlier during learning, more learning occurs earlier. 

Additionally, the more predictable the output given the input, the faster the learning. Thus, more 

predictable (higher probability) pairs are typically learned faster than less predictable pairs, with 

completely deterministic pairs learned the fastest (Delgado et al 2005). BG-based learning is therefore 

gradual, but varies (in part) according to the predictability (probability) of the association. Eventually, 
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after extensive training, the learned associations become not only very fast and accurate, but also 

inflexible, that is, less sensitive to prediction errors from the feedback—characteristics of 

habitual/automatic behaviors (Ashby & Crossley 2012, Graybiel & Grafton 2015).  

The functional neuroanatomy of BG-based learning may reflect distinctions between earlier and 

later phases of learning. Anterior portions of the striatum (ventral striatum and anterior caudate/putamen) 

seem to be more important for earlier phases, while posterior portions (posterior caudate/putamen) play a 

larger role in later phases. The reasons for this anterior/posterior striatal distinction for earlier/later 

learning remain unclear, but may be related to the different parallel circuits. Anterior striatal circuits may 

support aspects of motivation (linked to ventral striatal circuitry; see above) as well as working memory 

and executive functions (linked to anterior caudate/putamen), which might underlie early-stage prediction-

feedback learning of associations; in contrast, posterior portions may underlie aspects of motor and/or 

visual learning (motor and visual circuits rely on more posterior putamen/caudate) that may take place 

during the fine-tuning of performance in later stages of acquisition, or perhaps even in the processing of 

automatized associations (Doyon et al 2009, Seger et al 2010).  

Learning in the BG also critically involves cortex. In particular, BG-based learning underlies the 

creation/strengthening of cortico-cortical connections between cortical neuronal populations that project 

to the BG (striatum) and those the BG project to (via the thalamus), while these input and output neuronal 

populations (representing the input and output elements of the association) are both active (Hélie et al 

2015). This simultaneous activation allows the formation/strengthening of the cortico-cortical connections 

via Hebbian learning (they fire together and thus wire together). An increased reliance on these cortico-

cortical connections (‘systems consolidation’) is associated with increased automatization, though the 

analogous input-output circuitry passing through the BG may continue to be relied upon (Ashby & 

Crossley 2012, Doyon et al 2009). Systems consolidation may promote generalization, for example, to 

new members of a category in category learning (see below). Consistent with BG inputs originating 

importantly in parietal regions, and the BG projecting importantly to frontal regions, the cortico-cortical 

circuits formed by the BG may play an important role in ‘dorsal stream’ pathways (Ullman 2004, 2016).     

What do the basal ganglia learn?  
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The associations learned by the BG provide the building blocks for learning various simple and 

complex functions and behaviors, including habits, skills, sequences, and categories (Ashby & Crossley 

2012, Graybiel & Grafton 2015). (Their learning can also rely on declarative memory; see below.) Here 

we focus on the latter three.   

A skill can be defined as a serial combination of (perceptuo-) motor and/or cognitive computations, 

which together constitute a new capacity, and with sufficient practice can become automatized (e.g., 

driving a car, playing an instrument) (Graybiel & Grafton 2015). Skill learning is often modelled with 

perceptuo-motor sequence learning. In humans, this is generally tested with the implicit serial reaction 

time (SRT) task, in which participants respond to a sequence of stimuli with corresponding buttons, 

without being informed that a sequence exists (and generally with little or no explicit knowledge of the 

sequence after learning). Each stimulus typically occurs rapidly after the previous stimulus or response. 

The sequence in this task can be deterministic and/or probabilistic, in that any given item(s) may be always 

followed by the same item(s) (deterministic) or by different item(s) with varying probabilities 

(probabilistic) (Janacsek & Nemeth 2012). Learning involves predicting a subsequent stimulus, which 

also serves as feedback; as learning proceeds, anticipation responses become more common (Vakil et al 

2017). Associations (dependencies) of adjacent elements seem to be learned faster than of non-adjacent 

(long-distance) elements, which in turn are learned faster if the dependency (number of non-predictive 

items between the elements) is smaller (Remillard 2008). Moreover, a dependency that requires more 

preceding (predicting) elements is learned more slowly than one that requires fewer (Remillard 2008). 

Converging evidence (e.g., from lesion and neuroimaging studies) suggests the following functional 

neuroanatomy for perceptuo-motor sequence learning in the implicit SRT and related tasks (Doyon et al 

2009, Penhune & Steele 2012). Early stages of learning depend importantly on the anterior striatum, 

mainly the anterior caudate/putamen (but not the cerebellum, at least in implicit SRT; Hardwick et al. 

2013). In contrast, in later stages, during and after automatization, posterior portions of the caudate and 

putamen are engaged, as well as cortical (mainly (pre)motor, as well as parietal) regions, though again, 

apparently not the cerebellum.         

Sequence learning is not limited to perceptuo-motor sequences. We also encounter purely 

perceptual (e.g., auditory, visual) sequences, with no overt responses involved, such as when listening to 

music. Such sequences are often investigated in ‘statistical learning’ paradigms that involve the sequential 

presentation of stimuli (e.g., tones, shapes) without responses, with knowledge typically tested in 
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judgment tasks after learning (Durrant et al 2012, Turk-Browne et al 2009). As with perceptuo-motor 

sequences, the items in these sequences are normally presented predictably and rapidly, and the sequences 

can be deterministic and/or probabilistic. (Here we only discuss tasks with non-linguistic stimuli; for those 

with language-related stimuli, including artificial grammars, see below.) These paradigms appear to rely 

importantly on BG-based learning. Learning, which occurs gradually, appears to involve prediction (e.g., 

of the subsequent item), resulting in the acquisition of stimulus-stimulus associations; moreover, the 

learning and knowledge of the sequences are generally implicit (Abla et al 2008, Turk-Browne et al 2009). 

Functional imaging studies, which have focused on early learning stages, have implicated the anterior 

caudate (head/body) as well as frontal (mainly premotor) and other cortical regions, though apparently not 

the cerebellum (e.g., Turk-Browne et al 2009). Literatures other than statistical learning also link the 

learning or processing of perceptual sequences to the BG. For example, evidence suggests that beat 

(rhythm) perception (‘temporal processing’) and aspects of music processing rely on the BG, particularly 

the striatum (as well as premotor cortex and the cerebellum for music processing) (Grahn & Rowe 2009).  

Category learning involves learning to group elements into categories. It is modelled with various 

paradigms, though most involve learning to categorize perceptual (usually visual) stimuli (Seger & Miller 

2010). For example, in the weather prediction task, participants learn which visually-presented cards are 

probabilistically associated with which visually-presented weather outcome (rain or sun). The rules of 

categorization in such tasks can be deterministic or probabilistic. Category learning typically exhibits 

characteristics of BG-based learning. Learning is gradual, and is generally implicit in that the 

categorization rules are not told to the participants, who moreover do not usually acquire this knowledge 

explicitly (at least for more complex rules) (Seger & Miller 2010). BG-based category learning involves 

predicting the category (rain) given the input (the cards), with rapid feedback regarding the correctness of 

the prediction (Foerde & Shohamy 2011b). During learning, input element-category associations are 

acquired and then generalized according to the relevant features (Seger & Miller 2010). Generalization, 

that is, the ability to successfully categorize new elements or combinations of elements, appears to take 

place gradually, and may depend on systems consolidation, in particular the formation of feature-based 

cortico-cortical connections (between input element and/or category neuronal populations) (Ashby et al. 

2007). After substantial practice, categorization measures (selecting the appropriate category based on the 

input) become automatized: speed and accuracy reach asymptote, secondary tasks do not impair 

performance, and the categorization behavior becomes inflexible (difficult to modify) (Ashby & Crossley 
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2012, Hélie et al 2010b). Converging evidence suggests that early phases of category learning depend 

especially on the caudate head and the nucleus accumbens (and in some studies the caudate body and tail), 

while later phases mainly involve the (posterior) putamen; the cerebellum does not seem to be heavily 

involved (Seger & Miller 2010, Wilkinson et al 2014). Cortex is also involved, in particular frontal 

regions: prefrontal cortex (especially ventral lateral prefrontal cortex) during earlier phases and premotor 

cortex during later phases and after automatization (Hélie et al 2010a, Waldschmidt & Ashby 2011).  

Basal ganglia- vs. MTL-based learning   

Skills and knowledge that can be learned in the BG (i.e., in procedural memory) may (also) be 

learned in the MTL (i.e., in declarative memory). Here we summarize MTL learning, and then discuss the 

factors that modulate BG- vs. MTL-based learning. (We do not discuss other types of learning here, such 

as purely cortical learning; Seger & Miller 2010.)  

 As mentioned above, we define declarative memory as MTL-based learning and memory 

(Davachi 2006, Eichenbaum 2012, Ullman 2004, 2016). Learning (‘encoding’) initially relies on the 

hippocampus and other MTL structures, which link (neo)cortical representations via Hebbian learning. 

Unlike BG-based learning, MTL-based learning (e.g., observational learning) does not depend on 

feedback or prediction errors. However, analogously to BG-based learning, the learned knowledge 

increasingly depends on cortex, via the formation of cortico-cortical connections through systems 

consolidation. This systems consolidation leads to generalization, in that the cortico-cortical connections 

represent features common to the individual associations learned in the MTL. Sleep promotes this 

consolidation (though forgetting still occurs), apparently more reliably than for consolidation in BG-based 

learning (King et al. 2017). Longer-term retention seems to be worse for declarative than procedural 

memory (Foerde et al 2006). Declarative memory has traditionally been linked to the acquisition of events 

(episodic memory) and facts (semantic memory), though it is actually much more flexible: it appears to 

be able to learn many types of information, including both arbitrary information (e.g., items and 

idiosyncratic associations) and regularities, and both implicit and explicit knowledge. Note that 

declarative memory seems to be the only learning and memory system to underlie explicit knowledge, 

whereas it is one of many (including procedural memory) to subserve implicit knowledge (Ullman, 2016). 

Learning can be very rapid in the MTL, occurring even after one exposure (‘one-shot learning’), though 

repeated exposures strengthen the memory traces. Learned information can be retrieved by recollection or 



11 

 

by familiarity. MTL learning is flexible not only in that it can learn most information, but also (in contrast 

to automatized BG-based knowledge) in that this information can be used flexibly for new purposes. The 

MTL (especially the hippocampus) may be involved in prediction, possibly by using the current context 

to predict items likely to occur in that context (Henson & Gagnepain 2010). MTL-based learning is closely 

linked to working memory, which plays important roles both in encoding and recall, including possibly 

maintaining different elements (e.g., those occurring at different times) to be associated (Ullman 2016). 

Not surprisingly, brain structures underlying working memory and related functions (e.g., recall and 

executive functions), such as portions of the BG and frontal cortex that underlie these functions (various 

parts of the striatum, as well as ventrolateral and other prefrontal regions) also play (related) roles in 

declarative memory (Scimeca & Badre 2012, Van der Linden et al 2000).    

Various material-, learning-, and subject-related factors modulate the relative dependence of 

learning and/or processing in declarative vs. procedural memory. Here we summarize these factors, 

though note that not all factors have been investigated for all types of knowledge learned in the BG (e.g., 

perceptuo-motor sequences, perceptual sequences, categories). Note also that various aspects of BG/MTL 

modulation have been referred to as redundancy, competition, and compensation; we discuss all of these 

here (Poldrack & Packard 2003; Ullman 2015, 2016).  

First, material-level factors can affect whether information is learned in declarative or procedural 

memory. Individual items (e.g., specific objects)—to the extent that an item can exist without 

associations—can be learned in the MTL, in particular perirhinal cortex (Davachi 2006), but might not be 

supported by procedural memory. Associations, in contrast, can be learned by either circuit. However, it 

appears that unique associations (e.g., Clemi’s dog just smelled that rotten squirrel) can only be learned 

in the MTL, in particular the hippocampus, consistent with the role for the hippocampus in episodic 

memory (Davachi 2006). The BG can also learn associations, but apparently only under particular 

circumstances: gradually, with many presentations, in contexts involving prediction (e.g., given a squirrel, 

will Clemi’s dog smell it?), with rapid feedback. Importantly, the regularities shared by the many 

presented associations will be learned, while any unique information in each association is lost. Thus, BG-

based learning critically involves learning regularities (Hélie et al 2015). Nevertheless, regularities 

(commonalities) across associations can also emerge from MTL-based learning, which indeed underlies 

the formation of long-term semantic knowledge from multiple individual episodes containing that 

knowledge (e.g., learning that the capital of Burkina Faso is Ouagadougou from many episodes of learning 
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that information). It remains unclear whether there is any kind of information or learning context that 

requires the BG for learning (i.e., that the MTL or other structures cannot learn), though it may be that 

learning (automatized) associations involving motor responses (whether in the input or output element of 

a learned pair) (Rose et al 2011) or trial-and-error learning (Hélie et al 2015) might necessitate the BG. 

Thus, it appears that MTL- and BG-based learning are somewhat but not completely redundant, in that 

both can learn associations, though not necessarily of the same sort in the same learning conditions.   

Second, various learning-related factors modulate the relative reliance on the two circuits, for 

material that could be learned in either. Providing explicit information (e.g., of a sequence) can push 

learning towards the MTL (Schendan et al 2003). Similarly, encouraging attention to underlying patterns 

(e.g., telling participants there is an underlying category) can result in explicit awareness of these patterns, 

and working memory/executive function-dependent hypothesis-driven learning in the MTL (Ashby & 

Maddox 2011). In contrast, BG-based learning is promoted in implicit versions of the same tasks (i.e., 

without providing explicit information or encouraging attention) – even more so when learning under 

dual-task conditions, which reduce attentional resources for searching for underlying patterns (Ashby & 

Maddox 2011, Hazeltine et al 1997). Additionally, during learning, the MTL is often involved in and 

relied on during early stages (consistent with its more rapid learning abilities), whereas the BG appear to 

be involved throughout acquisition, and are increasingly relied on over the course of practice (though BG 

lesions can revert dependence to knowledge learned in the MTL) (Packard 2008, Schendan et al 2003). 

Thus, MTL-based representations can apparently inhibit (block) BG-based representations, and vice versa, 

depending on which is predominant. The two systems can therefore be thought to be in competition. 

Additionally, during later stages of learning, after more attention has been paid to the task and stimuli, 

explicit awareness of underlying patterns can emerge, potentially (again) increasing reliance on 

declarative memory (Hazeltine et al 1997). Finally, as mentioned above, whereas rapid feedback in tasks 

involving prediction seems to result in BG-based learning (even if initially learning might also involve 

the MTL), slow feedback or no feedback seem to lead primarily to MTL-based learning.  

Third, within- and between-subject level factors can moderate the relative dependence on 

declarative vs. procedural memory. Any subject-level factor that enhances or depresses learning or 

processing in one system relative to the other may shift reliance towards the more functionally available 

system. One such within-subject factor is development. Whereas during infancy, MTL learning, as well 

as working memory and executive functions, do not appear to be well-developed, these improve during 
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childhood, and may plateau during young adulthood (Lavenex & Lavenex 2013, Welsh et al 1991). In 

contrast, BG learning may be relatively well-established early in childhood, but attenuate around 

adolescence (Janacsek et al 2012). Indeed, although sequence learning relies mainly on procedural 

memory in both children and adults, it appears to depend more on procedural memory in children than 

adults, but more on declarative memory in adults than children (Thomas et al 2004). Between subjects, 

MTL and/or BG learning can be modulated by various factors, such as genotype (e.g., different alleles of 

the gene for BDNF differentially affect MTL learning, while those for DARPP-32 modulate BG learning) 

and sex (females show MTL learning advantages as compared to males, likely due in part to estrogen) 

(Ullman 2016). This leads to predictions for the relative dependence of MTL vs. BG learning for these 

factors, though we are not aware of any studies clearly testing such predictions for (non-linguistic) 

sequence or category learning. More extreme cases of between-subject differences in MTL or BG 

functioning can be found in individuals with disorders. For example, amnesic patients with MTL damage 

likely rely on the BG for sequence learning (though it takes them longer than healthy controls, consistent 

with early MTL learning in controls) (Curran 1997). In contrast, patients with BG dysfunction, such as 

those with Parkinson’s disease, appear to compensate with declarative memory for category and sequence 

learning (Ullman & Pullman 2015). Finally, there seems to be a ‘seesaw effect’ such that BG dysfunction 

may lead to enhanced MTL functioning, and vice versa, perhaps due to the absence of inhibition from the 

other system (Ullman 2004).  

PROCEDURAL MEMORY IN LANGUAGE  

Grammar 

Across different levels of language, linguistic elements are distributed sequentially and 

hierarchically into larger structures, following predictable patterns. Phonotactic rules constrain the 

combination of phonological segments (phonemes) into syllables, while grammatical rules constrain the 

combination of simple words and bound morphemes into complex words (e.g., meow + -ed; morphology) 

as well as phrases and sentences (e.g., ‘the cat meowed’; syntax). The distributional patterns of linguistic 

elements can be captured by (various kinds of) structural representations of language, including syntactic 

trees generated by phrase-structure rules (e.g., Chomsky 1995; Pollard & Sag 1994) and constructions in 
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Construction Grammar (Goldberg 1995). These representations refer to abstract categories (e.g., Noun, 

Tense) in addition to individual words. They capture both local (adjacent) dependencies between 

successive elements (e.g., between Determiner and Noun, or ‘the’ and ‘cat’) and long-distance 

dependencies, which can be arbitrarily far apart. Within the hierarchically structured sequence, the 

probability of particular subsequent (downstream) elements ranges widely, from very low (e.g., noun 

phrase following noun phrase, as in ‘The boy the girl kissed…’) to very high and even deterministic (e.g., 

-ed following the verb stem for regular past-tense).   

Grammar appears to rely heavily on procedural memory. First, grammar learning shares key 

characteristics with procedural memory. Both involve learning sequential and categorical knowledge, 

which is largely implicit in both cases. In both, long-distance dependencies are learned more slowly than 

local dependencies (see above, and Guasti 2017). Like learning in procedural memory, grammar is learned 

gradually and becomes largely automatic, that is, rapid, inflexible (grammatical relations become more 

rigidly delineated), and with decreased variability in performance (Love et al. 2009). Because linguistic 

input is generally fast-paced, successive elements (categories, words) can provide rapid feedback for 

internally generated predictions. 

Direct evidence also links grammar learning to procedural memory. A meta-analysis of 

correlational studies found that individuals with better procedural learning abilities also show better 

learning or knowledge of grammar (but not of words) (Hamrick et al. 2018). This pattern was observed in 

children in their first language as well as adults learning a second language – though only at later stages 

of second language learning, when a greater dependence on knowledge learned in procedural memory is 

expected (at earlier stages second language correlated with learning abilities in declarative memory). The 

correlation between grammar and procedural learning held across different languages and linguistic 

structures (including syntax and inflectional morphology), and for both sequence and category learning 

tasks that depend on procedural memory. Grammar learning has also been tied specifically to the BG. A 

functional imaging neuroanatomical meta-analysis of early phases of adult language learning revealed that 

grammar (but not lexical) learning was associated with activation in the anterior caudate/putamen (and 

not the cerebellum) (Tagarelli et al. 2019), which we have seen underlies early phases of learning 

sequences and categories in procedural memory. Moreover, grammar learning that is predicted to rely 

particularly on procedural memory (e.g., with implicit/uninstructed training) showed anterior 

caudate/putamen involvement, whereas grammar learning predicted to rely especially on declarative 
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memory (e.g., with explicit/instructed training) showed hippocampal involvement. Thus, consistent with 

MTL/BG learning of sequences and categories, evidence from correlational and neuroanatomical meta-

analyses suggests that a) early stages of grammar learning involve both systems, but rely on declarative 

memory especially under conditions favoring learning in that system; b) during later stages, when 

grammatical knowledge in procedural memory has become predominant, grammar depends mainly on the 

procedural system. Finally, evidence from the lesion method also suggests that grammar learning relies 

on procedural memory. For example, early stage patients with Huntington’s disease (characterized by 

striatal degeneration), are impaired at grammar learning (but relatively unimpaired at word learning) (De 

Diego-Balaguer et al. 2008). 

Evidence suggests that procedural memory also underlies grammatical processing. In expressive 

language, the meaning of a message is transformed into a hierarchically structured sequence of words, 

morphemes, and syllables. In receptive language, linear sequences of syllables, morphemes, and words 

are translated into structured grammatical representations from which meaning is recovered. Here we 

focus on receptive grammatical processing, which is not only automatized (rapid, inflexible, and less 

variable; see above) in native language, but also involves prediction: in first (more than second) language, 

the automatized comprehension of rapidly unfolding sentences seems to depend importantly on the 

prediction of upcoming information, including word category or form (Kaan 2014). Given that 

automatization is linked to an increased reliance on cortico-cortical connections formed through BG-based 

learning, automatized grammatical processing should depend largely on cortical structures. Indeed, while 

grammar learning depends importantly on the BG (see above), grammatical processing in native speakers 

depends instead largely on cortex, as shown by converging evidence from neuroimaging, lesion (e.g., in 

patients with Broca’s aphasia) and other methods (Ullman 2004, 2016). Indeed, a neuroanatomical meta-

analysis of syntactic processing in native speakers implicated cortical regions but not the BG (or the 

cerebellum) (Walenski et al. 2019). Frontal regions, in particular premotor regions and Broca’s region 

(inferior frontal gyrus), may play especially important roles (Ullman 2004, 2016; Walenski et al. 2019).   

Just as sequences and categories learned in procedural memory can also be learned in declarative 

memory, evidence suggests that aspects of grammar can be learned in either system. However, the 

computational basis of the learning and representation of grammar seems to differ between the two 

systems. Procedural memory appears to subserve the learning of grammatical knowledge that underlies 

(real-time) combination (Ullman 2004, 2016), perhaps through the acquisition of (probabilistic) relations 



16 

 

between categories or specific units that allow for the real-time prediction of downstream elements. In 

contrast, declarative memory can memorize (structured) chunks, such as ‘meowed’, ‘the cat’, or even ‘NP 

VP’, such as in Construction Grammar. Declarative memory can also learn explicit (or possibly implicit) 

rules (e.g., “nouns come after determiners”) and appears to support generalization across similar stored 

associations (e.g., ‘walk-walked’ and ‘talk-talked’ may generalize to ‘balk-balked’) (Ullman 2004, 2016).   

Similar factors appear to modulate the degree to which grammar and non-linguistic 

sequences/categories rely on each of the two systems. At least for adult language learning, both procedural 

and declarative memory support grammar during early stages, though in different ways: explicit 

knowledge, chunks, and similarity-based grammatical knowledge rely particularly on declarative memory, 

whereas implicit knowledge of grammatical regularities relies especially on procedural memory (Tagarelli 

et. al 2019). In contrast, at later stages grammar depends only on procedural memory (Hamrick et al. 

2018). Local dependencies are particularly likely to be chunked, especially for highly frequent 

combinations; even surface syntactic structures may be stored (Ullman, 2016). Girls and women seem to 

depend more on declarative memory (e.g., by chunking and associative generalization) than boys and men 

for aspects of grammar, particularly for local dependencies (Ullman, 2016). This sex difference may be 

modulated by estrogen; higher levels of estrogen are associated with a greater reliance on chunked forms 

(Ullman, 2016). In disorders affecting procedural memory structures (e.g., Parkinson’s disease, Broca’s 

aphasia), there appears to be a compensatory reliance on chunking of local dependencies, which may 

moreover interact with sex (with females relying more on chunking) (Ullman & Pullman 2015; Johari et 

al. 2019). 

Lexicon  

Language also depends on the lexicon, which contains (at least) the arbitrary information that 

cannot be generated by the grammar, and thus must be stored. This minimally includes word forms (e.g., 

‘cat’), their meanings, and form-meaning associations, as well as information about irregular 

morphological forms (the form ‘dug’, and its link to ‘dig’), the number and form of a verb’s complements 

(e.g., ‘devour’ takes a single direct object), and larger arbitrary form-meaning mappings (e.g., idioms).     

Although the declarative/procedural model has primarily linked the lexicon to declarative memory, 

some aspects of lexical learning and knowledge appear to rely on procedural memory. First, learning the 
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phoneme sequences of word forms seems to depend partly on gradually and implicitly segmenting these 

sequences out of the speech stream (Singh et al. 2012). Such ‘word segmentation’ may depend on the 

anterior caudate/putamen during early phases of learning, underscoring its reliance on procedural memory 

(Karuza et al. 2013). Second, words whose meanings involve knowledge of motor skills that were likely 

learned in procedural memory (e.g., words for tools or actions) are also linked to the BG (Walenski et al. 

2007). Third, closed-class words and morphemes (e.g., auxiliaries, inflectional affixes such as -ed), which 

are not tightly bound to conceptual meanings but depend strongly on grammatical structure, are more 

closely linked to the BG than open-class words (Ullman 2004, 2016). Despite the apparent suitability for 

procedural memory to learn aspects of conceptual/semantic categories (e.g., allowing one to group 

individual cat exemplars into a semantic category for cat) or form-meaning associations, we are not aware 

of any evidence along these lines.  

The bulk of evidence ties lexical learning and knowledge to declarative memory (Ullman, 2004, 

2016). First, correlational evidence shows that children with better declarative (but not procedural) 

learning abilities also show better lexical abilities (Hamrick et al. 2018). Second, consolidation patterns 

of newly learned word forms and semantic features are consistent with systems consolidation following 

hippocampal learning (Schreiner & Rasch 2017). Third, amnesics with MTL lesions show word learning 

impairments (Davis & Gaskell 2009). Fourth, neuroimaging studies have linked word learning to the 

hippocampus (Davis & Gaskell 2009). Moreover, a neuroanatomical meta-analysis of adult language 

learning ties word learning to ventral stream structures, which are closely linked to the MTL (Tagarelli et. 

al, 2019). Finally, the N400 event-related potential component, which is found in response to various 

lexical/semantic manipulations, relies importantly on MTL structures, especially perirhinal cortex 

(Fernández & Tendolkar 2006).     

Speech-sound representations   

Speech-sound representations are distributions of acoustic-phonetic features that can function as 

linguistic categories. They include contrastive (phonemic) and non-contrastive (phonetic) categories, as 

well as talker-specific information. The characteristics of speech-sound learning in infancy resonate with 

BG-based category learning. Young children acquire speech-sound categories implicitly via the gradual 

exposure to distributions of phonetic features. Whereas infants are perceptually flexible, they soon become 

less sensitive to features that are non-contrastive in their native language (Zhang et al. 2005).    
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Speech-sound category learning has generally been investigated in adults. This research suggests 

that such learning relies initially on a ‘reflective’ learning system but during later stages on a ‘reflexive’ 

learning system, which have been respectively tied to declarative and procedural memory structures (Yi 

et al. 2014). Converging evidence suggests that automatization and other optimal outcomes of speech-

sound category learning are contingent on this switch from declarative to procedural memory (Yi et al. 

2014). Factors that modulate the relative dependence of non-linguistic categories on the two systems play 

analogous roles in speech-sound category learning. Explicit knowledge of the speech-sound category label 

or the criteria of category membership increases reliance on declarative memory (Chandrasekaran et al. 

2016). In contrast, learning relies more on procedural memory when rapid feedback is provided (Tricomi 

et al. 2006), which moreover dramatically improves the rate of category learning (Chandrasekaran et al. 

2014). In sum, while both memory systems appear to be engaged in speech-sound category learning, 

efficient and ultimately successful learning of speech-sound categories seems to depend on the extent of 

procedural memory involvement.  

This work in adults leads to the prediction that native-language speech-sound category learning in 

infants relies even more on procedural memory. Unlike in many adult studies, infants rarely encounter 

speech-sounds in isolation, but as elements of a sequence wherein successive elements provide rapid 

feedback. Moreover, the early-life weaknesses of declarative memory relative to procedural memory 

suggests that infants rely particularly on the latter. Taken together, procedural memory likely plays a 

predominant role in native speech-sound category learning.  

 

Articulation and speech production    

Articulatory sequences seem to be learned in procedural memory much like other perceptuo-motor 

skills. Learning to produce articulatory sequences appears to occur largely implicitly, and evidence 

suggests a role for rapid feedback in babbling behavior (Goldstein & Schwade 2008), a precursor to 

articulation. Infants learn to articulate in the context of a rapidly changing vocal tract, necessitating relative 

flexibility in the motor program, whereas the motor program stabilizes once the articulatory apparatus has 

matured. Over the lifespan, the production of articulatory sequences (i.e., speech production) becomes 

automatized, in that variability is reduced and production rate increases (Smith & Zelaznik 2004).  
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Direct evidence from non-infant populations also ties articulatory learning to the BG. Studies of 

patients with Parkinson’s disease implicate the BG in adapting pre-existing speech-motor sequences to 

auditory feedback, which by its nature occurs rapidly (Defne Abur et al. 2018). Furthermore, learning in 

the BG as a mechanism for adaptive vocal learning has been widely explored in songbirds, a model that 

shows clear behavioral and neural parallels with human vocal learning, an aspect of learning to articulate 

(Doupe & Kuhl 1999). For example, FoxP2 expression in an avian correlate of the BG (area X) is 

positively associated with imitative vocal learning in songbirds (Haesler et al. 2007).  

Speech production also relies on procedural memory circuitry (as well as the cerebellum). First, 

the BG are implicated in the timing of articulatory gestures, including in predicting that articulatory 

gestures will lead to the appropriately timed auditory and tactile feedback (Kotz & Shwartze 2010). To 

illustrate, temporal processing impairments in patients with Parkinson’s disease appear to be linked to 

deficits in speech production, which improve when external timing cues are provided (Thaut et al. 2001). 

Second, the BG act in concert with frontal regions, both in selecting the speech-motor programs apparently 

stored in the vicinity of BA 44, and in the initiation of these programs by supplementary motor area (SMA; 

Tourville & Guenther, 2011). Indeed, patients with cortical lesions to BA 44/6 often present with acquired 

apraxia of speech, a disorder of speech-motor programming (Duffy 2006). Thus, procedural circuitry 

underlies not only the learning of speech-motor programs, but also the timing, prediction, selection, and 

initiation of these programs during speech production.  

 

Speech perception   

Speech perception (the process of mapping the auditory speech signal to meaning) involves 

constraining various sources of information, including cross-modal (visual-auditory-motor) information 

about the signal, various types of linguistic knowledge, and perceptual experience (McClelland et al. 

2006). To accomplish this at the rapid rate of spoken language, evidence suggests that speech perception 

relies on predicting the upcoming signal based on current and prior information (Kutas et al. 2011). As 

such, language knowledge, including procedural memory-based knowledge (e.g. grammar, speech-sound 

categories, articulatory skills) will impact speech perception (Holt & Lotto 2010). Furthermore, 

converging evidence links such prediction to BG-based temporal processing (Kotz & Shwartze 2010). 

Thus, both language knowledge and temporally-sensitive prediction that depend on procedural memory 

are critical for efficient speech perception.   
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THE PDH: PRINCIPLES AND PREDICTIONS 

The PDH of any given disorder (e.g., DLD, dyslexia) posits that abnormalities of procedural 

memory brain structures, i.e., of cortico-BG-thalamo-cortical circuitry, can partly if not largely explain 

the disorder (Ullman 2004; Ullman & Pierpont 2005). That is, such abnormalities can account for—and 

predict additional—core as well as secondary characteristics of the disorder in a substantial number of 

afflicted individuals. Such individuals may be termed as having Developmental Procedural circuit 

Disorder, or DPD. Thus, we do not claim that the PDH can explain all symptoms in all individuals 

diagnosed with any such disorder. Nevertheless, we suggest that it has substantial explanatory power for 

a number of language (and other) disorders, though the extent of this power likely varies across disorders. 

Given the large number of possible predictions that follow from our understanding of procedural memory 

as well its role in language, only key predictions are discussed here and examined below under each 

disorder. 

The location(s), severity, and extent of the neuroanatomical abnormalities may vary across 

disorders, as well as across individuals within a disorder, in several ways (Ullman & Pierpont 2005). 

Different gray and white matter ‘levels’ of the cortico-BG-thalamo-cortical circuitry can be affected, 

including within the BG itself. Moreover, abnormalities could involve different (sub)circuits (portions of 

the parallel circuitry), at any level (e.g., striatum, thalamus, cortex). In principle the direct or indirect 

pathways could be preferentially affected. Together, such anatomical variability could lead to substantial 

phenotypic variability within and between disorders, including in the type and severity of the deficits. For 

example, striatal dysfunction should lead to learning deficits while cortical dysfunction may primarily 

affect the processing of automatized skills. And anterior caudate/putamen abnormalities should mainly 

affect earlier phases of learning, while posterior striatal impairments affect later phases, including the 

process of automatization.  

The etiology and pathology of the neuroanatomical abnormalities may also vary across and within 

disorders, since various genetic and environmental factors can cause the dysfunction of gray or white 

matter structures/pathways within procedural memory circuitry (Ullman & Pierpont 2005). Therefore, like 

the acquired aphasias, disorders accounted for by the PDH may be best explained by their pattern of 
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neuroanatomical abnormalities, largely independent of etiology or pathology (though different etiologies 

and pathologies could also lead to functional variability). The striatum may be especially vulnerable to 

dysfunction (Mitchell et al. 1999), perhaps (like the hippocampus) due in part to its relatively high level 

of learning-related plasticity, which is associated with high neuronal energy demands, and thus 

susceptibility (Bartsch & Wulff 2015; Harris et al. 2012; Kreitzer & Malenka 2008; Mitchell et al. 1999). 

Therefore abnormalities of the striatum may be particularly common. Nevertheless, any given etiology 

may affect brain structures more broadly, both within and in addition to procedural memory circuitry. 

Thus, other brain structures (e.g., cortex, the cerebellum) may also be affected in disorders explained by 

the PDH, if not directly by the underlying etiology, then indirectly through diaschesis or downstream 

functional effects. For example, striatal abnormalities impairing learning could affect frontal or temporal 

cortical processing of skills that were not normally learned.  

Individuals with disorders explained by the PDH are not unable to learn. Their learning abilities 

may derive in part from procedural memory, since procedural memory dysfunction does not imply 

afunctionality, and thus some learning may take place within procedural memory itself. Additionally, the 

PDH posits that declarative memory remains relatively intact in individuals with DPD (Ullman & Pierpont 

2005; Ullman & Pullman, 2015). Given the flexibility of declarative memory, it should support a vast 

range of information and capabilities in individuals with DPD, including by compensating for procedural 

memory and other dysfunctions. This in turn leads to further predictions. For example, impairments of 

functions that declarative memory can more easily compensate for (e.g., grammar more than motor 

functions, and within grammar local- more than long-distance dependencies, particularly higher frequency 

local relations) should be less evident and more likely to improve over time. Moreover, children with 

better declarative memory abilities should compensate more successfully, and may even compensate their 

way out of diagnosis. Individuals or groups with better declarative memory may therefore show a lower 

rate of diagnosis of these disorders (e.g., females vs. males; those with higher estrogen; val vs. met carriers 

of the val66met polymorphism of the BDNF gene) (Ullman & Pullman 2015).   

These patterns have various consequences (Ullman and Pierpont, 2005). First, all the expected 

sources of variability described above may contribute (though not exhaustively) to the heterogeneity 

across individuals within a disorder. Second, and in contrast, the commonalities across individuals of a 

disorder (e.g., grammatical difficulties in DLD), may be explained by shared dysfunction of procedural 

memory circuitry, even if the severity and etiology varies. Third, the expected variability, in particular 
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differences in the location(s) of the anatomical abnormalities, should help explain differences between 

disorders. For example, motor-speech disorders likely result from dysfunction of motor circuits, while 

DLD or dyslexia may (also) involve other circuits. Dysfunction of additional structures (whether through 

direct or indirect effects) may also contribute to differences between disorders. Thus, disorders may 

profitably be distinguished, at least in part, on the basis of such expected anatomical differences. Finally, 

the commonalities and comorbidities among disorders (e.g., articulation and other motor problems found 

in both in DLD and motor-speech disorders) can be at least partly explained by overlapping abnormalities 

of procedural memory circuitry.   

 

DEVELOPMENTAL DISORDERS  

Various developmental disorders may be at least partly explained by the PDH. Here we focus on 

three (sets of) language-related disorders: DLD, developmental motor-speech disorders, and dyslexia. All 

are good candidates for the PDH on the basis of their core and additional symptoms, which involve deficits 

of functions that depend on cortico-BG-thalamo-cortical circuits (also see Krishnan et al. 2016). Indeed, 

as we will see, despite their differences, these disorders share multiple brain and behavioral characteristics 

linked to procedural memory circuitry. Moreover, within at least certain disorders the PDH unifies various 

impairments that have previously been targeted by different accounts (e.g., grammatical, working 

memory, phonological, and temporal processing deficits in DLD). 

Developmental language disorder (DLD)   

Consistent with the PDH, structural anomalies in DLD are found reliably (that is, a high proportion 

of studies show anomalies) in the BG, particularly the caudate nucleus, and in frontal cortex (Ullman & 

Pierpont 2005, see Table; Mayes et al. 2015). Similarly, in functional imaging studies both frontal cortex 

(especially Broca’s region) and the BG show reliable anomalies. The head of the caudate appears to be 

particularly implicated in DLD. No other brain structures seem to show as reliable structural or functional 

abnormalities, including superior temporal cortex, the cerebellum, and the MTL. Moreover, as expected 

by the PDH, various genetic and environmental factors associated with the BG (and in some cases with 

dopaminergic processes) seem to contribute to symptoms of DLD, including the FOXP2, CNTNAP2, 
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SEMA6D, ANKK1, and D2D2 genes (Ercan-Sencicek et al. 2012; Newbury et al. 2010; Eicher et al. 2013), 

prenatal nicotine exposure (Eicher et al. 2013), and thiamine deficiency (Fattal et al. 2011).  

Procedural memory has been shown to be impaired in DLD (indeed, after the PDH was proposed 

by Ullman & Pierpont in 2005). First, meta-analysis has demonstrated deficits in the implicit SRT task in 

DLD (Lum et al. 2014; Clark & Lum 2017). Impairments in DLD have also been found in grapho-motor 

learning (Adi-Japha et al. 2011), rotary pursuit (Lee & Tomblin 2015; but see Hsu & Bishop 2014), 

probabilistic category learning with rapid feedback (Kemeny & Lukacs 2009; Lee & Tomblin 2012; Lee 

& Tomblin 2015; but see Mayor-Dubois et al. 2014), and perceptual sequence ‘statistical learning’ tasks 

such as word segmentation (Evans et al., 2009; Mayor-Dubois et al. 2014) – all tasks that depend on 

procedural memory. Thus, (early stage) learning of perceptuo-motor sequences, perceptual sequences, and 

categories is affected, specifically consistent with anterior caudate abnormalities (see section on 

procedural memory). The absence of learning deficits in some studies may be explained at least in part by 

insufficient power or by declarative memory compensation. (Note that implicit learning tasks that do not 

depend on procedural memory circuits are not predicted to be impaired; Conway et al. 2019). Some studies 

of procedural memory in DLD have found impairments primarily or only after post-training delays 

(Hedenius et al., 2011; Adi-Japha et al. 2011), also implicating consolidation deficits. Indeed, motor skills 

are impaired in DLD, in particular those involving sequences, across oral (speech and non-speech) and 

non-oral (e.g., hand) movements (Hill 2001; Ullman & Pierpont 2005). Moreover, consistent with 

procedural memory impairments, temporal processing is impaired in DLD (e.g., in rhythm and meter 

perception, and of acoustic stimuli of short duration or presented in rapid succession) (Przybylski et al. 

2013; Leonard 2014). Finally, other functions that depend on the BG, whether or not they are directly 

linked to procedural memory, are also impaired in DLD, including working memory and executive 

functions such as inhibition (Ullman & Pullman 2005; Henry et al. 2012).    

Grammar is clearly impaired in DLD (Leonard 2014; Ullman & Pierpont 2005). Deficits are 

commonly found across syntax, morphology, and phonology, both in expressive and receptive language. 

Evidence links the grammar problems to procedural memory in the form of correlations between measures 

of grammar and procedural learning, including for both perceptuo-motor sequence and category learning 

(Hedenius et al. 2011; Mayor-Dubois et al. 2014). Particular problems seem to be found in those aspects 

of grammar that a) rely on procedural memory (especially if they are difficult to learn in this system), and 

b) cannot easily be compensated for by declarative memory (Ullman & Pierpont 2005). Long-distance
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dependencies appear to be more problematic than local dependencies (Purdy et al. 2014), the latter of 

which are easier to learn in procedural memory (Guasti 2017) and easier to chunk in declarative memory 

(Ullman & Pullman 2015). Previously encountered local dependencies that are higher frequency (e.g., 

‘walked’) are less impaired than lower frequency ones, also suggesting chunking (Ullman & Pierpont 

2005). Similarly, canonical syntactic structures are relatively spared in DLD (Leonard & Kueser 2019), 

consistent with learning structured chunks of abstract categories in declarative memory (e.g., in 

constructions). Aspects of grammar that likely depend importantly on declarative memory in typically-

developing individuals should also remain relatively intact in DLD. Indeed, this is the case with argument 

structure (Ullman & Pierpont 2005). Grammar learning (e.g., in artificial grammar paradigms) is also 

impaired in DLD, especially for long(er)-distance dependencies that cannot easily be chunked (Hsu & 

Bishop 2010). Moreover, automatization of grammar is problematic in DLD (Hsu & Bishop 2010). Other 

procedural memory-related functions that are impaired in DLD may influence the grammatical problems. 

For example, syntactic processing in DLD seems linked to the temporal processing (timing) deficits in the 

disorder (Przybylski et al. 2013). In contrast, even though working memory can plays roles in grammar 

and is impaired in DLD, it does not appear to contribute to the grammatical problems (Lum et al. 2012).  

Learning in declarative memory remains largely intact in DLD, especially for non-verbal material, 

but even in the verbal domain after controlling for working memory and language impairments (Lum et 

al 2012; Ullman & Pullman 2015). Additionally, some evidence suggests that children with DLD might 

consolidate information in declarative memory better than typically-developing children (Lukacs et al. 

2017). Consistent with intact declarative memory, various lines of evidence suggest that declarative 

memory compensates for the grammatical deficits, e.g., by chunking (see above), learning explicit rules, 

and associative generalization (Ullman and Pullman 2015). In one study grammatical abilities correlated 

with procedural learning in typically-developing children but declarative learning in children with DLD, 

suggesting DLD compensation by declarative memory (Lum et al. 2012). Some evidence suggests that 

whereas typical individuals show early left anterior negativities (fast, automatic, and linked to procedural 

memory) in response to syntactic impairments, those with DLD show N400s, which are linked to 

declarative memory (Ullman & Pullman 2015). Moreover, the prevalence of DLD is higher in males than 

females, consistent with female advantages at declarative memory, and thus a particularly high level of 

declarative memory compensation by girls (Ullman & Pullman 2015).  
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Word learning and knowledge remain largely normal in DLD, unless they involve functions that 

depend on procedural memory and its neural substrates. Thus, children with DLD can learn new words 

(and in some cases show enhanced performance), especially in rich semantic contexts or with repetitive 

input, and appear to have normal lexical/semantic organization (Ullman & Pierpont 2005). They also show 

largely intact N400s, both for content words and lexical/semantic processing (Ullman & Pierpont 2005; 

Ullman & Pullman 2015). In contrast, word learning that depends on procedural memory functions, such 

as word segmentation and learning in grammatical contexts, seems to be impaired in DLD (Evans et al., 

2009; Mayor-Dubois et al. 2014; Ullman & Pierpont 2005). This may help explain why children with 

DLD have smaller vocabularies than their age-matched peers (Lee 2011). Additionally, they appear to 

have shallower semantic representations for known words (McGregor 2009), consistent with procedural 

memory-based category learning difficulties, and have problems inhibiting competing words in word 

recognition (McMurray et al. 2014), consistent with deficits in executive function. Word finding and 

production are especially impaired in DLD (particularly with little contextual support and during rapid 

naming), as compared to receptive lexical abilities, consistent with abnormalities of frontal/BG circuits 

(which underlie recall) and the speech-motor (articulatory) difficulties in DLD (Ullman & Pierpont 2005). 

Finally, children with DLD have more problems with function (closed-class) words than content (open-

class words), and with verbs than nouns, consistent with the strong grammatical roles associated with 

function (vs. content) words and verbs (vs. nouns), and the action knowledge linked to verbs (Ullman & 

Pierpont 2005).     

How about other language-related functions that rely on procedural memory, such as speech-sound 

category learning, articulation, and speech perception? Although we are not aware of any DLD research 

on speech-sound category learning particularly linked to procedural memory, articulation may be affected 

in DLD (Hill 2001; Ullman & Pierpont 2005). Moreover, speech perception (e.g., identifying words in 

noise) is impaired in the disorder (Ziegler et al. 2005). Although this impairment has generally been 

ascribed to various processing deficits (Leonard 2014; Ullman & Pierpont 2005), it can also be explained 

by processes or knowledge linked to procedural memory that are critical for speech perception and are 

impaired in the disorder, namely speech-motor representations (Katz et al. 1992), perception of timing 

(Corriveau & Goswami 2009), and prediction (Hestvik et al. 2010).    

Developmental motor-speech disorders  
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Motor-speech disorders refer, as an umbrella term, to disorders in the production of speech. 

Idiopathic developmental motor-speech disorders include articulation disorder, childhood apraxia of 

speech (CAS, or verbal dyspraxia), and developmental stuttering. Articulation disorder refers to problems 

producing discrete sounds or classes of sounds, as well as sequences of sounds. In rare cases, children 

with severe articulation problems are diagnosed with CAS, which involves difficulties planning and 

programming motor movements in speech production in the absence of musculoskeletal atypicalities in 

the speech production apparatus (Bernthal et al. 2009). Thus, both articulation disorder and CAS describe 

problems with aspects of producing the motor sequences required for speech production. By contrast, 

developmental stuttering is a fluency disorder that affects the timing, patterning (e.g., prosody), and 

rhythm of speech (Alm 2004).  

Neuroanatomical evidence suggests that procedural memory circuits are involved in 

developmental motor-speech disorders. Most such research has focused on affected members of the KE 

family, who can be characterized as having CAS (verbal dyspraxia) (Alcock et al 2000a). These 

individuals have a deleterious mutation of FOXP2, a gene strongly associated with the striatum, especially 

the caudate nucleus (but not the hippocampus) (Ullman & Pierpont 2005). Broca’s region and motor 

regions show the most consistent abnormalities across both structural and functional imaging in affected 

members, while additional structural anomalies are clustered in the caudate nucleus along with superior 

temporal cortex and the cerebellum (Ullman & Pierpont, 2005, see Table). Although the neuroanatomical 

basis of other populations of CAS or articulation disorder has not been well studied, we are aware of one 

functional imaging study of nonword repetition in adolescents with articulation disorder, which found 

activation anomalies in the putamen, cerebellum, and various cortical regions, including the inferior 

frontal gyrus and SMA (Tkach et al. 2011). In individuals with developmental stuttering, a robust literature 

points to structural abnormalities in cortico-BG-thalamo-cortical circuits, such as reduced gray matter 

volumes in the putamen and some cortical regions, and altered connectivity among the putamen, thalamus, 

SMA, and other cortical regions (Alm 2004; Lu et al. 2010). Moreover, caudate head activity correlates 

with the severity of disfluencies in affected individuals (Giraud et al. 2008). Overall, the data suggest that 

the fluency symptoms of developmental stuttering may be rooted in the striatum and its associated 

circuitry (Alm 2004).  

There is some, although not extensive, evidence linking these motor-speech conditions to 

procedural memory dysfunction. Children with articulation disorder have difficulties adapting their 
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articulatory motor programs to perturbed auditory feedback, suggesting problems in BG-based 

articulatory learning (Terband et al. 2014). Adults with developmental stuttering are impaired at both 

perceptuo-motor and perceptual sequence learning (Smits-Bandstra & De Nil 2007). Moreover, similar to 

DLD, all three conditions are associated with concomitant deficits in motor functions (Hill 2001; Busan 

et al. 2013), auditory timing (e.g.,  rhythm perception) (Alcock et al. 2000b; Kenney et al. 2006; Wieland 

et al. 2015), and working memory (Kenney et al. 2006; Bajaj 2007), all of which are tied to procedural 

memory or its neural substrates.  

The most compelling behavioral evidence regarding the PDH for motor-speech disorders may be 

in their core speech-motoric and associated linguistic deficits. It would follow from the predicted role of 

BG-based learning in articulation that procedural memory deficits should impede the learning and 

automatization of speech-motoric sequences, which may lead to increased gestural variability between 

productions and slower speech rate. Indeed, both children with articulation disorder and CAS show both 

such symptoms (Flipsen Jr. 2002; Shriberg et al. 2003; Terband et al. 2011). Beyond these core 

characteristics, articulation disorder and CAS are both associated with deficits in phonology, morphology, 

and syntax (Alcock et al., 2000a; Mortimer & Rvachew, 2010) and with eventual problems in learning 

how to read (Gillon & Moriarty, 2007; Peterson et al. 2009). This suggests the possibility that these motor-

speech disorders are associated with procedural impairments in these domains as well, consistent with 

their comorbidities with DLD and dyslexia. The core deficits of stuttering are also linked to procedural 

memory and its neural substrates. Indeed, their deficits in the timing and initiation of speech-motor 

programs for the fluent production of speech are expected from a dysfunction in the BG-SMA circuit 

(Alm, 2004). Moreover, developmental stuttering is associated with morphological and syntactic 

problems, and particular difficulties with verbs (Smith & Weber 2017; Bauman et al. 2012), suggesting 

similarities in their procedural language impairments with DLD.  

We are unaware of any studies that have investigated declarative memory directly in the three 

disorders, though it is predicted to remain largely intact. Nevertheless, some evidence suggests 

compensatory roles for this system. Declarative memory may help compensate for impairments in CAS, 

given that explicit strategies are effective behavioral therapies for this disorder (Dale & Hayden 2013). 

Additionally, like DLD, syntactic anomalies yield N400s in developmental stuttering (Smith & Weber 

2017). Intriguingly, all three disorders are more prevalent in boys than girls (Bernthal et al. 2009; Yairi & 

Ambrose 1999), and developmental stuttering is more likely to resolve by adulthood in women than in 



28 

 

men (Porfert & Rosenfield 1978), consistent with a female advantage at compensating with declarative 

memory.      

Developmental dyslexia   

Developmental dyslexia refers to reading disability involving problems in fluent decoding 

(processing the letter-sound, or grapheme-phoneme, mappings) that may cascade into reading 

comprehension problems – as opposed to reading comprehension deficits that may be secondary to 

language comprehension problems (Gough & Tunmer, 1986; APA 2013). Structural anatomical 

abnormalities in dyslexia are found most consistently in superior temporal/temporoparietal and 

inferior/ventral temporal regions, as well as the cerebellum (Eckert et al. 2016), though they are also 

observed in other regions, including the putamen (Eckert et al., 2005; Pernet et al. 2009) and caudate head 

(Brown et al. 2001). Although functional imaging abnormalities must be interpreted carefully due to their 

task dependence, they have been observed in meta-analyses in the anterior caudate, putamen/globus 

pallidus, motor and inferior frontal regions, and the temporal regions listed above (Paulesu et al. 2014; 

Richlan et al 2011). In an SRT study of dyslexia, activation abnormalities were found in the putamen, as 

well as the SMA, cerebellum, and parietal regions (Menghini et al. 2006). Thus, procedural memory brain 

structures are implicated in dyslexia, including the basal ganglia (anterior caudate and putamen) and 

frontal (motor and inferior frontal) structures. It remains unclear whether the underlying etiologies affect 

the procedural circuit and/or other structures directly, or whether some of their abnormalities are (also) 

due to indirect effects (diaschesis, downstream effects).   

As with DLD, procedural memory is impaired in dyslexia. Meta-analysis has demonstrated 

perceptuo-motor sequence learning deficits in the implicit SRT task (Lum et al. 2013; Clark & Lum 2017). 

Impairments have also been found in perceptual sequence ‘statistical’ learning (Gabay et al. 2015a) and 

non-linguistic visual (weather prediction) and auditory category learning (Gabay et al. 2015b; Gabay & 

Holt 2015). Thus, similar to DLD, perceptuo-motor sequence, perceptual sequence, and category learning 

are all impaired, consistent with anterior caudate abnormalities (but not with cerebellar anomalies; see 

procedural memory section). In addition, dyslexia is linked to deficits of other functions associated with 

procedural memory and its underlying circuits, including impaired automaticity in speech production 

(Catts, 1989), (visual) artificial grammar learning difficulties (van Witteloostuijn et al. 2017), atypical 

(morpho-)syntactic development and processing (Scarborough 1991; Cantiani et al. 2013), atypical 
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temporal processing (Farmer & Klein 1995), impaired linguistic prediction (Huettig & Brouwer, 2015), 

and poor working memory (Smith-Spark & Fisk, 2007) and inhibition (Wang et al. 2012). 

The reading problems in dyslexia may be at least partly explained by problems with procedural 

memory and its circuitry. First, the core decoding impairment in dyslexia is commonly attributed to the 

phonological deficits that clearly accompany the disorder, and often specifically to apparent problems 

with speech-sound representations (Ramus et al. 2003). These speech-sound representation problems have 

in turn been explained by atypical perception, such as impairments of rapid auditory processing or 

temporal processing (Farmer & Klein 1995; Ramus et al. 2003). The PDH can account for at least some 

of these perceptual difficulties. Second, the PDH might expect impairments in learning speech-sound 

categories. Such impairments could result in a lack of cohesion in phonemic category representations, 

which indeed is consistent with observed weaknesses in dyslexia in phonemic anchoring (Ahissar 2007) 

and talker-specific adaptation (Perrachione et al. 2011), and with an over-reliance on non-contrastive 

features of speech (Serniclaes, 2011). Moreover, these characteristics appear to be consistent with learning 

(suboptimal) ‘episodic’ (instance specific) features of speech in declarative memory, rather than (optimal) 

categories in procedural memory (Shohamy et al. 2008). Third, magnocellular circuitry is closely linked 

with the dorsal stream (Goswami 2015), which in turn is closely linked to procedural memory (see above), 

suggesting that posited magnocellular deficits (see introduction) may be related to the impairments posited 

by the PDH. Finally, given the role of procedural memory in learning predictive associations, it may 

underlie learning grapheme-phoneme (and phoneme-grapheme) mappings (though these mappings are 

likely also learned in declarative memory, especially at early stages). Thus, procedural dysfunction could 

also contribute directly to impairments learning such mappings in dyslexia.    

Declarative memory seems to remain largely intact in dyslexia. Non-verbal learning, including in 

implicit tasks such as spatial contextual learning, does not appear to be impaired (Ullman & Pullman 

2015). Verbal learning (including form-meaning mapping, as in word learning) is problematic, though the 

observed deficits may be explained by procedural memory-related dysfunctions, such as with phonology 

or working memory (Litt & Nation 2014; Ullman & Pullman 2015). Indeed, though encoding of verbal 

material (which depends on such functions) is impaired, retention of learned material seems to remain 

intact. For example, children with dyslexia may learn fewer words during encoding in a list-learning task 

but have no difficulty subsequently remembering the words they learned (Kramer et al. 2000). Some 

evidence even suggests that declarative memory may be enhanced in dyslexia (Ullman & Pullman 2015).  
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Finally, evidence suggests that declarative memory plays compensatory roles in dyslexia. 

Individuals with dyslexia appear to rely disproportionately on declarative memory for reading, using at 

least three strategies: chunking, a reliance on semantics, and the use of explicit knowledge (Ullman & 

Pullman 2015). First, whereas people with dyslexia have particular problems reading made-up words, they 

are less impaired at reading real words (whose grapheme and/or phonological strings could have been 

memorized, i.e., chunked), especially those that occur that occur with higher frequency. Second, reading 

with supportive semantic contexts is particularly helpful in dyslexia, and improvements in reading during 

development appear to be due to an increased reliance on semantic knowledge. Third, explicit instruction 

of grapheme-phoneme correspondences (‘phonics’) is an effective therapy in dyslexia (Ehri et al. 2001). 

Indeed, successful behavioral interventions in dyslexia have been found to lead to increased 

(compensatory) activation in the hippocampus and other MTL structures, as well as increased 

hippocampal gray matter (Ullman & Pullman 2015). As with DLD, syntactic violations have been found 

to lead to N400s in dyslexia (Cantiani et al. 2013), suggesting declarative memory compensation for 

syntactic impairments. Learning speech-sound categories seems to rely on declarative memory-based 

‘episodic’ features in dyslexia (see just above) but relies mainly on procedural memory in typically-

developing individuals (see speech-sound representation section). Evidence also suggests that better 

declarative memory correlates with better reading in individuals with dyslexia but not in typically-

developing individuals (Ullman & Pullman 2015). Finally, as with the other disorders, dyslexia may be 

more prevalent in boys than girls, though this pattern remains unclear (Hawke et al. 2009).  

Other developmental disorders 

The PDH may at least partially explain other disorders as well, whether or not they affect language 

functions. Indeed, abnormalities of procedural memory and its underlying circuitry, and compensation by 

declarative memory, have been implicated in a variety of other developmental disorders—which are often 

comorbid with each other and with the language disorders discussed above. These include ADHD, autism 

spectrum disorder, Tourette syndrome, obsessive-compulsive disorder, developmental coordination 

disorder, mathematical disability (e.g., developmental dyscalculia), and schizophrenia (Bradshaw & 

Enticott, 2014; Clark & Lum 2017; Evans & Ullman 2016; Ullman, 2004; Ullman & Pierpont 2005; 

Ullman & Pullman 2015; Walenski et al., 2006, 2007, 2010). Interestingly, whereas in many of these 

disorders procedural memory seems to be impaired, in others (perhaps in subgroups) the abnormalities 

manifest as procedural memory enhancements, including of grammar (e.g., in Tourette syndrome and 
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possibly autism spectrum disorder; Takács et al. 2018; Dye et al. 2016; Walenski et al., 2007, 2014). 

Finally, note that impairments of procedural memory and its neural substrates, as well as compensation 

by declarative memory, have been found in various adult-onset disorders, including Parkinson’s disease 

and non-fluent/agrammatic aphasia (Ullman, 2004; Ullman & Pullman, 2015). Thus, the core tenets of the 

PDH may extend beyond developmental disorders.  

CONCLUSION 

The PDH has numerous implications. In terms of basic research, the findings underscore the 

importance of the BG in language – in particular the anterior caudate nucleus, which likely plays a critical 

role in early phases of learning grammar and other aspects of language. Indeed, the evidence presented 

above not only strengthens the basic principles of the declarative/procedural model regarding lexicon and 

grammar (Ullman, 2004, 2015, 2016) but also extends them to other core aspects of language (speech 

sound representations, articulation, speech production, and speech perception), as well as other functions 

such as reading and math. 

We emphasize that we have explored only a subset of the predictions that follow from the PDH. 

In particular, our quite specific understanding of procedural and declarative memory and their underlying 

circuitry, as well as of the language and non-language functions that depend on them, lead to a wide range 

of predictions and potentially promising lines of research – only some of which have begun to be explored. 

For example, disorders explained by the PDH might be expected to be associated with deficits of numerous 

functions and behaviors that may rely on the affected circuitry, as diverse as driving, social skills, habit 

formation, musical abilities, dorsal stream functions, BG-based selection, and even motivation and related 

affective functions. Our knowledge of declarative memory also leads to various intriguing possibilities. 

For example, are higher estrogen points of the menstrual cycle associated with fewer deficits? Do 

individuals with worse sleep show more impairments (since sleep supports declarative memory 

consolidation), and thus may sleep play a role in the disorders? 

The PDH also makes translational predictions. It suggests the potential utility of pharmacological (e.g., 

dopaminergic), behavioral, and other interventions that have been successfully employed to enhance 

procedural memory, including in other disorders affecting its circuitry (de Vries et al. 2010; Ullman & 
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Pierpont 2005). Additionally, the compensatory role of declarative memory suggests the likely value of 

pharmacological and other interventions aimed at enhancing such compensation (Ullman & Pullman 

2015). Diagnoses of these disorders may be aided by the presence of particular neuroanatomical anomalies 

in procedural memory structures (and lack thereof elsewhere, such as in the MTL), as well as by the 

presence of deficits (e.g., long-distance grammatical dependencies) that are difficult to compensate for in 

declarative memory (Ullman & Pullman 2015).  

In sum, the PDH offers an explanatory framework for multiple aspects of the brain and behavioral 

correlates of various language (and other) developmental disorders, as well as their commonalities, 

comorbidities, and differences. It thus constitutes a powerful unifying neurocognitive account of these 

developmental disorders. Given the wide range of specific predictions that follow from the PDH, only the 

tip of the basic and translational research iceberg has been examined. We hope the present paper serves 

to guide research that probes the depths of this iceberg. 
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