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Abstract 

Procedural memory, which is rooted in the basal ganglia, underlies the learning and 

processing of numerous automatized motor and cognitive skills, including in language. Not 

surprisingly, disorders with basal ganglia abnormalities have been found to show impairments 

of procedural memory. However, brain abnormalities could also lead to atypically enhanced 

function. Tourette syndrome (TS) is a candidate for enhanced procedural memory, given 

previous findings of enhanced TS processing of grammar, which likely depends on procedural 

memory. We comprehensively examined procedural learning, from memory formation to 

retention, in children with TS and typically developing (TD) children, who performed an 

implicit sequence learning task over two days. The children with TS showed sequence 

learning advantages on both days, despite a regression of sequence knowledge overnight to 

the level of the TD children. This is the first demonstration of procedural learning advantages 

in any disorder. The findings may further our understanding of procedural memory and its 

enhancement. The evidence presented here, together with previous findings suggesting 

enhanced grammar processing in TS, underscore the dependence of language on a system that 

also subserves visuomotor sequencing.   

 

Keywords: basal ganglia, implicit learning, sequence learning, procedural memory, Tourette 

syndrome 
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The procedural memory system underlies the learning, storage, and use of implicit 

cognitive and perceptual-motor skills and habits (Goodman, Marsh, Peterson, & Packard, 

2014; Poldrack et al., 2001; Poldrack & Foerde, 2008; Ullman, 2004, 2016). Evidence 

suggests that the system is multifaceted in that it supports numerous functions that are 

performed automatically, including sequences, probabilistic categorization, and grammar, and 

perhaps aspects of social skills (Fiser & Aslin, 2001; J H Howard & Howard, 1997; 

Lieberman, 2000; Mayor-Dubois, Zesiger, Van der Linden, & Roulet-Perez, 2015; Poldrack 

& Foerde, 2008; Pothos, 2007; Ullman, 2016). Thus, procedural memory offers an important 

construct for studying interactions between language, sensory, and motor processes. It has 

been suggested that prediction-based mental simulations underlie this wide range of processes 

(Barsalou, 2008). 

The procedural system relies on a brain network which is rooted in frontal/basal-

ganglia circuits (Doyon et al., 1998, 2009; Stillman et al., 2013; Ullman, 2016). Not 

surprisingly, impairments of procedural memory have been found in a wide range of 

developmental and adult-onset disorders with basal ganglia abnormalities (e.g., attention 

deficit hyperactivity disorder: Barnes, Howard, Howard, Kenealy, & Vaidya, 2010; 

Parkinson's disease: Clark, Lum, & Ullman, 2014; obsessive compulsive disorder: Kathmann, 

Rupertseder, Hauke, & Zaudig, 2005; specific language impairment: Lum, Conti-Ramsden, 

Morgan, & Ullman, 2013; dyslexia: Lum, Ullman, & Conti-Ramsden, 2013).  

Despite the basal ganglia abnormalities found in Tourette syndrome (TS), this disorder 

may be different. TS, which has prevalence rate of about 0.85% to 1% (M. M. Robertson, 

2015a), is a neurodevelopmental disorder characterized by at least one vocal tic and multiple 

motor tics, which are not explained by medications or another medical condition (DSM-5, 
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American Psychiatric Association, 2013). The tics in TS are fast, abrupt, recurrent, and semi-

voluntary (DSM-5, American Psychiatric Association, 2013). The disorder is associated with 

alterations of the basal ganglia and closely connected cortical regions (especially motor and 

other frontal cortices), which seem to lead to tics at the behavioral level (Albin & Mink, 2006; 

Müller-Vahl et al., 2009, 2014). 

Apart from motor tics, other motor alterations have been also found in TS. These 

include fine-motor coordination deficits (Bloch, Sukhodolsky, Leckman, & Schultz, 2006), 

slower execution of simple motor series (Avanzino et al., 2011), and a lack of bimanual 

asymmetry in drawing (Georgiou, Bradshaw, Phillips, Cunnington, & Rogers, 1997). 

However, motor impairments alone cannot explain the altered cognition and behavior in TS 

(Goodman et al., 2014; M. M. Robertson, 2015b). Similarly to other movement disorders 

(Cardona et al., 2014), individuals with TS also show alterations in executive function (Jung, 

Jackson, Parkinson, & Jackson, 2013), language (Dye, Walenski, Mostofsky, & Ullman, 

2016; Walenski, Mostofsky, & Ullman, 2007), and memory processes (Crawford, Channon, 

& Robertson, 2005; Dye et al., 2016; Kéri, Szlobodnyik, Benedek, Janka, & Gádoros, 2002; 

Marsh et al., 2004; Palminteri et al., 2011; Ullman & Pullman, 2015).    

Interestingly, alterations of procedural memory have been proposed as one of the 

neurocognitive underpinnings of tics in TS (Goodman et al., 2014; Kéri et al., 2002; M. M. 

Robertson, 2015b). Moreover, procedural memory is an ideal avenue to study mental 

simulations, which play a role in various motor and cognitive processes (Barsalou, 2008). 

Nevertheless, to our knowledge only four studies of TS have examined the learning of 

cognitive or perceptual-motor skills in tasks that depend on procedural memory (Channon, 

Pratt, & Robertson, 2003; Kéri et al., 2002; Marsh et al., 2004; Takács et al., 2017). These 

have yielded mixed results, with two reporting impaired learning (Kéri et al., 2002; Marsh et 
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al., 2004) and two finding normal learning (Channon et al., 2003; Takács et al., 2017). We are 

not aware of any studies that have comprehensively examined the broader process of learning 

in procedural memory in TS, from initial memory formation through overnight retention – 

despite the fact that retention is the goal of skill learning, and such a delay appears to be 

critical for consolidation, that is, the stabilization of memories (Breton & Robertson, 2014; E. 

M. Robertson, 2009).  

Despite the absence of studies examining procedural learning and retention in TS, two 

studies have probed already-established, i.e., previously-learned, procedures (Dye et al., 2016; 

Walenski et al., 2007). Both of these examined a key aspect of cognition that has been linked 

to procedural memory, namely grammar (Ullman, 2004, 2016). Despite grammatical deficits 

in various other disorders affecting the basal ganglia, such as Parkinson’s disease, 

Huntington’s disease, and specific language impairment (Ullman et al., 1997; Ullman & 

Pierpont, 2005), both of these TS studies reported faster rule-governed grammatical 

processing in children with TS than typically developing (TD) children (with no differences in 

accuracy). One study found speeded processing of regular past-tense forms, whose rule-based 

composition has been linked to procedural memory, but not of irregular past-tenses, which 

appear to be stored in declarative memory (Walenski et al., 2007). This study also reported, in 

the same children with TS, speeded naming of manipulated objects (e.g., hammer), which rely 

on procedural knowledge (how to manipulate the object), but not of non-manipulated objects 

(e.g., elephant). A more recent study observed speeded repetition of non-words (e.g., 

“naichovabe”), which was explained by the speeded grammatical composition of 

phonological segments (Dye et al., 2016). Both studies suggested that the findings may be 

explained by speeded procedural processing, due to some sort of enhancement of procedural 

memory in TS (Dye et al., 2016; Walenski et al., 2007). Thus, understanding procedural 
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memory in TS may shed light on the dependence of language on non-linguistic 

neurocognitive correlates.  

What might account for the previously-observed pattern of procedural learning and 

processing? One possibility is that the learning of procedures in the disorder remains normal 

or even impaired, but after they are learned, their processing may be speeded, perhaps due to 

mechanisms that underlie processing but not learning. However, another possibility is that 

procedural learning (perhaps in addition to processing) is enhanced in TS, but that previous 

studies of procedural learning in TS used tasks that might be learned in part in other memory 

systems, such as declarative memory (Kéri et al., 2002; Marsh et al., 2004), or may have had 

insufficient power due to few subjects (Channon et al., 2003; Takács et al., 2017). 

Additionally, since grammar involves sequences, which might have privileged status in 

procedural memory (Hsu & Bishop, 2014; Krishnan, Watkins, & Bishop, 2016), it is possible 

that sequence learning, in particular, might be enhanced in TS. Indeed, the two studies finding 

impairments in TS examined non-sequence procedural learning (Kéri et al., 2002; Marsh et 

al., 2004).  

The present study was designed to test the hypothesis that procedural learning and/or 

retention of sequences may in fact be enhanced in TS. We tested 21 children with TS and 21 

TD children on the Alternating Serial Reaction Time (ASRT) task. This widely-employed 

task probes the procedural learning of visuomotor sequences with continuous measurements – 

allowing one to detect exactly when any group differences in learning might emerge – with no 

known dependence on declarative memory (J H Howard & Howard, 1997; Song, Howard, & 

Howard, 2007a). Crucially, we examined not only initial learning, but also retention, which 

together were examined in two sessions given on subsequent days. Finally, in order to test 

whether enhanced sequence learning might be specific to procedural memory, rather than a 
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broader learning or memory effect, and to exclude the possibility that learning in this task 

depends on declarative memory, we also tested declarative memory in both groups.  

 

Materials and Methods 

Participants and procedure 

Thirty-four children with TS (30 boys and 4 girls) between the ages of 8 and 15 years were 

recruited from Vadaskert Child Psychiatry Hospital in Budapest, Hungary. Children had been 

diagnosed with TS by both a licensed clinical psychologist and a board-certified child 

psychiatrist at the hospital, according to the DSM-IV-TR criteria (American Psychiatric 

Association, 2000). None of the TS children were on medication for the disorder when they 

were tested. Children with comorbid neurodevelopmental or psychiatric disorders were 

excluded — specifically those with specific language impairment, learning disorder (dyslexia 

and dyscalculia), conduct disorder, or major depression. Co-morbid attention deficit 

hyperactivity disorder and obsessive-compulsive disorder were not exclusionary criteria, since 

these disorders are common in children with TS.  

Twenty-six TD children were recruited from local schools (20 boys and 6 girls, see 

Table 1). They ranged between 8 and 14 years of age, and had no known psychiatric, 

neurological, or neurodevelopmental disorders, according to school psychologists and the 

SDQ (see below).  

From these TS and TD children, we selected 21 from each group that were matched on 

sex (16 males and 5 females in each group) and age. The 21 TS and 21 TD children were 

matched one-to-one based on the basis of both school grade and age, with both individuals in 

each pair being in the same grade and differing in age by no more than six months. Five of the 
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21 children with TS had comorbid ADHD, and one had comorbid OCD. All participants were 

native speakers of Hungarian.  

All participants (TD and TS) had normal or corrected-to-normal vision, and normal 

hearing. Parents of all participants were asked to fill in the Strengths and Difficulties 

Questionnaire (Goodman, 1997) (SDQ, see Table 1) to estimate potential psychiatrically 

relevant symptoms, including hyperactivity, emotional symptoms, conduct problems, and peer 

difficulties. Parents of all participants signed an informed consent form, and did not receive 

financial compensation for their participation. Ethical permission was obtained by the national 

United Ethical Review Committee for Research in Psychology. 

Based on their consents, the partner hospital made accessible, for 15 of the 21 children 

with TS, the scores from the Yale Global Tic Severity Scale (YGTSS, see Table 1) (Leckman 

et al., 1989), which rates motor and phonic tics in TS. We report Total Score of the 

questionnaire, which consists of severity of motor and phonic tics, without the subjective 

impairment rates. Story and word-list learning assess learning in declarative memory. 

The experiment consisted of two sessions, for both the TS and the TD groups. The 

first session (Session 1) took place in the afternoon of the first day, whereas the second 

session (Session 2) took place the next morning, after a 16 hour delay. The ASRT task was 

given both days, with 20 blocks in each day. The tasks probing declarative memory (story 

learning and word-list learning) were given only in the first session. 

 

Tasks 

Procedural learning task: the Alternating Serial Reaction Time (ASRT) task  

Sequence learning was measured by the Alternating Serial Reaction Time (ASRT) 

task (J H Howard & Howard, 1997; Nemeth et al., 2010; Song, Howard, & Howard, 2007b; 



10 

 

Virag et al., 2015). This widely-used version of the serial reaction time (SRT) task allows for 

continuous measurement of sequence learning.  Converging evidence suggests that this 

learning occurs in procedural memory: sequence learning in serial reaction time and related 

tasks is linked to frontal/basal-ganglia circuits, in particular when it is implicit (Clark et al., 

2014; Jackson, Jackson, Harrison, Henderson, & Kennard, 1995; Vakil, Kahan, Huberman, & 

Osimani, 2000)(Stillman et al., 2013), and learning in the ASRT task is highly implicit, with 

no evidence across multiple studies of any explicit knowledge, either in adults (J H Howard & 

Howard, 1997; Nemeth et al., 2010; Romano, Howard, & Howard, 2010; Song et al., 2007a) 

or children (Barnes et al., 2010; Janacsek, Fiser, & Nemeth, 2012; Nemeth, Janacsek, & Fiser, 

2013).  

In this task, a target stimulus (a dog’s head) appeared in one of four possible locations 

(empty circles) on the screen, in a horizontal arrangement. Participants were asked to press 

the corresponding key (Z, C, B and M on a QWERTY keyboard, representing the four 

locations on the screen) as quickly and accurately as they could. Each stimulus remained on 

the screen until the participant pressed the key corresponding to the target. Following the 

response, and a subsequent delay of 120 ms, the next target appeared.  

The basic trial sequence consisted of eight elements, in which random trials alternated 

with pattern trials (e.g., 1r2r3r4r). Six sequence patterns were counterbalanced across 

participants in each participant group: 1r2r3r4r, 1r2r4r3r, 1r3r2r4r, 1r3r4r2r, 1r4r2r3r, and 

1r4r3r2r, where 1-4 indicate the target locations from left to right, and r indicates a randomly 

selected position out of the four possible ones. This structure results in some of the three 

consecutive elements (henceforth referred to as Triplets) occurring more frequently than 

others (J H Howard & Howard, 1997; Nemeth et al., 2010). The former ones are referred to as 

high-frequency triplets, occurring in 62.5% of all trials, while the latter ones are referred to as 
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low-frequency triplets, occurring in 37.5% of all trials. Note that each item was categorized as 

the third element of either a high- or low-probability triplet. Two types of low-frequency 

triplets were eliminated from analysis, repetitions (e.g., 111, 444) and trills (e.g., 121, 242), 

since participants often show pre-existing response tendencies to these items, which moreover 

occur infrequently (D. V Howard et al., 2004; Song et al., 2007a, 2007b). The task had 20 

blocks, each consisting of 85 trials (presentations of the dog’s head, with their corresponding 

key presses). In each block, the first 5 trials were randomly positioned, and were for practice 

purposes only (not analyzed further), after which the 8-element alternating sequence was 

repeated 10 times. Participants were allowed to take a brief break between each block.  

Accuracy and reaction times (RT) of the responses to these items constituted the 

dependent measures (J H Howard & Howard, 1997; Nemeth et al., 2010; Song et al., 2007a). 

In the ASRT task, the key measures of sequence learning is operationalized as increasing 

differences in RTs or accuracy between high- and low-frequency triplets over the course of 

the task (J H Howard & Howard, 1997; Song et al., 2007a). Sequence learning or knowledge 

is often also operationalized as differences between high- and low-frequency triplets at any 

given point in time during the task (Barnes et al., 2010; D. V Howard et al., 2004; Nemeth, 

Janacsek, Király, et al., 2013). In accuracy, this difference is often a result of decreasing 

accuracy for low-frequency triplets, while performance for the high-frequency ones remains 

stable, with a high accuracy. It has been suggested that this pattern (Curran, 1997; Feeney, 

Howard, & Howard, 2002; J H Howard & Howard, 1997; D. V. Howard & Howard, 2001; 

Schvaneveldt & Gomez, 1998) may be explained by the acquisition of high- vs. low-

frequency regularities (D. V Howard et al., 2004; Song et al., 2007a, 2007b). In particular, as 

participants learn the high-frequency triplets, they may make more errors on low-frequency 

triplets because they increasingly predict the last element of a high-frequency rather than that 

of a low-frequency triplet. Thus, this increasing accuracy difference between high- vs. low-
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frequency triplets is taken to indicate probabilistic sequence learning (Curran 1997; Howard 

and Howard 1997, 2001; Feeney et al. 2002; Howard et al. 2004; Song et al. 2007a, 2007b; 

Csábi et al. 2016). 

 

Declarative learning tasks: story learning and word-list learning 

Learning in declarative memory was measured with two tasks: a story learning task and a 

word-list learning task (see Table 1). We used the Hungarian version of “The War of the 

Ghosts” test as a story learning task (Csábi, Benedek, Janacsek, Katona, & Nemeth, 2013). In 

this test, participants were asked to listen to a short story that consists of 36 sentences. They 

were asked to recall it as best as possible both immediately after listening to it (immediate 

story recall) and again 15 minutes later (delayed story recall). According to standard scoring 

procedures (Gauld & Stephenson, 1967), in each recall test each sentence is worth 1 point for 

verbatim recall and 0.5 points for a non-verbatim response that retained the ‘core’ information 

of the sentence (Csábi et al., 2013; Gauld & Stephenson, 1967). Additionally, to capture how 

much of the knowledge that was actually learned immediately was then later retained (or 

forgotten) after the 15 minute delay, we also computed a difference score between delayed 

story recall and immediate story recall (Csábi et al., 2013). 

In the word-list learning task (Strauss, Sherman, & Spreen, 2006), participants were 

visually presented with a list of 15 Hungarian nouns, each of which was shown on the screen 

for 5 seconds. Immediately after three presentations of this list participants were asked to 

recall it as accurately as possible (immediate word-list recall). Fifteen minutes later, they were 

asked again to recall the list (delayed word-list recall). In each recall test, each correctly 

recalled word is worth 1 point regardless of its position in the original word list. Similarly to 
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the story recall task, we calculated a difference score between delayed word-recall and 

immediate word-list recall.  

 

Statistical Analysis  

Since the present paper focuses on procedural learning in TS, as measured by the ASRT task, 

here we describe the statistical analyses of this task. See the Results section for the (simpler) 

analyses for the other tasks.  

The statistical analyses of the ASRT task were based on previous studies (J H Howard 

& Howard, 1997; Nemeth et al., 2010; Romano et al., 2010; Song et al., 2007b). The entire 

ASRT task over both sessions was collapsed into 8 epochs (four in each session), each of 

which consisted of 5 blocks (James H. Howard, Howard, Japikse, & Eden, 2006; Nemeth et 

al., 2010; Nemeth, Janacsek, Király, et al., 2013). Mean accuracy (percentage of correct 

responses) and medians of RT data (for correct responses) were calculated for each participant 

and each epoch, separately for high- and low-frequency triplets. We also calculated sequence 

knowledge scores as the difference in RT or the difference in accuracy between low- and 

high-frequency triplets, separately for each epoch. 

To examine probabilistic sequence learning across the two groups, accuracy and RT 

data were analyzed in a mixed design ANOVA on the 8 epochs of Session 1 and 2, with 

TRIPLET (2: high vs. low) and EPOCH (1–8) as within-subjects factors, and GROUP (TS vs. 

TD) as a between-subjects factor. As follow-up analyses, we conducted mixed design 

ANOVAs on the sequence knowledge scores (i.e., accuracy or RT differences between high- 

and low-frequency triplets; see above), with EPOCH (1-8) as a within-subject factor, and 

GROUP (TS vs. TD) as a between-subject factor. Note that GROUP*EPOCH interactions 

may indicate fatigue or other general task effects, which are not of interest here. Instead, a 

GROUP*EPOCH*TRIPLET interaction crucially reveals group differences in sequence 
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knowledge over time, that is, in sequence learning. We also followed up on the ANOVAS 

with LSD (Least Significant Difference) tests for post hoc pair-wise comparisons. The 

Greenhouse-Geisser epsilon correction was applied when necessary. Here we report ηp
2 effect 

size index for ANOVA main effects and interactions. Significance was assessed with α = 

.050. All p-values are reported as two-tailed.  

 

Results  

Both accuracy and reaction times (RTs) were acquired, as both have been found to 

reflect sequence learning in ASRT (Csábi et al., 2016; Song et al., 2007a, 2007b). However, 

when both measures are reported (not always the case), accuracy appears to be a more reliable 

indicator of sequence learning, including group differences in learning (Hedenius et al., 2013; 

James H. Howard et al., 2006; Song et al., 2007a, 2007b) – not surprisingly, since accuracy 

may be a particularly good indicator of prediction errors (Hedenius et al., 2013; D. V Howard 

et al., 2004; Song et al., 2007a), a key index of learning in procedural memory (J H Howard & 

Howard, 1997; Song et al., 2007a, 2007b). Thus in the present study, group differences were 

expected particularly in accuracy.  

Analyses of Variance (ANOVAs) on RT (see Methods), with the factors GROUP (2 

levels: TS and TD), TRIPLET (2 levels: low-frequency and high-frequency triplets), and 

EPOCH (8 levels: 4 epochs in session 1 and 4 in session 2), yielded the following pattern: 

significant TRIPLET and EPOCH*TRIPLET effects, indicating sequence learning over both 

groups, but no main effects or interactions involving GROUP, suggesting no group 

differences in sequence learning with RT as the dependent measure (see Supplementary Table 

1 and Supplementary Figure 1).  
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Analyses of accuracy revealed a different pattern. Figure 1A shows accuracy data for 

the low- and high-frequency triplets as a function of the 8 epochs, for each group. Sequence 

knowledge scores for accuracy (difference in accuracy between low- and high-frequency 

triplets; see Methods) for each group are presented in Figure 1B. Most importantly, there were 

three significant effects involving GROUP (see Table 2). 
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Figure 1: (A) Accuracy data by triplet type (high- vs. low frequency triplets) as a function of 

epoch (1–8), for each group. (B) Accuracy sequence knowledge score (difference between 

high- and low-frequency triplets) as a function of epoch, for each group. Please see Results 

and Note to Table 1, including regarding the pattern of change in low- vs. high-frequency 

triplets. TD = typically developing; TS = Tourette syndrome. Error bars denote standard error 

of the mean. Vertical line with diagonal pattern represents 16 hour delay. 

 

A main effect of GROUP indicated that the TD children were better overall than the 

children with TS, while a GROUP*EPOCH interaction suggested that practice had overall 

different effects in the two groups. Crucially, a significant GROUP*EPOCH*TRIPLET 

interaction qualified both of these effects, and revealed that the time course of sequence 

learning was different between the groups. As can be seen in Figure 1A, the low-frequency 

triplets decrease more in the TS than TD group, consistent with greater sequence learning in 

the children with TS than the TD children (see Table 2). Indeed, follow up analyses on the 

sequence knowledge scores confirmed that the children with TS had greater sequence 

knowledge than the TD children, both in the last epoch of Session 1 (epoch 4: TS: M = 

8.05%, SD = 1.2%; TD: M = 4.24%, SD = 1.2%; p = .032) and in the second epoch of 

Session 2 (epoch 6: TS: M = 9.67%, SD = 0.9%; TD: M = 4.62%, SD = 0.9%; p = .001). No 

other epoch showed a group difference in sequence knowledge scores (ps > .406). 
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Importantly, unlike in some studies (Roth, Baribeau, Milovan, O’Connor, & Todorov, 2004), 

there was absence of a group difference of sequence knowledge at the beginning of the task, 

indicating that the observed group differences in later epochs was due to learning, not to a 

baseline difference between the groups.  

To investigate overnight retention, in particular the possibility of consolidation 

atypicalities in TS, we had planned to compare performance (both with RTs and accuracy as 

dependent measures) between the end of Session 1 (epoch 4) and the beginning of the Session 

2 (epoch 5); that is, before vs. after the 16-hour delay. However, reliable testing of group 

differences in consolidation requires an equivalent level of knowledge prior to consolidation, 

since differences in such knowledge can alone be responsible for overnight changes in 

performance (Hauptmann, Reinhart, Brandt, & Karni, 2005; Wilhelm, Metzkow-Mészàros, 

Knapp, & Born, 2012). Since the children with TS showed greater sequence knowledge than 

the TD children at the end of Session 1, such comparisons would not be appropriate for the 

examination of consolidation differences between the groups. The analyses are nevertheless 

presented in the Supplementary Results from Retention Analyses for interested readers.  

Finally, unlike in the ASRT task, the children with TS and the TD children did not 

differ on any measure of declarative memory, that is, in the story recall and word-list learning 

tasks (Table 1; see Methods for specifics on the tasks). To examine possible associations 

between sequence knowledge and declarative memory, we also performed correlations 

between ASRT sequence knowledge accuracy scores and accuracy in the story recall and 

word-list learning tasks. There were no significant correlations between mean sequence 

knowledge scores for either Session 1 or Session 2 and any of the six measures of declarative 

learning (immediate, delayed, or retention for either story learning or word-list learning), even 

without correction for multiple comparisons (ps > .33). 
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Table 1: Participant information and performance on the tests of declarative memory.  

 Group   

 TD (n = 21) TS (n = 21)   

 M SD M SD t p 

Age in months 137.43 17.52 138.10 18.27 0.216 .831 

School grade 5.38 1.56 5.52 1.78 3.11* .896 

SDQ Total problem 14.58 7.53 13.89 2.00 0.121 .904 

YGTSS Total score -  -  26.45 5.32 - - 

Story learning: immediate recall 10.60 3.49 11.17 4.18 - 0.481 .633 

Story learning: delayed recall 10.10 3.62 10.83 4.42 -0.592 .557 

Story learning: difference score -0.50 2.07 -0.33 1.44 0.302 .764 

Word-list learning: immediate recall 7.81 2.27 8.14 2.10 - 0.493 .625 

Word-list learning: delayed recall 6.00 2.26 6.38 2.54 0.514 .610 

Word-list learning: difference score -1.81 1.60 -1.76 1.87 0.089 .930 

       

Note: SDQ: Strengths and Difficulties Questionnaire (Total problem); YGTSS: Yale Global Tic Severity Scale 

(Total score). The children with TS and the TD children did not differ on either the story learning test or the 

word-list learning test, on either immediate or delay recall, indicating intact declarative memory in TS. 

Underscoring normal declarative memory in TS, the TS and TD groups also did not differ on the difference 

scores (delayed – immediate recall) on either test. P-values below .050 are boldfaced. *: Exact significance test 

was selected for Pearson’s chi-square since the assumptions for a chi-squared test (at least 80% of the expected 

counts are more than five and all expected counts exceed one) were not met. 

 

 

Table 2: Results from ANOVAs performed on all 8 epochs on ASRT accuracy data. 

Effect F p ηp
2 

GROUP 5.135 .029 .114 

EPOCH 3.686 .001 .084 

TRIPLET 146.94 < .001 .786 

GROUP*EPOCH 2.429 .020 .057 

EPOCH*TRIPLET 121.1 < .001 .232 

GROUP*TRIPLET 3.270 .078 .076 

GROUP*EPOCH*TRIPLET 2.05 .049 .049 
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Note: The ANOVA on accuracy on all 8 epochs yielded the following pattern. The main effect of GROUP was 

significant, indicating that TD children were better overall in their accuracy than the children with TS (TD: M = 

89.62%, SD = 1.1% vs. TS: M = 86.11%, SD = 1.1%). There was a main effect of EPOCH, due to accuracy 

decreasing over the course of practice (1st epoch: M = 91.43%, SD = 0.7% vs. 8th epoch: M = 82.7%, SD = 

1.1%, see Figure 1). Note that this decrease in accuracy over the course the task is often observed, especially for 

low-frequency triplets (see just below). The main effect of TRIPLET was also significant, such that participants, 

across both groups, were more accurate on high-frequency than low-frequency triplets (M = 90.70 %, SD = 

0.7% vs. M = 85.0 %, SD = 0.9%). The GROUP*EPOCH interaction was significant, suggesting that time-on-

task had different effects in the two groups (1st epoch: TD: M = 91.93%, SD = 1% vs. TS: M = 90.93%, SD = 

1%; 8th epoch: TD: M = 85.88%, SD = 1.6% vs. TS: M = 79.52%, SD = 1.6%). There was also a significant 

EPOCH*TRIPLET interaction. As indicated in Figure 1A, both groups showed an accuracy decrease for low-

frequency but not high-frequency triplets (see Methods). A follow-up analysis on sequence knowledge accuracy 

scores revealed that, over both groups, sequence knowledge increased as the task progressed (F(1, 40) = 121.1, p 

< .001, ηp
2 = .232; 1st epoch: Mdiff = 1.48%, SD = 3.7% vs. 8th epoch: Mdiff = 8.67%, SD = 5.8%). A marginally 

significant GROUP*TRIPLET interaction was qualified by a significant GROUP*EPOCH*TRIPLET 

interaction; see main text. P-values below .050 are boldfaced. 

 

 

Discussion  

Our goal was to comprehensively examine procedural learning in TS, from memory 

formation through overnight retention and further learning. We employed the Alternating 

Serial Reaction Time task, which probes the procedural learning of sequences. Children with 

TS and TD children were tested on the ASRT task twice, in two sessions given on subsequent 

days. We hypothesized that children with TS would show enhancements in learning and/or 

retention.  

Indeed, the children with TS showed evidence of superior perceptual-motor sequence 

learning. This held in both sessions, despite a regression of sequence knowledge overnight to 
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the level of the TD children. The absence of correlations between sequence learning and 

learning in declarative memory suggests that learning did not take place in that system, 

underscoring the procedural nature of the task. To our knowledge, this is the first study that 

suggests aspects of enhanced procedural learning in TS.  

The overnight regression of sequence knowledge seems at first blush surprising, given 

the observed learning advantages, including in the second session. One possibility is that, 

despite these advantages, children with TS have impairments at overnight consolidation. This 

is consistent with evidence suggesting that learning and consolidation processes are at least 

partially distinct in procedural memory (E. M. Robertson, 2009, 2012; Tunovic, Press, & 

Robertson, 2014). In line with consolidation alterations in TS, motor cortex excitability, 

which has been linked to procedural memory consolidation (E. M. Robertson & Takacs, 

2017), has been found to be decreased in TS (Draper et al., 2014; Jung et al., 2013). 

Moreover, GABA levels, which are negatively associated with cortical excitability, appear to 

be elevated in motor cortex in TS (Draper et al., 2014).  Additionally, it has been suggested 

that altered synaptic plasticity, as indicated by cortical excitability alterations, leads to worse 

skill consolidation in TS (Brandt et al., 2014). However, any links between the current results 

and such neural correlates is at this point tentative.  

More importantly, the remarkable sequence knowledge advantage in the TS group at 

the end of Session 1 precludes the reliable examination of consolidation differences between 

the groups, since, as mentioned above, group comparisons of consolidation require equivalent 

performance prior to this process, since dissimilar performance between groups can in itself 

lead to group differences in overnight changes (Hauptmann et al., 2005; Wilhelm et al., 2012).  

Indeed, consistent with group differences in performance leading to differences in 

subsequent changes, correlations between the level of sequence knowledge in epoch 4 (the 
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last epoch of session 1) and the amount of change in sequence knowledge overnight (between 

epochs 4 and 5) did not differ between the TS and TD groups (z = -0.358, p = 0.720), 

suggesting that the two groups showed equivalent overnight changes as a function of prior 

sequence knowledge. Moreover, both of these correlations were significant and negative (TS: 

r = -.689, p = .001; TD: r = -.621, p = .003), indicating the possibility that the greater the 

sequence knowledge, the greater the possible subsequent loss, for example in the next epoch. 

Interestingly, this negative relation was general rather than specific to the overnight delay, as 

it was found across the groups and epochs (as evidenced by significant negative regression 

effects of sequence knowledge on the amount of change to the next epoch, over both groups 

for all epochs after epoch 1, ps < .001). The same pattern has recently been observed in a 

large data set examining sequence learning in the ASRT task in children and adults (Janacsek, 

Juhasz, & Nemeth, 2016), suggesting it may be a general phenomenon. Future studies directly 

examining this phenomenon, and testing whether consolidation may also play a role, seem 

warranted.  

Thus, overall, the TS group showed procedural learning advantages, as evidenced by 

their superior sequence learning advantages on both days, despite the overnight regression. 

Whether or not children with TS would continue to show sequence learning advantages would 

of course require the examination of learning for a longer period. Although the apparent 

convergence of sequence knowledge levels at the end of the second day could in part be due 

to the general pattern of loss following high levels of sequence knowledge, it could also be 

partly explained by both groups beginning to reach an asymptote of skill knowledge; see 

Figure 1B. Thus, any future examination of longer-term learning and retention effects could 

benefit from a task that probes the learning of more complex skills, which might not 

asymptote within the period of investigation, or at all. 
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Interestingly, the children with TS tended to make more errors on the low-frequency 

triplets as the task progressed, while performance on the high-frequency triplets remained 

stable, at a relatively high level. Thus, the children with TS showed better learning than the 

TD children by distinguishing between more predictable structured stimuli and less 

predictable ones. As has been argued (see Methods), this seems to be due to an increasing 

error rate on the low frequency triplets as the children increasingly learn to predict the last 

element of high-frequency triplets. Further research is needed to further elucidate the 

mechanisms underlying this pattern, and to examine whether the resulting TS advantage may 

be found especially in certain circumstances, such as in less structured contexts that are more 

demanding. 

The learning advantages observed in this study, including on the second day, seem 

broadly consistent with the previously reported findings suggesting children with TS show 

enhanced processing of knowledge that was likely learned in procedural memory – that is, the 

enhanced processing both of grammar, including morphology and phonology, and of motor 

skill knowledge (Dye et al., 2016; Walenski et al., 2007). A clear link between the observed 

learning and processing advantages will require experimental approaches targeting this 

relation, such as testing whether learning advantages are directly associated with processing 

advantages. The data from the present study provide a critical foundation for such 

investigations by showing that children with TS are not only faster at processing knowledge 

which was likely learned in procedural memory, but also at the actual learning of procedural 

skills. This unique relationship between procedural memory and language skills provides an 

opportunity to investigate potentially enhanced motor-language coupling, which could 

elucidate research on embodied cognition (Cardona et al., 2014); future studies can 

investigate how simulation contributes to the altered cognition in TS. Overall, we suggest that 



23 

 

altered motor functions can lead not only to impaired but also to enhanced memory and 

language processes. 

The present study was not designed to investigate the neural mechanisms underlying 

enhanced procedural learning. However, it has been suggested that the enhanced processing 

of procedural knowledge may due to the same frontal/basal-ganglia abnormalities that lead to 

tics (Dye et al., 2016). Additionally, as mentioned above,  it has been suggested that 

alterations in procedural memory may underlie tics in TS (Goodman et al., 2014; Kéri et al., 

2002; M. M. Robertson, 2015b). Future studies testing these hypotheses, and their links to 

enhanced procedural learning, seem highly warranted.    

The study also suggests additional avenues of research, and has various implications. 

Further studies should probe whether or not the learning advantages are specific to sequence 

learning (see Hsu & Bishop, 2014; Krishnan et al., 2016). More generally, the findings seem 

to warrant further investigations of the neurocognitive and developmental mechanisms that 

can lead to improvements of procedural memory, which could potentially have broader 

implications. The results underscore the view that developmental disorders can be associated 

not only with disadvantages but also with potential advantages, as has also been suggested for 

aspects of cognitive control in TS (Draper et al., 2014; Jung et al., 2013). It is unclear how 

procedural memory advantages might be related to cognitive control advantages. 

Note that, as we have seen above, in studies probing probabilistic categorization, a 

task that is (at least partly) dependent on procedural memory but does not involve visuomotor 

sequences, children with TS in fact showed worse performance than their TD counterparts 

(Kéri et al., 2002; Marsh et al., 2004). This contrast between procedural memory tasks in TS 

underscores the potential importance of motor-language coupling (Cardona et al., 2014). The 

different nature of these tasks also raises the possibility of different interconnections and 
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functional coupling between memory, motor and language processes in the two types of 

learning task. That is, motor actions in particular may be integrated with memory and 

language mechanisms, as suggested previously in research on embodied cognition (García & 

Ibáñez, 2016; Kiefer & Pulvermüller, 2012; Meteyard, Cuadrado, Bahrami, & Vigliocco, 

2012). Indeed, the integration between motor action and language plays role even at the 

semantic level (García & Ibáñez, 2016; Kiefer & Pulvermüller, 2012; Meteyard et al., 2012)., 

Thus, it is possible that visuomotor sequences and sequential aspects of language both rely 

heavily on predictive simulations, as opposed to motor-independent probabilistic 

categorization.  

 The study has certain limitations. Participants in our study did not receive 

medications, and they possibly represent the lower end of the tic symptom severity dimension. 

Additionally, children with TS with various comorbidities were excluded, despite the fact that 

the presence of comorbidities in TS can contribute to the variability of procedural memory 

and symptom severity (M. M. Robertson, 2015a; Takács et al., 2017). Thus, it remains to be 

seen whether and how the findings here generalize to a more heterogeneous TS population. 

Investigations also seem warranted to examine whether the findings extend to other disorders, 

in particular those that have similar neurocognitive profiles as TS, such as OCD (M. M. 

Robertson, 2015a). Indeed, one study of OCD reported findings that the authors argued 

suggested procedural memory advantages (Roth et al., 2004). Although a highly intriguing 

result, the OCD group in this study already showed superior performance at baseline, making 

it difficult to argue convincingly for learning advantages. The present study also underscores 

the importance of examining not just initial learning, as many if not most studies of 

procedural (and declarative) memory focus on, but also retention and further learning. 
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Finally, our study has both educational and clinical implications. Enhanced procedural 

memory could potentially serve to benefit children with TS, especially for strong skill-based 

competencies such as reading, mathematics, and language, and perhaps even arts and sports 

(Evans & Ullman, 2016; Hedenius et al., 2013; James H. Howard et al., 2006; Kaufman et al., 

2010). A targeted skill-based education program for children with TS leading to 

improvements could have downstream effects, including reducing labeling and social 

marginalization (M. M. Robertson, 2015a). In the clinical field, enhanced procedural memory, 

and its potential coupling with language skills, could serve as a basis of clinical training for 

impaired motor processes in TS. A potential candidate could be motor organization, including 

fine-motor skills (Avanzino et al., 2011; Bloch et al., 2006; Georgiou et al., 1997). Targeting 

motor skills could be essential in TS, since the level of motor skill impairment in childhood 

can predict symptom severity in adolescence (Bloch et al., 2006). Procedurally based training 

might be even more powerful by incorporating rewards. Indeed, it has been shown that 

children with TS respond well to reinforcement in associative learning (Palminteri et al., 

2011). Applied research thus seems warranted to examine the effectiveness of procedural and 

reward-based training in TS, and to investigate its contribution to already established methods 

that may depend compensatorily on declarative memory, such as tic suppression training 

(Ullman & Pullman, 2015).    

In sum, this study presented evidence that children with Tourette syndrome show 

procedural learning advantages, complementing previous findings of advantages at processing 

grammatical knowledge learned in this system. To our knowledge, this is the first 

demonstration of procedural learning advantages not only in TS, but in any disorder with 

frontal/basal ganglia abnormalities, or indeed any developmental or adult-onset disorder.  

 



26 

 

Acknowledgements 

A.T. was supported by the Hungarian Scientific Research Fund – OTKA-PD- 121151. This 

research was supported by the Research and Technology Innovation Fund, Hungarian Brain 

Research Program (KTIA NAP 13-2-2014-0020); Hungarian Scientific Research Fund 

(OTKA NF 105878); Postdoctoral Fellowship of the Hungarian Academy of Sciences (to A. 

K.); and Janos Bolyai Research Fellowship of the Hungarian Academy of Sciences (to K. J.). 

 

References 

Albin, R. L., & Mink, J. W. (2006). Recent advances in Tourette syndrome research. Trends 

in Neurosciences, 29(3), 175–182. https://doi.org/10.1016/j.tins.2006.01.001 

American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental 

Disorders, 5th Edition. In Diagnostic and Statistical Manual of Mental Disorders, 5th 

Edition. American Psychiatric Publishing, Inc. 

https://doi.org/10.1176/appi.books.9780890425596.744053 

Avanzino, L., Martino, D., Bove, M., De Grandis, E., Tacchino, A., Pelosin, E., … 

Abbruzzese, G. (2011). Movement lateralization and bimanual coordination in children 

with Tourette syndrome. Movement Disorders, 26(11), 2114–2118. 

https://doi.org/10.1002/mds.23839 

Barnes, K. A., Howard, J. H., Howard, D. V, Kenealy, L., & Vaidya, C. J. (2010). Two forms 

of implicit learning in childhood ADHD. Developmental Neuropsychology, 35(5), 494–

505. https://doi.org/10.1080/875656412010494750 

Barsalou, L. W. (2008). Grounded Cognition. Annual Review of Psychology, 59(1), 617–645. 

https://doi.org/10.1146/annurev.psych.59.103006.093639 

Bloch, M. H., Sukhodolsky, D. G., Leckman, J. F., & Schultz, R. T. (2006). Fine-motor skill 



27 

 

deficits in childhood predict adulthood tic severity and global psychosocial functioning 

in Tourette’s syndrome. Journal of Child Psychology and Psychiatry and Allied 

Disciplines, 47(6), 551–559. https://doi.org/10.1111/j.1469-7610.2005.01561.x 

Brandt, V. C., Niessen, E., Ganos, C., Kahl, U., Bäumer, T., & Münchau, A. (2014). Altered 

synaptic plasticity in Tourette’s syndrome and its relationship to motor skill learning. 

PLoS ONE, 9(5). https://doi.org/10.1371/journal.pone.0098417 

Breton, J., & Robertson, E. M. (2014). Flipping the switch: Mechanisms that regulate memory 

consolidation. Trends in Cognitive Sciences, 18(12), 629–634. 

https://doi.org/10.1016/j.tics.2014.08.005 

Cardona, J. F., Kargieman, L., Sinay, V., Gershanik, O., Gelormini, C., Amoruso, L., … 

Ib????ez, A. (2014). How embodied is action language? Neurological evidence from 

motor diseases. Cognition, 131(2), 311–322. 

https://doi.org/10.1016/j.cognition.2014.02.001 

Channon, S., Pratt, P., & Robertson, M. M. (2003). Executive function, memory, and learning 

in Tourette’s syndrome. Neuropsychology, 17(2), 247–254. https://doi.org/10.1037/0894-

4105.17.2.247 

Clark, G. M., Lum, J. A. G., & Ullman, M. T. (2014). A meta-analysis and meta-regression of 

serial reaction time task performance in Parkinson’s disease. Neuropsychology, 28(6), 

945–958. https://doi.org/10.1037/neu0000121 

Crawford, S., Channon, S., & Robertson, M. M. (2005). Tourette’s syndrome: performance on 

tests of behavioural inhibition, working memory and gambling. Journal of Child 

Psychology and Psychiatry, 46(12), 1327–1336. https://doi.org/10.1111/j.1469-

7610.2005.01419.x 

Csábi, E., Benedek, P., Janacsek, K., Katona, G., & Nemeth, D. (2013). Sleep disorder in 

childhood impairs declarative but not nondeclarative forms of learning. Journal of 



28 

 

Clinical and Experimental Neuropsychology, 35(May 2015), 677–85. 

https://doi.org/10.1080/13803395.2013.815693 

Csábi, E., Benedek, P., Janacsek, K., Zavecz, Z., Katona, G., & Nemeth, D. (2016). 

Declarative and Non-declarative Memory Consolidation in Children with Sleep 

Disorder. Frontiers in Human Neuroscience, 9(January). 

https://doi.org/10.3389/fnhum.2015.00709 

Curran, T. (1997). Effects of aging on implicit sequence learning: Accounting for sequence 

structure and explicit knowledge. Psychological Research, 60(1–2), 24–41. 

https://doi.org/10.1007/BF00419678 

Doyon, J., Bellec, P., Amsel, R., Penhune, V., Monchi, O., Carrier, J., … Benali, H. (2009). 

Contributions of the basal ganglia and functionally related brain structures to motor 

learning. Behavioural Brain Research, 199(1), 61–75. 

https://doi.org/10.1016/j.bbr.2008.11.012 

Doyon, J., Laforce, R., Bouchard, G., Gaudreau, D., Roy, J., Poirier, M., … Ouchard, J. P. 

(1998). Role of the striatum, cerebellum and frontal lobes in the automatization of a 

repeated visuomotor sequence of movements. Neuropsychologia, 36(7), 625–641. 

https://doi.org/10.1016/S0028-3932(97)00168-1 

Draper, A., Stephenson, M. C., Jackson, G. M., Pépés, S., Morgan, P. S., Morris, P. G., & 

Jackson, S. R. (2014). Increased GABA Contributes to Enhanced Control over Motor 

Excitability in Tourette Syndrome. Current Biology, 24(19), 2343–2347. 

https://doi.org/10.1016/j.cub.2014.08.038 

Dye, C. D., Walenski, M., Mostofsky, S. H., & Ullman, M. T. (2016). A verbal strength in 

children with Tourette syndrome? Evidence from a non-word repetition task. Brain and 

Language, 160, 61–70. https://doi.org/10.1016/j.bandl.2016.07.005 

Evans, T. M., & Ullman, M. T. (2016). An Extension of the Procedural Deficit Hypothesis 



29 

 

from Developmental Language Disorders to Mathematical Disability. Frontiers in 

Psychology, 7. https://doi.org/10.3389/fpsyg.2016.01318 

Feeney, J. J., Howard, J. H., & Howard, D. V. (2002). Implicit learning of higher order 

sequences in middle age. Psychology and Aging, 17(2), 351–355. 

https://doi.org/10.1037/0882-7974.17.2.351 

Fiser, J., & Aslin, R. N. (2001). Unsupervised Statistical Learning of Higher-Order Spatial 

Structures from Visual Scenes. Psychological Science, 12(6), 499–504. 

https://doi.org/10.1111/1467-9280.00392 

García, A. M., & Ibáñez, A. (2016). Hands typing what hands do: Action-semantic integration 

dynamics throughout written verb production. Cognition, 149, 56–66. 

https://doi.org/10.1016/j.cognition.2016.01.011 

Gauld, A., & Stephenson, G. M. (1967). Some Experiments Relating to Bartlett’s Theory of 

Remembering. British Journal of Psychology, 58(1–2), 39–49. 

https://doi.org/10.1111/j.2044-8295.1967.tb01054.x 

Georgiou, N., Bradshaw, J. L., Phillips, J. G., Cunnington, R., & Rogers, M. (1997). 

Functional asymmetries in the movement kinematics of patients with Tourette’s 

syndrome. Journal of Neurology, Neurosurgery, and Psychiatry, 63(2), 188–195. 

https://doi.org/10.1136/jnnp.63.2.188 

Goodman, J., Marsh, R., Peterson, B. S., & Packard, M. G. (2014). Annual research review: 

The neurobehavioral development of multiple memory systems - Implications for 

childhood and adolescent psychiatric disorders. Journal of Child Psychology and 

Psychiatry and Allied Disciplines, 55(6), 582–610. https://doi.org/10.1111/jcpp.12169 

Hauptmann, B., Reinhart, E., Brandt, S. A., & Karni, A. (2005). The predictive value of the 

leveling off of within-session performance for procedural memory consolidation. 

Cognitive Brain Research, 24(2), 181–189. 



30 

 

https://doi.org/10.1016/j.cogbrainres.2005.01.012 

Hedenius, M., Persson, J., Alm, P. A., Ullman, M. T., Howard, J. H., Howard, D. V., & 

Jennische, M. (2013). Impaired implicit sequence learning in children with 

developmental dyslexia. Research in Developmental Disabilities, 34(11), 3924–3935. 

https://doi.org/10.1016/j.ridd.2013.08.014 

Howard, J. H., Howard, D. V., Japikse, K. C., & Eden, G. F. (2006). Dyslexics are impaired 

on implicit higher-order sequence learning, but not on implicit spatial context learning. 

Neuropsychologia, 44(7), 1131–1144. 

https://doi.org/10.1016/j.neuropsychologia.2005.10.015 

Howard, J. H., & Howard, D. V. (1997). Age differences in implicit learning of higher order 

dependencies in serial patterns. Psychology and Aging, 12(4), 634–656. 

https://doi.org/10.1037/0882-7974.12.4.634 

Howard, D. V., & Howard, J. H. (2001). When it does hurt to try: Adult age differences in the 

effects of instructions on implicit pattern learning. Psychonomic Bulletin & Review, 8(4), 

798–805. https://doi.org/10.3758/BF03196220 

Howard, D. V, Howard, J. H., Japikse, K., DiYanni, C., Thompson, A., & Somberg, R. 

(2004). Implicit sequence learning: effects of level of structure, adult age, and extended 

practice. Psychology and Aging, 19(1), 79–92. https://doi.org/10.1037/0882-

7974.19.1.79 

Hsu, H. J., & Bishop, D. V. M. (2014). Sequence-specific procedural learning deficits in 

children with specific language impairment. Developmental Science, 17(3), 352–365. 

https://doi.org/10.1111/desc.12125 

Jackson, G. M., Jackson, S. R., Harrison, J., Henderson, L., & Kennard, C. (1995). Serial 

reaction time learning and Parkinson’s disease: Evidence for a procedural learning 

deficit. Neuropsychologia, 33(5), 577–593. https://doi.org/10.1016/0028-



31 

 

3932(95)00010-Z 

Janacsek, K., Fiser, J., & Nemeth, D. (2012). The best time to acquire new skills: age-related 

differences in implicit sequence learning across the human lifespan. Developmental 

Science, 15(4), 496–505. https://doi.org/10.1111/j.1467-7687.2012.01150.x 

Janacsek, K., Juhasz, D., & Nemeth, D. (2016). Age-related differences in the consolidation 

of implicit statistical memory across human life span: Evidence from a probabilistic 

sequence learning task. In Presented at 46th Annual Meeting of Society for 

Neuroscience. San Diego, CA: Society for Neuroscience. 

Jung, J., Jackson, S. R., Parkinson, A., & Jackson, G. M. (2013). Cognitive control over 

motor output in Tourette syndrome. Neuroscience and Biobehavioral Reviews, 37(6), 

1016–1025. https://doi.org/10.1016/j.neubiorev.2012.08.009 

Kathmann, N., Rupertseder, C., Hauke, W., & Zaudig, M. (2005). Implicit sequence learning 

in obsessive-compulsive disorder: further support for the fronto-striatal dysfunction 

model. Biological Psychiatry, 58(3), 239–44. 

https://doi.org/10.1016/j.biopsych.2005.03.045 

Kaufman, S. B., DeYoung, C. G., Gray, J. R., Jiménez, L., Brown, J., & Mackintosh, N. 

(2010). Implicit learning as an ability. Cognition, 116(3), 321–340. 

https://doi.org/10.1016/j.cognition.2010.05.011 

Kéri, S., Szlobodnyik, C., Benedek, G., Janka, Z., & Gádoros, J. (2002). Probabilistic 

classification learning in Tourette syndrome. Neuropsychologia, 40(8), 1356–1362. 

https://doi.org/10.1016/S0028-3932(01)00210-X 

Kiefer, M., & Pulvermüller, F. (2012). Conceptual representations in mind and brain: 

Theoretical developments, current evidence and future directions. Cortex, 48(7), 805–

825. https://doi.org/10.1016/j.cortex.2011.04.006 

Krishnan, S., Watkins, K. E., & Bishop, D. V. M. (2016). Neurobiological Basis of Language 



32 

 

Learning Difficulties. Trends in Cognitive Sciences, 20(9), 701–714. 

https://doi.org/10.1016/j.tics.2016.06.012 

Lieberman, M. D. (2000). Intuition: A social cognitive neuroscience approach. Psychological 

Bulletin, 126(1), 109–137. https://doi.org/10.1037/0033-2909.126.1.109 

Lum, J. A. G., Conti-Ramsden, G., Morgan, A. T., & Ullman, M. T. (2014). Procedural 

learning deficits in specific language impairment (SLI): A meta-analysis of serial 

reaction time task performance. Cortex, 51, 1–10. 

https://doi.org/10.1016/j.cortex.2013.10.011 

Lum, J. A. G., Ullman, M. T., & Conti-Ramsden, G. (2013). Procedural learning is impaired 

in dyslexia: Evidence from a meta-analysis of serial reaction time studies. Research in 

Developmental Disabilities, 34(10), 3460–3476. 

https://doi.org/10.1016/j.ridd.2013.07.017 

Marsh, R., Alexander, G. M., Packard, M. G., Zhu, H., Wingard, J. C., Quackenbush, G., & 

Peterson, B. S. (2004). Habit Learning in Tourette Syndrome. Arch Gen Psychiatry, 61, 

1259–1268. 

Mayor-Dubois, C., Zesiger, P., Van der Linden, M., & Roulet-Perez, E. (2015). Procedural 

learning: A developmental study of motor sequence learning and probabilistic 

classification learning in school-aged children. Child Neuropsychology, (July), 1–17. 

https://doi.org/10.1080/09297049.2015.1058347 

Meteyard, L., Cuadrado, S. R., Bahrami, B., & Vigliocco, G. (2012). Coming of age: A 

review of embodiment and the neuroscience of semantics. Cortex, 48(7), 788–804. 

https://doi.org/10.1016/j.cortex.2010.11.002 

Müller-Vahl, K. R., Grosskreutz, J., Prell, T., Kaufmann, J., Bodammer, N., & Peschel, T. 

(2014). Tics are caused by alterations in prefrontal areas, thalamus and putamen, while 

changes in the cingulate gyrus reflect secondary compensatory mechanisms. BMC 



33 

 

Neuroscience, 15(1), 6. https://doi.org/10.1186/1471-2202-15-6 

Müller-Vahl, K. R., Kaufmann, J., Grosskreutz, J., Dengler, R., Emrich, H. M., & Peschel, T. 

(2009). Prefrontal and anterior cingulate cortex abnormalities in Tourette Syndrome: 

evidence from voxel-based morphometry and magnetization transfer imaging. BMC 

Neuroscience, 10, 47. https://doi.org/10.1186/1471-2202-10-47 

Nemeth, D., Janacsek, K., & Fiser, J. (2013). Age-dependent and coordinated shift in 

performance between implicit and explicit skill learning. Frontiers in Computational 

Neuroscience, 7(October), 147. https://doi.org/10.3389/fncom.2013.00147 

Nemeth, D., Janacsek, K., Király, K., Londe, Z., Németh, K., Fazekas, K., … Csányi, A. 

(2013). Probabilistic sequence learning in mild cognitive impairment. Frontiers in 

Human Neuroscience, 7(July), 318. https://doi.org/10.3389/fnhum.2013.00318 

Nemeth, D., Janacsek, K., Londe, Z., Ullman, M. T., Howard, D. V., & Howard, J. H. (2010). 

Sleep has no critical role in implicit motor sequence learning in young and old adults. 

Experimental Brain Research, 201(2), 351–358. https://doi.org/10.1007/s00221-009-

2024-x 

Palminteri, S., Lebreton, M., Worbe, Y., Hartmann, A., Lehéricy, S., Vidailhet, M., … 

Pessiglione, M. (2011). Dopamine-dependent reinforcement of motor skill learning: 

Evidence from Gilles de la Tourette syndrome. Brain, 134(8), 2287–2301. 

https://doi.org/10.1093/brain/awr147 

Poldrack, R. A., Clark, J., Paré-Blagoev, E. J., Shohamy, D., Creso Moyano, J., Myers, C., & 

Gluck, M. a. (2001). Interactive memory systems in the human brain. Nature, 414(6863), 

546–550. https://doi.org/10.1038/35107080 

Poldrack, R. A., & Foerde, K. (2008). Category learning and the memory systems debate. 

Neuroscience & Biobehavioral Reviews, 32(2), 197–205. 

https://doi.org/10.1016/j.neubiorev.2007.07.007 



34 

 

Pothos, E. M. (2007). Theories of artificial grammar learning. Psychological Bulletin, 133(2), 

227–244. https://doi.org/10.1037/0033-2909.133.2.227 

Robertson, E. M. (2009). From creation to consolidation: A novel framework for memory 

processing. PLoS Biology, 7(1). https://doi.org/10.1371/journal.pbio.1000019 

Robertson, E. M. (2012). New Insights in Human Memory Interference and Consolidation. 

Current Biology, 22(2), R66–R71. https://doi.org/10.1016/j.cub.2011.11.051 

Robertson, E. M., & Takacs, A. (2017). Exercising Control Over Memory Consolidation. 

Trends in Cognitive Sciences, 21(5), 310–312. https://doi.org/10.1016/j.tics.2017.03.001 

Robertson, M. M. (2015a). A personal 35 year perspective on Gilles de la Tourette syndrome : 

prevalence , phenomenology , comorbidities , and coexistent psychopathologies. Lancet 

Psychiatry, (2), 68–87. https://doi.org/10.1016/ S2215-0366(14)00132-1 

Robertson, M. M. (2015b). A personal 35 year perspective on Gilles de la Tourette syndrome: 

assessment, investigations, and management. The Lancet Psychiatry, 2(1), 88–104. 

https://doi.org/10.1016/S2215-0366(14)00133-3 

Romano, J. C., Howard, J. H., & Howard, D. V. (2010). One-year retention of general and 

sequence-specific skills in a probabilistic, serial reaction time task. Memory (Hove, 

England), 18(4), 427–441. https://doi.org/10.1080/09658211003742680 

Roth, R. M., Baribeau, J., Milovan, D., O’Connor, K., & Todorov, C. (2004). Procedural and 

declarative memory in obsessive-compulsive disorder. Journal of the International 

Neuropsychological Society : JINS, 10(5), 647–54. 

https://doi.org/10.1017/S1355617704105018 

Schvaneveldt, R. W., & Gomez, R. L. (1998). Attention and probabilistic sequence learning. 

Psychological Research, 61(3), 175–190. https://doi.org/10.1007/s004260050023 

Song, S., Howard, J. H., & Howard, D. V. (2007a). Implicit probabilistic sequence learning is 

independent of explicit awareness. Learning & Memory (Cold Spring Harbor, N.Y.), 



35 

 

14(3), 167–176. https://doi.org/10.1101/lm.437407 

Song, S., Howard, J. H., & Howard, D. V. (2007b). Sleep does not benefit probabilistic motor 

sequence learning. The Journal of Neuroscience : The Official Journal of the Society for 

Neuroscience, 27(46), 12475–12483. https://doi.org/10.1523/JNEUROSCI.2062-07.2007 

Stillman, C. M., Gordon, E. M., Simon, J. R., Vaidya, C. J., Howard, D. V, & Howard, J. H. 

(2013). Caudate resting connectivity predicts implicit probabilistic sequence learning. 

Brain Connectivity, 3(6), 601–10. https://doi.org/10.1089/brain.2013.0169 

Strauss, E., Sherman, E. M. S., & Spreen, O. (2006). A Compendium of Neuropsychological 

Tests: Administration, Norms, and Commentary. New York, NY, US: Oxford University 

Press. 

Takács, Á., Shilon, Y., Janacsek, K., Kóbor, A., Tremblay, A., Németh, D., & Ullman, M. T. 

(2017). Procedural learning in Tourette syndrome, ADHD, and comorbid Tourette-

ADHD: Evidence from a probabilistic sequence learning task. Brain and Cognition, 117, 

33–40. https://doi.org/10.1016/j.bandc.2017.06.009 

Tunovic, S., Press, D. Z., & Robertson, E. M. (2014). A Physiological Signal That Prevents 

Motor Skill Improvements during Consolidation. Journal of Neuroscience, 34(15), 

5302–5310. https://doi.org/10.1523/JNEUROSCI.3497-13.2014 

Ullman, M. T. (2004). Contributions of memory circuits to language: The 

declarative/procedural model. Cognition, 92(1–2), 231–270. 

https://doi.org/10.1016/j.cognition.2003.10.008 

Ullman, M. T. (2016). The Declarative / Procedural Model : A Neurobiological Model of 

Language. In Neurobiology of Language (pp. 953–968). 

https://doi.org/http://dx.doi.org/10.1016/B978-0-12-407794-2.00076-6 

Ullman, M. T., Corkin, S., Coppola, M., Hickok, G., Growdon, J. H., Koroshetz, W. J., … 

Pinker, S. (1997). A Neural Dissocation within Language: Evidence That the Mental 



36 

 

Dictionary Is Part of Declarative Memory, and That Grammatical Rules Are Processed 

by the Procedural System. Journal of Cognitive Neuroscience, 9(2), 266–276. 

https://doi.org/10.1162/jocn.1997.9.2.266 

Ullman, M. T., & Pierpont, E. I. (2005). Specific language impairment is not specific to 

language: the procedural deficit hypothesis. Cortex, 41(3), 399–433. 

https://doi.org/10.1016/S0010-9452(08)70276-4 

Ullman, M. T., & Pullman, M. Y. (2015). A compensatory role for declarative memory in 

neurodevelopmental disorders. Neuroscience & Biobehavioral Reviews, 51, 205–222. 

https://doi.org/10.1016/j.neubiorev.2015.01.008 

Vakil, E., Kahan, S., Huberman, M., & Osimani, A. (2000). Motor and non-motor sequence 

learning in patients with basal ganglia lesions: The case of serial reaction time (SRT). 

Neuropsychologia, 38(1), 1–10. https://doi.org/10.1016/S0028-3932(99)00058-5 

Virag, M., Janacsek, K., Horvath, A., Bujdoso, Z., Fabo, D., & Nemeth, D. (2015). 

Competition between frontal lobe functions and implicit sequence learning: evidence 

from the long-term effects of alcohol. Experimental Brain Research. 

https://doi.org/10.1007/s00221-015-4279-8 

Walenski, M., Mostofsky, S. H., & Ullman, M. T. (2007). Speeded processing of grammar 

and tool knowledge in Tourette’s syndrome. Neuropsychologia, 45(11), 2447–60. 

https://doi.org/10.1016/j.neuropsychologia.2007.04.001 

Wilhelm, I., Metzkow-Mészàros, M., Knapp, S., & Born, J. (2012). Sleep-dependent 

consolidation of procedural motor memories in children and adults: The pre-sleep level 

of performance matters. Developmental Science, 15(4), 506–515. 

https://doi.org/10.1111/j.1467-7687.2012.01146.x 

 


