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Abstract 

Implicit skill learning underlies obtaining not only motor, but also cognitive and social skills 

through the life of an individual. Yet, the ontogenetic changes in humans’ implicit learning 

abilities have not yet been characterized, and, thus, their role in acquiring new knowledge 

efficiently during development is unknown. We investigated such learning across the life 

span, between 4-85 years of age with an implicit probabilistic sequence learning task, and we 

found that the difference in implicitly learning high vs. low probability events - measured by 

raw reaction time (RT) - exhibited a rapid decrement around age of 12. Accuracy and z-

transformed data showed partially different developmental curves suggesting a re-evaluation 

of analysis methods in developmental research. The decrement in raw RT differences supports 

an extension of the traditional 2-stage lifespan skill acquisition model: in addition to a decline 

above the age 60 reported in earlier studies, sensitivity to raw probabilities and, therefore, 

acquiring new skills is significantly more effective until early adolescence than later in life. 

These results suggest that due to developmental changes in early adolescence, implicit skill 

learning processes undergo a marked shift in weighting raw probabilities vs. more complex 

interpretations of events, which, with appropriate timing, prove to be an optimal strategy for 

human skill learning.  

 

Keywords: skill learning, implicit sequence learning, automaticity, Alternating Serial 

Reaction Time Task (ASRT), development, aging, critical period 
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It is widely accepted that children should be introduced to sports, music or languages 

early in their life if they are to develop a high proficiency, because late learners seldom 

become true champions or elite musicians or gain command of a second language similar to 

that of a native speaker. These observations contradict traditional measures of the ability of 

factual learning of declarative memories, which showed that humans become increasingly 

better at many learning tasks up until their late twenties (Craik & Bialystok, 2006). However, 

an important component of developing new abilities is related to implicit unconscious 

statistical learning processes (Hikosaka, Nakamura, Sakai, & Nakahara, 2002; Keele, Ivry, 

Mayr, Hazeltine, & Heuer, 2003) that underlie the acquisition of not only motor but also 

cognitive and social skills (Doyon, et al., 2009; Hikosaka et al., 2002; Lieberman, 2000; 

Poldrack, et al., 2005; Ullman, 2001). Thus, to understand complex skill acquisition, the 

characteristics of both explicit declarative and implicit learning, such as the differences in 

their efficiency across the lifespan, must be clarified. In contrast to declarative memory 

(Tulving & Craik, 2000), the ontogenetic changes in humans’ implicit learning abilities have 

not yet been comprehensively characterized, and, thus, their role in acquiring new knowledge 

efficiently during development is unknown. The main goal of our study was to examine age 

differences in implicit learning across the human lifespan using the same task for all groups.  

 The computational underpinnings and the neural substrates of these different kinds of 

learning mechanisms are also controversial (Henke, 2010). Explicit learning has been linked 

more closely to medial temporal lobes of the cortex (Dennis & Cabeza, in press; Squire & 

Zola, 1996). By contrast, implicit skill learning often requires fine-tuning of the perceptual-

motor system based on experience; therefore, most models of implicit skill learning 

emphasize the role of the basal ganglia and the cerebellum (Cohen, Pascual-Leone, Press, & 

Robertson, 2005; Dennis & Cabeza, in press; Doyon et al., 2009; Hikosaka, et al., 1999; 

Hikosaka et al., 2002), whereas the role of the hippocampus remains inconclusive (Albouy, et 
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al., 2008; Schendan, Searl, Melrose, & Stern, 2003). However, these models focused mostly 

on motor skill-related learning with less emphasis on more complex skills that could involve 

learning abstract cognitive dependencies implicitly. The second goal of our study was to 

relate our behavioral results to the various computational models of explicit and implicit 

learning. 

Two main approaches to implicit learning emerged in developmental neuroscience 

with a different assessment of how learning abilities change with age: 1) the developmental 

invariance model and 2) the age-related changes model. Studies supporting the developmental 

invariance model of implicit learning failed to find significant age-related differences in 

learning (Meulemans, Van der Linden, & Perruchet, 1998; Vinter & Perruchet, 2000). In 

support of this view, infant studies have shown that adult-like implicit learning mechanisms 

exist even in very early infancy (Clohessy, Posner, & Rothbart, 2001; Saffran, Aslin, & 

Newport, 1996). Developmental invariance models explain this age-independence by linking 

implicit (or procedural) learning to evolutionarily primitive brain regions, such as the basal 

ganglia and the cerebellum. These regions are characterized as early-maturation regions and 

are relatively resistant to neurological impairments (Reber, 1993).  

By contrast, the age-related changes models posit that considerable developmental 

differences can be observed in implicit learning. Several of these studies found that older 

children and young adults showed stronger learning effects compared to very young 

participants (Fletcher, Maybery, & Bennett, 2000; Kirkham, Slemmer, Richardson, & 

Johnson, 2007; Maybery, Taylor, & O'Brien-Malone, 1995; Thomas, et al., 2004). These 

models accept the fronto-striatal origin of such learning, but they focus on evidence of 

continued development of these regions that form the basis of the behavioral changes with age 

(e.g., Thomas et al., 2004). We compared our empirical results using a new approach to the 

problem of multiple neural substrates of learning proposed by Daw et al. (2005).  
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Serial reaction time task and the development of implicit learning 

In our study, we used a modified version of the Serial Reaction Time (SRT) Task, 

which is one of most commonly used methods for measuring implicit skill learning. Serial 

Reaction Time Task is a four-choice reaction time task containing a hidden repeating 

sequence that the subject comes to predict and learn implicitly (Nissen & Bullemer, 1987; 

Poldrack et al., 2005). In an SRT study, Meulemans et al. (1998) found that 6- and 10-year-

old children showed similar degrees of learning as young adults. In contrast, Thomas et al. 

(2004) found that the learning performance of young adults was better than 7- to 10-year-old 

children. Studies investigating implicit skill learning at older ages also revealed inconsistent 

results. For example, several studies have demonstrated that, for simple repeating patterns (in 

the SRT task), the extent of implicit sequence learning in elderly adults was comparable to 

young adults (Frensch & Miner, 1994; D. V. Howard & Howard, 1992; D. V. Howard & 

Howard, 1989). Moreover, in a recent study, Gaillard et al. (2009) found that young (22-year-

old), middle-aged (45-year-old), and elderly (71-year-old) participants performed at the same 

level.  

The studies mentioned above used fixed (deterministic) sequences, which can be 

easily learned, making it less possible to detect age-related differences in learning. 

Furthermore, they cannot purely determine the acquired sequence-specific knowledge because 

these tasks (finger-tapping, classical SRT) confound general improvements with sequence-

specific learning. Here, we used a modified version of the SRT task, the Alternating Serial 

Reaction Time (ASRT) task (J. H. Howard, Jr. & Howard, 1997), which enabled us to 

measure the “pure” sequence-specific learning distinguished from general improvements. In 

the classical SRT task, the structure of a sequence is deterministic with the stimuli following a 

simple cyclically repeating pattern (e.g., 213412134121341213412…, where numbers refer to 
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distinct events within the repeating 21341 pattern). By contrast, in the ASRT task (J. H. 

Howard, Jr. & Howard, 1997; Remillard, 2008), repeating events alternate with random ones. 

Thus, the location of every second stimulus on the screen was determined randomly. If, for 

instance, the sequence was 12341234…, where the numbers represent locations on the screen, 

the sequence of stimuli would be 1R2R3R4R1R2R3R4R… in the ASRT paradigm, with R 

representing a random element. Therefore, the location of every second stimulus on the screen 

was determined randomly. Because fixed, sequence-specific and random stimuli were 

alternating, some sequences of three events (called ‘triplets’) occurred more frequently than 

others. For example, in the above illustration 1x2, 2x3, 3x4 and 4x1 would occur often, 

whereas 1x3 or 4x2 would occur infrequently. Following previous studies, we referred to the 

former as high-frequency triplets and the latter as low-frequency triplets (Nemeth, Janacsek, 

Londe, et al., 2010; Song, Howard, & Howard, 2007). Previous studies have shown that as 

people practice the ASRT task, they respond more quickly to the high than low frequency 

triplets, revealing probabilistic, sequence-specific learning (J. H. Howard, Jr. & Howard, 

1997; Song et al., 2007). This learning is statistical in nature because it depends on the 

frequency of the event sequences. Thus, the RT difference between the high and low 

frequency triplets in this ASRT task is a measure of human sensitivity to the relative raw 

probabilities of events observed implicitly in their environment (Perruchet & Pacton, 2006). 

In addition, the participants are not generally aware of the alternating structure of the 

sequences, even after extended practice, or when sensitive recognition tests are used to assess 

explicit knowledge (D. V. Howard, et al., 2004; J. H. Howard, Jr. & Howard, 1997; Song et 

al., 2007). Thus, the ASRT task is more implicit than the classical deterministic sequence 

learning tasks. 

Using the ASRT task, recent studies have shown that, although elderly adults can also 

learn the higher-order structure of these complex sequences, they showed age-related deficits 
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(D. V. Howard et al., 2004; J. H. Howard, Jr. & Howard, 1997; Nemeth, Janacsek, Londe et 

al., 2010). Both young and elderly adults were able to learn third-order dependencies 

(1RR2RR3RR1RR2RR3RR…) although the elderly participants performed at a lower level 

than the younger participants (Bennett, Howard, & Howard, 2007). Whereas several studies 

investigated implicit learning in children using the ASRT task (Barnes, et al., 2008; Barnes, 

Howard, Howard, Kenealy, & Vaidya, 2010; Nemeth, Janacsek, Balogh, et al., 2010), no 

child-adult comparison of implicit skill learning performance has yet been reported. 

In summary, previous studies have addressed the development and aging in implicit 

skill learning, but no studies have examined age-related differences from childhood to old age 

with identical methods. Furthermore, in contrast to general skill improvements, using a 

probabilistic sequence learning task (ASRT) can help us to reveal the age-related differences 

of the underlying mechanisms of complex skill learning by measuring explicitly the 

sensitivity to raw probabilities of high and low frequency events. Therefore, in this study, we 

compared the implicit probabilistic sequence learning across the age range of 4-85 years.  

 

Method 

Participants 

There were 421 participants in the experiment between the ages of 4 and 85 that were 

clustered into nine age groups between 4-6, 7-8, 9-10, 11-12, 14-17, 18-29, 30-44, 45-59 and 

60-85 years of age (Table 1). None of them suffered from any developmental, psychiatric or 

neurological disorders. All subjects gave signed informed consent (parental consent was 

obtained for children), and they received no financial compensation for participation. All 

experimental procedures were approved by the Ethics Committee of the University of Szeged. 
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Group Age Sex Education 
Mean RT 

(ms) 

Mean 

Accuracy 

(%) 

4-6-year-old 

(n=30) 
5.31 (0.98) 17 M / 13 F - 960.06 (214.67) 90.09 (6.34) 

7-8-year-old 

(n=55) 
7.09 (0.56) 31 M / 24 F 1.18 (0.39) 773.24 (159.29) 90.66 (7.03) 

9-10-year-old 

(n=35) 
9.89 (0.58) 14 M / 21 F 3.2 (0.96) 602.84 (121.03) 93.44 (4.21) 

11-12-year-old 

(n=29) 
11.5 (0.5) 21 M / 8 F 4.66 (0.67) 544.15 (95.00) 92.52 (4.23) 

14-17-year-old 

(n=62) 
14.89 (1.06) 46 M / 15 F 8.23 (1.02) 452.52 (67.06) 95.44 (2.92) 

18-29-year-old 

(n=63) 
23.09 (3.67) 40 M / 23 F 15.45 (2.6) 401.79 (50.85) 95.47 (2.45) 

30-44-year-old 

(n=59) 
35 (4.24) 24 M/ 35 F 16.64 (3.1) 419.85 (58.68) 95.85 (2.98) 

45-59-year-old 

(n=36) 
50.8 (5.07) 12 M / 24 F 14.18 (3.58) 526.7 (112.99) 97.4 (3.45) 

60-85-year-old 

(n=52) 
69.85 (6.16) 16 M / 36 F 13.39 (3.04) 634.37 (126.54) 96.92 (2.38) 

 

Table 1 Demographic data and mean RT and accuracy in the different groups. In all columns, numbers in 

parentheses show standard deviation.  

 

Implicit probabilistic sequence learning task 

We used the ASRT task (J. H. Howard, Jr. & Howard, 1997; Nemeth, Janacsek, Londe et al., 

2010) where a stimulus (a dog’s head) appeared in one of the four empty circles arranged in a 

line on a computer screen. The participants were instructed to respond to different stimulus 

events by pressing the corresponding response keys (Z, C, B or M) as fast and accurately as 

possible. The ASRT task consisted of 20 blocks with 85 key presses in each block. The first 

five responses of each stimulus block served for practice only, and then the eight-element 

alternating sequence (e.g., 1R2R3R4R) was repeated ten times within a block. Stimuli were 

presented 120 ms after the response to the previous stimulus. Between blocks, the participants 
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received feedback on the screen about their overall reaction time (RT) and accuracy. The 

computer program generated a different repeating ASRT sequence of the 4 locations for each 

participant using a permutation rule such that each of the six unique permutations of the 4 

repeating events occurred with equal probability. 

To determine the amount of explicit knowledge the subjects acquired about the task, a 

short questionnaire was administered after the experimental session (Song et al., 2007). This 

questionnaire included increasingly specific questions, such as “Have you noticed anything 

special regarding the task?”, “Have you noticed some regularity in the sequence of stimuli?”. 

The experimenter rated subjects’ answers on a 5-point scale where 1 denoted “Nothing 

noticed” and 5 denoted “Total awareness”. None of the participants, young or old, reported 

noticing the hidden repeating sequence. 

 

Statistical properties of the ASRT task 

As mentioned above, the ASRT allows a comparison between responses to high- and low-

probability events. For example, if the eight-element sequence is 1R2R3R4R, 1x2, 2x3, 3x4, 

and 4x1 would occur often (high frequency triplets) because two consecutive stimuli of the 

repeating sequence (e.g., 132 consisting 1R2) as well as two consecutive random elements by 

chance (e.g., the same 132 consisting R3R) could form these triplets. By contrast, 1x3 or 4x2 

would occur less frequently (low frequency triplets) because they could never be obtained 

consisting two consecutive sequence elements. Of the 64 possible triplets, sixteen triplets 

were high frequency triplets, occurring 62.5% of the time, whereas the remaining 48 triplets 

were low frequency triplets, occurring 37.5% of the time. Thus, each low frequency triplet 

occurred in approximately 0.8% of the total number of trials, whereas each high frequency 

triplet occurred about 5 times more often, in approximately 4% of the trials. For each keypress 

response, we defined whether it was in response to a high- or a low frequency element, 
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depending on whether the element was more or less predictable based on the previous two 

items in the sequence. 

Following the method of previous studies (D. V. Howard et al., 2004; Song et al., 

2007), two kinds of low frequency triplets were excluded from our analyses: repetitions (e.g., 

222, 333) and trills (e.g., 212, 343). Repetitions and trills were low frequency for all 

participants, and in previous studies, the participants often showed pre-existing response 

tendencies towards them (D. V. Howard et al., 2004; Soetens, Melis, & Notebaert, 2004). The 

elimination of these special triplets from the analyses ensured that the high versus low 

frequency differences found in the study were not confounded by pre-existing response 

tendencies. After this adjustment, previous studies have found that, following the practice, 

participants responded more quickly to the high than to the low frequency triplets, revealing a 

sequence learning effect (D. V. Howard et al., 2004; J. H. Howard, Jr. & Howard, 1997; 

Nemeth, Janacsek, Londe et al., 2010; Song et al., 2007). 

 

Statistical analysis 

We calculated the mean accuracy of all trials and the median reaction time (RT) of correct 

responses separately for high and low frequency triplets. The accuracy and RT measures were 

analyzed by mixed-model ANOVA with TRIPLET TYPE (high vs. low frequency) as the 

within-subject factor, and AGE (9 groups) as the between-subject factor. All significant 

results are reported together with the p
2 effect size and Greenhouse-Geisser ε correction 

factors where applicable. Post-hoc analysis was conducted by Fisher’s LSD pairwise 

comparisons. 

 

Results 

Overall RT’s significantly differed among the age groups (main effect of AGE: 

F(8,412)=107.11, p<0.001, p
2=0.675; Table 1). The RT decreased significantly between each 
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group from 4-6 to 18-29 years of age (all p’s<0.04), they were similar between the age groups 

of 18-29 and 30-44 (p>0.38) and significantly increased after 44 years of age (p’s<0.001) 

(Figure 1a). The accuracy monotonically increased over the years (main effect of AGE: 

F(8,412)=16.94, p<0.001, p
2=0.25) (Figure 1b). 

 The comparison of RT to high vs. low probability triplets showed a surprising pattern 

of implicit sequence learning across the age groups. Even though there was a significant 

learning at all ages because the RT’s were faster for high frequency than to low frequency 

triplets (main effect of TRIPLET TYPE: F(1,412)=333.7, p<0.001, p
2=0.45, all p’s <0.03) 

(Figure 1c), the magnitude of this difference was not uniform. Although the age groups 

differed significantly from each other in sequence learning (TRIPLET TYPE x AGE 

interaction: F(8,412)=6.79, p<0.001, p
2=0.12), the post-hoc test revealed that learning was 

significantly higher in the 4- to 12-year-old groups than in any other group in the 14-85 range 

(p’s<0.02). There was no difference in learning between the 14-59 years of age (p’s>0.37), 

whereas the magnitude of learning decreased significantly in the 60-85-year-old group 

(p’s<0.02). Thus, learning high probability events was uniformly effective until the age of 12 

where it reduced significantly and remained at a lower level of sensitivity until the age of 60 

(Figure 1c). 
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Figure 1. Sequence learning in all groups. Reaction time (A) and accuracy (B) for high and low frequency 

triplets are plotted. Learning measures of RT (C) and accuracy (D) represents the RT/ACC difference between 

low- and high-frequency triplets. Error bars indicate SEM. 

 

However, it is a long-standing issue in developmental and aging studies how to 

compare groups with different baseline speeds. A customary approach to this problem is to 

analyze the data using z-transformation. Therefore, we calculated the z-scores within each 

subject (thus, each participant's own mean and SD was used to transform that participant's 

data (see, for example, Christ, White, Mandernach, & Keys, 2001) and conducted an ANOVA 

based on these z-scores (Figure 2). ANOVA revealed significant sequence-specific learning 

(main effect of TRIPLET TYPE: F(1,412)=320.12, p<0.001, p
2=0.44), but the extent of 

learning differed across groups (TRIPLET TYPE x AGE interaction: F(8,412)=8.91, p<0.001, 

p
2=0.15). We found that the participants from 9 years of age showed similar extent of 

sequence learning as the adult groups to 44 years of age (all p’s>0.25), but the learning in 4-8 
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years of age was smaller compared to these adult groups (all p’s<0.014). At older ages, there 

was a decline in the sequence learning, with both the 45-59 and 60-85-year-old group 

differing significantly from the groups between the 11-44 years of age (all p’s<0.025). 

 

 

Figure 2. Sequence learning measured the z-transformed RT data in all groups. 

 

The analysis of the response accuracy further enhanced the picture emerging from the 

results with RTs. We found a significantly greater accuracy for high- than low-frequency 

triplets (main effect of TRIPLET TYPE: F(1,412)=217.14, p<0.001, p
2=0.345). Although all 

age groups older than 6 showed significant sequence learning (all p’s<0.011), the age groups 

differed significantly in the strength of the sequence learning (TRIPLET TYPE x AGE 

interaction: F(8,412)=3.73, p<0.001, p
2=0.07). Whereas groups between 7 and 44 years of 

age showed similar degrees of learning, this was significantly higher than the youngest (4-6) 

and the two oldest (45-59 and 60-85) groups (p’s<0.03) (Figure 1d).  
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Figure 3. Individual data for sequence learning measured by raw RT (A),accuracy (B), and z-scores (C) in all 

ages. 

 

Figure 3 shows the individual data for sequence learning measured by raw RT, 

accuracy and z-transformed RT data. The pattern of this data is consistent with the ANOVA 

results: 1) children between 4-12 years of age showed greater sequence learning as measured 

by raw RT, whereas 2) in sequence-specific learning as measured by accuracy and z-

transformed RTs adults exhibited the highest performance.  

 

Discussion 

The goal of the present study was to investigate the differences in implicit skill 

learning across the human life span. This work extends previous studies (Bennett et al., 2007; 

Gaillard et al., 2009; J. H. Howard, Jr. & Howard, 1997; Meulemans et al., 1998; Thomas et 

al., 2004) in two ways: 1) it examined a wide range of ages between 4-85 years, and 2) it used 

a probabilistic task, which enabled us to measure the “pure” sequence-specific learning 

defined by the sensitivity to raw probabilities of high and low frequency events. We found 

that the 4- to 12-year-old age groups showed the strongest learning effect measured by the 

raw RT difference scores. Around the age of 12, we found a striking transition to less 

pronounced sequence-specific learning, as measured by smaller differences between the 

responses to high and low frequency triplets. Confirming earlier results (D. V. Howard et al., 

2004; J. H. Howard, Jr. & Howard, 1997; Nemeth, Janacsek, Londe et al., 2010), we found 
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that this learning capacity was significantly reduced in the oldest age group. Thus, in contrast 

to the developmental invariance (Reber, 1993) and the age-related changes approaches 

(Meulemans et al., 1998; Vinter & Perruchet, 2000), our results demonstrate a gradual decline 

in learning across the lifespan. 

Sequence learning scores based on the accuracy and raw reaction time showed 

different curves: the former one is a bell-shaped curve, whereas the latter is a gradually 

declining curve (Figure 1c-d). Hence, these two types of learning scores can reflect different 

underlying mechanisms and brain systems. The accuracy learning score may be more related 

to attention, mainly voluntary attention, whereas the RT learning score may be related to 

involuntary attention and intuitive processes (Burgess, Gilbert, & Dumontheil, 2007; 

Prinzmetal, McCool, & Park, 2005). The relatively weaker accuracy learning effects in 

children and older groups may be due to the underdeveloped/deteriorating attentional brain 

circuits connected to the frontal lobe.  

Our study raised a methodological issue which affects the developmental studies in 

general. It is a long-standing issue in the literature how to compare groups with different 

baseline speeds. It could be argued that the youngest groups in our study have larger raw RT 

learning scores (more difference between high and low frequency triplets)  because they have 

more room to do so, given their longer RTs. However this argument does not seem to hold in 

our study, because the oldest group showed equally long RTs as 9-10 year-olds, yet they had a 

four-fold reduced learning score (Figure 1). Along a similar line of argument, the accuracy 

measures of the youngest group (4-6 year-olds) and the oldest groups (45-85 year-olds) 

showed a marked difference (~8%) in general accuracy, giving more room for the young 

group to produce larger differences between high and low frequency triplets, yet the actual 

sequence-learning (i.e. high-low differences in accuracy) showed no difference. In contrast, 

the two smallest age groups had almost identical general accuracy yet there was a more than 
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two-fold increase in sequence learning in the second youngest group (7-8 year-olds). Thus, 

our data suggests no linear relationship between the general magnitude of reaction 

time/accuracy and the learning measures.  

A second customary approach to the problem of comparing groups with different 

baseline speeds is to analyze the data using z-transformation. Z-scores of our results show a 

different picture than raw the RT data analysis: the learning performances from 9 to 44 years 

of age are similar with weaker performance in the younger and older age groups. The z-

transformation is often used to control general processing speed across different age groups in 

developmental studies. However, the main function of z-transformation is not to control the 

processing speed, but to normalize the distribution of responses. Thus, z-transformation has 

mathematical assumptions about the form of distributions and is therefore not theory 

independent (Yap, Balota, Sibley, & Ratcliff, in press). Z scoring fully adjusts for processing 

speed only if all participants have the same type of distributions. Therefore using z-scores in 

developmental studies might be misleading. Furthermore, it is unclear how general processing 

speed and variability contributes to learning and performance in different ages. In recent 

years, several studies analyzed the variability and noise across a wide age-range (Der & 

Deary, 2006; Hultsch, MacDonald, Hunter, Levy-Bencheton, & Strauss, 2000; Rabbitt, 

Osman, Moore, & Stollery, 2001). For example, Rabbitt et al. (2001) found that people’s 

fastest RT’s were relatively unaffected by age, but the number of unnecessarily slow 

responses was higher in older ages, and, thus, the increase in the mean RT was a result of 

increasing variability, which was an important component of cognitive aging. Moreover, 

several studies outline that the noise and the performance variability enables adaptive 

plasticity of motor skills (Slifkin & Newell, 1998, 1999; Turner & Brainard, 2007) and high 

variability can support effective learning and performance (Sanger, 2010). Thus, based on 

previous studies and on our analyses, we suggest that both the processing speed (mean 
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reaction time) and variability are inherent aspects of development and aging. We think that 

the z-transformation eliminates these inherent aspects of learning, making the transformed 

results difficult to understand and explain. 

Based on the reasoning above, we propose that, the raw RT difference between the 

high and low frequency triplets in the ASRT task is a measure of human sensitivity to the 

relative raw probabilities of events observed implicitly in their environment.  Thus, our results 

show a marked decrease in this sensitivity around the age of 12, which is in contrast to the 

traditional view of a steady improvement of cognitive learning abilities until late in adulthood 

(Craik & Bialystok, 2006). However, this discrepancy might be explained based on a shift in 

the structural development of implicit learning. Although the raw probabilities of the sensory 

environment are important for learning and both infants (Aslin, Saffran, & Newport, 1998; 

Fiser & Aslin, 2002; Saffran et al., 1996; Saffran, Johnson, Aslin, & Newport, 1999) and 

adults (Fiser & Aslin, 2001; Hunt & Aslin, 2001) are highly sensitive to them, there is an 

ongoing debate on how using these simple probabilities can lead to highly complex 

knowledge of the world, such as sensory invariances and development of a language (Gomez 

& Gerken, 1999; Marcus, Vijayan, Rao, & Vishton, 1999). Recent studies proposed that using 

an internally stored structured model of the world that emerges based on past experience 

together with probabilistic learning could help to address this issue and also provide evidence 

that humans might implement such a strategy during implicit learning (Orban, Fiser, Aslin, & 

Lengyel, 2008; Tenenbaum, Kemp, Griffiths, & Goodman, 2011). In this framework, as the 

internal model develops with experiences becoming more influential, internal interpretations 

of events become more elaborate and less directly related to their raw probabilities. A recent 

study argued that from a normative standpoint, existence of multiple learning mechanisms in 

the brain (cf. model-free vs. model-based learning) with an uncertainty–based arbitration 

between them would be computationally optimal (Daw et al., 2005).  Anchoring this 
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hypothesis biologically, the presumed mechanisms related to these two types of learning were 

suggested to be related to the prefrontal areas and temporal lobe of the cortex, respectively 

(Daw et al., 2005). Support for the separated and complementary nature of the prefrontal- and 

medial temporal lobe (MTL)-dependent learning based on internal models vs. basal ganglia-

dependent model-free learning comes from various studies investigating learning under 

specific conditions. These studies showed that obstructing the PFC and/or MTL by a 

demanding secondary task (Foerde, Knowlton, & Poldrack, 2006) do not adversely affect 

implicit learning. Other studies found that inserting a task between the learning sessions 

(Brown & Robertson, 2007a, 2007b), performing a working memory and an implicit learning 

task simultaneously (Filoteo, Lauritzen, & Maddox, 2010), or a neuropharmacological 

blockage (Frank, O'Reilly, & Curran, 2006) even had a positive effect on performance in 

implicit learning task. Importantly, it is known that the cortical areas connected to the internal 

models related to model-based learning become truly functional late in the development, 

around age of 12 (Blakemore & Choudhury, 2006; Giedd, et al., 1999), which is about the age 

when we found the sudden decrement in sensitivity to the relative raw probabilities.  We 

propose, that this enhanced functionality signals the shift when the system adapts efficiently 

to more complex aspects of the world by relying more on internal model-based 

interpretations, while somewhat neglecting the raw probabilities of the sensory input (Figure 

4a-b), and therefore, decreasing the ability to develop and stabilize fundamentally new basic 

competences. Thus the seemingly paradoxical result of gradually becoming less sensitive to 

basic statistics, if timed appropriately, could be the optimal strategy for human implicit 

learning in general. 
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Figure 4. Competition between model-based and model-free neurocognitive subsystems of skill learning across 

lifespan. (A) Before adolescence, underdeveloped internal models (dashed boundary) have little influence on 

interpretations of detected raw statistical probabilities of events in the environment (dashed arrows). Skill 

learning performance is determined by raw probabilities. (B) From adolescence to late adulthood, well-

developed internal models (solid boundary) strongly modulate the interpretations of observed statistics of the 

input. This helps extracting complex relations but relatively impairs measuring and utilizing raw probabilities in 

skill learning (dotted arrow). (C) In older ages, skill learning performance decreases. This decline could be 

caused by the combination of reduced sensitivity to raw statistical probabilities (dashed boundary), increasingly 

rigid internal models (dashed boundary) and/or weaker connection between these systems (dashed arrows).  



 20 

 

Our results did not reveal any differences between the young adults and middle-age 

groups. Salthouse’s (1996) “simultaneity mechanism” theory of cognitive aging predicts the 

age-related deficits in probabilistic sequence learning (Curran, 1997; J. H. Howard, Jr. & 

Howard, 1997). Feeney, Howard & Howard (2002) found age-related deficits in pattern 

sensitivity in “older” (mean age: 49.4) compared with “younger” (mean age: 41.4) middle-

aged groups. These different results could be related to that Feeney used a smaller sample 

size, a longer version of the ASRT and different method of analysis. 

What are the underlying mechanisms of the decreased performance of the elderly 

group? In a recent fMRI study, Dennis and Cabeza (in press) showed that older adults 

recruited the MTL for implicit learning, and this activation was significantly greater, while 

striatal activity decreased in older people compared with young adults during implicit 

learning. In a recent study, Rieckmann, Fisher & Backman (2010) found similar results: in 

young adults during the learning session, the activation of the striatum increased, but the that 

of MTL decreased. By contrast, in older adults, sequence learning positively related to 

activation increases in both the striatum and MTL. Using multimodal imaging measures, 

Giorgo et al. (2010) found extensive reductions in the gray matter volume in aging, but 

reductions were detected earlier in the frontal cortex. Furthermore, a recent diffusion tensor 

imaging aging study by Bennett et al. (in press) found that the caudate–dorsolateral prefrontal 

cortex (DLPFC) and hippocampus-DLPFC tract integrity were related to ASRT sequence 

learning. The caudate-DLPFC tract integrity decreased in the older ages, mediating age-

related differences in sequence learning. Within the computational framework proposed by 

Daw and collegues (2005), these findings can be interpreted as a deterioration in three 

mechanisms that contribute to the age-related decline in skill learning: 1) reduced detection of 

probabilities, 2) rigidity of internal models and/or 3) more restricted connections between 
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internal models and probability detection (Figure 4c). Thus, not only the model-free, but also 

the model-based learning, might be limited in older ages. Future studies are needed to 

systematically examine the underlying neural mechanisms of age-related differences in skill 

learning. 

In summary, based on our raw RT results we suggest that acquiring fundamentally 

new skills that cannot be derived from skills already possessed is the most effective before 

adolescence, and it might be largely based on the fronto-striatal circuitry, such as the basal 

ganglia and cerebellum, in agreement with earlier skill learning models (Doyon et al., 2009; 

Hikosaka et al., 1999; Hikosaka et al., 2002) and computational learning models (Daw et al., 

2005). Our findings are in good agreement with everyday life experience showing that an 

early (~ before 12 years) start of learning some sports, music instruments, second language, 

etc. often leads to higher level of competence. These results may have implications for the 

development of learning and memory, facilitating new skill training and pedagogic methods 

(e.g., for teaching languages) and may also contribute to the understanding of 

neurodevelopmental and age-related disorders (e.g., autism, SLI, dyslexia and dementia) and 

lead to relevant treatment options. 
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