
Interference between Sentence Processing and
Probabilistic Implicit Sequence Learning
Dezso Nemeth1*., Karolina Janacsek1., Gabor Csifcsak1., Gabor Szvoboda1., James H. Howard Jr.2,3.,

Darlene V. Howard3.

1 Institute of Psychology, University of Szeged, Szeged, Hungary, 2 Department of Psychology, The Catholic University of America, Washington, D. C., United States of

America, 3 Department of Psychology, Georgetown University, Washington, D. C., United States of America

Abstract

Background: During sentence processing we decode the sequential combination of words, phrases or sentences according
to previously learned rules. The computational mechanisms and neural correlates of these rules are still much debated.
Other key issue is whether sentence processing solely relies on language-specific mechanisms or is it also governed by
domain-general principles.

Methodology/Principal Findings: In the present study, we investigated the relationship between sentence processing and
implicit sequence learning in a dual-task paradigm in which the primary task was a non-linguistic task (Alternating Serial
Reaction Time Task for measuring probabilistic implicit sequence learning), while the secondary task were a sentence
comprehension task relying on syntactic processing. We used two control conditions: a non-linguistic one (math condition)
and a linguistic task (word processing task). Here we show that the sentence processing interfered with the probabilistic
implicit sequence learning task, while the other two tasks did not produce a similar effect.

Conclusions/Significance: Our findings suggest that operations during sentence processing utilize resources underlying
non-domain-specific probabilistic procedural learning. Furthermore, it provides a bridge between two competitive
frameworks of language processing. It appears that procedural and statistical models of language are not mutually
exclusive, particularly for sentence processing. These results show that the implicit procedural system is engaged in
sentence processing, but on a mechanism level, language might still be based on statistical computations.

Citation: Nemeth D, Janacsek K, Csifcsak G, Szvoboda G, Howard JH Jr, et al. (2011) Interference between Sentence Processing and Probabilistic Implicit
Sequence Learning. PLoS ONE 6(3): e17577. doi:10.1371/journal.pone.0017577

Editor: Matjaz Perc, University of Maribor, Slovenia

Received October 9, 2010; Accepted February 9, 2011; Published March 8, 2011

Copyright: � 2011 Nemeth et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors are grateful to the Hungarian Scientific Research Fund (OTKA K82068) and Bolyai Scholarship Program for supporting their work. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: nemethd@edpsy.u-szeged.hu

. These authors contributed equally to this work.

Introduction

Sentence processing works in a fast, automatic and unconscious

way. It is widely accepted that during syntactic processing we

decode the sequential and hierarchical combination of words,

phrases or sentences according to previously learned and well-

established rules. These rules, even if they exist, are represented in

the mental grammar, the computational mechanisms and neural

correlates of which are still much debated in the literature [1,2].

Other key issue in neurolinguistic research is whether sentence

processing solely relies on language-specific structures and

mechanisms or is it also governed by domain-general computa-

tional principles [3,4,5]. We are trying to build a bridge between

frameworks of sentence processing in order to find the ‘secret

ingredient’ of this fundamental human skill.

There are two competing theoretical frameworks regarding the

neural underpinnings of language capacities in the human brain.

‘‘Dual-system’’ theories attribute distinct, specialized and innate

cognitive and neural components to the mental grammar and the

mental lexicon respectively [6,7,8,9,10,11]. According to one such

dualistic model, the mental lexicon relies on the declarative

memory system, while the mental grammar is subserved by

structures involved in procedural memory [12]. The procedural

memory system is responsible for gradual, implicit (non-conscious)

learning and controlling motor and cognitive ‘skills’ and ‘habits’,

especially those involving rules or sequences, such as riding a

bicycle or using tools and other manipulated objects [13,14,15].

This system is rooted in frontal lobe/basal-ganglia circuits, in

particular premotor regions, Broca’s area and the caudate nucleus.

It also encompasses other structures, including portions of superior

temporal cortex and the cerebellum [12].

In contrast, ‘‘single-system’’ theories posit that words and

grammatical rules are learned and utilized by a single non-

language-specific system with a broad anatomical distribution

[16,17,18,19]. According to this view, grammatical rules are only

descriptive entities; during actual language acquisition we learn the

entire statistical structure of the language. Modern connectionist

theories argue that learning, representation, and processing of
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grammatical rules and lexical items are the product of a network,

which consists of a large number of simple inter-connected

processing units, the connections of which are continuously

adjusted on the basis of statistical contingencies in the environment

[16,18,19]. In a recent paper, Conway and colleagues [20]

provided evidence that speech perception is related to statistical

learning. The statistical learning theory of language has been used

to explain mechanisms of constructive grammar [21], language

development [22,23] and is also supported by studies of artificial

language learning [24,25,26].

Thus, whereas dual-system theories link syntactic processing

primarily to frontal brain regions and procedural memory, single-

system theories suggest that grammar appears as the result of

general statistical computations within a widespread neural

network in the brain. Although implicit/procedural and statistical

learning models offer apparently different interpretations for

mental processes, a recent theoretical paper highlighted the

similarities between the two principles and suggested that they

are closely related [27]. The goal of the experiment reported here

was to test whether sentence processing relies on general (non-

linguistic) statistical computations supporting procedural learning.

During the past decade, new experimental paradigms emerged

which successfully address both procedural and statistical motor

learning. The Alternating Serial Reaction Time (ASRT) task

[28,29] was developed within the context of classical procedural-

learning tests, the finger-tapping task and the Serial Reaction Time

(SRT) task. Finger-tapping and SRT tasks involve both general skill

and sequence-specific learning and they test basal ganglia and

cerebellar functions [30,31,32]. The advantage of the ASRT task is

that it enables separate parallel assessment of sequence-specific and

general skill learning. In the classical SRT task, the structure of a

sequence is deterministic with the stimuli following a simple

cyclically repeating pattern (e.g. 213412134121341213412…,

where numbers refer to distinct events within the repeating 21341

pattern). In contrast, repeating events alternate with random

elements in the ASRT task. This means that the location of every

second stimulus on the screen is determined randomly. If, for

instance, the sequence is 1234, where the numbers represent

locations on the screen, in the ASRT task the sequence of stimuli

will be 1R2R3R4R, with ‘R’ representing a random element.

Because fixed, sequence-specific and random stimuli are alternat-

ing, some sequences of three events (called ‘triplets’) occur more

frequently than others. For example, in the above illustration 162,

263, 364 and 461 would occur often, whereas 163 or 462 would

occur infrequently. Following previous studies, we refer to the

former as high-frequency triplets and the latter as low-frequency triplets

[29,33]. In a typical ASRT task, participants are instructed to

respond to different stimulus events (e.g., the same image appearing

in one of four possible locations on the screen) by pressing different

response keys (e.g., a separate letter on a keyboard assigned to each

of the four image locations) as fast and accurately as they can.

Earlier results have shown that as people practice the ASRT task,

they respond more quickly to the high- than low-frequency triplets

revealing probabilistic, sequence-specific learning [28,29]. This

learning is statistical in nature, because it depends on the frequency

of the event sequences. In addition, the process is entirely implicit, as

participants do not recognize the alternating structure of the

sequences even after extended practice or when sensitive recogni-

tion tests are used to assess explicit knowledge [28,29].

In the present study, we investigated the relationship between

sentence processing and implicit sequence learning in a dual-task

paradigm in which one task was a non-linguistic task (ASRT for

measuring probabilistic implicit sequence learning), while others

were a sentence comprehension task relying on syntactic

processing and two control conditions. The majority of previous

works on the relationship between language functions and the

declarative/procedural system were based on manipulating

regular and irregular forms of words [12]. Given that these tasks

are not sensitive to other linguistic rules, such as word order,

embedded structures etc., we used the comprehension of complex

sentences, which we considered a more sensitive marker of

grammatical processing. We selected two control conditions: a

non-linguistic one (math condition) and a linguistic task (word

processing task) where grammatical computations were not

required, only the utilization of the mental lexicon. Since the

ASRT task relies both on the procedural system and on statistical

computations, we hypothesized that implicit sequence-specific

learning would be attenuated by simultaneous sentence compre-

hension if the two tasks engage the same neurocognitive system(s).

Finding interference would serve as direct evidence that operations

for sentence processing depend on statistical computations of non-

linguistic nature.

Methods

Ethics Statement
Ethics approval was obtained by Psychology Ethics Committee

at University of Szeged, Institute of Psychology. All subjects

provided signed informed consent agreements and received no

financial compensation for their participation.

Participants
Twenty-six students between 21 and 25 years (average age:

22.54, SD: 1.17; 4 male/22 female) from the University of Szeged

participated in the study. Subjects did not suffer from any

developmental, psychiatric or neurological disorders.

Procedure
A dual-task paradigm [34,35,36,37] was designed during which

our subjects were instructed to perform the ASRT and a parallel

task simultaneously (DT condition). Three types of parallel tasks

were used: (1) sentence comprehension, (2) word recognition and

(3) mathematical addition. Investigating the interference between

sentence comprehension and procedural learning was the primary

goal of the study, whereas the other two parallel tasks served as

linguistic (word recognition) and non-linguistic (mathematical

addition) control tasks. While both the sentence comprehension

and word recognition tasks require access to the mental lexicon,

mental grammar is only utilized by sentence comprehension. We

used a within subject design with every subject performing all

three parallel tasks, but with a different order. The subjects had a

5–10 minute-long rest between the different sessions. During these

breaks, we collected demographic data (age, years of education,

etc.). In order to objectively compare the degree of implicit

learning in the three dual task sessions, we inserted three single

task (ST) probe blocks (blocks 1, 8 and 15) during which the ASRT

was the only task to perform (Figure 1).

Tasks
Alternating Serial Reaction Time (ASRT) Task. We used

a modification of the original ASRT task [33] in which a visual

stimulus (a dog’s head) appeared in one of the four empty circles

on the screen and subjects had to press a key that corresponded to

the actual spatial location (see Figure 1).

E-prime 1.2 was used for stimulus presentation and data

collection. The computer was equipped with a special keyboard

with four heightened keys (Y, C, B and M in the standard

Hungarian IBM PC keyboard; the letter Y corresponds to the

Sentence Processing and Sequence Learning
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letter Z on standard English keyboards), each corresponding to

one of the circles in left to right order. Before beginning the

experiment, detailed instructions appeared on the screen. We

emphasized that the aim was to try to respond as quickly and as

correctly as possible.

The ASRT consisted of 15 blocks, with 85 key presses in each

block: the first five stimuli were random events for practice

purposes, after which an eight-element alternating sequence (e.g.

1R2R3R4R) repeated ten times. In order to objectively assess the

degree of sequence-specific and general skill learning during the

sessions, we inserted three probe blocks (blocks 1, 8 and 15), where

no parallel task was present. Following Howard and Howard [28],

stimuli were presented 120 ms after the previous motor response.

As one block took about 1.5 minutes, each session with different

DT conditions lasted approximately 30–35 minutes. Between

stimulus blocks, the participants received feedback on the screen

about their overall reaction time and accuracy. They could then

rest for maximum 20 seconds before starting a new block.

For each subject, three different ASRT sequences (A: 1r3r2r4r;

B: 4r3r1r2r; C:2r3r4r1r) were used for every session, and the

occurrence of the different sequences was balanced across subjects

and parallel tasks as well. Consequently, every sequence was used

in all three DT conditions, but for different subjects.

To explore how much explicit knowledge subjects acquired

about the sequence learning task, we administered a short

questionnaire [29] after the experimental session. This question-

naire included specific questions such as ‘‘Have you noticed

anything special regarding the task?’’ or ‘‘Have you noticed some

regularity in the sequence of stimuli?’’. The experimenter rated

subjects’ answers on a 5-item scale, where 1 corresponded to

‘‘Nothing noticed’’ and 5 to ‘‘Total awareness’’. None of the

subjects reported noticing the sequence in the ASRT task.

Parallel tasks. Every parallel task was presented in the

auditory modality during the execution of the ASRT task in such

a way that the parallel task items were read out loud by the

experimenters and the subjects had to give a yes/no answer to each

one. Participants were told to answer aloud as fast and accurately as

possible after the actual task (word list, addition or sentence) was

presented. The experimenter registered the answers and monitored

continuously if participants followed the instructions.

Sentence processing (Sentence condition) - The subjects were

instructed to listen to sentences and to decide after each one

whether they were correct or not. Five to nine sentences were

presented per ASRT block. Every sentence contained 6 words

with half of the sentences being incorrect containing one of the

following three error types: semantic, pragmatic or syntactic.

Although we chose an error detection task to keep our subjects’

attention focused on the task, the main emphasis was on overall

sentence processing and not on error detection per se.

Word recognition (Word condition) - In the word processing

condition the subject had to recognize words in lists containing 6

items. In order to control attention, the subjects had to decide if

the list contained a non-word item that occurred at each position

within a list with equal probability. Five to nine word lists were

presented per ASRT block. Half of the lists contained a non-word,

half of them did not.

Mathematical addition (Math condition) - The subject were

presented with an addition of five items and the possible result (e.g.

4+9+2+1+3 = 19) after which they had to decide whether the result

was correct or not. Similarly to the other two conditions, five to

nine additions were presented per ASRT block. Half of the

additions were correct, half were not.

Each list contained 6 items (words in the sentence comprehen-

sion or word recognition tasks and numbers in the math condition)

in order to avoid varying working memory loads. In addition, we

asked all subjects to name the most difficult parallel task at the end

of the experiment.

Statistical analysis
Both sequence-specific and general skill learning were evaluated

by parameters obtained in the single task probe blocks of the

ASRT. Sequence-specific learning was calculated by comparing

RTs obtained for high- and low-frequency triplets, whereas

general skill learning was determined by comparing RTs between

Figure 1. Schematic design of the experiment. The presentation order of the conditions was counterbalanced between subjects. In the ASRT
task blocks 1, 8 and 15 were single task (ST) blocks without parallel task, whereas in other blocks (2–7; 9–14) our subjects had to perform one of the
three parallel tasks as well (DT condition).
doi:10.1371/journal.pone.0017577.g001
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the three probe blocks, regardless of triplet frequency. As expected

[33], participants’ accuracy was very high in the probe blocks

(mean value .97% for all groups), so we focused on reaction time

(RT) analysis. All significant results are reported together with the

Greenhouse-Geisser e correction factors, where applicable.

Results

RT data were entered into a repeated-measures ANOVA, with

TRIPLETS (high vs. low frequency), PROBE BLOCKS (blocks 1,

8 and 15) and CONDITIONS (sentence, word and math) as

within-subject factors. The main question of the study was

answered by the presence or absence of interaction between the

CONDITION factor and one or both of general and sequence-

specific skill learning.

Repeated-measures ANOVA revealed sequence-specific learning

(indicated by a significant main effect of TRIPLET: F(1,25) = 11.59,

MSE = 224.21, p = 0.002, gp
2 = 0.32), and general skill learning

as well (indicated by a significant main effect of PROBE

BLOCK: F(2,24) = 14.87, MSE = 639.95, p,0.001, gp
2 = 0.55).

The CONDITION6TRIPLET interaction was also significant

(F(2,24) = 3.56, MSE = 190.01, p = 0.044, gp
2 = 0.23), suggesting

that sequence-specific learning differed between the three dual task

conditions (see Figure 2A). General skill learning was not affected by

the dual task conditions (CONDITION6BLOCK interaction:

F(4,100) = 1.61, MSE = 1035.65, p = 0.18, gp
2 = 0.06). Other

interactions regarding the probe block data were not significant,

nor was the main effect of CONDITION, suggesting that the

overall RTs did not differ across conditions. Subsequent ANOVAs

conducted separately for all dual task conditions revealed significant

sequence-specific learning in both the word and math conditions

(main effect of TRIPLET: F(1,25) = 13.85, MSE = 158.66, p =

0.001, gp
2 = 0.36; F(1,25) = 5.86, MSE = 247.67, p = 0.02,

gp
2 = 0.19, respectively), whereas it was not significant in the

sentence condition (F(1,25) = 0.06, MSE = 197.90, p = 0.82,

gp
2 = 0.002).

Error rates of the parallel task (Figure 2B) measured during the

dual task conditions were significantly higher in the math

condition (Mean: 10, SD = 5.95) than in the sentence compre-

hension (Mean = 6.08, SD = 3.84; p = 0.001) and word processing

condition (Mean = 3.04, SD = 1.99; p,0.001), and word and

sentence conditions differed from each other as well (p = 0.01).

Figure 2. A) Mean RTs of sequence-specific learning (difference between high and low frequency triplets) in probe blocks of the ASRT task for all dual
task conditions. There was significant sequence-specific learning in the Word and Math condition, but no learning in the Sentence condition. B) Error
rates in parallel task during dual task. There were significantly more errors in the Math condition than in the other two conditions. C) Mean RTs in dual
task blocks of the ASRT for all dual task conditions. The Math condition was the most difficult: the RTs differed significantly from the Word and Sentence
conditions, while the latter two did not differ significantly from each other. D) Mean accuracy (ACC) in dual task blocks of the ASRT for all dual task
conditions. The Math condition was the most difficult: participants were less accurate in the Math condition than in the Sentence condition, while the
Word-Math and Word-Sentence conditions did not differ significantly from each other. Error bars indicate standard errors of the mean (SEM).
doi:10.1371/journal.pone.0017577.g002
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Mean overall RTs during the dual task blocks of the ASRT

(Figure 2C) were significantly longer in the math condition

(Mean = 447.22, SD = 55.54) than in the sentence comprehension

(Mean = 421.71, SD = 39; p = 0.01) and word processing tasks

(Mean = 414.71, SD = 49.41; p = 0.03), while we found no

differences between the sentence and word conditions (p = 0.34).

Moreover, mean accuracy during the dual task blocks of the

ASRT (Figure 2D) was significantly lower in the math condition

(Mean = 95.8, SD = 4.05) than in the sentence condition

(Mean = 96.8, SD = 2.45; p = 0.04), while we found no differences

between sentence-word (p = 0.35), and word-math conditions

(p = 0.14). Finally, subjects’ reports unanimously confirmed that

the math condition was the most difficult. These results indicate

that the modulation of sequence-specific learning was primarily

affected by the nature of the parallel task and its underlying neural

structures, and not by the difficulty of the parallel task itself.

Discussion

In our study we found both general skill and sequence specific

learning across tasks, however, we also found a clear dissociation -

the sentence processing task diminished probabilistic implicit

sequence learning, while the other two tasks did not produce a

similar effect. This interference was not due to the complexity or

relative difficulty of the parallel tasks, because (1) error rates of the

parallel tasks were significantly higher in the math condition than

for the linguistic tasks, (2) participants were significantly slower and

less accurate in this math condition and (3) subjective reports

confirmed that the math task was the most difficult.

The ASRT task is classically considered as an implicit motor

learning task that depends on the procedural memory system [29].

The interference between the ASRT task and sentence processing

but not word recognition partly supports the declarative/

procedural model of language functions, according to which the

mental grammar but not the lexicon engages the procedural

system [12,38]. The most important aspect of this study however,

is that it goes beyond the classification of sentence processing as a

procedural process. Sequence-specific learning in the ASRT task is

based on unconscious detection of the conditional probabilities

within the stimulus sequence as reflected in the high- and low-

frequency triplets [39].

Several theories emphasized the highly probabilistic nature of

language, which might indeed be linked to domain-general

processes, such as statistical learning [5,22,26]. Artificial language

learning is perhaps the most popular paradigm in this field, but to

our knowledge, this is the first study demonstrating a link between

language processing and a clearly non-linguistic probabilistic

learning task (i.e. the ASRT task). Since the ASRT task shares

features with both procedural and statistical learning, its

interference with sentence processing might explain why syntactic

processing has been previously associated with both types of

learning. However more investigations with more language control

conditions are needed to find out exactly which aspect of sentence

processing interferes with probabilistic sequence learning.

Another interesting aspect of our results is that implicit sequence

learning in the ASRT task is related to the motor system

[30,31,32], which supports the motor theory of language [40] and

might contribute to the evolutionary interpretations of language

development [4].

In summary, we found that operations for sentence processing

utilize resources underlying non-domain-specific probabilistic

procedural learning in the human brain. Our study provides a

bridge between two competitive frameworks of language process-

ing. It appears that procedural/statistical models of language

processing are not mutually exclusive, particularly for sentence

processing. The implicit procedural system is crucial for sentence

processing, but on a mechanism level, language might still be

based on statistical computations.
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