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Abstract  A convenient approach to employ an elliptic load-deformation elastoplastic 

approximation has been proposed and used to evaluate the mechanical behavior of pinewood biofuel 

pellets from lab-scale compressive load-deformation measurements. Verification of model predictions 

has been attempted against apparent finite element method based simulations. A database of essential 
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study the deformation and breakage behavior using lab-scale compression tests. 
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1. Introduction and scope

Woody materials are a key contributor to solid biofuels. For instance, 46% of the total bio-based

energy supply in 2014’s Sweden can be attributed to wood fuels alone (Swedish Energy Agency, 2015). 

Woody biomass can be converted into pellets to facilitate ease in handling, to improve product 

performance and to minimize material loss. With the current global demand for woody biofuel pellets 

(Whittaker and Shield, 2017) and the potential future requirements (for instance, the recent note from 

Börjesson et al., 2017 predicting forest biomass demand for energy purposes to rise up to approximately 

62-70 ± 35 TWh/a by 2050 from today’s demand (de Jong et al., 2017) of 20 TWh/a in aid of one of 

European Union’s key objectives (EC Communication from EU Parliament, 2017) for 2050), the industry 

has and continues to constantly strive towards – meeting supply demands, delivering consistent 

improvements in manufacturing and in assuring uncompromising product quality.  

Such a demanding challenge has thus far been approached at the expense of 

enormous material, equipment, and personnel resources; especially in endeavors impacting 

equipment design, process design, scale-up/down, optimization and trouble-shooting of unit 

operations such as screw-conveying and silo-filling/discharge. Utilizing computational simulations can 

be immensely beneficial as they offer the potential to aid such needs with significantly lesser 

investments of material, personnel and time resources. 

Albeit, generating representative dynamics and kinematics of bulk materials in unit operations 

(be it considering only solid-solid or also solid-fluid interactions) has been a grand challenge in every 

industrial product genre. This may be attributed to the fact that simulations’ accuracy depends primarily 

on – (a) the contact model chosen to illustrate realistic physics of discrete contacts in the bulk system, 

and (b) the distribution of geometries, material and mechanical properties assigned to the discrete 

components of the bulk system. With literature as of today, one can find physics-intricate contact 

models (which may be computationally expensive), as well as studies employing computationally less 
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expensive contact models (which may exclude certain aspects of contact physics) yet satisfactorily, 

mimic system behavior in a unit operation. Ultimately, the choice of an appropriate contact model may 

be meaningfully ascertained, only when a holistic understanding of the contact behavior of specimens is 

established; which may be done by evaluating the mechanical behavior of single specimens in 

convenient lab-scale tests such as compression or drop tests.  

Therefore, to employ computational simulations as an integral option in designing and 

optimizing industrial processes involving biofuel wood pellets, as a first step – material mechanics need 

to be established. As of today, besides the contributions (Li and Liu, 2000; Temmerman et al., 2006; 

Bradfield and Levi, 1984; Chen et al., 1989; Kaliyan and Morey, 2009; Samuelsson et al., 2012: Larsson et 

al., 2013, Larsson and Samuelsson, 2017; Oveisi et al., 2013), where influences of physical and material 

properties on the resistance to deformation/breakage in terms of durability have been recorded, there 

exists no literature treating the constitutive properties. The authors attempt to address the need in this 

communication. 

2. Proposed modeling approach

As biofuel wood pellets in their original fresh state resemble inhomogeneous, non-

isotropic solids that exhibit a non-linear rate of reduction in porosity and densification prior to 

volumetric elastic deformation, a comprehensive solid mechanics modeling approach from origin until 

structural collapse by cracking may be inappropriate. This can be noted from a typical load-deformation 

plot (see Figure 1) constructed with data measured in a uniaxial compression test; for reference to 

detailed fundamentals for generating load-deformation plots from raw measurements, one may turn 

to Johnson (1985). Each pellet begins by deforming with: (i) an initial deformation phase O-O’ 

indicating a certain soft 
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densification1, followed by (ii) a piecewise linear elastic deformation phase until reaching a point 

of maximum stress Y that initiates plastic yielding, followed by (iii) a piecewise non-linear 

plastic deformation phase that extends until (iv) breakage B of the pellet.  

Figure 1: Characteristic load-deformation behavior illustrative of all samples. The presented data is of a 

single pellet chosen from sample class PPT 45 (Table 1). 

Although the material’s structural transformation through each of these phases is continuous, 

the transition between phases i.e. points O’, Y and B can be approximated from the change of gradients 

in the load-deformation data. The initial volumetric densification (phase i) is merely a cumulative 

response of rearrangement of loosely packed primary particles, void-filling leading to textural 

densification; all dependent on the material’s structural inhomogeneity and would be meaningless to be 

modeled. 

At the end of the phase (i), one may consider the pellet to have reached a solid textural state. 

Assuming the pellet at this stage to be homogenous and isotropic with deformable contacts, the contact 

deformation may be modeled and the strain-dependent evolution of contact properties may be 

determined using an elliptic load-deformation estimation of elastoplasticity assuming a constant 

resistance to transverse strain. 

The elastic stiffness k can be approached as secant stiffness by determining the first spatial 

derivative of the contact force according to  
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where fY and δY respectively refer to the maximum elastic contact force and displacement at point Y. 

1in the direction of the principal strain path. 
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The modulus of elasticity E can be derived from the elastic stiffness as 

    , (2) 

where l0 and A0 refer to the initial sample length and initial contact area respectively. 

The deformation work done i.e. the strain energy absorbed until yielding WY and until breakage, WB can 

be directly calculated as 
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and as 
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respectively; where fB and δB respectively refer to the maximum contact force and deformation at point 

B. 

On one hand, Eqs. (1) and (2) remain valid at all conditions irrespective of the system’s strain 

rate i.e. can be used to map the stiffness, both when the material remains static to quasi-static 

(e.g. during storage in a silo) as well as when in motion at high velocities (e.g. during conveying by a 

conveyor belt). On the other hand, Eqs. (3) and (4) that hold good within static and quasi-static 

conditions, may lead to underestimations when predicting the same at dynamic conditions (due to 

several reasons elaborated in Russell et al., 2015). This non-equivalency remains since dynamic 

stressing events are characterized by a strain rate c.a. 105 to 106 times that of quasi-static events 

(Russell et al., 2014).  

Nevertheless, by assuming that all the kinetic energy of a (moving) pellet colliding on a 

rigid surface (at rest) is spent in crack generation, one can predict the collision velocity required to 

generate the same strain energy initiating plastic yielding and breakage (equivalent to that at static 

stressing i.e. Eqs. (3) and (4)) as 
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respectively; where mp is the pellet mass and vY and vB are the predicted collision velocities. 

3. Materials and Methods

3.1. Test material 

The pellets utilized in this study were produced at the Biomass Technology Centre, Umeå, 

Sweden, according to an experimental design and procedures which are fully described in Larsson and 

Samuelsson (2017). Sample batches were taken at selective intervals from an 18 ton storage pile made 

of Scots pine (Pinus sylvestris L.) sawdust which was plane dried, hammer milled, moisture content 

adjusted, conditioned by steam, and subsequently pelletized in a ring die pelletizer to cover a full 

factorial design of four different storage times, three levels of feedstock moisture content, and two 

steam conditioning levels. Pellets from 16 of these pellet assortments were chosen as model test 

materials for this study. Repeated sampling was performed during pellet production (three, 1 minute 

long sampling periods) and allowed to cool down in open air. The three samples from each batch were 

mixed and then reduced, using a riffle box sample divider, to a small enough sample to provide 20 

pellets with a length > 4.5 mm. The chosen pellets were cut to equal length with a Japanese saw (Malco 

Razorsaw 180) with a blade thickness of 0.3 mm and a tooth distance of 1.5 mm. All pellets resembled a 

cylindrical shape with a mean diameter d0 ≈ 8.08 mm and a mean length l0 ≈ 4.5 mm. Table 1 

summarizes the key information presumed most relevant for this study. The pellet length (which was 

shorter than the general 20-30 mm length of commercial pellets) was restricted by the length of the 
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pellets of the lower quality assortments. For these assortments, the maximum obtained pellet 

length was 4.5 mm. Consequently, compression tests for all of the assortments were performed on 

pellets of this length. 

Table 1: Summary of production settings and resulting physical and mechanical properties of the pellet 

samples. 

3.2. Experimental test method 

Single pellets were tested by uniaxial quasi-static compression using an Instron 3366 strength 

tester (Figure 2). Each pellet was placed on its curved surface on the lower punch and the upper punch 

was brought in contact with the pellet such that a punch-pellet-punch contact was obtained, from 

whereon the pellet was laterally compressed at a displacement-controlled rate of approximately 0.002 

mm/s until its breakage. To achieve representative results, 20 single pellets were tested from each of 

the 16 pellet assortments. 

Figure 2: Single pellet uniaxial compression setup. 

3.3. Simulation model 
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A three-dimensional finite element method model was constructed and solved to simulate the 

experimental behavior using SOLIDWORKS® (Student edition, Academic year 2016-2017). Geometries 

were constructed based on the experimental set-up, material properties of the steel punches were 

taken from the software’s in-built material library, material properties of the pellets were taken from 

literature, physics-controlled meshing was performed, materials were assigned as linear elastic, and the 

model was solved for static conditions; all details are summarized in Table 2. The simulations were 

observed in terms of the von-Mises stress at three points – (a) prior stressing, (b) at origin of 

plastic yielding and (c) at instant of breakage initiation, for sample set PPT36 (chosen with the 

intention to consider one with water content relatively on the lower side, Table 1). 

Table 2: Summary of the simulation model details. 

3. Results and Discussion

4.1. Model-based mechanical properties

Figure 3 presents log-normal distributions of the elastic stiffness of samples (acc. to Eq. (1)). One

may note that the modulus of elasticity (acc. to. Eq. (2)) will also follow identical trends as it is merely a 

measure of the same altered by a certain constant. Figure 4 and Figure 5 present log-normal 

distributions of the collision velocity required to initiate plastic yielding and breakage of the pellet (acc. 

to Eqs. (5) and (6)) respectively. The evaluated properties have also been presented as mean values in 

the Appendix (Table A). 

Figure 3: Log-normal distributions of the elastic stiffness of samples showing influences of (a) pre-

manufacturing sawdust storage time, (b) manufacturing steam rate and (c) feedstock moisture 

content. 
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Figure 4: Log-normal distributions of the collision velocities required to initiate yielding in samples showing 

influences of (a) pre-manufacturing sawdust storage time, (b) manufacturing steam rate and (c) 

feedstock moisture content. 

Figure 5: Log-normal distributions of the collision velocities required to initiate breakage in samples showing 

influences of (a) pre-manufacturing sawdust storage time, (b) manufacturing steam rate and (c) 

feedstock moisture content. 

The results indicate that the material’s resistance to deformation and breakage varies – (a) 

directly with the pre-manufacturing sawdust storage time, (b) directly with the manufacturing steam 

rate and (c) directly with the moisture content of the feedstock.  

These observations are in reasonable agreement with the following: 

 Pre-manufacturing softwood sawdust storage time is positively correlated with pellet 

durability (Samuelsson et al., 2009; Samuelsson et al., 2012). During the storage of softwood 

sawdust, the content of resins and fatty acids (extractives) is reduced (Nielsen et al. 2009, 

Samuelsson et al., 2012). Softwood extractives act as plasticizers and lubricants (reducing 

the backpressure in the pelletizing channel) and fatty substances prevent close contact 

between the bonding sites of the lignocellulose particles (Nielsen et al., 2010).

 By steam conditioning, heat and moisture are added to the feedstock material. 

Feedstock particles are thereby softened so that their surfaces align more easily in the 

compaction process. This provides better conditions for interparticle bonding and reduces 

the energy consumption of the pelletizing process (Segerström and Larsson, 2014). 

However, the increase in feedstock moisture content affects pellet quality and pelletizing 

process in several ways (see below), and an optimum steam level has to be found for each 

feedstock material.
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 The optimum moisture content for maximum pellet durability was found at the higher 

moisture content levels, as also found by Samuelsson et al. (2012). However, since feedstock 

moisture has multiple effects by providing particle bonding through softening of particles and 

formation of liquid bridges and it is also lubricating the pelletizing process, and that the level 

of these effects is dependent on the specific feedstock materials’ hygroscopic properties, the 

optimum moisture content is not a linear parameter. For the specific pellet feedstock used in 

this study, the optimum moisture content for maximum durability is positively correlated 

with storage time. This is hypothesized by Samuelsson et al. (2012) to be due to the 

following: i) stored materials have lower content of bonding-inhibiting extractives, providing 

more available sites for water molecules to bridge and, ii) since there is a lower amount of 

and lubricating fatty acids and resins, a higher amount of water (which also acts as a 

lubricant) is allowed before deteriorating the back-pressure in the press channels. Vice versa: 

fresh materials have higher contents of fatty extractives that block the feedstock particles’ 

liquid bonding sites and decrease pellet durability. In addition, with a lower number of 

available sites, free water will be present in the feedstock material at a lower moisture 

content. Free water and extractives, have a strong lubricating effect and deteriorates the 

back-pressure in the press channels.

4.2. Empirical design estimate 

To holistically view the influences of the pre-manufacturing sawdust storage time, the 

manufacturing steam rate and the moisture content on the material’s resistance to deformation and 

breakage, one may summarize them all in terms of an empirical dimensionless estimate. For instance, 

one can define such a dimensionless estimate Ψ as in Eq. (7). 
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(7) 

where g is the acceleration due to gravity. 

Figure 6 presents an empirical design map relating to the collision velocities required for initiating yield 

and breakage versus this empirical dimensionless estimate.  

Figure 6: Map of collision velocities initiating yield and breakage versus an empirical dimensionless design 

estimate. 

4.3. Simulated sample response 

Figure 7 presents the three-dimensional finite element method simulated model (sample PPT 

36) response during compression. The simulated macroscopic change in shape is in line with the 

experimental observations and the distribution of the stress profiles are in line with the general theory 

of elasticity.  

If one would consider a two-dimensional sample slice which would be a sphere, assuming 

perfect contact plasticity and neglecting the tangential spread at the circumference of the contact 

during stressing – a Pythagorean right triangle can be assumed to be formed with its three edges: (1) at 

the center of contact, (2) at the center of sample and (3) at the circumference of contact; for instance, 

refer to Huang et al. (2014) and Russell et al. (2018). From the deformation measurements and the 

sample length 4.5 mm, one would arrive at the three-dimensional rectangular contact areas of 11.54 

and 14.44 mm2 formed at instants of yield and breakage. This would, in turn, translate to contact 

pressures of 19.41 and 31.03 MPa at instants of yield and breakage respectively. The presented 

simulations in Figure 7 illustrate the validity and satisfactory accuracy of this approach. 
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Figure 7: Three-dimensional finite element based simulations of the sample response during compression: 

(a) at zero load, (b) at yield load, and (c) at breakage load measured for sample class PPT 36, see

Table 1. 

4. Conclusion

The mechanical properties of biofuel wood pellets may be determined by approximating the 

load-deformation behavior, measured for instance by lab-scale compression or drop tests. Upon 

stressing, each pellet initially densifies by reduction in porosity, and thereon deforms with a constant 

resistance to transverse strain until yielding, and further on with a slightly reduced constant 

resistance until breakage. This pattern has been shown in previous studies on biomass pellets (e.g. by 

Stelte, et al. 2011) and can be considered as typical for fibrous materials, such as woody and agricultural 

biomass.  

Having thus established a holistic understanding of the contact behavior of single specimens 

and the corresponding strain-dependent evolution of key contact properties, the grand 

challenge of employing computational methods to simulate physics in every discrete element 

whereby cost- and time-framed elucidation, design, and optimization of manufacturing and 

subsequent downstream unit operations with bulk materials may now be attempted. 

Nomenclature 

Symbol Description Unit 

δ contact deformation Mm 

Ψ empirical design estimate - 

A contact area mm
2
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d diameter Mm 

E modulus of elasticity MPa 

f contact force N 

g acceleration due to gravity m/s
2
 

k contact stiffness kN/m 

l length of sample Mm 

m mass g 

v contact/collision velocity m/s
2
 

W strain energy absorbed by stressing mJ 

Indices 

B point of crack initiation  

el elastic 

max maximum 

O origin point of stressing 

O’ assumed origin of homogeneous isotropic state 

p pellet 

Y point of incipient plastic yielding 

0 initial state 
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Appendix 

Table A: Summary of the model-based evaluated mechanical properties 
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Table 1: Summary of production settings and resulting physical and mechanical properties of the pellet samples. 

Sample ID 
Production settings and physical properties Sample durability (reproduced from Larsson and Samuelsson, 

2017) 

Assigned 
name 

Storage 
time 

[days] 

Steam 
rate 

[kg/h] 

Feedstock
moisture 
content  
[wt%] 

Pellet density 
(reproduced from 

Larsson and 
Samuelsson, 

2017) 
[kg/m3] 

according to ISO 
17831-1:2015’s 
tumbling test 
(n = 20) [wt%] 

Ligno test 
(n=20) [wt%] 

Geometry-specific 
breakage force 

[N/cm] 

PPT 17 46 2 11.5 1.22 ± 0.05 89.7 ± 6.46 84.1 ± 16.7 452 ± 174 

PPT 20 46 6 11.5 1.25 ± 0.04 91.4 ± 10.7 82.7 ± 14.9 604 ± 184 

PPT 34 81 2 8.1 1.24 ± 0.05 84.6 ± 14.7 92.3 ± 5.34 466 ± 128 

PPT 30 81 2 10.6 1.18 ± 0.06 90.2 ± 5.83 89.1 ± 10.3 389 ± 144 

PPT 36 81 6 8.5 1.27 ± 0.03 91.6 ± 5.08 93.7 ± 6.48 484 ± 144 

PPT 31 81 6 10.1 1.14 ± 0.06 94.9 ± 3.13 96.5 ± 2.96 374 ± 173 

PPT 28 81 6 12.9 1.17 ± 0.06 91.0 ± 5.71 86.6 ± 16.5 509 ± 179 

PPT 44 117 2 13.1 1.23 ± 0.023 95.7 ± 1.12 96.2 ± 3.77 431 ± 94.0 

PPT 42 117 6 8.8 1.20 ± 0.03 92.8 ± 3.80 96.0 ± 5.58 386 ± 83.9 

PPT 45 117 6 12.8 1.14 ± 0.05 97.1 ± 1.35 98.6 ± 0.78 428 ± 120 

PPT 47 117 6 12.8 1.12 ± 0.08 94.5 ± 2.63 97.2 ± 2.32 349 ± 129 

PPT 53 160 2 8.2 1.23 ± 0.03 91.7 ± 7.41 95.7 ± 5.03 451 ± 103 

PPT 61 160 2 12.9 1.19 ± 0.04 97.6 ± 1.22 99.0 ± 0.53 497 ± 111 

PPT 55 160 6 8.5 1.24 ± 0.04 96.3 ± 1.46 98.2 ± 1.18 516 ± 112 

PPT 68 160 6 10.6 1.23 ± 0.03 96.3 ± 1.45 98.5 ± 0.91 560 ± 68.5 

PPT 63 160 6 12.9 1.12 ± 0.06 97.0 ± 1.97 98.4 ± 1.91 383 ± 103 

Table 1
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Table 1: Summary of the simulation model details. 

Assigned property Stainless steel punches Wood pellet sample 

Length [mm] 5 4.5 

Diameter [mm] 25 8.08 

Solid density [kg∙m
3
] 7750 (taken from SOLIDWORKS

®
 material

library) 

510 (taken from Witomski et al., 2014) 

Mechanical nature Linear elastic Linear elastic 

Young’s modulus [MPa] 1.93∙10
5 

(taken from SOLIDWORKS
®
 

material library) 

97.79 (measured for PPT 36 in this study according to 

Eq. (2), see Table A) 

Poisson’s ratio [-] 0.3 (taken from SOLIDWORKS
®
 material

library) 

0.4 (taken from Kretschmann and Green, 1996) 

Mesh elements [-] 235072 11857 

Model geometry volume [mm
3
] 4908.8 230.74 

Volume of elements [mm
3
] 4907.4 230.08 

Total mass [g] 38.278 0.11734 

Table 2



Appendix 

Table A: Summary of the model-based evaluated mechanical properties 

Sample ID Elastic stiffness 

k [kN/m] 

Modulus of elasticity 

E [MPa] 

Strain energy 

initiating yield 

Wy [mJ] 

Strain energy initiating 

breakage 

WB [mJ] 

Collision velocity 

initiating yield 

vy [m/s] 

Collision velocity 

initiating breakage 

vB [m/s] 

PPT 17 614.38 ± 275.21 111.09 ± 49.76 25.68 ± 17.93 78.79 ± 41.55 9.12 ± 2.97 16.25 ± 4.20 

PPT 20 750.64 ± 279. 54 135.73 ± 50.54 24.72 ± 13.29 142.70 ± 97.43 9.09 ± 2.41 21.48 ± 7.07 

PPT 28 452.47 ± 206.82 81.81 ± 37.40 41.83 ± 10.52 154.79 ± 48.56 12.1 ± 1.71 23.21 ± 3.75 

PPT 30 495.26 ± 250.27 89.55 ± 45.25 26.284 ± 16.90 112.87 ± 62.68 9.23 ± 2.99 19.31 ± 5.56 

PPT 31 389.45 ± 150.39 70.42 ± 27.19 21.48 ± 17.42 122.14 ± 113.19 8.27 ± 2.93 19.39 ± 7.91 

PPT 34 680.29 ± 214.47 123.01 ± 38.78 17.94 ± 6.61 88.17 ± 29.26 7.85 ± 1.55 17.50 ± 2.91 

PPT 36 540.81 ± 190.53 97.79 ± 34.45 20.70 ± 10.96 130.70 ± 93.20 8.34 ± 2.11 20.63 ± 6.52 

PPT 42 479.49 ± 89.23 86.70 ± 16.13 15.78 ± 6.12 94.36 ± 58.72 7.37 ± 1.42 17.65 ± 5.12 

PPT 44 462.36 ± 87.90 83.60 ± 15.89 21.29 ± 11.62 110.76 ± 40.01 8.40 ± 2.36 19.53 ± 3.77 

PPT 45 508.77 ± 226.88 92.00 ± 41.02 33.00 ± 15.90 130.61 ± 59.28 10.56 ± 2.56 21.07 ± 4.80 

PPT 47 353.69 ± 163.99 63.95 ± 29.65 33.92 ± 25.62 130.29 ± 81.94 10.37 ± 3.76 20.68 ± 6.21 

PPT 53 703.22 ± 605.83 127.16 ± 109.55 11.97 ± 5.06 100.72 ± 54.02 6.39 ± 1.40 18.37 ± 4.77 

PPT 55 615.50 ± 175.07 111.29 ± 31.65 27.36 ± 33.21 154.52 ± 73.61 9.08 ± 3.98 22.93 ± 5.13 

PPT 61 490.01 ± 186.58 88.60 ± 33.74 24.58 ±16.69 183.94 ± 82.98 8.87 ± 3.05 25.03 ± 5.54 

PPT 63 318.81 ± 139.41 57.65 ± 25.21 20.17 ± 7.97 176.34 ± 98.10 8.30 ± 1.76 24.20 ± 6.72 

PPT 68 606.85 ± 136.01 109.73 ± 24.59 31.33 ± 15.76 209.89 ± 120.40 10.26 ± 2.61 26.66 ± 6.30 

Table A




