1	Visual cues from different trap colours affect catches of Sahlbergella
2	singularis (Hemiptera: Miridae) in sex pheromone traps in Cameroon
3	cocoa plantations
4	
5	Hermine C. Mahot ^{1,2,3*} , Joseph R. Mahob ³ , David R. Hall ⁴ , Sarah E. J. Arnold ⁴ , Apollin K.
6	Fotso ¹ , Gertrude Membang ¹ , Nathalie Ewane ¹ , Adolph Kemga ¹ , Komi K. M. Fiaboe ¹ , Charles F.
7	B. Bilong ³ , Rachid Hanna ^{1§}
8	
9	¹ International Institute of Tropical Agriculture (IITA), BP 2008, Yaoundé-Messa, Cameroon
10	² Institute of Agricultural Research for Development (IRAD), P.O. 2067, Yaoundé, Cameroon
11	³ Faculty of Science, University of Yaoundé I, P.O. 812, Yaoundé, Cameroon
12	⁴ Natural Resources Institute, University of Greenwich, Kent, UK
13	[§] Present address: Institute of the Environment and Sustainability, Congo Basin Institute, Box 11
14	951496, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
15	
16	Corresponding authors: mahotclaudine@yahoo.fr

18 ABSTRACT

19 Cocoa mirids, Sahlbergella singularis and Distantiella theobroma, are the most economically 20 important insect pests of cocoa in West and Central Africa, where they can cause up to 40% 21 losses in cocoa yields. Sahlbergella singularis is the most common species in Cameroon and was 22 therefore targeted in this study. During a two-year trial in 15 cocoa plantations in Ayos and 23 Konye, in the Centre and Southwest regions of Cameroon respectively, the most effective colour 24 - white, purple or green - of sex pheromone traps was examined for integration into mirid 25 management programmes. Similar temporal patterns in S. sahlbergella male trap catches were 26 observed with all three colours, but the green trap caught more S. singularis (Ayos: $0.968 \pm$ 27 0.091 [SEM]; Konye: 0.640 \pm 0.076/trap/month) compared with purple traps (Ayos: 0.674 \pm 28 0.068; Konye: 0.441 \pm 0.058), and white traps (Ayos: 0.467 \pm 0.049, Konye: 0.253 \pm 0.041). Trap reflectance showed wavelength peaks typical for purple in both short (approximately 380 -29 30 480 nm) and long wavelengths (> 650 nm), and ~530 nm for green. Reflectance peaks exceeded 31 100% of the incident light in the 400-450 nm range from the white, suggesting the presence of 32 optical brighteners. Trap catches support the hypothesis that S. singularis ocelli are more 33 responsive to light of shorter wavelengths. Despite the low attractiveness of the sex pheromone 34 to S. singularis, a optimisation of the colour of the trap can improve S. sahlbergella monitoring, 35 mass trapping, and other control measures which could ultimately lead to reductions of 36 insecticide use and to conservation of beneficial arthropods, particularly cocoa flower pollinators 37 that are critical for improving cacao tree productivity.

38 Keywords: *Theobroma cocoa*; cocoa mirids; green trap color; insect monitoring; spectral
39 analysis

40 **1. Introduction**

41 Cocoa (Theobroma cocoa L.) is one of the most important cash-crops in West and Central Africa 42 with the Ivory Coast, Ghana, Cameroon and Nigeria being the largest producers in descending 43 order (Wessel and Quist-Wessel, 2015). Damage by insect pests and diseases, such as cocoa 44 mirids, cocoa pod disease, and increasingly cocoa swollen shoot virus disease, continue to be 45 among the most important factors limiting yield (Wessel and Quist-Wessel, 2015). Pesticide 46 treatments, while largely effective in limiting insect pest and disease damage, are thought to 47 cause considerable negative collateral effects on ecosystem services of beneficial insects, 48 especially cocoa flower pollinators, which are essential for cocoa pollination and pod yield 49 (Toledo-Hernandez et al., 2017).

50 Cocoa mirids, Sahlbergella singularis Hagl. and Distantiella theobroma (Dist.) (Hemiptera: 51 Miridae), are the most important insect pests of cocoa in the cocoa belt of West Africa (Yédé et 52 al., 2012; Safro, 2013; Mahob et al., 2014; Bagny Beilhe et al., 2018). These mirids cause 53 damage by injecting saliva into feeding sites which can lead to desiccation of young shoots and 54 leaves and appearance of cankers on pods and branches (Mahob et al., 2019). Mirid feeding 55 damage can also promote tissue infections by opportunistic pathogenic fungi such as Fusarium 56 spp. and Lasiodiplodia spp. (Adu-Acheampong et al., 2012, 2014; Voula et al., 2018) that can 57 lead to cocoa dieback (Anikwe et al., 2015). There is also mounting evidence that yield losses 58 caused by mirid feeding are principally due to abortion of young fruits (Yede et al., 2012). 59 Severe mirid damage can cause up to 40% loss in bean yield and the risk of tree death in the 60 absence of appropriate control (Entwistle, 1972).

The biology, ecology and management of *S. singularis* and *D. distantiella* have been the subject
of numerous studies (Entwistle, 1972; Kumar and Ansari, 1974; De Miré, 1977; Nwana and

63 Youdeowei, 1978; Decazy, 1979; Nwana et al., 1979; De Miré, 1985; Babin et al., 2008, 2010; 64 Mahob et al., 2011; Bagny Beilhe et al., 2018a). Conventional pesticides remain the most widely 65 used option in the control of cocoa mirids (Mahob et al., 2014), which has led to widespread 66 insecticide resistance, secondary pest outbreaks and negative effects on beneficial arthropods, 67 especially cocoa flower pollinators (Sarmah et al., 2004; Tijani, 2006; Geiger et al., 2010; Kibria, 68 2016; Bagny Beilhe et al., 2018a; Humann-Guilleminot et al., 2019). Risks linked to the use of 69 chemical insecticides, including stringent legislation by cocoa-importing countries, have led to 70 numerous efforts to develop alternative mirid control approaches, including host plant resistance 71 (e.g. Souingo et al., 2002), cultural control through shade management (e.g. Babin et al., 2010), 72 biological control (e.g. Bagny Beilhe 2018b), and semiochemicals and biopesticides (Padi et al., 73 2002; Ayenor et al., 2007; Anikwe and Makanjuola, 2013; Mahob et al., 2011; Posada et al., 74 2010; Sarfo et al., 2018a, b).

75 Sex pheromones have been identified for a wide range of insect species (e.g., Witzgall et al., 76 2010; Miller and Gut, 2015; El-Sayed, 2017; Gregg et al., 2018) and used in a variety of ways, 77 e.g., monitoring, pheromone confusion, mass trapping. Female sex pheromones were identified 78 for S. singularis and D. theobroma by Padi et al. (2000, 2002) and attraction of male mirids to 79 white and clear plastic sticky and water traps baited with the pheromone and their potential for 80 monitoring mirid populations and mass trapping have been demonstrated in Ghana (Ayenor et al., 2007; Sarfo et al., 2018a, b) and in Cameroon (Mahob et al., 2011). None of the previous 81 82 studies has determined, however, the effect of sex pheromone trap colour on catches of the two 83 mirid species. There is also a need to determine the performance of the sex pheromone traps 84 across a range of abiotic environments and pest pressures.

85 Trap colour is known to affect attraction of hemipteran and thysanopteran insects to unbaited 86 traps (e.g. Thongjua et al., 2015; Hassan and Mohammed, 2004; Ranamukhaarachchi and 87 Wickramarachchi, 2007; Blackmer et al., 2008; Mazzoni et al., 2011). However, the effect of 88 colour on the attractiveness of traps baited with a chemical attractant has been less frequently 89 investigated (e.g. Sampson et al., 2012; Arnold et al., 2015). In this study, we evaluated three 90 colours of a sticky trap design to optimise mirid sex pheromone trapping in cocoa farms across a 91 range of abiotic environments in Cameroon, with the ultimate aim of improving mirid 92 monitoring and the potential application of pheromone traps in mass-trapping and auto-93 dissemination of entomopathogenic fungi that are under development for mirid microbial control 94 (Lopes et al., 2014; Mahot et al., 2019).

95

96 2. Materials and Methods

97 2.1. Study areas

98 The study was conducted over a period of 24 months (September 2014 through August 2016) in 99 15 cocoa plantations in the Centre (Ayos municipality) and Southwest (Konye municipality) 100 regions of Cameroon, two of the areas with the highest cocoa production in Cameroon (Fig. 1) 101 (Jagoret, 2011). In Ayos, the study was conducted in eight plantations in three villages, Ebeck 102 (3), in Meto'o (3) and in Ekok (2). In Konye, the study was conducted in seven plantations -103 Kokobuma (2), Baduma (2), Matondo (1) and Diongo (2) (Fig. 1). We used the agro-ecological 104 zone classification developed by the Cameroon Institute of Agronomic Research for 105 Development (IRAD). The Ayos municipality is in the humid forest agro-ecological zone 106 characterised by dense tropical forest and equatorial climate with two rainy seasons (March-July 107 and September-November) separated by two dry seasons (December-February and August).

Total rainfall and average temperature and relative humidity are 1,440 mm, 25°C and 78% respectively (IRAD, 2008; Anonymous, 2015, 2016). The Konye municipality is in the lowland humid forest agroecology with equatorial climate characterised by a mono-modal rainfall pattern of abundant precipitation (2,461 mm) and average temperature and relative humidity of 27°C and 80% respectively (IRAD, 2008; Anonymous, 2015, 2106).

113

114 2.2. Experimental design

115 The study was carried out in 15, 20-40 year-old traditional cocoa plantations with relatively high 116 occurrence of S. singularis and absence of insecticide treatments for at least two years before the 117 initiation of experiments. One experimental plot (100 x 50 m) was delimited within each of the 118 selected cocoa plantations. Each plot contained at least 600 cocoa trees with spacing that ranged 119 between 2.5 x 2.5 m and 3 x 3 m. Six pheromone traps of each of the three colours (see below for 120 description) were placed in each experimental plot. Traps were randomly assigned to trees within 121 each plot with approximate spacing of 12.5 m between traps within a row and 15 m between 122 rows. Traps were rerandomised in each experimental plot at two-month intervals because of the 123 aggregated distribution of S. singularis (Babin et al., 2010). According to our trap deployment 124 design, a trap is a sampling unit and a plantation is the experimental unit (or replication).

125

126 *2.3. Trap design*

127 The standard rectangular sticky trap (40 x 10 x 15 cm) was used due to its proven effectiveness 128 in pheromone trapping of *S. singularis* (Mahob et al., 2011; Sarfo, 2013). The traps were 129 fabricated locally with a 2-mm thick Plexiglas sheet in three colours, green and purple that 130 resembles the colours of cocoa leaves and pods, and white to match traps used in studies by

131 Mahob et al. (2011) and Sarfo et al. (2018a). The internal trap surface was lined on three sides 132 (base and two vertical sides) with thin polyethylene sheet coated with a film of clear 133 Tanglefoot® (Seabright Laboratories, Emeryville, CA, USA). Pheromone lures were prepared at 134 the Natural Resources Institute and consisted of polyethylene vials (20 x 8 x 1.5 mm; Just 135 Plastics, UK). The vials were impregnated with 1 mg of hexyl (R)-3-[(E)-2-butenoyloxy]-136 butyrate + 0.5 mg hexyl (R)-3-hydroxy butyrate and an equal amount of butylated hydroxyl 137 toluene as antioxidant (Padi et al., 2000, 2002; Mahob et al., 2011; Sarfo et al., 2018a). One lure 138 was suspended with a wire from the inside centre roof of the trap. Traps were suspended in the 139 canopy of cocoa trees at approximately 2 m above ground to facilitate trap servicing. Damaged 140 or missing traps were replaced as needed. The experiments did not include unbaited control traps 141 because the attractiveness of the pheromone lure to S. singularis has been demonstrated 142 previously (Mahob et al., 2011; Sarfo, 2013).

Traps were monitored at 14-day intervals. Captured insects were removed and placed in tubes with 70% alcohol for later identification using the dichotomous keys of Entwistle (1972) and Lavabre (1977). The sex of trapped mirids was determined by the presence or absence of an ovipositor in females and males, respectively. The polyethylene sheet lining the inside of the traps and the pheromone lures were replaced every two months as loss of attractiveness usually occurs after eight weeks of pheromone placement in the field (Sarfo, 2013).

149

150 2.4. Spectral reflectance of trap materials

Spectral reflectance curves for the trap materials were measured according to Chittka and Kevan
(2005) using an Avantes AvaSpec-2048 spectrophotometer and an AvaLight-DH-S-BAL
Deuterium-Halogen light source (Avantes, Leatherhead, Surrey, UK), calibrated relative to a

BaSO₄ white standard (Avantes WS-2). Measurements were taken with a fine probe (FCR7UV200-2-1.5 x 100) at 45° to the stimulus surface. The resulting reflectance values are the mean of three measurements on each of the front and reverse side of each green and purple samples, corresponding to the outside and inside of the trap. Only the front side of white traps was taken because the reverse side of the white trap is the same as the front side.

159

160 2.5. Data analysis

Sahlbergella singularis catches for each trap colour within each plantation (six traps of each colour in each plantation) were averaged on a monthly basis after summing two consecutive, 14-day counts. Monthly catch counts were then compared separately for each location (Ayos or Konye) by univariate repeated measures analysis of variance on trap counts, with trap color and month as fixed factors and plantation (i.e. replication) as random factor.

A second analysis of variance was used to compare the effect of colour (sum of average monthly *S. sahlbergella* trap counts over 12 consecutive months of sampling) and location (Ayos and Konye) as fixed factors, with year as time factor and plantation (replicate) as random factor. Where needed, Tukey's HSD was used for post-hoc comparison of means at $\alpha = 0.05$. Monthly trap counts were log-transformed before each analysis to correct for unequal variances inherent in count data. All statistical analyses were performed with JMP Pro 14.3. (SAS Institute, 2019).

172

173 **3. Results**

The number of *S. singularis* caught in traps depended on trap colour (Ayos: $F_{2,14} = 94.8$, P < 0.001, Konye: $F_{2,12} = 44.2$, P < 0.001) and month of sampling (Ayos: $F_{23,483} = 24.8$, P < 0.001; Konye: $F_{23,405} = 9.29$, P < 0.001) in each of the two locations (Fig. 2). Green traps caught the highest number of *S. singularis* (Ayos: 0.968 ± 0.091 ; Konye: 0.640 ± 0.076 /trap/month), followed by purple (Ayos: 0.674 ± 0.068 ; Konye: 0.441 ± 0.058), and white traps (Ayos: 0.467 ± 0.049 , Konye: 0.253 ± 0.041). Mean catches in the three differently coloured traps were significantly different at each location (Tukey HSD, *P* < 0.05).

181 Differences in trap colours at each location were not consistent across months as evident in 182 sampling month and trap colour interactions before critical F value sphericity adjustment (Ayos: 183 $F_{46,483} = 1.61$, P = 0.009; Konye: $F_{46,405} = 1.46$, P = 0.030). The highest trap catches occurred 184 during the rainy season from May-October with another peak after harvest in February-March 185 (Fig. 2). In Ayos, the variance components of the random factors - plantations, plantations x trap 186 colour and plantation x trap colour x month explained 3.39, 0 (negative), and 7.93% of the 187 variance with Wald P values of 0.075, 0.034, and < 0.001 respectively. In Konye the random 188 factors plantations, plantations x trap colour were not significant while plantation x trap colour x 189 month explaining 6.48% of the variance and a Wald P < 0.001.

In the second analysis, where monthly counts were pooled for each year (12 consecutive months) of sampling, similar differences in male *S. singularis* counts were observed with trap colours independent of year for both locations (Tables 1, 2). Counts of *S. singularis* in traps were higher overall in Ayos than in Konye and followed similar patterns in both years (Tables 1, 2). Trap counts were higher in year 1 than in year 2 in both locations. The random factors plantation and plantation by trap color contributed insignificantly to total variation of the random factors in both locations (Wald P = 0.075-0.882).

197 Spectral reflectance of trap materials from the front (external) and reverse (internal) side of each 198 sample were similar, but overall reflectance was lower from the reverse surface, which 199 corresponds to the inside surface the trap (Fig. 3). Front and reverse surfaces of white traps had similar reflectance values. The purple trap material had reflectance peaks in both short (approximately 380 - 480 nm) and long wavelengths (> 650 nm). The reflectance curve for the green trap material was typical for a "plastic" green with a peak at approximately 530 nm, similar to that from green leaves. The white trap presumably contained fluorescent optical brightener(s) as the reflectance peaks exceeded 100% of the incident light in the 400 – 450 nm range (Fig. 3) (Goulson et al., 2000; Arnold et al., 2015).

206

207 **4. Discussion**

208 The principal objectives of our study were to determine the effect of trap colour on attraction of 209 male S. singularis to pheromone traps, and the level of consistency in the attractiveness across a 210 large number of cocoa plantations in different environments (i.e. areas with different climates), 211 all using a single trap design recommended by Mahob et al. (2011). Our results clearly support 212 the hypothesis that appropriately coloured traps can improve catches of S. singularis. Green 213 (30.5% and 18.3% reflectance on front and reverse side respectively) was more attractive than 214 purple (16.2% and 12.5% reflectance) followed by the standard white trap colour (reflectance: 215 133.4%). Green coloured traps resulted in nearly two-fold increase in catches of male S. 216 singularis over those in the standard white trap. Of particular significance, the difference among 217 trap colours was independent of regions (despite agro-ecological differences), abundance of S. 218 singularis or time-period, thus supporting the conclusion that using green traps is a reliable 219 method of increasing catches of S. singularis in sex pheromone trap across a broad spectrum of 220 the species densities and geographic locations.

When testing and optimising coloured traps, it is essential to work with quantified stimuli, i.e. colours that have been measured and reported in a way that is free from the bias of human visual

223 perception. Extensive research has shown that colours that appear similar to the human eve can 224 appear different to insects (Chittka et al., 1994). Complementary control approaches that include 225 visual recognition and facilitate identification of host-plant cues might therefore improve insect 226 monitoring tools (Mazzoni et al., 2011). Vision in Hemiptera is less well-characterised than in 227 the Hymenoptera, Diptera or Lepidoptera. Vision studies in Hemiptera have been limited to 228 aphids (Kirchner et al., 2005; Döring and Chittka, 2007), backswimmers Notonecta spp. 229 (Bruckmoser, 1968; Bennett and Ruck, 1970), the stink bug Nezara viridula (L.) (Nobuyuki et 230 al., 2014) and the psyllids Ctenarytaina eucalypti (Maskell), C. bipartite sp. n., Anoeconeossa 231 bundoorensis sp. n., and Glycaspis brimblecombei Moore (Farnier et al., 2014). All of these 232 groups, as for most insects, have three (trichromatic) sensitivity peaks: in the UV (<400 nm), 233 blue (400–500 nm) and green (500–570 nm) (Fennell et al., 2019). Probably S. sahlbergella also 234 has three photoreceptors like the majority of Hemiptera, and uses the green: blue opponency or 235 green:(blue + UV) opponency to locate its host plant. So green or yellow traps are likely to be 236 preferred during landing. Additional longer wavelength (>570 nm) sensitivity in tetrachromate 237 Lepidoptera, Hymenoptera and Coleoptera may exist in S. singularis which would promote 238 attraction by purple with high reflectance peak at ~700 nm (Fennell et al., 2019). Stimuli 239 appearing blue, green and yellow to the human eye are likely to be highly prominent to 240 Hemiptera species, but long-wavelength reflecting stimuli (i.e. red colours) are less readily 241 detected. Ashfaq et al. (2005) reported that short wavelengths attract more insects than long 242 wavelengths and insect ocelli are more responsive to light of shorter wavelength.

Reflectance measurement of the purple trap material showed two peaks; at the short and longer wavelength bands, but also an intermediate peak like that from green leaves. In comparison, reflectance from foliage tends to peak around 550 nm (Chittka et al., 1994). The white

reflectance peaks exceeded 100%, most probably due to the presence of a fluorescent optical brightener (Goulson et al., 2000; Arnold et al., 2015). It is possible that mirids may be repelled by this fluorescence, leading to lower catches in white traps, although this was shown not to be the case for the maize weevil, *Sitophilus zeamais* (Motsch.) (Arnold et al., 2015). Moericke (1950, 1952) also demonstrated that aphids were not attracted to white colour and the landing response to other tested colours was highest against achromatic stimuli.

252 We deployed traps with medium-wavelength reflectance (green to humans) and traps with both 253 short and long-wavelength reflectance peaks (purple to humans). The green traps would likely 254 stimulate the long wavelength receptor of a trichromatic insect, whilst the purple traps would 255 likely stimulate the short and medium wavelength receptors. Holopainen et al. (2001) reported 256 that unbaited blue sticky traps were far more attractive to Lygus rugulipennis (Poppius) than 257 yellow. The former had a reflectance peak at 450 nm like that of the green trap used in our study, 258 while the latter showed peak reflectance > 600 nm. Previous work on Lygus spp. showed poor 259 responses to "red" and "orange" unbaited traps (Blackmer and Cañas, 2005), although both trap 260 colours had reflectance around 500 nm in addition to the long wavelength reflectance. 261 Conversely, green, yellow, purple, blue and clear traps caught larger numbers of insects 262 (Blackmer and Cañas, 2005). These are traps that all have relatively good reflectance in medium 263 wavelengths (around 500 nm) in addition to short- and long-wavelength reflectance, which 264 correspond to the green trap, but not the purple trap used in our experiments. While the white 265 trap had reflectance around 500 nm, the optical brighteners reduce major reflectance to less than 266 450 nm. Consequently, based on results of Blackmer and Cañas (2005), we would predict that 267 green traps work most effectively, and indeed this was the case in our experiments.

268 Insect response to colour also appears to be species-specific (Blackmer et al., 2008). This 269 specificity is supported by the evidence of numerous studies which have shown diverse 270 preferences of colours (Ranamukhaarachchi and Wickramarachchi, 2007; Mazzoni et al., 2011; 271 Thongjua et al., 2015). Green was preferred for the capture of the hemipteran bug, 272 Neomegalotomus parvus (Westwood) (Ventura and Panizzi, 2004) and C. eucalypti (Farnier et 273 al., 2014). During autumn 2004 and summer 2005, the preference order of Lygus spp. was green 274 followed by purple then white (Blackmer et al., 2008). These results highlight the green colour 275 attractiveness to hemipteran bugs and correspond well with our results on the attractiveness of 276 green to S. singularis.

277 Combining colour and odour cues can have additive or even synergistic effects in mediating 278 insect responses to a stimulus source (Giurfa et al., 1995; Raguso and Willis, 2005; Arnold et al., 279 2015). Traps containing both types of cues can have greater catches, compared with traps with 280 only a visual or odour-based attractant. Conversely, presenting competing cues, e.g. odour from a 281 different source to a visual stimulus, can provide information about the relative importance of 282 visual versus odour cues in different species (Otálora-Luna et al., 2013; Pan et al., 2015; Arnold 283 et al., 2016).

In our study, *S. singularis* catches in white sex pheromone traps were similar to those reported by Mahob et al. (2011) and Sarfo (2013). This relatively low catch was a reflection of the low abundance of *S. singularis* in Cameroon (Babin et al., 2008, 2010). Recent research by Sarfo et al. (2018a) showed that *S. singularis* sex pheromone trap catches can be improved substantially with trap placement in the middle of the cocoa canopy. Furthermore, Babin et al. (2010) showed that the highest densities of *S. singularis* occur in "pockets" where light incidence through the canopy is highest. Cocoa trees receiving light display microclimatic conditions suitable fordevelopment of mirid nymphs.

292 The higher trap catches reported by Sarfo et al. (2018a) from the middle of the cocoa tree canopy 293 would substantially improve the potential for the sex pheromone and trap to be used in mass 294 trapping (Gregg et al., 2018; Safro et al., 2018b), mating disruption (Lowor et al., 2009) or auto-295 dissemination of entomopathogenic fungi (Lopes et al., 2014; Tewaril et al., 2014). In the latter, 296 male S. singularis are attracted to the trap where they are inoculated with spores of 297 entomopathogens for wider dissemination to the target insect population in and around the cocoa 298 plantations as part of the integrated control of mirid pests. Such improvement in the control of S. 299 singularis with green traps could potentially lead to substantial reductions in the use of 300 insecticides that have been implicated in the reduction in cocoa flower pollinators which have 301 been shown to be essential for improving cocoa pod yield (Toledo-Hernandez et al., 2017).

Trap catches can also be used in time series analysis to model the effect of climate (i.e., temperature, rainfall and relative humidity) and plant phenology on the population dynamics of *S. singularis* and to compare these with a recent model from Djoukwe Tapi et al. (2018) to provide insights on the seasonality of this pest.

307 Acknowledgements

The authors wish to thank the IITA Cameroon Entomopathology team, Cocoa Eco and ProCISA staff for their support during the execution of this study. Financial support was provided in part by the Dutch Development Organization (SNV) through the Cocoa Eco project, German Corporation for International Cooperation GmbH (GIZ) through the ProCISA project (Contract No 81193733), and CGIAR CRP Humidtropics. The research was conducted while the senior author was on secondment to IITA from IRAD. The manuscript is part of PhD dissertation submitted by the senior author to the University of Yaoundé I.

315

316 **References**

Adu-Acheampong, R., Archer, S., Leather, S., 2012. Resistance to dieback disease caused by
 Fusarium and *Lasiodiplodia* species in cacao (*Theobroma cacao* L.) genotypes. Exp. Agr.
 48, 85-98.

320 Adu-Acheampong, R., Jiggins, J., van Huis, A., Cudjoe, A.R., Johnson, V., Sakyi-Dawson, O.,

Ofori-Frimpong, K., Osei- Fosu, P., Tei-Quartey, E., Jonfia-Essien, W., Owusu-Manu, M.,
Nana Karikari Addo, M.S., Afari-Mintah, C., Amuzu, M., Nyarko Eku-X, N., Quarshie,

E.T.N., 2014. The cocoa mirid (Hemiptera: Miridae) problem: evidence to support new recommendations on the timing of insecticide application on cocoa in Ghana. Int. J. Trop.

325 Insect Sci. 34, 58-71.

Anikwe J.C., Makanjuola W.A., 2013 Effectiveness of some ecological pest management
 practices against the brown cocoa mirid, *Sahlbergella singularis* (Hemiptera: Miridae) in
 Nigeria. The Zoologist 11, 1-6.

- Anikwe, C.J., Otuonye, A.H., 2015. Dieback of cocoa (*Theobroma cacao* L), plant tissues
 caused by the brown cocoa mired *Sahlbergella singularis* Haglund (Hemiptera: Miridea) and
 associated pathogenic fungi. Int. J. Trop. Insect Sci. 35, 193-200.
- 332 Anonymous, 2015. Plan National d'adaptation aux changements climatiques du Cameroun.
- 333 Ministère de l'Environnement et de la Protection de la Nature et du Developpement durable,
 334 154pp.
- Anonymous, 2016. Le Cameroun en bref. <u>www.planetere.org/bulletin/2010/pdf-doc/Regions-du-</u>
 <u>Cameroun</u>.
- 337 Arnold, S.E.J., Stevenson, P.C., Belmain, S.R., 2015. Responses to colour and host odour cues in
- three cereal pest species, in the context of ecology and control. B. Entomol. Res. 105, 417425. doi:10.1017/s0007485315000346.
- Arnold, S.E.J., Stevenson, P.C., Belmain, S.R., 2016. Shades of yellow: interactive effects of
 visual and odour cues in a pest beetle. PeerJ 4:e2219 doi:10.7717/peerj.2219.
- Ashfaq, M., Khan Rashid, A., Khan Ahsan, M., Rasheed, F., Hafeez Shahid, 2005. Insect
 orientation to various colour lights in the agricultural biomes of Faisalabad. Pak. Entomol.
 27, 49-52.
- Ayenor, G.K., Van Huis, A., Obeng-Ofori, D., Padi, B., Röling, N.G., 2007. Facilitating the use
 of alternative capsid control methods towards sustainable production of organic cocoa in
 Ghana. Int. J. Trop. Insect Sci. 27, 85-94.
- 348 Babin, R., Bisseleua, D.H.B., Dibog, L., Lumaret, J.P., 2008. Rearing method and life-table data
- for the cocoa mirid bug *Sahlbergella singularis* Haglund (Hemiptera: Miridae). J. Appl.
- 350 Entomol. 132, 366-374.

- Babin, R., ten Hoopen, G.M., Cilas, C., Enjalric, F., Yede, Gendre, P., Lumaret, J.P., 2010.
 Impact of shade on the spatial distribution of *Sahlbergella singularis* in traditional cocoa
 agroforests. Agric. Forest Entomol. 12, 69-79.
- Bagny Beilhe, L., Babin, R., ten Hoppen, M., 2018a. Insect pests affecting cacao, In: Umahara,
- P. (eds.), Achieving sustainable cultivation of cocoa. Burleigh Dodds Science Publishing.
 Cambridge, UK, pp. 3003-326.
- Bagny Beilhe, L., Piou, C., Tadu, Z., Babin, R., 2018b. Identifying Ant-Mirid Spatial
 Interactions to Improve Biological Control in Cacao-Based Agroforestry System. Eviron.
 Entomol. 47, 551-558. doi:10.1093/ee/nvy018.
- Bennet, R.R., Ruck, P., 1970. Spectral sensitivities of dark and light adapted Notonecta
 compound eyes. J. Insect Physiol. 16, 83-88.
- Blackmer, J.L., Cañas, L.A., 2005. Visual cues enhance the response of *Lygus hesperus*(Heteroptera: Miridae) to volatiles from host plants. Env. Entomol. 34, 1524-1533.
 doi:10.1603/0046-225x-34.6.1524.
- Blackmer, J.L., Byers, J.A., Rodriguez-Saona, C., 2008. Evaluation of color traps for monitoring *Lygus* spp.: design, placement height, time of day, and non-target effects. Crop Protect. 27,
 171-181.
- 368 P., spektrale empfindlichkeit Bruckmoser, 1968. Die einzelner sehzellen des 369 rückenschwimmersNotonecta glauca L.(Heteroptera) Zeitschrift für vergleichende 370 Physiologie 59, 187-204.
- 371 Chittka, L., Shmida, A., Troje, N., Menzel, R., 1994. Ultraviolet as a component of flower
- reflections, and the colour perception of Hymenoptera. Vision Res.34, 1489-1508.

- 373 Chittka, L., Kevan, P.G., 2005. Flower colour as advertisement. In Dafni, A., Kevan, P.G.,
- Husband, B.C. (Eds.), Practical Pollination Biology. Enviroquest Ltd., Cambridge, ON,
 Canada, pp. 157-196.
- 376 De Miré, B.P., 1977. La dynamique des populations de Mirides et ses implications. In: Lavabre,
- E.M. (Eds.), Les Mirides du Cacaoyer. G.-P. Maisonneuve et Larose, Paris, pp. 171-186.
- 378 De Miré, B.P., 1985. Enquête sur la tolérance des mirides du cacaoyer aux insecticides au
 379 Cameroun. Café Cocoa Thé. No29, 183-196.
- B., 1979. La lutte contre les mirides du cacaoyer au Cameroun: Nouvelles données sur
 les insecticides thermonébulisables. Café Cocoa Thé. No23, 187-192.
- 382 Djoukwe Tapi, M., Beigny Bilhe L. Bouang, S., Dumont, Y., 2018. Models for Miridae, a cocoa
 383 insect pest. Application in control strategies. Math. Meth. Appl. Sci. 41, 8673-8696.
- Döring, T.F., Chittka, L., 2007. Visual ecology of aphids—a critical review on the role of
 colours in host finding. Arthropod-Plant Inte. 1, 3-16. doi:10.1007/s11829-006-9000-1.
- 386 El-Sayed, A., 2017. The Pherobase: Database of pheromones and semiochemicals.
 387 http://www.pherobase.com.
- 388 Entwistle, P.F., 1972. Pests of cocoa. ed. Longman Group Ltd, London, UK, 779pp.
- Farnier, K., Dyer, A.G., Steinbaur, M.J. 2014. Related but not alike: not all Hemiptera are
 attracted to yellow. Front. Ecol. Evol. 2, 1-12. https://doi.org/10.3389/fevo.2014.00067
- Fennell, J.T., Fountain, M.T., Paul, N.D., 2019. Direct effects of protective cladding material on
 insect pests in crops. Crop Protect. 121, 147-156.
- 393 Geiger, F., Bengtsson, J., Berendse, F., Weisser, W.W., Emmerson, M., Morales, M.B.,
- 394 Ceryngier, P., Liirah, J., Tscharntke, T., Winqvist, C., Eggers, S. Bommarco, R., Pärt, T.,
- 395 Bretagnolle, V., Plantegenest, M., Clement, L.W., Dennis, C., Palmer, C., Onate, J.J.,

- 396 Guerrero, I., Hawro, V., Aavik, T., Thies, C., Flohre, A., Hänke, S., Fischer, C., Goedhart,
- P.W., Inchausti, P., 2010. Persistent negative effects of pesticides on biodiversity and
 biological control potential on European farmland. Basic. Appl. Ecol.11, 97-105.
- Giurfa, M., Nunez, J., Chittka, L., Menzel, R., 1995. Colour preferences of flower-naive
 honeybees. J. Comp. Physiol. A. 177, 247-259.
- Goulson, D., Martinez, A.-M., Hughes, W.O.H., Williams, T. 2000. Effects of optical
 brighteners used in biopesticide formulations on the behavior of pollinators. Biol. Control,
 19, 232-236.
- 404 Gregg, P.C., Del Socorro, A.P., Landolt, P.J., 2018. Advances in Attract-and-Kill for
 405 Agricultural Pests: Beyond Pheromones. Ann. Rev. Entomol. 63, 453-470.
- Hassan, Al-A., Mohammed, Al-D., 2004. Trapping efficiency of various traps for insects in
 cucumber crop under greenhouse conditions in Riyadh, Saudi Arabia. Pak. J. Biol. Sci. 7,
 1213-1216.
- 409 Holopainen, J.K., Raiskio, S., Wulff, A., Tiilikkala, K., 2001. Blue sticky traps are more efficient
- 410 for the monitoring of *Lygus rugulipennis* (Heteroptera: Miridae) than yellow sticky traps.
- 411 Agr. Food Sci. Finland. 10, 277-284.
- Humann-Guilleminot, L.J., Bnikowski, L. Jenni, G., Hilke, G., Glauser, Helfenstein, F., 2019. A
 nation-wide survey of neonicotinoid insecticides in agricultural land with implications for
 agri-environment scheme. J. Appl. Ecol. 00, 1–13.
- 415 IRAD, 2008. Deuxième rapport sur l'état des ressources phylogénétiques pour l'alimentation et
 416 l'agriculture au Cameroun, 93pp.
- Jagoret, P., 2011. Analyse et évaluation de systèmes agroforestiers complexes sur le long terme
 Application aux systèmes de culture à base de cacaoyer au Centre Cameroun. Thèse de

- 419 Doctorat, Université de Montpellier SupAgro, Département Systèmes Intégrés en Biologie,
- 420 Agronomie, Géosciences, Hydrosciences et Environnement, Montpellier, France, 288pp.
- 421 Kibria, G., 2016. Pesticides and Its Impact on Environment, Biodiversity and Human Health- A
- 422 Short Review. 5pp. doi:10.13140/RG.2.1.4487.4965/1.
- 423 Kirchner, S.M., Döring, T.F., Saucke, H., 2005. Evidence for trichromacy in the green peach
- 424 aphid, *Myzus persicae* (Sulz.) (Hemiptera: Aphididae). J. Insect. Physiol. 51, 1255-1260. doi:
 425 10.1016/j.jinsphys.2005.07.002.
- 426 Kumar, R., Ansari, A.K. 1974. Biology, immature stages and rearing of cocoa-capsids (Miridae:
- 427 Heteroptera). J. Linn. Soc. 54, 1-29.
- 428 Lavabre E.M., 1977. Variations saisonnières de populations. In: Lavabre, E.M. (Eds.), Les
 429 Mirides du Cacaoyer. G.-P. Maisonneuve et Larose, Paris, pp. 155-170.
- 430 Lopes, R. B. Laumann, R.A., Moore, D., Oliveira, M.W.M., Faria, M., 2014. Coination of the
- 431 fungus *Beauvaria bassiana* and pheromone in attract and kill strategy of the banana weevil,
- 432 *Cosmopolitus sordidus*. Entomol. Exp. Appl. 151, 75-85. doi:10.1111/eea.12171.
- 433 Lowor, S. T., Gregg, P.C., Del Socorro, A.P., 2009. Potential for Pheromone Based Attract-and
- 434 Kill and Mating Disruption of the Green Mirid, *Creontiades dilutus* (Stål) (Hemiptera:
- 435 Miridae). Int. J. Agri. Res. 4, 153-162. doi:10.3923/ijar.2009.153.162.
- 436 Mahob, R.J., Babin, R., Ten Hoopen, G.M., Dibog, L., Yede, Hall D.R., Bilong Bilong C.F.,
- 437 2011. Field evaluation of synthetic sex pheromone traps for the cocoa mirid *Sahlbergella*438 *singularis* (Hemiptera: Miridae). Pest Manag. Sci. 67, 672-676.
- 439 Mahob, R.J., Ndoumbè-Nkeng, M., Ten Hoopen, G.M., Dibog, L., Nyassé, S., Rutherford, M.,

- Mbenoun, M., Babin, R., Amang A Mbang, J., Yede, Bilong Bilong, C.F., 2014. Pesticides use
 in cocoa sector in Cameroon: characterization of supply source, nature of actives ingredients,
 fashion and reasons for their utilization. Int. J. Biol. Chem. Sc. 8: 1976-1989.
- 443 Mahob, R.J., Feudjo Thiomela, R., Diboh, L., Babin, R., Fotso Toguem, Y.G., Mahot, H.,
- 444 Baleba, L., Owaona Dongo, P.A., Bilong Bilong, C.F., 2019. Field evaluation of the impact
- 445 of Sahlbergella singularis Haglund infestations on the productivity of different Theobroma
- *cacao* L. genotypes in Southern Cameroon. J. Plant Dis. Prot. doi:10.1007/s41348-01900221-x.
- 448 Mahot, H. C., Membang, G., Hanna, R., Begoude, D.A.D., Bagny Beilhe, L. Bilong, B.C.F.,
- 449 2019. Laboratory assessment of virulence of Cameroonian isolates of *Beauveria bassiana*
- 450 and *Metarhizium anisopliae* against mirid bugs *Sahlbergella singularis* Haglund (Hemiptera:
- 451 Miridae). Afr. Entomol. 27, 86-96.
- Mazzoni, V., Trona, F., Ioriatti, C., Lucchi, A., Eriksson, A., Anfora, G., 2011. Attractiveness of
 different colours to *Scaphoideus titanus* Ball (Hemiptera: Cicadellidae) adults. Integr.
 Protect. Prod. Viticult. 67, 281-284.
- Moericke, V., 1950. Über das Farbsehen der Pfirsichblattlaus (*Myzodes persicae* Sulz.). Z.
 Tierpsychol. 7, 265-274.doi:10.1111/j.1439-0310.1950.tb02199.x.
- 457 Moericke, V., 1952. Farben als Landereize für geflügelte Blattläuse (Aphidoidea). Z
 458 Naturforschorsch. 7b: 304–309.
- 459 Miller, J.R., Gut, L.J., 2015. Mating disruption for the 21st century: matching technology with
- 460 mechanism. Environ. Entomol. 44, 427–453. doi:10.1093/ee/nvv052.

- 461 Nwana, I.E., Adesiyan, S.O., Youdeowei, A., 1979. Evaluation of some new pesticides for the
 462 control of cocoa mirids: Laboratory assessments. In: Actes de la 7ème Conférence
 463 Internationale sur la Recherche Cacaoyère, Douala, Cameroun, pp 453-455.
- 464 Nwana, I.E., Youdeowei, A., 1978. The spatial distribution of three species of Hemiptera in a
 465 cocoa farm in Ibadan, Nigeria. Nigerian J. Entomol. 3, 27-33.
- 466 Nobuyuki, E., Wakakuwa, M., Arikawa, K., Hironaka, M., 2014. Spectral preference in a free
 467 flying condition of the Southern Green Stink Bug, *Nezara viridula* (Heteroptera:
 468 Pentatomidae) Jpn. J. Appl. Entomol. Z. 58, 23-38.
- 469 Otálora-Luna, F., Lapointe, S.L., Dickens, J.C., 2013. Olfactory cues are subordinate to visual
- 470 stimuli in a neotropical generalist weevil. PLOS ONE 8:e53120.
- 471 doi:10.1371/journal.pone.0053120.
- 472 Padi, B., Hall, D., Farman, D., Downham, M., Lowor, S., Sarfo, J.E., 2000. Evidence of sex
- 473 attractants in the cocoa mirids *Distantiella theobroma* (Dist.) and *Sahlbergella singularis*
- 474 Hagl. (Heteroptera: Miridae) in field-trapping experiments. In: Proceedings of the 13th
- 475 International Cocoa Research Conference Vol. 1, Kota Kinabalu, Sabah, Malaysia pp. 395-476 400.
- 477 Padi, B., Oduor, G., Hall, D.R., 2002. Development of mycopesticides and pheromones for
- 478 cocoa mirids in Ghana, R 7249 (ZA 0249). Final technical report. DFID Crop Protection
- 479 Programme.<u>https://assets.publishing.service.gov.uk/media/57a08d38e5274a31e000170c/R72</u>
- 480 <u>49_FTR. pdf</u>.
- 481 Pan, H., Xiu, C. & Lu, Y., 2015. A combination of olfactory and visual cues enhance the
 482 behavioral responses of Apolygus lucorum. J. Insect Behav. 28, 525-534.

- 483 Raguso, R.A., Willis, M.A., 2005. Synergy between visual and olfactory cues in nectar feeding
- 484 by wild hawkmoths, *Manduca sexta*. Anim. Behav. 69, 407-418. doi:
- 485 10.1016/j.anbehav.2004.04.015.
- 486 Ranamukhaarachchi, S.L., Wickramarachchi, K.S., 2007. Color preference and sticky traps for
- 487 field management of thrips *Ceratothripoides claratris* (Shumsher) (Thysanoptera: Thripidae)
- 488 in tomato in Central Thailand. Int. J. Agri. Biol. 9, 392-397.
- Sampson, C., Hamilton, J.G.C., Kirk, W.D.J., 2012. The effect of trap colour and aggregation
 pheromone on trap catch of *Frankliniella occidentalis* and associated predators in protected
- 491 pepper in Spain. IOBC/WPRS Bulletin. 80, 313-318.
- 492 Sarfo, J.E., 2013. Behavioural response of cocoa mirids, Sahlbergella singularis Hagl. And
- 493 *Distantiella theobroma* Dist. (Heteroptera: Miridae) to sex pheromones. Thesis, degree of
 494 Doctor of Philosophy, University of Greenwich. 283pp.
- 495 Sarfo, J.E., Campbell, C.A.M., Hall, D.R., 2018a. Design and placement of synthetic sex
 496 pheromone traps for cacao mirids in Ghana. Int. J. Trop. Insect Sc. 38, 122-131.
- 497 Sarfo, J.E., Campbell, C.A.M, Hall, D.R., 2018b. Optimal pheromone trap density for mass
 498 trapping cacao mirids. Entomol. Exp. Appl. 166, 565-573.
- 499 Sarmah, A.K., Müller, K., Ahmad, R., 2004. Fate and behaviour of pesticides in the
 500 agroecosystem-a review with a New Zealand perspective. Austral. J. Soil Res. 42, 125-154.
- 501 SAS Institute, 2019. JMP[®] Pro 14.3, SAS Institute Inc., Cary, NC, 1989-2019.
- 502 Tewaril, S., Leskey, T.C., Nielsen, A.L., Pineoro, J.C., Rodriguez-Saona, C.R., 2014. Use of
- 503 Pheromones in Insect Pest Management, with Special Attention to Weevil Pheromones, pp
- 504 141-168. In Abrol, D. P. (ed). Integrated Pest Management: current concepts and ecological

- 505 perspectives. Academic Press. ISBN 9780123985293. doi:10.1016/B978-0-12398529506 3.00038-5.
- Thongjua, T., Thongjua, J., Sriwareen, J., Khumpairun, J., 2015. Attraction effect of thrips
 (Thysanoptera: Thripidae) to sticky trap color on orchid greenhouse condition. J. Agr. Tech.
 11, 2451-2455.
- 510 Tijani, A.A., 2006. Pesticides use practices and safety issues: the case of cocoa farmers in Ondo
 511 State, Nigeria. J. Hum. Ecol. 19, 183-190.
- 512 Toledo-Hernandes, Wagner, T.C., Tscharntke, T., 2017. Neglected pollinators: can enhanced
 513 pollination services improve cocoa yields? A review. Agric. Ecosyst. Environ. 247, 137-148.
- 514 Ventura, M.U., Panizzi, A.R., 2004. Responses of *Neomegalotomus parvus* (Hemiptera:
 515 Alydidae) to Color and Male-Lured Traps. Braz. Arch. Biol. Techn. 47, 531-535.
- 516 Voula, V.A., Manga, E.F., Messi, A.L., Mahob, J.R, Begoude, B.A., 2018. Impact of mirids and
- 517 fungal infestation on dieback of cocoa in Cameroon. J. Entomol. Zool. Studies. 6, 240-245.
- 518 Wessel, M., Quist-Wessel, P.M.F., 2015. Cocoa production in West Africa, a review and 519 analysis of recent developments. NJAS – Wag. J. Life Sci. 74-75, 1-7.
- 520 Witzgall, P., Kirsch, P., Cork, A., 2010. Sex pheromones and their impact on pest management.
 521 J. Chem. Ecol. 36, 80-100.
- 522 Yede, Babin, R., Djieto-Lordon, C., Cilas, C., Dibog, L., Mahob, R., Bilong Bilong, C.F., 2012.
- 523 True Bug (Heteroptera) Impact on Cocoa Fruit Mortality and Productivity. J. Econ. Entomol.
- 524 105, 1285-1292.

- 1 Table 1: Number of male *Sahlbergella singularis* (mean \pm SE) in three colours of sex pheromone
- 2 traps over two years (24 consecutive months) of trapping in Ayos and Konye municipalities of
- 3 Cameroon.

	Ayos		Konye	
Trap colour	Year 1	Year 2	Year 1	Year 2
Green	$12.3\pm0.90a$	11.1 ± 1.41a	$8.50\pm0.89a$	6.57 ± 1.21a
Purple	$8.63 \pm 0.89b$	$7.54 \pm 1.05b$	$5.48\pm0.57b$	$4.93 \pm 0.88 b$
White	$6.50\pm0.59c$	$4.67 \pm 0.78c$	$3.21 \pm 0.50c$	$2.76\pm0.54c$

4 *Values followed by the same letter in a column are not significantly different (Tukey HSD, P >

5 0.05).

6 Table 2: Analysis of variance of the effect of trap colour on counts of male Sahlbergella

7 *singularis* in sex pheromone traps over a period of two years (24 consecutive months) in Ayos

8 and Konye municipalities in Cameroon.

Sources of variation	Ndf*	Ddf*	F ratio	Prob > F
			Ayos	
Trap colour (Green, Purple, White)	2	14	94.8	< 0.001
Year (1 and 2)	1	21	7.12	0.014
Trap colour*Year	2	21	0.204	0.817
			Konye	
Trap colour (Green, Purple, White)	2	12	46.3	< 0.001
Year (1 and 2)	1	18	5.92	0.026
Trap colour*Year	2	18	1.41	0.269

9 *Ndf and Ddf are respectively numerator and denominator degrees of freedom.

Figure(s)

1 Figure captions

2	Fig. 1. Location of the 15 plantations used in the experiments during the two years of the
3	experiments in Ayos and Konye Municipalities, respectively in Cameroon's Centre and
4	Southwest regions. Each circle or square represents a plantation. Six traps of the three
5	colours (green, purple and white) were deployed at each site.
6	
7	Fig. 2. Monthly counts (mean ± SEM) of the cocoa mirid, Sahlbergella singularis, in three
8	colours of sex pheromone trap in Ayos (upper) and Konye Municipalities (lower).
9	
10	Fig. 3. Relative reflectance from two sides of purple, green and one side of white materials used
11	in the construction of traps in the experiments.
12	

13 Figure 1

Highlights

- The mirid, *Sahlbergella singularis*, is one of the most important insect pests of cocoa in West and Central Africa.
- A sex pheromone produced by female *S. singularis* has previously been identified and shown to attract males in field tests.
- Traps in three different colours were tested over a 24-month period, and green traps consistently caught the highest number of male *S. singularis* independent of target insect density and environment, with highest trap catches obtained during the rainy seasons.
- The peak in spectral reflectance of green traps was intermediate to purple and white, the other two trap colours.
- Our findings contribute to optimisation of sex pheromone traps for use in population monitoring and control of *S. singularis*.