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Abstract. Substantial and increasing outbreaks of EV71-related hand, foot

and mouth disease (HFMD) have occurred recently in mainland China with se-
rious consequences for child health. The HFMD pathogens can survive for long

periods outside the host in suitable conditions, and hence indirect transmission

via free-living pathogens in the environment cannot be ignored. We propose
a novel mathematical model of both periodic direct transmission and indirect

transmission followed by incorporation of an impulsive vaccination strategy.

By applying Floquet theory and the comparison theorem of impulsive differen-
tial equations, we obtained a threshold parameter which governs the extinction

or the uniform persistence of the disease. The rate, frequency and timing of
pulse vaccination were found to affect the basic reproduction number and the

number of infected individuals significantly. In particular, frequent vaccination

with a high coverage rate leads to declines in the basic reproduction number.
Moreover, for a given rate of vaccination or frequency, numerical studies sug-

gested that there was an optimal time (September, just before the start of new

school terms) when the basic reproduction number and hence new HFMD in-
fections could be minimised. Frequent high intensity vaccinations at a suitable

time (e.g. September) and regular cleaning of the environment are effective
measures for controlling HFMD infections.

1. Introduction. Hand, Foot and Mouth Disease (HFMD) was first diagnosed in
New Zealand in 1957 [12], and has subsequently been reported across the Asia-
Pacific region where it is now endemic. Recent outbreaks of HFMD have occurred
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in many areas such as Malaysia [9], Japan [14] and China [30, 40]. HFMD is a
contagious viral illness, caused by enteroviruses of the family Picornaviridae, that
commonly affects infants and children. The most important common causative
pathogens are Coxsackie virus (A16), human enterovirus (EV71) and other en-
teroviruses including Coxsackie viruses A4, 5, 9, 10, B2 and 5 [25]. Recent out-
breaks of HFMD in many areas were caused by EV71 which induced a variety of
neurological diseases including aseptic meningitis, encephalitis, and poliomyelitis-
like paralysis [19]. Enterovirus 71 (EV71) is a major cause of HFMD in children in
China and may even be fatal. It accounts for the majority of cases worldwide [6],
and up to 13.8 million cases were reported between 2008 and 2015 [8]. The HFMD
data from the Chinese Center for Disease Control and Prevention (CDC) [8] show
that outbreaks occur annually in mainland China. Recently, an EV71 vaccine has
been successfully developed. Evidence suggests that it consistently elicits immuno-
genicity and provides protection against mild-to-severe diseases caused by EV71 for
at least one year in infants and young children [43]. The vaccine efficacy against
EV71-associated HFMD is 97.4% [21].

HFMD spreads primarily among children under five years of age but may also be
transmitted among adults [5]. Children are more susceptible to infection than adults
because they are less likely to have appropriate antibodies and awareness of self-
protection. Susceptible infants are usually infected by close contact with infected
individuals. Note that the pathogens of EV71 can survive outside the host for an
extended period of time in suitable conditions [2, 10]; in fact, even 75% alcohol
cannot eliminate the pathogens. HFMD patients and asymptomatic individuals,
releasing the pathogens into the environment, are the major infectious sources,
and there is also evidence suggesting that susceptible individuals can be infected
by touching free-living pathogens in the environment. Hence, the transmission
routes of EV71 are believed to be multiple, i.e., via the respiratory tract through
inhaling infectious droplets, by close contact in infectious crowds, touching virus-
carrying hands, towels, handkerchiefs, toys, bedding, and underclothes, and via
the gastrointestinal tract through contaminated water and food [16]. Note that
HFMD has become an increasingly complex and serious disease. Therefore, an
open research problem and the focus of this study is quantifying the contributions
of indirect transmission via free-living viruses in the environment and recessive
infected individuals and designing an effective vaccination strategy to control HFMD
epidemics.

Mathematical models are widely used to understand and analyse the mechanisms
involved in the spread and control of infectious diseases [18]. A number of mathe-
matical models have been formulated to investigate the transmission dynamics and
prediction of HFMD infections. Ma et al. [23] formulated a realistic model where
infectious individuals were classified into two compartments to investigate the sea-
sonal spread of HFMD in Shandong Province. Yang et al. [38] analysed transmission
dynamics with the goal of determining better control strategies through sensitivity
analysis. Wang et al. [33, 34] proposed a novel mathematical model to represent
both direct and indirect transmission to investigate the effects of a contaminated en-
vironment on the transmission dynamics of HFMD. Few models have been proposed
to describe the effects of impulsive vaccination on HFMD transmission dynamics.

The main purpose of this study is to extend existing mathematical models by
including indirect transmission via free-living viruses in the environment, a periodic
transmission rate, and an impulsive vaccination strategy. Our model also considers a



subgroup of recessive infected individuals to investigate the impact of asymptomatic
individuals and contaminated environments on HFMD transmission. A combination
of analytical and numerical techniques is used to analyse the proposed model, and
we fit our proposed model to HFMD case data from 2010 to 2015 to estimate
unknown parameters. By designing a reasonable vaccination policy, we examine
the impact of various vaccination strategies on HFMD infections. The remainder
of this paper is organized as follows. In the next section, we establish an HFMD
model with impulsive vaccination and demonstrate the existence of a disease-free
periodic solution (DFPS). We investigate the threshold dynamics of the system
and obtain the extinction or uniform persistence of the disease by applying Floquet
theory and the comparison theorem of impulsive differential equations. In Section 3,
numerical simulations of the model are implemented and disease control strategies
are described. The final section consists of a discussion and our concluding remarks.

2. Periodic model with pulse vaccination.

2.1. Model. In this section, we propose an impulsive vaccination model with a
periodic transmission rate and investigate the dynamical behaviour of the popu-
lation. The underlying structure of the model is comprised of the following five
classes: susceptible (S(t)), exposed but not yet infectious (E(t)), infectious but not
yet symptomatic (pre-symptomatic) (Ie(t)), infectious with symptoms (I(t)), and
recovered (R(t)) [34]. Let W (t) be the density of pathogens at time t in contam-
inated environments including door handles, towels, handkerchiefs, toys, utensils,
bedding, and underclothes. A susceptible individual is infected at a rate of βi(t)
by contacting infected individuals (asymptomatic or symptomatic) or at a rate of
ν(t) by touching contaminated environments; then, the individual moves to the ex-
posed compartment. Transmission rates βi(t)(i = 1, 2), and ν(t) are assumed to be
continuous and non-negative periodic functions with a period of T . An individual
passing through this latent period will become infectious (with different infectious-
ness), either asymptomatically or symptomatically, until recovery or death. The
model equations are as follows:

S′(t) = Λ− β1(t)SI − β2(t)SIe − ν(t)SW − µS + ηR,
E′(t) = β1(t)SI + β2(t)SIe + ν(t)SW − (σ + µ)E,
I ′(t) = σpE − (γ1 + δ1 + µ)I,
Ie(t)

′ = σ(1− p)E − (γ2 + δ2 + µ)Ie,
R′(t) = γ1I + γ2Ie − (η + µ)R,
W ′(t) = λ1I + λ2Ie − ζW,


t 6= nT, n ∈ N.

S(nT+) = (1− τ)S(nT ),
E(nT+) = E(nT ),
I(nT+) = I(nT ),
Ie(nT

+) = Ie(nT ),
R(nT+) = R(nT ) + τS(nT ),
W (nT+) = W (nT ).


t = nT, n ∈ N.

(1)
Note that free-living pathogens in the environment, although capable of living for

weeks or months, cannot reproduce by themselves [10]. Here, let λ1 and λ2 be the
rates at which symptomatic and asymptomatic infected individuals shed viruses,
respectively. Free-living pathogens are cleared at a rate of ζ due to sterilization and
picked up by all individuals at a rate of ν(t). Here, τ is the fraction of susceptible



Table 1. Definitions of the parameters used in the model

Para. Definition(Units) Value References

Λ Recruitment rate (/month) 1,328,556 [26]

µ Natural death rate (/month) 1.126 × 10−3 [26]
p Proportion of HFMD symptomatic infected individuals 0.025 [34]

η Rate from recovered to susceptible (/month) 0.115 [34]

β1(t) Periodic transmission rate between S(t) and I(t) a1(1 + sin( 2πt
12

+ φ)) [23]

β2(t) Periodic transmission rate between S(t) and Ie(t) a2(1 + sin( 2πt
12

+ φ)) [23]

ν(t) Periodic indirect transmission rate a3(1 + sin( 2πt
24

+ φ)) [34]

1/σ Average incubation period (month) 1/6 [23]

γ1 Recovery rate of the symptomatic infected individuals (/month) 0.1922 [11]

γ2 Recovery rate of the asymptomatic infected individuals (/month) 0.1922 [11]
δ1 Disease-related death for symptomatic HFMD individuals (/month) 6.86 × 10−4 [23]

δ2 Disease-related death for asymptomatic HFMD individuals (/month) 6.86 × 10−4 [23]

λ1 Virus shedding rate from symptomatic infected individuals (/month) 9.38 × 102 [34]
λ2 Virus shedding rate from asymptomatic infected individuals (/month) 7.89 × 102 [34]

ζ Clearance rate of the virus (/month) 27 [34]

a1 Coefficient of transmission rate between S(t) and I(t) (none) 1.5 × 5−8 [34]
a2 Coefficient of transmission rate between S(t) and Ie(t) (none) 2.25 × 10−9 [34]

a3 Coefficient of indirect transmission rate (none) 1.8 × 10−11 [34]
τ Proportion of susceptible who are vaccinated successfully varied –

individuals that are inoculated for the vaccine at t = nT . The remaining model
parameters are defined in Table 1.

2.2. Threshold dynamics. Let (Rn,Rn+) be the standard ordered n-dimensional
Euclidean space with a norm ‖.‖. For u, v ∈ Rn, we say u ≥ v if u− v ∈ Rn+, u > v
if u − v ∈ Rn+ \ {0}, and u � v if u − v ∈ Int(Rn+). Let A(t) to be a continuous,
cooperative, irreducible, and periodic n × n matrix function with period ω, where
ω > 0. Let ΦA(.)(t) be the fundamental solution matrix of the linear ordinary
differential equation ẋ = A(t)x. Let r(ΦA(.)(ω)) be the spectral radius of ΦA(.)(ω).
By the Perron-Frobenius theorem, r(ΦA(.)(ω)) is the principal eigenvalue of ΦA(.)(ω)
in the sense that it is simple and admits an eigenvector v∗ � 0. We introduce a
beneficial result for our next arguments from [41, 42].

Lemma 2.1. Let θ = 1
ω ln r(ΦA(.)(ω)). Then there exists a positive ω−periodic

function ρ(t) such that eθtρ(t) is a solution to ẋ = A(t)x.

The positive invariant set of system (1) is

R6
+ = {S,E, I, Ie, R,W ∈ R6|S ≥ 0, E ≥ 0, I ≥ 0, Ie ≥ 0, R ≥ 0,W ≥ 0},

which indicates that any solution for system (1) with non-negative initial values
is non-negative. The following lemma shows that the solutions of system (1) are
uniformly and ultimately bounded.

Lemma 2.2. (See Lemma 2.1 [34]) The solutions of system (1) are uniformly
and ultimately bounded, specifically, there exist M > 0 and T > 0 such that(
S(t), E(t), I(t), Ie(t), R(t),W (t)

)
≤ (Λ

µ ,
Λ
µ ,

Λ
µ ,

Λ
µ ,

Λ
µ ,M), for t ≥ T .

We begin to analyze system (1) by demonstrating the existence of a ‘disease-free’
solution. Let E(t) = 0, I(t) = 0, Ie(t) = 0, W (t) = 0, and t ≥ 0, consider the
following subsystem:

S′ = Λ− µS + ηR,
R′ = −(η + µ)R,

}
t 6= nT, n ∈ N,

S(nT+) = (1− τ)S(nT ),
R(nT+) = R(nT ) + τS(nT ),

}
t = nT, n ∈ N.

(2)



Clearly, if solutions S(t) and R(t) of (2) in the interval (nT, (n+ 1)T ] are

S(t) =
Λ

µ
−R(nT+)e−(η+µ)(t−nT ) −

(Λ

µ
− S(nT+)−R(nT+)

)
e−µ(t−nT ),

R(t) = R(nT+)e−(η+µ)(t−nT ),

then S((n + 1)T ) = Λ
µ − R(nT+)e−(η+µ)T −

(
Λ
µ − S(nT+) − R(nT+)

)
e−µT and

R((n+ 1)T ) = R(nT+)e−(η+µ)T . Using the remaining equations of (2), we deduce
the stroboscopic map

S((n+ 1)T+) =(1− τ)S((n+ 1)T )

=(1− τ)
[Λ

µ
−R(nT+)e−(η+µ)T −

(Λ

µ
− S(nT+)−R(nT+)

)
e−µT

]
,fs

(
S(nT+), R(nT+)

)
and

R((n+ 1)T+) =R((n+ 1)T ) + τS((n+ 1)T )

=R(nT+)e−(η+µ)T

+ τ
[Λ

µ
−R(nT+)e−(η+µ)T −

(Λ

µ
− S(nT+)−R(nT+)

)
e−µT

]
,fr

(
S(nT+), R(nT+)

)
We obtain the unique fixed points of maps fs

(
S(nT+), R(nT+)

)
and fr

(
S(nT+),

R(nT+)
)
, which are

S∗ =
Λ

µ

(1− τ)(1− e−(η+µ)T )

1− (1− τ)e−(η+µ)T
, R∗ =

Λ

µ

τ

1− (1− τ)e−(η+µ)T
.

By checking the Jacobian matrix of fs
(
S(nT+), R(nT+)

)
and fr

(
S(nT+),

R(nT+)
)

at the fixed point, we obtain that the characteristic roots of this ma-

trix are e−µT and (1 − τ)e−(η+µ)T . Since ‖e−µT ‖ < 1 and ‖(1 − τ)e−(η+µ)T ‖ < 1,
the fixed points S∗ and R∗ are locally stable.

The solutions of (2) on the interval (nT, (n+ 1)T ] initially from the fixed points
S∗ and R∗ follow

S̃(t) =
Λ

µ
−R∗e−(η+µ)(t−nT ) − (

Λ

µ
− S∗ −R∗)e−µ(t−nT )

=
Λ

µ

[
1− τe−(η+µ)(t−nT )

1− (1− τ)e−(η+µ)T

]
,

and

R̃(t) = R∗e−(η+µ)(t−nT ) =
Λ

µ

τe−(η+µ)(t−nT )

1− (1− τ)e−(η+µ)T
.

Moreover, S̃(t) and R̃(t) are periodic in time, thus, S̃(t+T ) = S̃(t) and R̃(t+T ) =

R̃(t).
From the above discussion, system (1) admits a DFPS (disease-free periodic

solution) E1(S̃(t), 0, 0, 0, 0, R̃(t)) on every impulsive interval (nT, (n+ 1)T ].
The following lemma shows the global asymptotical stability of the periodic so-

lution (S̃(t), R̃(t)) of system (2).



Lemma 2.3. System (2) with initial condition (S(0), R(0)) ∈ {(S,R) : 0 ≤ S ≤
Λ/µ, 0 ≤ R ≤ Λ/µ} has a unique, positive, periodic solution ũ(t) = (S̃(t), R̃(t)),
which is globally asymptotically stable.

Proof of Lemma 2.3. The global asymptotic stability of the periodic solution (S̃(t),

R̃(t)) of system (2) is obviously equal to the global asymptotic stability of the
positive solution (S∗, R∗) of the following difference equation

S((n+ 1)T+) = (1− τ)e−µTS(nT+) + (1− τ)
(
e−µT − e−(η+µ)T

)
R(nT+)

+(1− τ)Λ
µ (1− e−µT ),

R((n+ 1)T+) = τe−µTS(nT+) +
[
(1− τ)e−(η+µ)T + τe−µT

]
R(nT+)

+τ Λ
µ (1− e−µT ).

(3)
The characteristic roots of system (3) are e−µT and (1−τ)e−(η+µ)T , and ‖e−µT ‖ <

1, ‖(1− τ)e−(η+µ)T ‖ < 1, then the positive solution of difference system (3) is glob-
ally asymptotically stable. This completes the proof.

According to the result in [39], we can define the basic reproduction number of

system (1). Linearizing system (1) at E1(S̃(t), 0, 0, 0, 0, R̃(t)), yields the following
four-dimensional equations:

dE
dt = β1(t)S̃(t)I + β2(t)S̃(t)Ie + ν(t)S̃(t)W − (σ + µ)E,
dI
dt = σpE − (γ1 + δ1 + µ)I,

dIe
dt = σ(1− p)E − (γ2 + δ2 + µ)Ie,

dW
dt = λ1I + λ2Ie − ζW.

(4)

Define

F (t) =


0 β1(t)S̃(t) β2(t)S̃(t) ν(t)S̃(t)
0 0 0 0
0 0 0 0
0 0 0 0

 ,

V =


σ + µ 0 0 0
−σp γ1 + δ1 + µ 0 0

−σ(1− p) 0 γ2 + δ2 + µ 0
0 −λ1 −λ2 ζ

 .

Here, F (t) is defined as the Jacobian matrix of the system (1), which considers only
new infections, at the DFPS. We define V is defined as the Jacobian matrix of the
system (1) in compartments E, I, Ie and W , considering the transfer of individuals
at DFPS.

In this case, system (4) can be rewritten as

dx

dt
= (F (t)− V )x,

where x = (E, I, Ie,W )T .
Assume Y (t, s), t ≥ s, is the evolution operator of the linear periodic system

dy

dt
= −V (t)y.

That is, for each s ∈ R, the 4× 4 matrix Y (t, s) satisfies

dY (t, s)

dt
= −V (t)Y (t, s),∀t ≥ s, Y (s, s) = I,



where I is the 4 × 4 identity matrix. Let Cω be the ordered Banach space of all
T−periodic functions from R to R4, which is equipped with the maximum norm ‖ · ‖
and the positive cone C+

ω := {φ ∈ Cω : φ(t) ≥ 0,∀t ∈ R}. Suppose φ(s) ∈ Cω is the
initial distribution of infectious individuals in this periodic environment; Since F (t)
has one discontinuous point t = nT on each interval [nT, (n+ 1)T ], Y (t, s)F (s)φ(s)
has finite discontinuous points in the interval [a, t]. Meanwhile, by the boundedness

of F (s)φ(s), the integral
∫ t
a
Y (t, s)F (s)φ(s)ds is well-defined.

We define the next infection linear operator L : Cω → Cω as follows:

(Lφ)(t) = lim
a→−∞

∫ t

a

Y (t, s)F (s)φ(s)ds, ∀t ∈ (nT, (n+ 1)T ], n ∈ N, φ ∈ Cω.

The basic reproduction number of the periodic epidemic model (1) is defined as the
spectral radius of the operator L, R0 := r(L).

Let W (t, s, λ) be the evolution operator of the following linear T−periodic sys-
tem:

dw

dt
=
(
− V +

F (t)

λ

)
w, t ≥ s, t ∈ R,

with parameter λ ∈ (0,∞). Since F (t) is non-negative and −V is cooperative (off-
diagonal elements of a matrix are non-negative), F (t) is piecewise continuous and
periodic functions. It is easy to verify that (1) satisfies assumptions H(1) −H(6)
in [39]. Thus, we have the following result.

Lemma 2.4. (See Theorem 4.1 [39]). For system (1), the following statements are
valid:

(i) R0 = 1 if and only if r(Φ(F−V )(.)(T )) = 1.
(ii) R0 > 1 if and only if r(Φ(F−V )(.)(T )) > 1.
(iii) R0 < 1 if and only if r(Φ(F−V )(.)(T )) < 1.

Next, we present a threshold parameter that determines the extinction and the
uniform persistence of the disease. The following theorem shows that the DFPS
of (1) is globally asymptotically stable. To this end, we introduce the following
lemma.

Lemma 2.5. (Comparison theory [20]) Assume m ∈ PC[R+,R] with points of
discontinuity at t = nT is left continuous at t = nT, n ∈ N, and{

D−m(t) ≤ g(t,m(t)), t 6= nT, n ∈ N,
m(nT+) = ψn(m(nT )), t = nT, n ∈ N, (5)

where g ∈ C[R+ ×R+,R] and ψn(u) is non-decreasing in u for each n ∈ N, let r(t)
be the maximal solution of the scalar impulsive differential equation

u′ = g(t,m(t)), t 6= nT, n ∈ N,
u(nT+) = ψn(u(nT )), t = nT, n ∈ N,
u(t+0 ) = u0.

(6)

existing on [t0,∞). Then m(t+0 ) ≤ u0 implies m(t) ≤ r(t).
Remark 1. [20] In Lemma2.5, if inequalities (6) are reversed, we can let ρ(t) be
the minimal solution of (7) existing on [t0,∞), then m(t) ≥ ρ(t).

Assume η = 0, we can obtain the following theorem.

Theorem 2.6. If r(Φ(F−V )(.)(T )) < 1, then the DFPS of system (1), E1(S̃(t), 0, 0,

0, 0, R̃(t)), is globally asymptotically stable; if r(Φ(F−V )(.)(T )) > 1, then it is unsta-
ble.



Proof of Theorem 2.6. First, we show that the DFPS is locally stable. Linearize
system(1) at the periodic solution E1(S̃(t), 0, 0, 0, 0, R̃(t)). Define S(t) = s(t)+S̃(t),

E(t) = e(t), I(t) = i(t), Ie(t) = ie(t), W (t) = w(t), R(t) = r(t) + R̃(t). The
linearized equations of system (1) can be written as{

Z ′ = J(t)Z(t), t 6= nT, n ∈ N,
Z(nT+) = QZ(nT ), t = nT, n ∈ N, (7)

where Z(t) = (s(t), e(t), i(t), ie(t), w(t), r(t))T , A = (0,−β1(t)S̃(t),−β2(t)S̃(t),

−ν(t)S̃(t)), B = (0, γ1, γ2, 0), E = diag(1, 1, 1, 1),

J(t) =

 −µ A η
0 F (t)− V 0
0 B −(η + µ)

 , Q =

 1− τ 0 0
0 E 0
τ 0 1

 .

Assume ζ = 0 and let Φ(t) be the fundamental matrix of Z ′ = J(t)Z(t), then
Φ(t) = (φij(t))1≤i,j≤3 and φ1j , φ2j , φ3j , j = 1, 2, 3 are solutions of Z ′ = J(t)Z(t)
with initial values φ11 = 1, φ22 = E, φ33 = 1, and φij = 0, i 6= j, i, j = 1, 2, 3.
Solving the equation Z ′ = J(t)Z(t) yields φ11 = e−µt, φ13 = 0, φ21 = 0, φ23 = 0,
φ31 = 0, φ33 = e−(η+µ)t, φ′22 = (F (t) − V )φ22. It is not necessary to evaluate the
exact formulae for φ12 and φ32 as they are not required in the following analysis;
thus, we denote them with a star. We also denote φ22 by φ22 = Φ(F−V )(.)(t). Hence,
we obtain

Φ(t) =

 e−µt ∗ 0
0 Φ(F−V )(·)(t) 0
0 ∗ e−(η+µ)t

 .

Thus, the monodromy matrix of system (8) yields

QΦ(T ) =

 (1− τ)e−µT ∗ 0
0 Φ(F−V )(·)(T ) 0

τe−µT ∗ e−(η+µ)T

 .

Note that a monodromy matrix, denoted by M , is a nonsingular matrix satisfying
Φ(t+T ) = Φ(t)M , where Φ(t) is the fundamental matrix of ODEs system evaluated
at the period of the coefficients of the periodic system Z ′ = J(t)Z(t), then Φ(t+T )
is also the fundamental matrix of the ODEs system [1].

Thus, Floquet theory and r(Φ(F−V )(.)(T )) < 1 indicate that the DFPS is locally
stable; when r(Φ(F−V )(.)(T )) > 1 the DFPS is unstable.

Next, we prove the global attractivity of the DFPS. By the first equation of
system (1) and the positivity of the solution, we obtain{

S′ ≤ Λ− µS, t 6= nT, n ∈ N,
S(nT+) = (1− τ)S(nT ), t = nT, n ∈ N.

Consider the following auxiliary system{
x′ = Λ− µx, t 6= nT, n ∈ N,
x(nT+) = (1− τ)x(nT ), t = nT, n ∈ N. (8)

It is easy to verify that system (8) admits a positive periodic solution

x̃(t) =
Λ

µ

[
1− τe−µ(t−nT )

1− (1− τ)e−µT

]
,



which is globally asymptotically stable, i.e., x(t) → x̃(t), for t → ∞. By the
comparison theorem, we have S(t) ≤ x(t). Hence, there exists t1 > 0, such that for

any ε > 0, S(t) ≤ x̃(t) + ε. Since x̃(t) ≤ S̃(t), it follows that S(t) ≤ S̃(t) + ε.
By system (1),

E′ ≤ β1(t)(S̃(t) + ε)I + β2(t)(S̃(t) + ε)Ie + ν(t)(S̃(t) + ε)W
−(σ + µ)E,

I ′ = σpE − (γ1 + δ1 + µ)I,
I ′e = σ(1− p)E − (γ2 + δ2 + µ)Ie,
W ′ = λ1I + λ2Ie − ζW.

t ≥ t1.

Consider an auxiliary system
u′1 = β1(t)(S̃(t) + ε)u2 + β2(t)(S̃(t) + ε)u3 + ν(t)(S̃(t) + ε)u4 − (σ + µ)u1,
u′2 = σpu1 − (γ1 + δ1 + µ)u2,
u′3 = σ(1− p)u1 − (γ2 + δ2 + µ)u3,
u′4 = λ1u2 + λ2u3 − ζu4.

(9)
which is equivalent to

u′ = (F (t)− V )u+ εM(t)u,

where vector u = (u1, u2, u3, u4)T and

M(t) =


0 β1(t) β2(t) ν(t)
0 0 0 0
0 0 0 0
0 0 0 0

 .

It follows from Lemma2.1. that there exists a positive T -periodic function ρ(t) =(
ρ1(t), ρ2(t), ρ3(t), ρ4(t)

)
such that eµ1tρ(t) is a solution of (9), where µ1 =

1
T ln r(Φ(F−V )(.)+εM (T )). Choose t2 > t1 and a small number α > 0 such that
u(t2) ≤ αρ(0). Then we obtain

u(t) ≤ αeµ1(t−t2)v(t− t2), t ≥ t2.
By the standard comparison theorem [28], Theorem B.1, we obtain

(E(t), I(t), Ie(t),W (t))T ≤ u(t) ≤ αeµ1(t−t2)ρ(t− t2), t ≥ t2.
Since r(Φ(F−V )(.)(T )) < 1 and r(Φ(F−V )(.)+εM (T )) are continuous for all small ε, we
choose a sufficiently small ε > 0 such that r(Φ(F−V )(.)+εM (T )) < 1. Hence, we get

µ1 < 0. It follows that u(t)→ 0 as t→∞. Then we obtain (E(t), I(t), Ie(t),W (t))T

→ 0 as t→∞. By the first and sixth equations of system (1), we get limt→∞ S(t) =

S̃(t) and limt→∞R(t) = S̃(t). Thus the DFPS E1 is globally attractive. This
completes the proof.

Theorem 2.7. If r(Φ(F−V )(.)(T )) > 1, then there exists a positive constant ξ such

that for all initial values (S0, E0, I0, I0
e , R

0,W 0) ∈ R+ × Int(R3
+) × R+ × Int(R+)

the solution of system (1) satisfies

lim inf
t→∞

(
E(t), I(t), Ie(t),W (t)

)
≥ (ξ, ξ, ξ, ξ).

Proof of Theorem 2.7. There exist a positive constant m, we first prove the follow-
ing claim:

lim sup
t→∞

E(t) ≥ m, lim sup
t→∞

I(t) ≥ m, lim sup
t→∞

Ie(t) ≥ m, lim sup
t→∞

W (t) ≥ m.

(10)



Without loss of generality, suppose that for any positive constant m, there exists a
t1, such that W (t) < m for all t ≥ t1. Then, by the first equation of system (1), we
have

S′(t) ≥ Λ− β1(t)SI − β2(t)SIe −mν(t)S − µS

> Λ− Λ

µ
β1(t)S − Λ

µ
β2(t)S −mν(t)S − µS, t ≥ t1.

Consider the following auxiliary system{
y′ = Λ− (Λ

µβ1(t) + Λ
µβ2(t) +mν(t) + µ)y, t 6= nT, n ∈ N,

y(nT+) = (1− τ)y(nT ), t = nT, n ∈ N. (11)

Using the same method as above, it follows that (11) admits a positive periodic
solution

ỹ(t) =
Λ

µ

[
1− τe−( Λ

µβ1(t)+ Λ
µβ2(t)+mν(t)+µ)(t−nT )

1− (1− τ)e−( Λ
µβ1(t)+ Λ

µβ2(t)+mν(t)+µ)T

]
,

which is globally asymptotically stable, i.e., y(t) → ỹ(t), for t → ∞. By the
comparison theorem, S(t) ≥ y(t). Hence, there exists t2 > 0 such that for any

ε > 0, S(t) ≥ ỹ(t)− ε. Since ỹ(t) ≥ S̃(t), η = 0, so it follows that S(t) ≥ S̃(t)− ε.
By system (1),

E′ ≥ β1(t)(S̃(t)− ε)I + β2(t)(S̃(t)− ε)Ie + ν(t)(S̃(t)− ε)W
−(σ + µ)E,

I ′ = σpE − (γ1 + δ1 + µ)I,
I ′e = σ(1− p)E − (γ2 + δ2 + µ)Ie,
W ′ = λ1I + λ2Ie − ζW.

t ≥ t2.

Consider an auxiliary system

u′ = (F (t)− V )u− εM(t)u. (12)

It follows from Lemma2.1 that there exists a positive T -periodic function ρ(t) =(
ρ1(t), ρ2(t), ρ3(t), ρ4(t)

)
such that eµ2tρ(t) is a solution of (12), where µ2 = 1

T
ln r(Φ(F−V )(.)−εM (T )). Choose t3 > t2 and a small number α > 0 such that u(t3) ≥
αρ(0). Then we obtain

u(t) ≥ αeµ2(t−t3)ρ(t− t3), t ≥ t3.
By the standard comparison theorem [28], Theorem B.1, we obtain

(E(t), I(t), Ie(t),W (t))T ≥ u(t) ≥ αeµ2(t−t3)ρ(t− t3), t ≥ t3.
Since r(Φ(F−V )(.)(T )) > 1 and r(Φ(F−V )(.)−εM (T )) is continuous for all small

ε, choose a sufficiently small ε > 0, such that r(Φ(F−V )(.)−εM (T )) > 1. Hence,
we get µ2 > 0. It follows that u(t) → ∞ as t → ∞. Therefore, we obtain
(E(t), I(t), Ie(t),W (t))T → ∞ as t → ∞, which contradicts the boundedness of
E(t), I(t), Ie(t) and W (t). Thus, the claim is proved.

Since the claim holds, we consider the following two possibilities.
(i) E(t) ≥ m, I(t) ≥ m, Ie(t) ≥ m and W (t) ≥ m, for all large t;
(ii) E(t), I(t), Ie(t) and W (t) oscillate about m for all large t.
If (i) holds, then our aim is achieved. Next, consider (ii). Without loss of

generality, we only discuss I(t) since E(t), I(t), Ie(t), and W (t) can be proved in
the same way. Let t and t be large enough so that

I(t) = I(t) = m, I(t) < m, t ∈ (t, t).



Since I(t) is continuous, bounded, and not affected by impulses, it is uniformly
continuous. Hence, there exists a constant ω > 0,(ω is independent of the choice of
t) such that I(t) ≥ m/2 for all t ∈ [t, t+ ω].

If t− t ≤ ω, then I(t) ≥ m/2 for all t ∈ [t, t]. We can fix ξ = m/2, then the claim
is obtained.

If t− t > ω, then I(t) ≥ m/2 for all t ∈ [t, t+ ω].
Next, we prove that I(t) ≥ m/2 for all t ∈ [t + ω, t]. Suppose to the contrary

that there exists a constant T1, such that

I(t) ≥ m/2, t ∈ [t, t+ ω + T1],

and

I(t+ ω + T1) = m/2, I(t) < m/2, 0 < t− (t+ ω + T1)� 1.

In the same way, we also obtain E(t) < m/2, Ie(t) < m/2 and W (t) < m/2, for
0 < t − (t + ω + T1) � 1. On the other hand, as previously mentioned, we obtain

S(t) ≥ S̃(t)− ε,∀t ∈ [t, t], and t, t are sufficiently large. By the equation of system
(1), we have

E′ ≥ β1(t)(S̃(t)− ε)I + β2(t)(S̃(t)− ε)Ie + ν(t)(S̃(t)− ε)W − (σ + µ)E,
I ′ = σpE − (γ1 + δ1 + µ)I,
I ′e = σ(1− p)E − (γ2 + δ2 + µ)Ie,
W ′ = λ1I + λ2Ie − ζW.

where 0 < t− (t+ ω + T1)� 1. Hence,

(E′, I ′, I ′e,W
′)T ≥ (F (t)− V − εM(t))(E, I, Ie,W )T , 0 < t− (t+ ω + T1)� 1.

By previous arguments, there exists a positive T -periodic function v(t) =
(
v1(t),

v2(t), v3(t), v4(t)
)

such that eµ2tv(t) is a solution of (12), where µ2 = 1
T ln r

(Φ(F−V )(.)−εM (T )) > 0. Choose ρ > 0 such that (E(t+ω+T1), I(t+ω+T1), Ie(t+
ω+T1), E(t+ω+T1)) ≥ ρv(0) > (m/2,m/2,m/2,m/2). Since v(t) is a continuous
and periodic function, ρv(t) ≥ (m/2,m/2,m/2,m/2) for 0 < t � 1 holds. Then
the comparison theorem implies that for 0 < t− (t+ ω + T1)� 1,(

E(t), I(t), Ie(t),W (t)
)
≥ ρeµ2(t−t−ω−T1)v(t− t− ω − T1)

> ρv(t− t− ω − T1)

≥ (m/2,m/2,m/2,m/2)

holds. Finally E(t) > m/2, I(t) > m/2, Ie(t) > m/2 and W (t) > m/2 for 0 <
t − (t + ω + T1) � 1, which contradicts the assumption. Hence E(t) ≥ m/2,
I(t) ≥ m/2, Ie(t) ≥ m/2 and W (t) ≥ m/2, for any t ∈ [t, t], where m/2

.
= ξ for any

t ∈ [t, t]. Since t and t are sufficiently large,
(
E(t), I(t), Ie(t),W (t)

)
≥ (ξ, ξ, ξ, ξ) for

sufficiently large t. Hence, lim inft→∞
(
E(t), I(t), Ie(t),W (t)

)
≥ (ξ, ξ, ξ, ξ), which

completes the proof.

3. Numerical results. In this section, we numerically analyse model (1), concen-
trating on the effect of pulse vaccination on HFMD infections. Data on symptomatic
cases of endemic HFMD in mainland China were obtained from the Chinese CDC
[8]. The surveillance system provides monthly real-time statistics for mainland
China. From the National Bureau of Statistics of China [26], we obtain the recruit-
ment rate of susceptible individuals (Λ) and the natural death rate (d). We only
considered the population of young children under six years of age. Note that the



proportion of children under six years of age is approximately 7.89%; thus, the num-
ber of susceptible individuals in 2010 was S(0) = 105703908. We obtain the annual
human population using annual birth data from the National Bureau of Statistics of
China [26]. By dividing the annual population by 12, the human birth population
is derived as Λ = 1328556, specifically. Assume that the symptomatic and asymp-
tomatic individuals have the same recovery rate, which is derived directly in [11].
Transmission coefficient functions are assumed to be β1(t) = a1(1 + sin( 2πt

12 + φ)),

β2(t) = a2(1 + sin( 2πt
12 + φ)) and ν(t) = a3(1 + sin( 2πt

24 + φ)), where φ = 2 is based
on an estimate in [23]; and ai, i = 1, 2, 3, are unknown positive constants that will
be estimated. The EV71 vaccine consistently elicits immunogenicity and provides
protection against mild-to-severe disease caused by EV71 for infants over 1 year old
and young children [43]; therefore, the vaccination periodic T is assumed to be 12
months.

Based on known parameters, which are listed in Table1, we plotted the goodness-
of-fit to the data from 2010 to 2015 in mainland China, as shown in Fig.1. Using
the parameters listed in Table1, we calculated the basic reproduction number to
be R0 = r(ΦF−V (24)) = 1.74, which indicates that HFMD infections will not be
eliminated under the current strategies. To examine the effects of pulse vaccina-
tion on new symptomatic infections, we assumed that a pulse vaccination strategy
was implemented in 2015 and plotted the variation in the monthly number of new
symptomatic infections with different rate of coverage of vaccination. Fig.2 (a)
shows that the monthly number of new symptomatic infected individuals is signifi-
cantly reduced once the vaccination strategy is implemented, which means that the
vaccination measure can effectively control the number of infected individuals and
prevent outbreaks of disease. Fig.2 (b) shows that the monthly number of recovered
individuals increases significantly once the vaccination strategy is implemented, and
the larger the rate of pulse vaccination τ , the greater the number of recovered in-
dividuals; that is, high rates of vaccination lead to an increase in the number of
recovered individuals. Hence, the vaccination strategy is beneficial for controlling
the spread of disease.

We considered the seasonal transmission rate, where β1(t) = a1(1+sin( 2πt
12 +φ)),

β2(t) = a2(1 + sin( 2πt
12 + φ)) and ν(t) = a3(1 + sin( 2πt

24 + φ)) in model (1). From
Fig.3, we find that the seasonal phase-shift parameter φ has a significant influence
on the monthly average number of symptomatic infected individuals and gives rise
to periodic variation. Moreover, we obtain the optimal phase shift such that the
number of symptomatic infected individuals reaches a minimum. Fig.4 (a) and
(b) show the effects of the pulse vaccination rate τ and seasonal phase shift φ on
the basic reproduction number R0 for various vaccination periods. It follows from
Fig.4(a) that increasing the phase shift greatly decreases R0, while enhancing pulse
vaccination may or may not reduce R0, depending on the value of the phase shift.
In particular, for relatively low values of the phase shift, the variation with pulse
vaccination slightly reduces the basic reproduction number, while for relatively high
phase shift values, increasing the rate of pulse vaccination induces periodic variation
in R0. When the vaccination period T = 24, it is obvious that no matter what the
values of τ and φ are, the basic reproduction number R0 is persistently greater
than unity, which means that a less-frequent vaccination strategy cannot effectively
control the spread of HFMD.

To discuss the influence of different vaccination periods on HFMD control, we
plotted the variation of monthly average symptomatic infected individuals with
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Figure 1. Goodness-of-fit to the real data from 2010-2015 in
mainland China without pulse vaccination.

different vaccination periods and vaccination rates. Fig.5 (a) shows that when
the pulse vaccination rate is τ = 0.25, different vaccination periods do not have a
significant influence on the monthly average symptomatic infected individuals. Fig.5
(b) shows that when the pulse vaccination rate is τ = 0.75, the monthly average
number of symptomatic infected individuals for T = 12 is significantly reduced
compared to that for T = 24. This suggests that increasing the vaccination rate
and shortening the vaccination period can effectively reduce the number of infected
individuals and prevent the spread of disease.

In the preceding discussion, HFMD pulse vaccination was assumed to occur at
the beginning of each year. Next, we will discuss the influence of different timings
of pulse vaccination occurrence on the monthly average number of symptomatic
infected individuals. For this purpose, let pulse vaccination occur at times t =
nT + ψ, where 0 ≤ ψ < T , n ∈ N. In other words, we study the effect of a
phase shift in the pulse vaccinations on disease transmission and control. Fig.6
and Fig.7 show that, when the pulse vaccination period is T = 12 and 24 months,
the monthly number of symptomatic infected individuals reaches its minimum for
phase ψ = 9 and 18 months, respectively. This indicates that the optimal timing for
vaccination is in September, just before a new term begins. Note that in September,
the temperature is suitable for the survival and transmission of EV71. After the
new term begins, effective contact among susceptible children are more conducive
to the spread of HFMD. Thus, pulse vaccination at this time can effectively control
the outbreak of HFMD.

Moreover, we discuss the influence of the pulse vaccination rate τ and timing of
pulse vaccination ψ on the basic reproduction number R0, as shown in Fig.8. It
follows from Fig.8 (a) and (b) that for relatively low values of ψ, increasing the rate
of pulse vaccination does not significantly affect the basic reproduction number,
while for relatively high values of ψ, varying the rate of pulse vaccination induces
periodic oscillation in R0. In particular, there is an optimal combination of the
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Figure 3. The effect of the seasonal phase φ on the monthly av-
erage number of symptomatic infected individuals.
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Figure 4. The effect of different phase φ and proportion of pulse
vaccination τ on R0. The seasonal transmissions are of the forms
β1(t) = a1(1 + sin( 2πt

12 + φ)), β2(t) = a2(1 + sin( 2πt
12 + φ)) and

ν(t) = a3(1 + sin( 2πt
24 + φ)), where φ is the seasonal phase shift;

(a) the pulse vaccination period T = 12 months, (b) the pulse
vaccination period T = 24 months.

rate and timing of the pulse vaccination such that the basic reproduction number
reaches a minimum. A comparison of Fig.8 (a) and (b) indicates that when the
pulse vaccination period T = 24 months is applied, the basic reproduction number
is always greater than one; therefore, pulse vaccinations with a period of 24 months
are not to be recommended. This result suggests that large outbreaks of HFMD in-
fection could be significantly prevented by annual vaccinations in September, which
is also in agreement with the conclusion of Fig.6 and Fig.7.

To examine the sensitivity of our results to parameter variations, we used Latin
Hypercube Sampling (LHS) and partial rank correlation coefficients (PRCCs) [24,
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Figure 5. The effect of pulse vaccination on the monthly average
number of symptomatic infected individuals with a different vacci-
nation period, where T = 12 is depicted by a blue line and T = 24
is depicted by a green line; (a) proportion of pulse vaccination
τ = 0.25, and (b) proportion of pulse vaccination τ = 0.75.
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Figure 6. The effect of phase differences between pulse vaccina-
tions on the monthly average number of symptomatic infected in-
dividuals (pulse vaccinations occur at times t = nT + ψ), where
the pulse vaccination proportion τ = 0.75, the vaccination period
T = 12 months. (a) ψ = 0, (b) ψ = 3, (c) ψ = 6, (d) ψ = 9.
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Figure 7. The effect of phase differences between pulse vaccina-
tions on the monthly average number of symptomatic infected in-
dividuals (pulse vaccinations occur at times t = nT + ψ), where
the pulse vaccination proportion τ = 0.75, the vaccination period
T = 24 months. (a) ψ = 0, (b) ψ = 6, (c) ψ = 12, (d) ψ = 18.

37] to examine the dependence of the monthly average of I(t) (infectious with
symptoms) on uncertain parameters. We carried out 1000 simulations per run.
In the absence of available data on the distribution functions, we chose a uniform
distribution for the input parameters with ranges listed in Table2 and tested for
significant PRCCs for all parameters of the model (1). Fig.9 shows the PRCC
values, which illustrates the dependence of the monthly average of I(t) on 13 main
input parameters. We considered absolute values of PRCC > 0.4 as indicating
an important correlation between input parameters and output variables, values
between 0.2 and 0.4 as moderate correlations, and values between 0 and 0.2 as not
significantly different from zero [24].

It follows from Fig.9 that the parameters with the greatest impact on the monthly
average of I(t) are the direct transmission coefficient of symptomatic and asymp-
tomatic individuals (a1 and a2), indirect transmission coefficient (a3), rate of clear-
ance of the virus (ζ), and rate of pulse vaccination (τ). It is interesting to note that
variation in the direct transmission coefficient (a2), indirect transmission coefficient
(a3), and pulse vaccination rate (τ) have a major influence on the monthly average
of I(t). Moreover, Fig.9 suggests that increasing the coverage rate of the pulse vac-
cination strategy, improving hand hygiene of individuals, and frequently cleaning
are effective and feasible strategies for reducing HFMD infections.

4. Discussion. A vaccination strategy is used to control or eradicate an infection
in a population. HFMD infections appears periodically in mainland China with a
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Figure 8. The effect of different phases ψ and proportions of
pulse vaccinations τ on R0. Pulse vaccinations occur at times t =
nT + ψ, where 0 ≤ ψ < T , n ∈ N. (a) pulse vaccination period
T = 12 months, (b) pulse vaccination period T = 24 months.

relative large oscillation every other year [8]. In this study, we proposed and anal-
ysed a HFMD model with periodic transmission rates and impulsive vaccination for
seasonal outbreaks. The proposed model extends the existing models by combin-
ing effects of contaminated environments, asymptomatic infected subpopulations,
and an impulsive vaccination strategy. Models with a periodic transmission rate
for HFMD have been previously proposed, but such models mainly considered a
direct transmission rate although despite evidence that contaminated environments
[2, 10, 17] and recessive (asymptomatic) subpopulations are also important sources
for contracting an infection [7, 23]. Hence, in our model, infected individuals were
divided into two subgroups (symptomatic and asymptomatic); furthermore, indirect
transmission via free-living viruses in the environment were also included. Our pro-
posed model incorporated two routes of transmission: direct transmission between



Table 2. PRCC values for monthly average number of I

Parameters Distribution PRCC p-Value

Λ U(1328000, 1329000) 0.0336 0.1346

η U(0.1, 0.1 ) 0.0816 0.0328
p U(0.022, 0.028 ) 0.4598 0

a1 U(0.000000012, 0.000000018) 0.7430 0

a2 U(0.000000002, 0.0000000025) 0.9579 0
σ U(5.9, 6.1) 0.0968 0.1147

γ1 U(0.19, 0.196) -0.0679 0.0243

γ2 U(0.19, 0.196) -0.2475 0.0165
a3 U(0.000000000015, 0.000000000021) 0.9635 0

λ1 U(800, 30000) 0.2611 0
λ2 U(600, 800) 0.5977 0

τ U(0.1, 1) -0.7813 0

ζ U(25, 35) -0.3812 0.0043
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Figure 9. PRCCs value for the outcome of the monthly average
number I. All the parameters are listed in Table 1.

susceptible and infected (symptomatic or asymptomatic) individuals and indirect
transmission via freeliving viruses. Compared with existing models on HFMD infec-
tion [23, 38, 33, 34], our proposed model is the first to consider a pulse vaccination
strategy. Therefore, with respect to modelling, the main contribution of our pro-
posed model, compared with that of [34], is the inclusion of the pulse vaccination
rate. Our main concerns when studying the epidemiology of HFMD are determining
what time and to what extent pulse vaccination should be implemented to effec-
tively control HFMD infection and to suggest an optimal pulse vaccination control
strategy.

We also theoretically analysed the proposed model. We calculated the peri-
odic solution of an ‘infection-free’ system (2), then obtained a threshold param-
eter r(ΦF−V (.)(T )) for system (1), which determines the extinction and the uni-
form persistence of the disease. The basic reproduction number R0 was defined
by the next infection operator with the relationship r(ΦF−V (.)(T )) > 1⇔ R0 > 1;



r(ΦF−V (.)(T )) < 1⇔ R0 < 1 and r(ΦF−V (.)(T )) = 1⇔ R0 = 1. Our main theoret-

ical results show that when η = 0, the DFPS for system (1), E1(S̃(t), 0, 0, 0, 0, R̃(t)),
is globally asymptotically stable if r(ΦF−V (.)(T )) < 1, whilst the disease is persis-
tent for r(ΦF−V (.)(T )) > 1.

We also considered the goodness-of-fit of our proposed model to real data from
2010 to 2015 in mainland China, as shown in Fig.1. We investigated the effect of
vaccination rates on HFMD infections and examined the influence of a seasonal
phase shift and pulse vaccination rate on the basic reproduction number R0. We
found that frequent vaccination at a high rate leads to a decline in HFMD infection
(as shown in Fig.5). Through numerical simulations in Fig.6 and Fig.7, we gained
insights into optimizing vaccination strategies. In particular, we found that the best
timing for vaccination is in September, just before a new term begins. A sensitivity
analysis illustrated that asymptomatic infected individuals and the contaminated
environments are essential factors substantially contributing to new HFMD infec-
tions; cleaning the environments as well as vaccines are effective measures in reduc-
ing HFMD infections. Therefore, the existence of asymptomatic infected individuals
and contaminated environments significantly increase the risk of HFMD transmis-
sion among children, compared with existing results in the literature [23, 38] where
either the asymptomatic compartment or contaminated environment is ignored in
the model formulation. Our main results suggest that frequent immunization with
a greater coverage rate may significantly reduce HFMD infections. Our findings
also suggest that frequent cleaning of the environment and enhanced individual
sanitation (e.g., regular hand-washing) are effective measures in controlling HFMD
infections; in addition, vaccinating at the optimal time (i.e., September, just be-
fore a new term begins) with a greater coverage rate is an effective approach in
preventing HFMD outbreaks.

In recent years, HFMD has been increasingly recognized as a public health pri-
ority, particularly for children under five years of age. Therefore, it is important
to compare the effectiveness of periodic mass (pulse) vaccination versus routine
(constant) vaccination. Disease-control authorities should consider certain logisti-
cal aspects, which may affect the cost of implementing a particular strategy. Our
model considers seasonality and environmental transmission. Note that we use of
the mass action incidence β1(t)SI rather than the standard incidence rate, which is
more appropriate to describe the contacts of individuals in a community. When we
consider the indirect transmission via free-living pathogens in the environment, how
to formulate the standard incidence brings great challenges. To keep consistence
we use the mass action incidence for direct and indirect transmission. We showed
the existence of an optimal pulse vaccination strategy, that is, a well-timed pulse
vaccination strategy during the season before the high-transmission season, which
is in agreement with the results for the SIR model (susceptible (S), infected (I),
and recovered (R)) [27]. More researches need to be conducted on environmental
transmission (indirect transmission), pulse vaccination in metapopulations (patch
model), and now people pay more attention to this disease, thus media reports
may influence the spread of HFMD [31, 37]. This may explain why a relatively
large outbreak of HFMD occurs every other year [5], which may be influenced by
many environmental factors such as EV71 survival time, average air temperature,
humidity, and air pressure. Homogeneous mixing assumptions used in our model
may approximate some communities; however, in the whole mainland, transmission
dynamics exhibit heterogeneity in the structure of all communities. Considering



the effect of social networks and exploring the occurrence of large outbreaks every
other year are interesting topics for future research.
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