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Abstract	

Understanding	metabotype	(multicomponent	metabolic	characteristics)	variation	can	help	

generate	new	diagnostic	and	prognostic	biomarkers	and	models	with	the	potential	to	

impact	patient	management.	Here	we	present	a	suite	of	conceptual	approaches	for	the	

generation,	analysis	and	understanding	of	metabotypes	from	body	fluids	and	tissues.	We	

describe	and	exemplify	four	fundamental	approaches	to	the	generation	and	utilization	of	

metabotype	data	via	multiparametric	measurement	of:	i)	metabolite	levels;	ii)	metabolic	

trajectories;	iii)	metabolic	entropies	and	iv)	metabolic	networks	and	correlations	in	space	

and	time.	This	conceptual	framework	can	underpin	metabotyping	in	the	scenario	of	

personalised	medicine,	with	the	aim	of	improving	clinical	outcomes	for	patients,	but	it	will	

have	value	and	utility	in	all	areas	of	metabolic	profiling	well	beyond	this	exemplar.	

Basic	concepts	of	metabolic	phenotyping	

In	the	broadest	sense,	the	phenotype	(see	Glossary)	of	an	organism	refers	to	the	

quantitative	or	qualitative	measurement	of	specific	parameters	or	traits	that	characterise	

individual	functional	biological	classes.	It	is	now	recognised	that	the	phenotype	represents	

the	end	product	of	a	complex	set	of	interactions	between	the	genes	and	environment	of	an	

organism,	including	contributions	from	the	diet,	drugs,	ageing,	exercise,	physiological	and	

psychological	stressors	and	the	activity	of	the	organisms	within	us	including	bacteria,	

viruses,	fungi	and	parasites.	Comprehensive	metabolic	profiles	obtained	from	individuals	are	

an	integral	part	of	the	richness	of	a	phenotypic	description.		

Metabolic	phenotyping	offers	comprehensive	molecular	structure	and	concentration	

information	on	thousands	of	compounds	found	in	biological	fluids	and	cell	extracts	[1,2]	in	a	

single	analytical	run,	to	generate	a	metabotype	representing	the	totality	of	the	metabolic	

state	of	a	particular	compartment	(biofluid	or	tissue)	of	an	individual	at	that	point	in	time.	

Conceptually,	this	type	of	work	differs	from	targeted	or	univariate	metabolic	measurements	

by	the	notion	that	the	intrinsic,	multicomponent	patterns	of	biological	systems,	and	their	

change	in	response	to	disease,	treatment,	or	any	intervention,	carry	uniquely	powerful	

diagnostic	information.[1]	This	approach	was	subsequently	described	as	“metabonomics”	

and	defined	in	an	experimental,	interventional,	systems	biology	framework	for	

understanding	the	responses	of	complex	systems	through	time	to	various	interventions	or	
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pathophysiological	stimuli.[2-4]	The	term	metabolomics	is	also	in	wide	usage	and	was	

originally	defined	in	a	contrasting	observational	fashion.[5]	However,	the	analytical	methods	

and	approaches	are	highly	convergent	and	the	terms	are	now	used	interchangeably.	

Hereafter,	we	use	the	term	metabolic	phenotyping	throughout	to	describe	static	and	

dynamic	multiparametric	metabolic	features.[6]	This	metabolic	phenotyping	approach	in	

humans	and	other	mammalian	systems	has	been	applied	to	study	drug	toxicity,[7]	drug	

metabolism,[8]	disease	diagnosis,[9,10]	the	environmental	impact	of	chemicals[11]	and	

nutrition[12].	Note	that	we	distinguish	between	compounds	formed	by	enzymatic	catalysis:	

metabolites,	from	those	formed	by	chemical	reactions:	metabonates.	

By	defining	the	set	of	biochemicals	or	biomarkers	that	are	characteristic	of	phenotypes	

relating	to	specific	physiological	or	pathological	states,	one	can	then	infer	mechanistic	

knowledge	about	those	states.	Once	validated,	these	metabolic	biomarker	panels	can	then	

be	developed	into	diagnostic	or	prognostic	tools.		

Prior	to	the	expression	of	overt	disease,	when	there	is	no	macroscopic	pathology,	it	can	be	

assumed	that	there	is	some	degree	of	metabolic	dysregulation.	Since	the	metabotype	is	

based	on	multiple	physical	and	chemical	descriptors,	it	is	likely	that	it	carries	latent	

physiological	or	phenotypic	information	relevant	to	later	development	of	disease.[13]	This	

principle	of	phenotypic	latency	enabled	the	formulation	of	the	concept	of	

pharmacometabonomics,	also	sometimes	known	as	pharmacometabolomics,	where	pre-

interventional	metabolic	signatures	can	be	used	prognostically	to	predict	post–

interventional	outcomes.[14]		

The	current	status	of	metabolic	profiling	in	clinical	practice	is	summarised	in	Box	1.	

Metabolite	origins	

The	metabolites	identified	in	studies	of	human	and	animal	biofluids	can	originate	from	a	

number	of	distinct	sources.	These	are	broadly	classified	into	three	major	groups:	(i)	

metabolites	that	are	produced	by	host	cells	under	host	genomic	control,	(ii)	those	produced	

by	the	enzymes	of	microorganisms	and	parasites	living	within	or	on	the	host	organism	in	the	

microbiome	and	parasitome	respectively,	and	finally,	(iii)	metabolites	that	are	produced	by	

processing	of	environmental	agents	such	as	food,	drinks,	drugs,	pollutants	etc	[23]	(Figure	

1).		
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The	complex	array	of	chemicals	within	the	human	body	thus	derives	from	a	combination	of	

human	metabolism,	exogenous	sources	and	the	large	number	of	symbiotic,	and	sometimes	

parasitic,	organisms	residing	within	the	body.	As	a	result,	humans	can	be	regarded	as	super-

organisms[15]	whose	health	status	is	determined	by	much	more	than	their	genes.	Gut	

microorganisms	can	strongly	influence	the	metabotypes	(metabolic	phenotypes)	of	humans	

and	animals	with	extensive	trans-genomic	co-metabolism	in	some	compound	classes,	e.g.	

bile	acids,	where	certain	substances	can	only	be	formed	via	the	interactions	of	human	and	

bacterial	genomes.[13,15,16]	Studies	from	multiple	groups	have	shown	the	microbiome	has	

a	role	in	many	diseases	including	gastrointestinal	disorders,[17,18]	cancers	and	efficacy	of	

cancer	treatments,[19]	metabolic	syndrome	and	obesity[20]	and	a	range	of	

neuropathologies	including	Alzheimer’s	disease	and	autism.[21,22]	The	microbe-host	

connections	in	all	these	conditions	are	mediated	via	complex	metabolic	and	immunological	

signalling	mechanisms	that	are	still	poorly	understood.	The	microbiome	also	impacts	heavily	

on	patient	responses	to	therapeutic	treatments	and	so	must	be	considered	to	be	an	

essential	component	of	future	personalised	medicine	going	forward.[23]		

The	metabolome	of	biofluids	such	as	urine,	plasma	or	fecal	extracts	can	provide	a	window	

on	many	of	these	complex	trans-genomic	interactions.	In	particular,	metabolic	phenotyping	

provides	a	powerful	methodology	for	studying	gut	microbial	metabolism	and	the	metabolic	

interactions	between	the	gut	bacteria	and	the	host,	as	well	as	the	status	of	host	metabolism	

and	the	influences	of	diet	and	the	exposome.[12,24]	Whilst	high	throughput	genomic	

sequencing	of	the	microbiome	(metagenomics)	can	provide	information	on	which	bacteria	

are	present,	it	is	the	metabolic	profiles	that	yield	insights	on	the	microbial	metabolic	

functionality.	In	particular,	modulation	of	microbial-mammalian	co-metabolites	has	been	

demonstrated	in	response	to	obesity,[25]	Roux-en-Y	gastric	bypass	surgery[26]	and	a	high	

fat	diet.[27]	The	gut	and	other	microbiomes	therefore	represent	a	target	for	future	

therapeutic	development	and	drug	targeting.	

Biological	sample	types	

Different	biological	sample	types	intrinsically	report	on	the	different	biological	

compartments	within	a	complex	organism	and	the	metabolites	observed	will	be	structurally	

diverse	and	the	metabolic	pathways	could	be	highly	topographically	distinct.	For	example,	

the	analysis	of	metabolites	in	human	breath,	will	mainly	measure	the	low	molecular	weight,	
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volatile	organic	compounds	derived	either	from	lung	tissue	and	its	microbiome[28]	in	air	

exchange	processes	within	the	lungs	and	upper	respiratory	tract	of	the	subject,	or	directly	

from	exposome	volatiles.	In	direct	contrast,	samples	of	human	blood	plasma	will	contain	

non-volatile,	low	molecular	weight	metabolites	such	as	simple	sugars,	hormones,	osmolytes	

and	amino	acids,	as	well	as	macromolecules	such	as	proteins	and	lipids,	supramolecular	

complexes	such	as	lipoproteins	in	addition	to	trace	metabolites	from	the	exposome;	these	

metabolites	being	representative	of	a	particular	moment	at	the	time	of	sampling.	

Alternatively,	analysis	of	urine	will	provide	information	on	low	molecular	weight	metabolites	

derived	from	the	host	metabolism,	diet,	drugs,	the	exposome	and	non-human	organisms	

such	as	gut	bacteria;	this	is	a	dynamic	window	reflecting	time-averaged	metabolism	over	

several	hours.	The	metabolic	window	on	an	individual	given	by	different	human	biological	

samples	will	thus	be	completely	different	in	terms	of	metabolite	type	(structural	class,	

molecular	weight	range,	polarity	etc),	function	and	origin	and	will	report	on	different	

compartments	within	the	subject,	some	of	which	will	be	in	metabolic	exchange	with	one	

another.	

In	addition	to	considering	which	samples	to	investigate	and	which	analytical	technologies	to	

use	(see	Supplementary	Information)	to	solve	the	biological	or	clinical	question	at	hand,	it	is	

equally	important	to	consider	the	sampling	methodology.	Whilst	there	are	well-documented	

procedures	for	sample	preparation	for	both	NMR-[29,30]	and	MS-based	metabolic	

phenotyping	approaches,[31],[32]	it	is	now	well	known	that	diet,	drug-taking	and	diurnal	

variation,[33]	as	well	as	factors	such	as	gender	and	age,	will	all	affect	the	metabolite	profiles	

obtained	and	several	statistical	methods	have	been	developed	accordingly	to	correct	for	

such	systematic	confounding	variation,	so	as	to	focus	on	the	key	clinical	and	biological	

questions.[34]		

A	comprehensive	conceptual	framework	for	metabolic	phenotyping		

The	range	of	approaches	that	can	be	taken	in	metabolic	phenotyping	is	now	so	great	that	it	

is	useful	to	advance	a	general	conceptual	framework	for	the	subject.	Thus,	we	will	consider	

the	fundamentally	different	types	of	experiments	that	can	be	executed	for	diagnostic	and	

prognostic	outcomes	and	then	discuss	the	various	measurement	approaches	that	can	be	

taken	in	those	experiments.	
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There	are	two	main	approaches	to	metabolic	phenotyping	in	human	and	other	studies,	such	

as	in	animals,	cellular	systems	or	plants.	The	first	approach	comprises	interventional	or	

event-based	studies	where,	for	example,	the	differences	between	control	and	disease	

subjects	or	differential	disease	diagnoses	are	required,	or	the	efficacy	or	otherwise	of	a	

therapeutic	or	other	type	of	intervention	is	monitored.	These	can	be	termed	“event	

interpretation”	or	“diagnostic	studies”	(Figure	2,	top	panel).	Here,	metabolite	metrics	are	

measured	before	and	after	the	event	or	treatment	e.g.	genetic	change,	physiological	or	

pathological	stimulus	or	other	intervention	such	as	drug	therapy,	and	the	resulting	changes	

are	interpreted	in	the	context	of	that	specific	intervention.		

The	second	approach	consists	of	baseline-,	or	pre-intervention-based	studies	where	the	

outcome	of	a	treatment	or	intervention	is	predicted	from	a	baseline	(pre-intervention)	

study	of	metabolism,	for	example,	to	predict	the	efficacy	of	a	future	therapy	regime	in	

groups	of	subjects.	A	related	type	of	baseline	study	is	the	determination	of	disease	risk	

factors	based	upon	study	of	the	metabolic	composition	of	biofluids	obtained	from	

epidemiological	or	biobank	studies	in	free-living	subjects.	These	studies	can	all	be	termed	

“event	prediction”	or	“prognostic	studies”.		In	a	predictive	metabolic	phenotyping	

experiment,	metabolite	metrics	are	measured	for	a	cohort	of	individuals	prior	to	an	

intervention	of	some	kind.	The	differential,	pre-intervention	metabolite	profiles,	or	a	

mathematical	model	based	on	those	differential	profiles,	are	then	used	to	predict	the	

differential	outcomes	of	the	intervention	amongst	the	different	subsets	of	individuals	in	the	

cohort	(Figure	2,	bottom	panel).	If	the	intervention	is	merely	the	passage	of	time,	then	this	

methodology	can	be	used	to	predict	disease	onset	in	subsets	of	individuals,	sometimes	

years	before	its	occurrence.		

Predictive	metabolic	phenotyping	has	its	roots	in	pharmacometabonomics,[14]	which	is	the	

specific	case	where	the	intervention	is	drug	treatment	and	the	prediction	is	of	drug	outcome	

in	terms	of	differential	drug	pharmacokinetics	(PK),	metabolism,	safety	or	efficacy	amongst	

the	subjects	in	the	cohort,	with	the	prediction	made	on	the	basis	of	an	analysis	of	the	

differential	pre-dose	metabolic	profiles	in	that	same	cohort.	This	was	demonstrated	first	by	

the	prediction	of	metabolism	and	toxicology	from	pre-intervention	urines	in	a	cohort	of	rats	

subsequently	administered	paracetamol.[14]	It	was	later	shown	that	prediction	of	drug	

metabolism	could	also	be	achieved	in	a	cohort	of	human	volunteers	who	were	administered	
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a	normal	clinical	dose	of	paracetamol.[35]	Pharmacometabonomics	is	thus	the	metabolic	

equivalent	of	pharmacogenomics.[36]	Many	publications	on	pharmacometabonomics	have	

now	appeared,	demonstrating	the	prediction	of	drug	PK,	metabolism,	safety	and	efficacy	in	

animals	and	humans	and	even	the	prediction	of	survivability	in	liver	disease.[37]	The	field	

has	recently	been	reviewed.[36,38]	New	developments	include	the	powerful	combination	of	

technologies	utilised	in	pharmacometabonomics-enabled	pharmacogenomics.[39]	Given	the	

challenges	facing	approaches	based	solely	on	pharmacogenomics,[40]	and	the	difficulties	of	

predicting	phenotypic	changes	in	the	presence	of	complex	genome	–	microbiome	

interactions,	we	expect	pharmacometabonomics	to	impact	strongly	on	personalised	

healthcare	in	the	future.	

Predictive	metabolic	phenotyping	in	the	more	general	sense	has	been	realised	recently	in	a	

number	of	studies,	including	the	large	studies	by	Wang[41]	and	Wang-Sattler	et	al[42]	who	

demonstrated	prediction	of	the	development	of	diabetes.	In	these	studies,	the	intervention	

is	the	passage	of	time,	and	the	baseline	metabolite	profiles	were	found	to	be	predictive	of	

disease	onset.	More	recent	studies	have	demonstrated	the	use	of	the	method	for	clinical	

prognosis	of	cardiovascular	events	and	stroke.[43-45]	This	type	of	predictive	analysis	could	

also	have	benefits	for	personalized	healthcare	in	the	future,	in	terms	of	tailoring	treatments	

and	counseling	to	those	individuals	predicted	to	be	most	at	risk	from	future	disease	onset.	

Here	we	also	propose	a	new	type	of	experiment	-	dynamic	predictive	metabolic	

phenotyping.	In	this	approach	variant,	a	cohort	of	individuals	is	subjected	to	a	physiological	

challenge	of	some	type	and	the	differential	dynamic	responses	of	the	individuals	are	

monitored	and	used	to	predict	the	individual	responses	of	the	subjects	to	a	future	

intervention,	which	may	be	related	to	the	initial	challenge.	The	purpose	of	this	is	to	liberate	

the	latent	metabolic	phenotype	that	might	not	be	directly	observable	under	steady-state,	

non-challenge	conditions.	The	method	can	also	be	regarded	as	the	multivariate	metabolic	

equivalent	of	the	biochemical	challenge	tests[46]	such	as	the	glucose	tolerance	test,	that	

have	been	used	for	many	years	to	predict	for	diabetes.	Recently	Morris	et	al.[47]	showed	

that	an	oral	glucose	tolerance	test	could	be	used	to	differentiate	the	metabotypes	of	a	

cohort	of	214	individuals	who	clustered	into	4	sub-groups,	one	of	which	was	predicted	to	be	

an	‘at-risk’	cohort.	
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Two	further	variants	of	predictive	metabolic	phenotyping	approaches	are	worthy	of	

mention.	Firstly,	early-onset	predictive	metabolic	phenotyping	is	a	variant	where	the	

prediction	of	intervention	outcome	is	made	soon	after	the	intervention	(but	not	before,	as	

in	a	true	predictive	experiment)	on	the	basis	of	early	changes	to	metabolite	metrics).	This	

approach	was	adopted	by	Winnike	et	al[48]	in	a	study	of	the	prediction	of	the	safety	of	

paracetamol,	after	administration	of	a	high	dose	of	the	drug	to	71	male	and	female	

volunteers.	Pre-dose	biofluid	analysis	failed	to	achieve	prediction,	but	metabolite	profiles	

obtained	soon	after	dosing	were	able	to	successfully	predict	reversible	liver	injury,	well	

before	any	changes	in	classical	liver	damage	markers	(ALT	levels)	were	seen.		

A	second	variant	of	predictive	metabonomics	is	longitudinal	predictive	metabonomic	

phenotyping,	or	longitudinal	pharmacometabonomics,	for	the	case	where	the	prediction	is	

of	the	effect	of	drug	treatment.	In	this	variant	a	cohort	of	subjects,	for	example	patients,	is	

monitored	over	time	and	their	metabolic	trajectories	over	that	time	period	are	used	to	

phenotype	or	stratify	the	patients	with	respect	to	optimising	their	future	treatment.[49]		

Metabolic	phenotyping	experiments	are	often	categorised	according	to	whether	they	are	

‘targeted’	at	the	analysis	of	a	specific	subset	of	metabolites,	or	whether	they	are	

‘untargeted’	with	no	specific	metabolites	in	mind	at	the	commencement	of	the	study	and,	

as	such	these	latter	studies	are	both	agnostic	and	exploratory.[50]	In	targeted	studies,	the	

subset	of	metabolites	of	interest	will	usually	be	quantitated	to	a	greater	degree	than	in	

untargeted	studies,	perhaps	even	using	internal	standards	for	greater	accuracy	of	

metabolite	level	measurement.	The	differences	between	these	two	approaches	are	

quantitative	and	technical	rather	than	qualitative	and	fundamental,	as	the	same	

measurements	e.g.	metabolite	levels	and	the	same	experimental	approaches,	e.g.	event	

interpretation	are	typically	used	in	both	categories.	However,	in	untargeted	studies,	

multivariate	statistical	analysis	methods	will	typically	be	used	in	order	to	find	patterns	in	

the	data	and	to	define	statistically	significant	biomarkers.	

Four	measurement	methodologies	for	metabolic	phenotyping	studies		

Once	the	sample	type,	sampling	protocol,	analysis	technology	and	the	experimental	

approach	are	decided,	a	key	consideration	in	any	metabolic	phenotyping	experiment	is	how	



Everett	et	at	TiPS	2019	Concepts	in	Metabonomics,	Accepted	Version	 	 Page	9	of	23	

metabolic	responses	are	measured.	There	are	four	fundamental	ways	of	measuring	and	

modelling	metabolic	responses	and	each	will	be	considered	in	turn	below.	

Metabolite	concentration	measurements.	By	far	the	majority	of	metabolic	phenotyping	

experiments	are	conducted	by	measurement	of	metabolite	levels	(concentrations)	before	

and	after	an	intervention,	which	could	be,	for	example,	drug	treatment	of	a	patient	

suffering	from	a	disease.	It	should	be	noted	that	metabolite	concentrations	in	urine	depend	

on	urinary	volumes	and	should	ideally	be	corrected	to	excretion	rates/kg	body	mass/24	

hours.	Changes	in	metabolite	levels	can	then	be	correlated	with	important	outcomes	

associated	with	the	particular	intervention	e.g.	patient	recovery	from	disease	following	drug	

treatment.	Key	metabolite	level	changes	that	correlate	significantly	with	clinical	outcomes	

may	give	rise	to	the	use	of	those	metabolites	as	metabolic	biomarkers	for	that	clinical	

outcome	(Figure	3A).	These	biomarkers	can	be	mapped	to	metabolic	pathways,	potentially	

giving	information	on	underlying	disease	mechanisms.		

Metabolic	trajectory	measurements	through	time.	A	second	approach	to	the	measurement	

of	metabolic	responses	is	to	measure	metabolite	trajectories	over	time,	in	response	to	an	

intervention	and	then	any	recovery	from	that	intervention	(Figure	3B)[51,52,53].		

The	distinction	here	is	that	instead	of,	for	example,	making	two,	simple,	pre-	and	post-

intervention	metabolite	level	measurements	in	a	diagnostic/	event	interpretation	

experiment,	a	series	of	measurements	are	made	from	a	pre-intervention	state,	through	the	

time	period	of	the	intervention	and	then	into	the	response	and	recovery	period	after	the	

intervention.	Following	the	trajectories	of	individual	metabolites,	groups	of	key	metabolites,	

or	all	observable	metabolites	in	this	fashion	over	time,	gives	more	information	on	the	

responses	of	subjects	to	an	intervention	(Figure	3B).	For	instance,	in	a	recent	pre-clinical	

study	on	the	toxicity	of	isoniazid,	significantly	different	trajectories	were	observed	between	

animals	that	correlated	with	different	clinical	outcomes.[52]	This	approach	has	also	found	

value	in	human	studies.[54]	For	cellular	studies	in	particular,	using	metabolites	containing	

stable	isotopes	(e.g.	13C	for	NMR	spectroscopy)	to	give	detailed	measurements	of	the	rates	

and	routes	of	incorporation	of	the	label	into	biochemical	pathways	has	been	termed	

fluxomics.[55-57]	Whilst	pathway	analysis	is	enabled	by	fluxomic	approaches,	it	is	currently	

difficult	to	extend	these	analyses	to	the	whole	body	level	due	to	the	ensuing	high	

complexity.	
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Metabolic	statistical	entropy	measurements.	This	is	a	relatively	new	concept	[56]	and	

represents	another	fundamental	way	to	measure	and	analyse	metabolic	phenotyping	data.	

The	entropy	of	a	system	describes	its	degree	of	disorder.	Healthy	organisms	are	typically	

quite	ordered	by	virtue	of	the	existence	of	control	systems	that	maintain	metabolic	

homeostasis	i.e.	metabolite	levels	in	a	healthy	subject	in	a	constant	environment	(taking	

into	account	diurnal	variation,	menstrual	cycle,	food	and	drink	intake	etc.)	will	typically	not	

vary	significantly.	However,	in	a	disease	state,	or	as	a	result	of	an	intervention	of	some	kind,	

the	metabolic	control	systems	may	not	fully	function,	or	may	be	unable	to	cope	with	the	

degree	of	perturbation	to	the	organism.	In	such	cases,	the	metabolic	entropy	of	the	subject	

may	increase.	There	are	two	approaches	to	the	measurement	of	the	entropy	of	a	system	

and	these	are	based	on	either	a	thermodynamic	or	a	configurational	freedom	approach.	

These	approaches	were	used	in	the	first	exemplification	of	the	method.[58]	The	

thermodynamic	approach	calculates	the	non-mechanical	work	needed	to	regain	metabolic	

homeostasis.	The	configurational	entropy	approach	is	concerned	with	the	number	of	

metabolic	states	(i.e.	the	possible	numbers	of	different	levels	of	metabolites)	that	are	

occupied	by	an	individual	organism	or	by	a	group	of	different	individuals.	In	the	first	

exemplification	by	Veselkov	et	al[58]	configurational	entropy	was	defined	by	a	function	

based	on	the	sum	of	the	pairwise	distances	in	metabolic	space	between	all	of	the	subjects	in	

a	particular	sample	set	(see	both	panels	of	Figure	3C	for	an	example).	Given	its	unfamiliarity,	

a	new	theoretical	formulation	of	metabolic	entropy	is	given	in	the	Supplementary	Material	

(see	‘Formulation	of	metabolic	entropy	approaches’).	

Metabolic	dependencies,	correlations	and	networks.	In	any	biological	system	subject	to	a	

perturbation	or	intervention,	there	will	be	a	cascade	of	events	consequent	upon	the	

perturbation	and	some	degree	of	metabolic	disorder	will	follow.	The	levels	of	some	

metabolites	will	rise	and	others	will	fall.	For	metabolites	that	share	a	biological	

compartment,	or	are	in	exchanging	compartments,	and	that	are	also	part	of	a	biochemical	

pathway,	changes	in	the	level	of	one	metabolite	are	likely	to	affect	the	levels	of	other	

metabolites	via	changes	in	metabolic	flux	and	regulatory	feedback	mechanisms.	In	these	

circumstances	there	will	be	both	dependencies	and	correlations	of	the	levels,	trajectories	

and	entropies	of	one	metabolite	on	others.	The	ability	to	determine	these	dependencies	

and	correlations	represents	the	fourth	fashion	in	which	metabolic	data	can	be	analysed	and	
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has	been	facilitated	by	recent	developments	in	statistical	spectroscopy	methods	(see	Figure	

3D	for	an	example	relating	to	interdependency	of	drug	metabolite	levels).[34]	A	good	

example	is	the	close	correlation	found	between	urinary	levels	of	4-cresylsulphate	and	

phenylacetylglutamine,	due	to	commonality	in	the	microbial	transformations	of	tyrosine	

and	phenylalanine	respectively	in	the	early	parts	of	their	biosynthetic	pathways.[35]	The	

added	value	of	this	approach	is	that	it	is	capable	of	giving	understanding	of	the	biochemical	

consequences	of	the	intervention	applied	to	the	system.[59]		

Concluding	remarks	and	future	perspectives	

Metabolic	phenotyping	as	a	formally-defined	scientific	endeavour	has	made	significant	

impact	in	terms	of	understanding	human	and	animal	disease	states	from	an	integrated	

systems	biology	perspective.[60]	Progress	has	been	very	rapid	recently;	in	particular,	the	

development	of	methods	enabling	the	prediction	of	effects	in	animals	and	humans	based	on	

pre-dose	metabolic	profiles[14,35,41,42].	In	the	light	of	these	significant	recent	

developments,	the	new,	unified	framework	presented	here	for	the	different	fundamental	

approaches	to	metabolic	phenotyping	experiments	(diagnostic	and	prognostic/predictive)	

and	the	four	fundamental	approaches	to	metabolite	measurements	(concentrations,	

trajectories,	entropies	and	networks/correlations)	will	help	place	these	and	future	

experiments	in	an	appropriate	context.		

Predictive	metabolic	phenotyping	in	general	and	pharmacometabonomics	in	particular	are	

not	expected	to	replace	other	predictive	sciences	such	as	pharmacogenomics	or	

pharmacometagenomics,	but	it	is	likely	that	an	optimized	combination	of	both	genomic	and	

metabolic	approaches	will	find	application	for	understanding	inter-patient	phenotypic	

differences.[61,62]	One	outstanding	question	is	what	proportion	of	phenotypic	variance	will	

be	explained	by	genomic	relative	to	metabolic	approaches	(see	Outstanding	Questions).	For	

example,	the	differences	between	cancer	patients	who	respond	to	a	drug	treatment	versus	

those	who	do	not,	or	perhaps	more	strikingly,	the	differences	between	mice	of	two	

genotypes,	where	complex	genome	-	microbiome	interactions	may	complicate	simple	

genetic	interpretations.	We	do	not	underestimate	the	degree	of	difficulty	involved	in	

implementing	such	stratified	medicine	paradigms	in	modern	healthcare.	However,	the	

rewards	in	terms	of	optimized	treatment	of	patients,	reduced	morbidity	and	mortality,	and	

improved	health	economics	make	this	a	worthwhile	challenge.	Ultimately,	systems	medicine	
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has	to	be	practical	in	the	real	world	and	deliver	clinically-actionable	outcomes:	the	concept	

of	patient	journey	phenotyping[63]	implemented	using	metabolic	tools	will	greatly	assist	

this.	One	excellent,	recent,	surgical	implementation	of	metabolic	profiling	is	that	of	the	i-

knife,	which	analyses	the	compounds	present	in	the	smoke	created	by	surgical	cauterisation	

of	patient	tissue,	using	an	MS	approach.	This	technology[64-66]	allows	the	surgeon	to	

distinguish	metabolically,	and	in	real-time,	the	type	of	tissue	being	cut.	The	i-knife	is	

currently	in	clinical	trials	e.g.	the	REI-EXCISE	iKnife	Study	(Clinical	Trial	Numberi:	

NCT03432429)	and	in	the	process	of	being	commercialised.	

More	recently,	the	linkage	of	genetic	and	metabolic	information	has	gained	force	and	

analysis	of	large	sample	databases	from	bio-banks	and	epidemiology	studies	has	shown	

much	promise.[67]	This	has	led	to	genetic-metabolic	correlation	studies	providing	

substantial	systems	biology	integration,	and	in	the	case	of	epidemiology,	the	development	

of	the	metabolome-wide	association	study	(MWAS)[68]	approach,	analogous	to	the	

widely-used	genome-wide	association	study	(GWAS)	approach.	

To	make	progress	in	the	above	strategic	areas	will	require	new	analytical	techniques,	new	

innovative	means	for	data	processing	and	visualization,	as	well	as	new	approaches	to	

integrate	these	innovations	into	clinical	practice.	Given	the	emerging	understanding	of	

humans	as	super-organisms[15]	and	the	impact	of	the	microbiome[23]	upon	health,	disease,	

and	treatments,	new,	rapid	methods	for	microbiological	characterization	are	also	required	

(see		Outstanding	Questions).		

Furthermore,	the	establishment	of	large,	representative,	long-term,	sample	bio-banks	and	

dedicated	Phenome	Centres	such	as	those	in	London,	Birmingham[6]	and	Singaporeii	will	

facilitate	the	use	of	metabotypes	for	clinical	assessment.	This	will	produce	novel	metabolic	

insights,	improved	biomarkers	and	a	rich	resource	for	analysis	by	future	technologies	and	

algorithms.	The	framework	and	approaches	discussed	here	can	then	be	extended	into	many	

areas	of	clinical	medicine	and	personalised	medicine	for	future	patient	benefit.		
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TEXT	BOX	

Box	1:		Current	status	of	metabolic	phenotyping	in	clinical	practice.	

The	current	status	of	metabolic	phenotyping	in	clinical	practice	was	recently	critically	

reviewed	by	James	Kinross	in	Chapter	16	of		‘The	Handbook	of	Metabolic	Phenotyping’[60]	

and	Jiang	et	al	published	a	comprehensive	survey	of	the	recent	application	of	nuclear	

magnetic	resonance	(NMR)	spectroscopy	to	identify	disease	biomarkers	in	human	

blood.[70]	Whilst	initial	results	are	promising	in	many	areas	of	clinical	practice,	it	was	

concluded	that	more	validation	and	greater	standardisation	of	methods	is	required	to	create	

the	evidence	base	for	wider	adoption	of	metabolic	phenotyping	in	clinical	practice.	Ioanna	

Tzoulaki	and	colleagues	reviewed	epidemiological	applications	of	metabolic	phenotyping	in	

Chapter	17	of	the	same	book	(‘The	Handbook	of	Metabolic	Phenotyping’),[60]	with	similar	

conclusions.	One	promising	clinical	application	is	in	the	area	of	human	plasma	testing	for	

lipoprotein	levels,	an	area	pioneered	by	Otvos	et	al.[71,72]	In	this	regard,	the	results	of	a	

recent	inter-laboratory	ring	test[73]	on	the	precision	of	metabolic	profiling	of	human	plasma	

were	encouraging.	This	study[73]	demonstrated	that	NMR	methods	had	internal	QC	

variance	lower	than	that	required	by	the	National	Cholesterol	Education	Program	(NCEP)	

criteria	for	lipid	testing	and	should	therefore	be	suitable	for	clinical	diagnostic	purposes.	In	

addition,	the	2015	study	by	Emwas	et	al[74]	highlighted	the	utility	of	urine	analysis	for	

disease	diagnosis	and	proposed	guidelines	for	standardisation	of	methods.		
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FIGURES	and	FIGURE	LEGENDS:	

	

Figure	1.	The	complex	origins	and	interactions	of	the	metabolites	that	determine	

phenotypes.	Metabolites	can	be	obtained	from	three	major	sources:	from	the	host	(human	

endogenous),	from	the	microbiome	(non-human	endogenous)	and	from	the	environment	

(exogenous).	Sym-xenobiotics	are	co-metabolites	produced	by	co-metabolism	by	human	

and	e.g.	microbiome	pathways.	Trans-xenobiotics	are	xenobiotics	that	are	converted	into	

endogenous	metabolites	or	xenobiotics	that	are	processed	directly	in	endogenous	

pathways,	such	as	ethanol.	
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Figure	2.	Schematic	representations	of	the	two	key	experimental	approaches	to	metabolic	

phenotyping	with	subjects	on	the	left-hand	side	and	a	multivariate	analysis	of	their	

metabolite	profiles	on	the	right	hand	side.	Top.	Classical	diagnostic	metabonomics	

approach,	differentiating	healthy	individuals	(blue)	from	subjects	with	a	disease	(red)	at	one	

given	time	point.	A	multivariate	principal	components	(PC)	scores	plot	is	on	the	right.	

Bottom.	Predictive	metabonomics	approach.	In	this	case	there	is	a	difference	(although	not	

complete	discrimination)	in	the	pre-intervention	metabolic	profiles	at	Time	A	between	two	

sub-groups	of	the	subjects	(black	and	grey).	This	allows	prediction	of	different	post-

intervention	states	at	Time	B	for	the	two	sub	groups	(orange	and	green	circles	respectively).	

The	arrows	in	the	PC	scores	plot	connect	the	metabolic	trajectories	of	each	subject	in	the	

two	sub-groups	over	the	two	time	points	measured,	before	and	after	the	intervention.	
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Figure	3.	Examples	of	the	four	principal	approaches	to	the	measurement	of	metabolic	

phenotyping	data:	via	(A)	metabolite	levels,	(B)	metabolite	trajectories,	(C)	metabolite	

entropies	and	(D)	metabolite	correlations	and	dependencies.		

(A)	Metabolite	level	measurements	exemplified	by	four	1H-NMR	urine	spectra	of	Sprague-

Dawley	rats.	(B)	Metabolic	trajectories	obtained	from	principal	components	(PC)	scores	of	
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time-resolved	1H-NMR	urinary	profiles	of	Sprague-Dawley	rats	subjected	to	50%	caloric	

restriction	intervention	(blue),	no	intervention	(control,	black)	and	high-dose	of	hydrazine	

toxicity	(red).	The	latter	shows	deviation	of	metabolic	trajectory	due	to	the	hydrazine-

induced	toxicity	effects	and	subsequent	system's	recovery	to	the	control	behaviour.	(C)	

Metabolic	entropy	concept	demonstrated	on	simulated	"clustered"	and	"uniformly"	

distributed	levels	of	two	metabolites.	The	higher	the	heterogeneity	of	metabolite	levels,	the	

higher	the	entropy	value.	Here,	both	distributions	have	equal	variance	but	different	entropy	

values	showing	the	advantage	of	entropic	approaches	to	capture	the	heterogeneity	or	

disorder	in	metabolic	phenotypes	as	opposed	to	the	variability.	(D)	Metabolite	networks	

illustrated	with	a	subset	of	metabolite-protein	interaction	networks	derived	from	

KEGG/OmicsNet	(https://www.omicsnet.ca/).	
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Glossary	

diagnosis: the characterisation of an organism, disease state, phenotype or response to an intervention 

exposome: all those chemicals in the environment to which a human is exposed.[69] 

GWAS (genome-wide association study): an observational study that aims to associate a particular 
biological trait with a genetic variant 

MWAS (metabolite-wide association study): an observational study that aims to associate a 
particular biological trait such as disease state with metabolic variation or phenotype 

metabolic biomarker: a structurally-defined metabolite or metabolic feature, verified to be 
associated with a particular phenotypic, disease, diagnostic or prognostic class and that can be used 
specifically to identify those classes or states 

metabolic entropy: the degree of disorder of metabolite characteristics, such as concentrations, in an 
individual or in a group of subjects 

metabotype: multicomponent metabolic characteristics that result from the cumulative interactions of 
genetic variation, gene products and environmental exposures and that can be related directly to 
disease risks and therapeutic responses, also known as the metabolic phenotype 

metabolic trajectory: the changes in metabolite concentrations over time in response to an 
intervention 

metabolite: a compound in a biological matrix of an organism that is produced in that organism by an 
enzymatic pathway 

metabolomics: metabolic profiling defined in an observational fashion as ‘a comprehensive analysis 
in which all the metabolites of a biological system are identified and quantified’ 

metabolome: the full set of metabolites within, or that can be secreted from, a biological system such 
as a cell type or tissue 

metabonate: a compound in a biological matrix of an organism that is produced in that organism by a 
chemical pathway without enzymatic involvement. This term is also used to describe molecular 
artifacts produced chemically during sample extraction, isolation, purification or analysis procedures 

metabonomics: metabolic profiling defined in an experimental fashion as ‘the quantitative 
measurement of the multiparametric metabolic response of living systems to pathophysiological 
stimuli or genetic modification’ 

metabotypes or metabolic phenotypes: are the multicomponent metabolic characteristics that result 
from the cumulative interactions of genetic variation, gene products and environmental exposures that 
can be related directly to disease risks and therapeutic responses. The metabotype is a probabilistic, 
multiparametric description of an organism in a given physiological state based on analysis of its cell 
types, biofluids and tissues  

microbiome: the collection of microorganisms present both in and on an organism, in a variety of 
environmental niches: the bacteriome, virome and mycobiome refer to the collection of bacteria, 
viruses and fungi, that constitute the microbiome 

MVA (multivariate [statistical] analysis): a method for the analysis of multiple variables in an 
experiment or observation at a time and the simplification of the analysis problem by reduction of the 
large number of initial variables to a small number of key factors 
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parasitome: the collection of parasites associated with the host organism. 

personalized medicine: the use of genomic, molecular and clinical information to select treatments 
or medicines that are more likely to be both effective and safe for that patient: also known as precision 
medicine or stratified medicine 

pharmacogenomics: the prediction of the effects of a drug on the basis of individual genetic profiles  

pharmacometabolomics: this term is used synonymously with pharmacometabonomics (see below), 
but is sometimes erroneously used to describe the investigation of the effects of a drug on an 
organism: this is just diagnostic metabonomics 

pharmacometabonomics: the prediction of the properties of a drug (efficacy, toxicity, metabolism, 
pharmacokinetics) on the basis of a mathematical model of pre-dose metabolite profiles 

pharmacometagenomics: the prediction of the properties of a drug on the basis of a mathematical 
model of pre-dose microbiome profiles 

phenotype: the quantitative or qualitative measurement of specific parameters or traits that 
characterise individual functional biological classes or groups 

predictive metabolic phenotyping: the prediction of the outcome of an intervention in an individual 
based on a mathematical model of pre-intervention metabolite profiles. The intervention could be a 
change in diet, exercise, the passage of time, surgical treatment etc. Pharmacometabonomics is one 
specific case of predictive metabolic phenotyping in which the intervention is drug treatment 

prognosis: the prediction of disease onset, disease outcome or the outcome of an intervention such as 
drug treatment	


