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We propose a novel impulsive chemostat model with the substrate concentration as the basis 
for the implementation of control strategies, and then investigate the model’s global dynamics. 
The exact domains of the impulsive and phase sets are discussed in light of phase portraits of 
the model and the Poincaré map and its complex properties were studied. Furthermore, the 
existence and stability of the microorganism eradication periodic solution are addressed, and 
analysis of a transcritical bifurcation reveals that an order-1 periodic solution is generated. In 
addition, the conditions for the global stability of an order-1 periodic solution are provided, and 
the existence of order−k(k ≥ 2) periodic solutions are studied. Moreover, the PRCC results 
and bifurcation analyses not only substantiate our results, but also indicate that the proposed 
system exists with complex dynamics. Finally, biological implications related to the theoretical 
results are discussed.

Keywords: Impulsive chemostat model; Poincaré map; Order−k periodic solution; Transcritical 
bifurcation; Stability.

1. Introduction

The chemostat is an important laboratory apparatus which plays significant roles in ecological studies.
It is used to investigate bacterial metabolism and population genetics because all conditions in it can be
well controlled [Krishnaiah , 2007]. Many mathematical models have been proposed to study the culture of
microorganisms in chemostats in relation to different reactions and control tactics [Leenheer & Smith , 2003;
Zhao & Skogestad, 1997; Bailey & Ollis , 1986; Butler & Wolkowicz , 1985; Thierie, 2004]. Several papers
have tried to improve the conditions of the chemostat so that species can coexist on the same substrate
[Leenheer & Smith , 2003; Kasperski & Miskiewicz , 2008]. A Monod-type function has often been used
to model the microorganisms’ growth, which fits most biochemical reactions [Schugerl & Bellgardt , 2000;
Lobry et al., 1992; Sun & Chen , 2007]. Meanwhile, the yield function is usually assumed to be a constant.
However, the yield expression is not constant under certain conditions and Herbert’s model and Pirt’s
model are suitable for quantification of maintenance energy in a microorganisms growth balance [Schugerl
& Bellgardt , 2000; Menkel & Knights , 1995; Rehm & Reed , 1981]. Base on these assumptions, the
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modified chemostat model can be described as:
dS

dt
= D(SF − S)− (a+ exp(−bS))µmaxSx

S +KS
,

dx

dt
=
µmaxSx

S +KS
−Dx,

(1)

where S and x denote the concentrations of substrate and microorganism in a chemostat at time t, re-
spectively. D is the dilution rate, and SF > 0 is the concentration of the feed substrate, b represents the
sensitivity of the cell to the substrate when the cell is in a good environment, a > 1 and b > 0 are the
biological constraints [Sun et al., 2010]. µmax is the maximal growth rate of the microorganism, KS is the
saturation constant, the initial condition is denoted by S(0+) = S0, x(0

+) = x0.
In a chemostat, the growth and reproduction of the microorganism population are affected by many

key factors like temperature, pH and dissolved oxygen, which are usually controlled by human actions
[Zhao & Skogestad, 1997], with the microorganism population being determined by using a pump or an
overflow system. The microorganism concentration, one of the two control criteria, is often used as a basis
for the implementation of control strategies [Sun et al., 2011; Tian et al., 2010; Li et al., 2009; Yang et al.,
2017; Guo & Chen , 2009], and is detected by optoelectronic devices. If the microorganism concentration is
lower than a critical threshold, then the pump is switched off or an overflow system is closed. Thereby, the
yield increases because the substrate is consumed by the microorganism population. As the microorganism
concentration increases and finally reaches an upper critical threshold, then the pump is switched on or
the overflow system is opened, and a certain amount of substrate is allowed to flow in such that the
microorganism concentration decreases and the secondary metabolites resulting from the microorganism
production are also decreased [Li et al., 2009]. Such impulsive state feedback control can be described by
an impulsive semi-dynamical system to provide a natural description for such control processes, and has
been applied in many fields [Tang et al., 2015; Liu & Chen , 2003; Zeng et al., 2006; Meng & Chen , 2008;
Huang et al., 2012]. Based on these ideas, a system (1) involving impulsive state feedback control can be
described by: 

dS

dt
= D(SF − S)− (a+ exp(−bS))µmaxSx

S +KS
,

dx

dt
=
µmaxSx

S +KS
−Dx,

x < h,

S(t+) = (1− δ)S(t),
x(t+) = (1− δ)x(t),

}
x = h,

(2)

if the microorganism concentration x reaches the threshold h, then the control strategy plays its role in
decreasing the microorganism concentration and 0 < δ < 1 is the corresponding loss rate. System (2) has
already been investigated by Sun and co-authors [Sun et al., 2011; Tian et al., 2010], who studied the
existence and stability of order-1 and order-2 periodic solutions in some special cases, and they pointed
out that there are no order-k(k ≥ 3) periodic solutions.

Notice that in system (2) the microorganism concentration is chosen as a controllable threshold. In
the chemostat, there is a close relationship between the concentration of the substrate and the growth and
reproduction of the microorganisms [Simkins & Alexander , 1984, 1985]. Therefore, the concentration of
the substrate (mainly the growth limiting factors of the microorganism) can also be chosen as a control-
lable threshold with which to apply a control strategy, which is different from system (2). Furthermore,
the chemostat with the concentration of substrate as the monitored variable provides an important tool
for research onmicrobial nutrition, growth, reproduction, metabolism and gene expression and regulation
[Simkins & Alexander , 1984, 1985]. The main feature is that the concentration of substrates are well-mixed
so that environmental conditions are homogenous or uniform and microorganisms are randomly dispersed.
If the dilution rate is low, then the concentration of the substrate would increase and finally reach a critical
threshold value. Under this situation, a certain amount of the microorganism should be added into the
chemostat, which not only guarantees the product yields and prevents a waste of substrate, but also allows
the concentration of the substrate to be maintained within a reasonable range. If so, the microorganism



                           3

concentration can be controlled below the critical value by means of controlling the concentration of sub-
strate. Based on these ideas, model (2) can be extended by choosing the concentration of substrate as a
controllable threshold. These modifications result in the following model

dS

dt
= D(SF − S)− (a+ exp(−bS))µmaxSx

S +KS
,

dx

dt
=
µmaxSx

S +KS
−Dx,

S < CT ,

S(t+) = (1− δ)S(t),
x(t+) = (1− δ + σ)x(t) + τ,

}
S = CT ,

(3)

where 0 ≤ σ < 1 and τ are the amount of the microorganism released, σ > δ stands for biological constraints
and CT denotes the critical threshold of the substrate concentration. For convenience, it is assumed that
the initial concentration of the substrate is less than the threshold CT , otherwise, the initial values are
taken after applications of control tactics. If the concentration of substrate reaches CT at time t, then a
certain amount of the microorganism is added into the chemostat and the concentrations of substrate and
microorganism are updated to (1− δ)CT and (1− δ + σ)x(t) + τ , respectively.

The paper is arranged as follows. In section 2, we introduce some useful definitions and lemmas about
impulsive semi-dynamical systems, and the dynamics of system (3) without control are studied. In sections
3 and 4, the Poincaré map is first defined in relation to the exact domains of the phase sets. Thereafter,
the important properties of the Poincaré map are investigated. Under certain conditions, the existence and
stability of the microorganism eradication periodic solution are discussed, and the transcritical bifurcation
is also addressed. Furthermore, the existence and stability of order−k(k ≥ 2) periodic solutions are also
studied. In section 5, biological implications and conclusions are presented.

2. Preliminaries and main properties of system (3)

The planar autonomous dynamical systems with pulsed actions are usually defined by

dS(t)

dt
= P (S, x),

dx(t)

dt
= Q(S, x),

 (S, x) /∈ I,

S+ = S + α(S, x),
x+ = x+ β(S, x),

}
(S, x) ∈ I,

(4)

where (S, x) ∈ R2, P,Q, α, β are continuous maps from R2 to R, and I ⊂ R2 is denoted as the impulsive
set. Let S+ = S(t+) and x+ = x(t+). For any z(S, x) ∈ I, the map I : R2 −→ R2 can be defined

z+ = I(z) = (S + α(S, x), x+ β(S, x)) = (S+, x+) ∈ R2,

z+ is the pulsed point of z.
Let P = I(I) be the phase set (i.e. for any z ∈ I, I(z) = z+ ∈ P), and P ∩ I = Ø. System (4) can be

defined as a planar impulsive semi-dynamical system.
The semi-dynamical system is usually denoted by (X,Π, R+) or (X,Π) [Simeonov & Bainov , 1988;

Bainov & Simeonov , 1993], hereX is a metric space, R+ is set of non-negative reals. Denote Πz(t) = Π(z, t),
for any z ∈ X, the map Πz : R −→ X is continuous such that Π(z, 0) = z for all z ∈ X, and Π(Π(z, t), s) =
Π(z, t + s) for all z ∈ X and t, s ∈ R+. Set C

+(z) = {Π(z, t)|t ∈ R} represents the positive trajectory
passing through z. For the impulsive set I ⊂ X, let I+(z) = C+(z)∩I −{z} and I−(z) = G(z)∩I −{z},
where G(z) = ∪{G(z, t)|t ∈ R} and G(z, t) = {w ∈ X|Π(w, t) = z} is the attainable set of z at t ∈ R+.
Finally, we set I(z) = I+(z) ∪ I−(z). Now, we provide some useful Definitions and Lemmas about the
semi-dynamical system [Ciesielski , 2004b,c; Kaul , 1990].
Definition 1. An impulsive semi-dynamical system (X,Π; I, I) consists of a continuous semi-dynamical
system (X,Π), a nonempty closed subset I of X and a continuous map I : I −→ X, and further satisfies:
No point z ∈ X is a limit point of I(z); {t|G(z, t) ∩ I ̸= Ø} is a closed subset of R.
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Denote the impulsive points of Πz by {z+n }, and then define a map ℓ from X to the positive reals
R ∪ {∞} as: let z ∈ X, if I+(z) = Ø, then denote ℓ(z) = ∞, otherwise I+(z) ̸= Ø and denote ℓ(z) = s,
where Π(x, t) /∈ I for 0 < t < s but Π(z, s) ∈ I.
Definition 2. A trajectory Πz in (X,Π, I, I) is called and order k period solution with period Tk if there
exist nonnegative integers m ≥ 0 and k ≥ 1 such that k is the smallest integer for which z+m = z+m+k and

Tk =
∑m+k−1

i=m ℓ(zi) =
∑m+k−1

i=m si.

Lemma 1. ([Simeonov & Bainov , 1988; Bainov & Simeonov , 1993]) The T -periodic solution (x, y) =
(ξ(t), η(t)) of system {

dS
dt = P (S, x), dx

dt = Q(S, x), if ϕ(S, x) ̸= 0,

S+ = S + α(S, x), x+ = x+ β(S, x), if ϕ(S, x) = 0,
(5)

is orbitally asymptotically stable if the Floquet multiplier µ2 satisfies the condition | µ2 |< 1, where

µ2 =

q∏
k=1

∆k exp

(∫ T

0

[
∂P

∂S
(ξ(t), η(t)) +

∂Q

∂x
(ξ(t), η(t))

]
dt

)
,

with

∆k =
P+(

∂β
∂x

∂ϕ
∂S − ∂β

∂S
∂ϕ
∂x + ∂ϕ

∂S ) +Q+(
∂α
∂S

∂ϕ
∂x − ∂α

∂x
∂ϕ
∂S + ∂ϕ

∂x )

P ∂ϕ
∂S +Q∂ϕ

∂x

,

and ϕ is continuously differentiable about S, x. (S, x) /∈ I is also denoted as ϕ(S, x) ̸= 0.
P,Q, ∂α/∂S, ∂α/∂x, ∂β/∂S, ∂β/∂x, ∂ϕ/∂S and ∂ϕ/∂x are calculated at the point (ξ(tk), η(tk)), P+ =
P (ξ(t+k ), η(t

+
k )) and Q+ = Q(ξ(t+k ), η(t

+
k )). tk (k, q ∈ N , N is non-negative integers) is the time of the

k-th jump.

Lemma 2. ([Rasband , 1990]) F : R→ R denotes a one-parameter family of C2 map and satisfies
(1) F (0, ρ) = 0 for all ρ; (2) ∂F

∂x (0, 0) = 1;

(3) ∂2F
∂x∂ρ(0, 0) > 0; (4) ∂2F

∂x2 (0, 0) < 0, if ρ is near zero, then map F exists with two branches of the fixed

points. The first branch is x1(ρ) = 0 for all ρ, while the second bifurcating branch x2(ρ) changes its value
from negative to positive as ρ increases through ρ = 0 with x2(0) = 0. The fixed points of the first branch
are stable if ρ < 0 and unstable if ρ > 0, while those of the bifurcating branches have the opposite stability.

In order to study the global dynamics of system (3), we first need to know the dynamical behaviour
of system (1) in the first quadrant. For system (1), the two isoclines are denoted by L1 and L2, where

l1 : S = DKS
µmax−D , l2 : x = D(SF−S)(S+KS)

µmaxS(a+exp(−bS)) .

There exists a boundary equilibrium (SF , 0) which is a saddle, and a unique interior positive equilibrium
E∗(S∗, x∗) provided D < µmax and KS < (µmax/D − 1)SF , where

S∗ =
DKS

µmax −D
, x∗ = (SF − S∗)(a+ exp(−bS∗))−1.

Unless otherwise specified we assume that D < µmax and KS < (µmax/D − 1)SF always hold throughout
the paper. The characteristic polynomial of the system (1) about E∗ is

λ2 + pλ+ q = 0,

where

p = D

(
(S∗)2 +KSSF
S∗(KS + S∗)

− b exp(−bS∗)(SF − S∗)

(a+ exp(−bS∗))

)
,

q =
µmaxKSD(SF − S∗)

(KS + S∗)2
> 0.
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Denote

θ =

[
b
S∗(SF − S∗)(KS + S∗)

(S∗)2 +KSSF
− 1

]
exp(−bS∗),

then p > 0 provided a > θ. Thus, if a ≥ θ, then E∗ is stable; if a < θ, then E∗ becomes unstable. Further,
we have the following results [Sun et al., 2011; Tian et al., 2010].

Lemma 3. If a ≥ θ, then E∗ is asymptotically stable; if a < θ, then E∗ becomes unstable and there exists
a unique stable limit cycle for system (1).

Proof. If a < θ, then E∗ is unstable. Let the line

Lout : x(t) +
S(t)

a+ exp−bSF
− SF
a+ exp−bSF

= 0,

thus, the derivative of the line Lout along the solutions of system (1) can be obtained

dLout

dt
=

µmaxS(SF − S)

(a+ exp(−bSF ))(KS + S)

(
1− a+ exp−bS

a+ exp−bSF

)
< 0.

Besides, the S(t) axis, x(t) axis, the line S(t) = SF and the line Lout constitute the outer boundary of the
Poincaré-Bendixson ring domain, and the inner boundary shrinks to the unstable E∗. According to the
Bendixson Theorem, there exists a limit cycle for system (1). �

3. Poincaré map and order−k periodic solution

In order to investigate the existence of order−k periodic solutions of system (3), we first need to define the
Poincaré map in the phase sets. In this case, the existence of order−k periodic solutions can be realized
by studying the fixed points of the Poincaré map. Define another two lines as follows:

l3 : S = (1− δ)CT , l4 : S = CT .

It follows from the biological significance that the concentration of the feed substrate SF satisfies
0 < CT < SF . Substituting S = CT into the line l2, we get the intersection point of l2 and l4, denoted as
IP (CT , xC) with

xC =
D(SF − CT )(CT +KS)

µmaxCT (a+ exp(−bCT ))
.

And the intersection point of l2 and l3 is denoted by I1P ((1− δ)CT , xδC) with

xδC =
D(SF − (1− δ)CT )((1− δ)CT +KS)

µmax(1− δ)CT (a+ exp(−b(1− δ)CT ))
.

Now, the most important thing for us is to discuss the exact domains of impulsive sets and phase
sets such that the domains of the Poincaré map can be determined. To realize this purpose, according to
the locations between the threshold CT and the equilibrium E∗, there are two possible cases needed to be
considered:

(A1) CT < S∗ and (A2) CT ≥ S∗. (6)

For case (A1), the phase set and impulsive set which lies on the lines l3 and l4 are both located in the
region of the left hand of E∗. It follows from the vector fields of the system (3) that any solution starting
from l3 may reach l4 in finite time. Therefore, the impulsive set I of system (3) is defined by

I =
{
(S, x) ∈ R2 | S = CT , 0 ≤ x ≤ xC

}
,

further I is a closed subset of R2. For the phase set, we need to define a continuous function I such that

I : (CT , x) ∈ I −→ (S+, x+) = ((1− δ)CT , (1− δ + σ)x+ τ) ∈ R2.
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Then the phase set P can be defined by

P = I(I) =
{
(S+, x+) ∈ R2 | S+ = (1− δ)CT , x

+ ∈ D0

}
with D0 = [τ, (1− δ + σ)x+ τ ]. Based on the above definitions, system (3) can be defined by impulsive
semi-dynamical system (X,Π; I, I). Unless otherwise specified we assume that the initial point (S+

0 , x
+
0 ) ∈

P. Moreover, notice that the solution of system (3) initiating from (S+
0 , x

+
0 ) with x

+
0 > (1− δ + σ)xC + τ

experiences a single impulsive effect and then satisfies x+k ≤ (1− δ + σ)xC for all k ≥ 1, thus the domain
of the Poincaré map is defined as D0 = [τ,+∞).

For case (A2), l4 is on the right hand of E∗, while l3 is either on the left or right hand of E∗. It
follows from Lemma 2.3 that E∗ of system (3) is either stable or unstable, and there exists a unique
stable limit cycle Ω if E∗ is unstable under different conditions. It means that the solution starting from
((1−δ)CT , x

+
0 ) with x

+
0 > 0 will experience either infinitely many pulses or no impulsive effect. For example,

if E∗ is stable, then there exists a curve Γ which is tangential to l4 at point IP (CT , xC), and Γ intersects l2
at point P (SP , xP ) such that Γ is tangential to l2 at this point. If (1−δ)CT < SP , then any curves starting
from ((1− δ)CT , x

+
0 ) with x

+
0 ∈ D0 experiences infinitely many pulses. If (1− δ)CT ≥ SP , then Γ has two

intersect points with l3, two points are denoted by P1 = ((1 − δ)CT , xmin) and P2 = ((1 − δ)CT , xmax).
It is easy to see that any solution starting from (S+

0 , x
+
0 ) with xmin < x+0 < xmax will never experience

an impulsive effect and finally tend to the stable E∗. Therefore, the domains of impulsive and phase sets
should be discussed in order to provide the domains for the Poincaré map, which will be addressed in the
next section.

3.1. Complex properties of Poincaré map for case (A1)

In order to construct the Poincaré map for the impulsive points, we need to define two sections as follows

S+
0 = {(S, x) | S = (1− δ)CT , x ≥ 0}, S0 = {(S, x) | S = CT , x ≥ 0}.

Without loss of generality, section S+
0 is used to define the Poincaré map. For any pointH+

k ((1−δ)CT , x
+
k ) ∈

S+
0 , the solution starting from H+

k meets section S0 at point Hk+1(CT , xk+1) in a finite time, and xk+1 is
a function of y+k denoted as yk+1 = g(y+k ). After a single impulsive effect, point Hk+1 maps to the point
H+

k+1((1− δ)CT , x
+
k+1) ∈ S+

0 , where x
+
k+1 = (1− δ + σ)xk+1 + τ . Then the Poincaré map for the impulsive

points of system (3) can be defined as

x+i+1 = (1− δ + σ)g(x+i ) + τ , Φ(x+i ). (7)

Since the Poincaré map has been defined, the explicit expression is unknown. For the existence of
periodic solutions of system (3), we only need to study the fixed points of the Poincaré map. To achieve
this purpose, in the following we will determine the explicit expression of the Poincaré map according to
the phase portrait of model (3). Thus, let

P (S(t), x(t)) = D(SF − S)− (a+ exp(−bS))µmaxSx
S+KS

,

Q(S(t), x(t)) = µmaxSx
S+KS

−Dx,
(8)

then we have the following scalar differential equation in phase space
dx

dS
=

µmaxSx
S+KS

−Dx

D(SF − S)− (a+ exp(−bS))µmaxSx
S+KS

.
= ω(S, x),

x((1− δ)CT ) = x+0 .

(9)

For model (9), the following important region D is considered, where

D =

{
(S, x) | S > 0, x > 0, x <

D(SF − S)(S +KS)

µmaxS(a+ exp(−bS))

}
, (10)

and function ω(x, y) is continuously differentiable in D. Denote S+
0 = (1 − δ)CT , x

+
0

.
= ζ, ζ ∈ P with

ζ < xδC , i.e., (S
+
0 , x

+
0 ) ∈ D, This notation yields

x(S) = x(S; (1− δ)CT , ζ) = x(S, ζ), (1− δ)CT ≤ S ≤ CT ,
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thus from model (9) we have

x(S, ζ) = ζ +

∫ S

(1−δ)CT

ω(S, x(S, ζ))dS.

Therefore, in the region D the explicit expression of the Poincaré map Φ of system (3) takes the form

Φ(ζ) = (1− δ + σ)x(CT , ζ) + τ. (11)

Since the explicit expression of the Poincaré map has been provided, the corresponding properties must
be discussed before we investigate the periodic solutions of system (3).
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Fig. 1. The existence and locations of the fixed point xf with respect to the Poincaré map Φ. The parameters are fixed as
D = 0.15, SF = 6, a = 0.1, b = 5, µmax = 0.3, KS = 0.8, CT = 0.7, δ = 0.4 and τ = 0.2. (a) σ = 0.47; (b) σ = 0.53; (c)
σ = 0.54; (d) σ = 0.6.

Theorem 1. For case (A1), the complex properties of the Poincaré map Φ are listed as follows (Fig.1):
(I) The domain and range of Φ are [0,+∞) and [τ,Φ(xδC)) = [τ, (1 − δ + σ)x((1 − δ)CT , xδC) + τ ],
respectively. It is increasing on [0, xδC ] and decreasing on [xδC ,+∞).
(II) Φ is continuously differentiable.
(III) Φ is concave on [0, xδC).
(IV) there always exists a unique positive fixed point xf for Φ.
(V) there exists a horizontal asymptote x = τ for Φ when x+k → +∞.

Proof. (I) According to the properties of solutions in the phase plane of system (3) in the first quadrant, the
domain of the Poincaré map Φ can be defined as [0,∞) for biological significance. For any x+i , x

+
j ∈ [0, xδC ]

with x+i < x+j , it follows from the Cauchy-Lipschitz theorem that we have xi+1 < xj+1. After pulses, the

inequality (1− δ+ σ)xi+1 + τ < (1− δ+ σ)xj+1 + τ holds true, i.e., Φ(x+i ) < Φ(x+j ). Thus, Φ is increasing

on [0, xδC ]. If x
+
i , x

+
j ∈ [xδC ,+∞) with x+i < x+j , from the qualitative theories of ordinary differential

equations, it is found that at the left hand side of the isocline l1 the variable x(t) is decreasing, while S(t)
is first decreasing in the region above the isocline l2 and then increasing in the region below the isocline l2.
It indicates that the solutions initiating from ((1− δ + σ)CT , x

+
i ) and ((1− δ + σ)CT , x

+
j ) will first reach
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l3 at two points ((1 − δ + σ)CT , x
′
i) and ((1 − δ + σ)CT , x

′
j) with x

′
i > x

′
j , and then meet l4 at (CT , xi+1)

and (CT , xj+1) with xi+1 > xj+1. After a single pulse, we have

Φ(x+i ) = (1− δ + σ)xi+1 + τ > (1− δ + σ)xj+1 + τ = Φ(x+j ).

Therefore, Φ is decreasing on [xδC ,+∞). In addition, the range of Φ is [τ, (1− δ+σ)x((1− δ)CT , xδC)+ τ ].
(II) Since functions P (S, x) and Q(S, x) are both continuous and differentiable in the first quadrant,

it follows from the Cauchy-Lipschitz theorem with parameters that Φ is continuous and differentiable.
Moreover, functions P (x, y) and Q(x, y) are C∞, thus Φ is also C∞.

(III) It follows from equation (9) that

∂ω
∂x =

µmaxS
S+KS

−D

D(SF−S)−(a+exp(−bS))µmaxSx
S+KS

+

(
µmaxSx
S+KS

−Dx
)
(a+exp(−bS))µmaxS(

D(SF−S)−(a+exp(−bS))µmaxSx
S+KS

)2
(S+KS)

,

∂2ω
∂x2 =

2
(

µmaxS
S+KS

−D
)
(a+exp(−bS))µmaxS(

D(SF−S)−(a+exp(−bS))µmaxSx
S+KS

)2
(S+KS)

+
2
(

µmaxSx
S+KS

−Dx
)
(a+exp(−bS))2µ2

maxS
2(

D(SF−S)−(a+exp(−bS))µmaxSx
S+KS

)3
(S+KS)2

.

When 0 ≤ x < xδC , in view of the vector field of system (3) that we have dS/dx > 0 and dx/dt < 0, that
is

D(SF − S)− (a+ exp(−bS))µmaxSx

S +KS
> 0, and

µmaxS

S +KS
−D < 0,

Then we conclude that ∂ω/∂x < 0 and ∂2ω/∂x2 < 0 hold true provided 0 ≤ x < xδC .
For the scalar differential equation, according to the Cauchy-Lipschitz theorem with parameters we

obtain
∂x(S,ζ)

∂ζ = exp
[∫ S

(1−δ)CT

∂
∂x

(
Q(z,x(z,ζ))
P (z,x(z,ζ))

)
dz

]
> 0,

and
∂2x(S,ζ)

∂x2 = ∂x(S,ζ)
∂x

∫ S
(1−δ)CT

∂2

∂x2

(
Q(z,x(z,ζ))
P (z,x(z,ζ))

)
∂x(S,ζ)

∂x dz.

From the above analysis, ∂2x(S, ζ)/∂x2 < 0 holds. So Φ is monotonic increasing and concave on [0, xδC)
(Fig.1).

(IV) Since Φ(x) is an increasing function on [0, xδC ] and is a decreasing function on [xδC ,+∞), it
implies that there exists at least one fixed point for the Poincaré map Φ. If Φ(xδC) ≤ xδC , notice that
Φ(0) = τ > 0, then there is a fixed point xf for Φ with 0 < xf ≤ xδC (Fig.1 (a)). While the concavity
property of Φ means xf is unique on [0, xδC ], and no fixed point exists on (xδC ,+∞) since Φ is decreasing.
If Φ(xδC) > xδC , then the concavity of Φ implies no fixed point exists on [0, xδC ]. Moreover, Φ is decreasing
on (xδC ,+∞). Thus, there exists at least one fixed point for Φ on (xδC ,+∞) (Fig.1(b) and (c)).

(V) Denote the closure of D by

D̄ =

{
(S, x) | S ≥ 0, x ≥ 0, x ≤ D(SF − S)(S +KS)

µmaxS(a+ exp(−bS))

}
.

Under case (A1) of system (3), we show that D̄ is an invariant set. Denoting

L = x− D(SF − S)(S +KS)

µmaxS(a+ exp(−bS))
.

If the inequality [
(P (S, x), Q(S, x)) ·

(
∂L

∂S
, 1

)]
L=0

≤ 0, (12)
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holds, where · denotes the scalar product of two vectors, then all solutions of system (3) are flowing into
the boundary of D̄ which means that D̄ is an invariant set. To achieve this purpose, from inequality (12)
we have

V (S) |L=0
.
=

(
D(SF − S)− (a+ exp(−bS))µmaxSx

S+KS

)
· ∂L
∂S + µmaxSx

S+KS
−Dx

= x
(
µmaxS
S+KS

−D
)
.

In view of the vector fields, dx/dt < 0 holds for any x ∈ (0, xδC), that is V (S) |L=0< 0. Therefore, any
solution from ((1 − δ + σ)CT , x

+
k ) ∈ P satisfies limx+

k →+∞ g(x+k ) = 0. Besides, this solution will meet at

the impulsive set after a finite time, after a single pulse,

lim
x+
k →+∞

Φ(x+k ) = lim
x+
k →+∞

(1− δ + σ)g(x+k−1) + τ = τ.

The results reveal that there exists a horizontal asymptote x = τ as x+k → +∞ for the Poincaré map Φ
(Fig.1). This completes the proof. �

The main properties of the Poincaré map have been studied which play key roles in discussing the
existence of the fixed points for Φ, it further enables us to show the existence of order−k periodic solutions
of system (3). However, a special case needs to be investigated first.

3.2. Microorganism eradication periodic solution

If x(t) = 0 for system (3), then the microorganism is eradicated and there is a microorganism eradication
periodic solution if and only if τ = 0. So system (3) is reduced to the following subsystem:{

dS(t)

dt
= D(SF − S), S(t) < CT ,

S(t+) = (1− δ)S(t), S(t) = CT .
(13)

Solving system (13) with initial condition S(0+) = (1− δ)CT yields

S(t) =
(1− δ)CT − SF (1− exp(Dt))

exp(Dt)
,

and the time taken for S(t) to rebound to CT is assumed to be T , then

CT =
(1− δ)CT − SF (1− exp(DT ))

exp(DT )
.

By calculation we get the expression of T ,

T =
1

D
ln

(
(1− δ)CT − SF

CT − SF

)
.

Thus, we obtain a T−period microorganism eradication periodic solution (ST (t), xT (t)) of system (3),
where {

ST (t) = (1−δ)CT−SF (1−exp(D(t−(k−1)T )))
exp(D(t−(k−1)T )) ,

xT (t) = 0.
(14)

Under certain conditions, the microorganism eradication periodic solution is stable.

Theorem 2. The microorganism eradication periodic solution (ST (t), 0) of system (3) is orbitally asymp-
totically stable provided that

0 < σ < (1−δ)CT−SF

CT−SF

(
CT+KS

(1−δ)CT+KS

)µmax
D

(
((1−δ)CT+KS)(CT−SF )
(KS+CT )((1−δ)CT−SF )

) µmaxSF
D(SF+KS) − 1 + δ

, σ∗.
(15)
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Proof. To show the stability of the microorganism eradication periodic solution, we need to resort to
Lemma 2.1, taking the same notation as for Lemma 2.1,

P (S, x) = D(SF − S)− (a+ exp(−bS))µmaxSx
S+KS

, Q(S, x) = µmaxSx
S+KS

−Dx,

α(S, x) = −δS, β(S, x) = (σ − δ)x+ τ, ϕ(S, x) = S − CT ,
(ST (T ), xT (T )) = (CT , 0), (ST (T+), xT (T+)) = ((1− δ)CT , 0) .

Their partial derivatives take the form

∂P
∂S = −D + b exp(−bS)µmaxSx

S+KS
− (a+exp(−bS))µmaxx

S+KS
+ (a+exp(−bS))µmaxSx

(S+KS)2
,

∂Q
∂x = µmaxS

S+KS
−D,

∂α
∂S = −δ, ∂β∂x = σ − δ, ∂ϕ∂S = 1, ∂α∂x = ∂β

∂S = ∂ϕ
∂x = 0,

and

∆1 =
P+( ∂β

∂x
∂ϕ
∂S

− ∂β
∂S

∂ϕ
∂x

+ ∂ϕ
∂S

)+Q+( ∂α
∂S

∂ϕ
∂x

− ∂α
∂x

∂ϕ
∂S

+ ∂ϕ
∂x

)

P ∂ϕ
∂S

+Q ∂ϕ
∂x

=
P+(ST (T+),xT (T+))(1+ ∂β

∂x
)

P (ST (T ),xT (T ))
= (1+σ−δ)(SF−(1−δ)CT )

SF−CT
.

Further

exp
(∫ T

0

[
∂P
∂S (S

T (t), xT (t)) + ∂Q
∂x (S

T (t), xT (t))
]
dt
)

= exp
(∫ T

0

[
−2D + µmaxST (t)

ST (t)+KS

]
dt
)

= exp
(
−2DT − µmax

D ln (exp(−Dt) + C) |T0 + µmaxSF

D(SF+KS)
ln

(
exp(Dt) + 1

C

)
|T0
)
,

where C = (SF +KS)/((1− δ)CT − SF ), then

exp
(∫ T

0

[
∂P
∂S (S

T (t), xT (t)) + ∂Q
∂x (S

T (t), xT (t))
]
dt
)

=
(

CT+KS
(1−δ)CT+KS

)−µmax
D

(
(KS+CT )((1−δ)CT−SF )
((1−δ)CT+KS)(CT−SF )

) µmaxSF
D(SF+KS)

(
(1−δ)CT−SF

CT−SF

)−2
.

By calculation, we get the expression for the Floquet multiplier µ2,

µ2 = ∆1 exp
(∫ T

0

[
∂P
∂S (S

T (t), xT (t)) + ∂Q
∂x (S

T (t), xT (t))
]
dt
)

= (1+σ−δ)(CT−SF )
(1−δ)CT−SF

(
CT+KS

(1−δ)CT+KS

)−µmax
D

(
(KS+CT )((1−δ)CT−SF )
((1−δ)CT+KS)(CT−SF )

) µmaxSF
D(SF+KS)

.
(16)

It follows from (15) that | µ2 |< 1, which indicates that the microorganism eradication periodic solution
(ST (t), 0) of system (3) is orbitally asymptotically stable. This completes the proof. �

If τ = 0, then there is an orbitally asymptotically stable microorganism eradication periodic solution
(ST (t), 0) provided σ < σ∗. In this case, the microorganism population was eradicated, which was un-
expectated, and it indicates that the application of the control policy failed. In fact, many factors could
affect the growth of microorganisms, so we need to identify the key factors that affect the outcomes of the
control strategy. It follows from (15) that µ2 depends on each parameter value of model (3). Among these
parameters, we need to carry out uncertainty and sensitivity analysis to see which parameter affects the
stability of the microorganism eradication periodic solution most, and then put forward a reasonable con-
trol strategy related to the key factors. By using the latin hypercube sampling (LHS) method, the PRCCs
for various input parameters against the condition µ2 were evaluated with 3, 000 samples. A uniform dis-
tribution function was employed to address the significance of PRCCs for each parameter of system (3)
with wide ranges (Fig.2). The results reveal that the parameters SF , µmax and σ have positive effects on
increasing the value of µ2, while the factors D, a, b, KS , CT and δ have negative effects on decreasing
the value of µ2. Particularly, the value of µ2 is very sensitive to parameters δ or σ, and small changes
of δ can lead to microbial extinction, while small changes of σ can lead to microbial growth. In contrast,
parameters D, SF , a, b,µmax, KS and CT have moderate or little effects on the value of µ2. Therefore, the
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Fig. 2. PRCC results for µ2, the baseline parameters are fixed as: D = 0.15, SF = 6, a = 0.1, b = 0.5, µmax = 0.3, KS = 0.8,
CT = 0.7, δ = 0.14, σ = 0.15 and τ = 0.

microbial growth or extinction is greatly influenced by these factors, and the parameters that characterize
the strength of the control strategy need to be chosen carefully for different purposes.

However, what would happen if σ = σ∗, in this case we show that the microorganism eradication
periodic solution (ST (t), 0) becomes unstable and a transcritical bifurcation occurs at σ = σ∗.

3.3. Transcritical bifurcation

From equation (7), if τ = 0, then the Poincaré map Φ(x+i ) can be rewritten as

u→ (1− δ + σ)f(u) ≡ F (u, σ). (17)

where u = x+i and x ≥ 0 are small enough.
It follows from the Cauchy-Lipschitz theorem that f(0) = 0, which means that the zero fixed point

of Eq.(17) is just the microorganism eradication periodic solution. From Theorem 3.1, it has been shown
that the Poincaré map is continuously differentiable with parameters for case (A1), and so is the function
F (u, σ) with both u and σ. Thus, lim

u→0+
f(u) = f(0) = 0. By verifying the conditions of Lemma 2.2, we

have the following conclusions.

Theorem 3. Considering map (17) under case (A1) (i.e., CT < S∗ ), a transcritical bifurcation occurs at
σ = σ∗, and further there exists a stable order-1 periodic solution of system (3) when σ ∈ (σ∗, σ∗ + ε) with
ε > 0, where σ∗ is defined by (15).

Proof. For the transcritical bifurcation, it follows from Lemma 2.2 that we only need to verify four corre-
sponding conditions. To do this, the values of f ′(u) and f ′′(u) at u = 0 are needed to be calculated first.
The solution with initial point ((1− δ)CT , u) intersects the line l4 at a point (CT , f(u)) (where 0 ≤ u ≤ u0,
u0 ∈ D0). According to the vector fields of system (3), dx/dt > 0 holds true for any solution that lies below
the line l2, so system (3) without control can be written by

dx

dS
=
Q(S, x)

P (S, x)
. (18)

where Q(S, x), P (S, x) are defined by Eq. (8). Denote (S, x(S;S0, x0)) be an orbit of system (18), and let
S0 = (1− δ)CT , x0 = u, 0 ≤ u ≤ u0, thus

x(S; (1− δ)CT , u) = x(S, u), 0 ≤ u ≤ u0, (1− δ)CT ≤ S ≤ CT . (19)

Therefore,

∂x(S,u)
∂u = exp

[∫ S
(1−δ)CT

∂
∂x

(
Q(s,x(s,u))
P (s,x(s,u))

)
ds
]
,



12 J. Yang, Y.S. Tan, R.A. Cheke

and

∂2x(S,u)
∂u2 = ∂x(S,u)

∂u exp
[∫ S

(1−δ)CT

∂2

∂x2

(
Q(s,x(s,u))
P (s,x(s,u))

)
∂x(S,u)

∂u ds
]
.

Notice that ∂x(S, u)/∂u > 0, by simple calculation we get f ′(0), where

f ′(0) = ∂x(CT ,0)
∂u = exp

[∫ CT

(1−δ)CT

∂
∂x

(
Q(s,x(s,0))
P (s,x(s,0))

)
ds
]

= exp
[∫ CT

(1−δ)CT

µmaxs
D(s+KS)(SF−s)ds−

∫ CT

(1−δ)CT

1
SF−sds

]
= (CT−SF )

(1−δ)CT−SF

(
CT+KS

(1−δ)CT+KS

)−µmax
D

(
(KS+CT )((1−δ)CT−SF )
((1−δ)CT+KS)(CT−SF )

) µmaxSF
D(SF+KS)

.

In addition,

f ′′(0) = f ′(0)
∫ CT

(1−δ)CT
ψ(s)∂x(S,0)∂u ds,

where

ψ(s) = 2µmaxs(µmaxs−D(s+KS))(a+exp(−bs))
(D(SF−s)(s+KS))2

, s ∈ [(1− δ)CT , CT ].

Obviously, ψ(s) < 0 when s < S∗, i.e., under case (A1) we have f ′′(0) < 0.
On the basis of the above preparations, the conditions of lemma 2.2 can be verified in turn.

(1) The Cauchy-Lipschitz theorem indicates f(0) = 0, so F (0, σ) = (1− δ + σ)f(0) = 0;
(2) For the value of ∂F (0, σ∗)/∂u, we only need to get ∂F (0, σ)/∂u, and simple calculation yields

∂F (0,σ)
∂u = (1− δ + σ)f ′(0)

= (1+σ−δ)(CT−SF )
(1−δ)CT−SF

(
CT+KS

(1−δ)CT+KS

)−µmax
D

(
(KS+CT )((1−δ)CT−SF )
((1−δ)CT+KS)(CT−SF )

) µmaxSF
D(SF+KS)

,

according to (15), substitute σ∗ into the above equation, then

∂F (0,σ∗)
∂u = 1,

therefore, (0, σ∗) is a fixed point of F (u, σ), and its eigenvalue is 1;
(3) The third condition satifies

∂2F (0,σ∗)
∂u∂σ = ∂(f ′(0)(1−δ+σ))

∂σ = f ′(0) > 0,

(4) At last, we have shown f ′′(0) < 0 for case (A1), thus,

∂2F (0,σ∗)
∂u2 = (1− δ + σ∗)f ′′(0) < 0.

In conclusion, four conditions of Lemma 2.2 for the transcritical bifurcation have been verified, which
implies that an order-1 periodic solution is generated for system (3) provided σ ∈ (σ∗, σ∗ + ε). This
completes the proof. �

The results of Theorem 3.2 and Theorem 3.3 suggest that the microorganism eradication periodic
solution is orbitally asymptotically stable provided σ < σ∗, a transcritical bifurcation occurs at σ = σ∗

and then an order-1 periodic solution is generated, as shown in Fig.3, where σ∗ ≈ 0.1521. Furthermore, in
order to address how the control parameter σ affects the complex dynamics of system (3) as σ increases,
bifurcation diagrams of σ were plotted (Fig.4). When σ > σ∗, the order-1 periodic solution losses stability
when σ passes through a critical value, and an order-2 periodic solution is generated. As σ increases,
period-doubling bifurcations lead system (3) to chaos. When σ increases further, model (3) exhibits sharp
transitions from order-(n+ 1) periodic solutions to order-n(n = 1, 2, · · · , 5) periodic solutions via period-
decreasing bifurcations. It indicates not only that the microbial growth is very sensitive to σ, but also
that system (3) exhibits very complex dynamics when τ = 0. The aim of the coming section is to provide
comprehensive qualitative analysis for the complex dynamics of system (3) when τ > 0.
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Fig. 3. (a-c) Stable microorganism eradication periodic solution when σ = 0.14; (e-f) Stable order-1 periodic solution with
σ = 0.17. All other parameters are fixed as D = 0.15, SF = 6, a = 0.1, b = 0.5, µmax = 0.3, KS = 0.8, CT = 0.7, δ = 0.15
and τ = 0.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

σ

x(
t)

(a)

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

σ

x(
t)

(b)

σ=σ*

Fig. 4. (a) Bifurcation diagram for case (A1) with respect to σ when τ = 0; (b) Bifurcation diagram for case (A1) with with
respect to σ when τ = 0.1 > 0. All other parameters are fixed as: D = 0.15, SF = 6, a = 0.1, b = 0.5, µmax = 0.3, KS = 0.8,
CT = 0.7 and δ = 0.15.

3.4. Order-k periodic solutions for τ > 0

There are two aspects to be addressed in this section. The first question involves the existence of the
order-k(k ≥ 1) periodic solutions. The second problem relates to numerical investigations of the complex
dynamics of system (3).

For case (A1), any solution initiating from the phase set experiences impulsive effects, after n(n =
1, 2, · · · ) times pulses, it follows from the definition of the Poincaré map that we denote the corresponding
impulsive point series as x+n = Φn(x+0 ). In view of Theorem 3.1, there always exists a fixed point for
the Poincaré map. Denote the order-1 periodic solution as (ξ(t), η(t)), and then we show the generalised
conditions for stability of it by employing Lemma 2.1.

Theorem 4. The order-1 periodic solution (ξ(t), η(t)) of system (3) is orbitally asymptotically stable if and
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only if ∣∣∣P+((1−δ)CT ,(1+σ−δ)η0+τ)(1+σ−δ)
P (CT ,η0)

exp
(∫ T

0

[
∂P
∂S (ξ(t), η(t)) +

∂Q
∂x (ξ(t), η(t))

]
dt
)∣∣∣ < 1.

Proof. Assume that the initial point and end point of the order-1 periodic solution (ξ(t), η(t)) are denoted
by M(CT , η0) and M

+((1− δ)CT , (1+σ− δ)η0+ τ), respectively. Taking the same notation and techniques
as used in the proof of Theorem 3.2, the Floquet multiplier µ2 can be calculated,

µ2 =
P+((1−δ)CT ,(1+σ−δ)η0+τ)(1+σ−δ)

P (CT ,η0)
exp

(∫ T
0

[
∂P
∂S (ξ(t), η(t)) +

∂Q
∂x (ξ(t), η(t))

]
dt
)
.

where P,Q, ∂P∂S ,
∂Q
∂x have the same expressions as those shown in Theorem 3.2. The condition of Theorem

3.4 guarantees | µ2 |< 1, so the order-1 periodic solution (ξ(t), η(t)) is orbitally asymptotically stable. This
completes the proof. �

Theorem 5. If Φ(xδC) < xδC , then for the Poincaré map Φ there exists a globally asymptotically stable
fixed point xf with 0 < xf ≤ xδC , which corresponds to a stable order-1 periodic solution of system (3).

Proof. According to the property (IV) of Theorem 3.1 of the Poincaré map, it has been proved that the
Poincaré map has a unique fixed point xf with 0 < xf ≤ xδC provided Φ(xδC) < xδC . Theorem 3.4 has
provided the conditions for the orbitally asymptotically stability of this fixed point. Thus, to show the
global stability of it, we only need to show it is globally attractive.

For any point ((1 − δ)CT , x
+
0 ) ∈ P, if x+0 ∈ [0, xf ), then the properties (II) and (III) of the Poincaré

map lead to xf > Φ(x+0 ) > x+0 . After n pulses, Φn(x+0 ) is monotonically increasing as n increases and
limn→+∞Φn(x+0 ) = xf (Fig. 1 (a)).

If x+0 > xf , then two possible cases of Φn(x+0 ) need to be considered: (a) Φn(x+0 ) > xf for all n; (b)
Φn(x+0 ) > xf does not hold true for all n. For the former, the condition Φ(x+0 ) < x+0 implies that Φn(x+0 ) is
monotonically decreasing and limn→+∞Φn(x+0 ) = xf . For the latter, without loss of generality we assume
that there is a smallest positive integer n1 such that Φn1(x+0 ) < xf . From case (a), Φn2(y+0 ) is monotonically
increasing as n2 increases (n2 is a positive integer and n2 > n1) and limn2→+∞Φn2(x+0 ) = xf . It follows
from the above discussions that the unique order-1 periodic solution is globally attracting, which indicates
it is globally asymptotically stable. This completes the proof. �

Remark 1. Particularly, there is a special case for Theorem 3.5, if Φ(xδC) = xδC , then x = xδC is a
globally asymptotically stable fixed point for the Poincaré map, which means that for system (3) there
exists a globally asymptotically stable order-1 periodic solution.

Theorem 6. If Φ(xδC) > xδC and Φ2(xδC) ≥ xδC , then for the Poincaré map Φ there exists a stable fixed
point or a stable fixed point with period two, which indicates that there only exists a stable order-1 periodic
solution or order-2 periodic solution of system (3).

Proof. According to the property (I) of Theorem 3.1, if Φ(xδC) > xδC , then on [0, xδC ] the Poincaré map
Φ not only is monotonically increasing, but also does not exist as a fixed point. So there must be a positive
integer i such that x+i−1 < xδC , x

+
i ≥ xδC and x+i = Φ(x+i−1) ≤ Φ(xδC), that is to say x+i ∈ [xδC ,Φ(xδC)].

Since the Poincaré map Φ is monotonically decreasing on [xδC ,+∞), after a single impulsive effect we have
x+1 = Φ(x+0 ) ≤ Φ(xδC). Therefore, there is a positive integer i ≥ 1 such that x+i ∈ [xδC ,Φ(xδC)].

It is found that the set [xδC ,Φ(xδC)] is an invariant set. In fact, according to Theorem 3.1, Φ is
monotonically decreasing on [xδC ,+∞) and Φ2 is monotonically increasing on [xδC ,+∞), so

Φ([xδC ,Φ(xδC)]) = [Φ2(xδC),Φ(xδC)] ⊂ [xδC ,Φ(xδC)].

Without loss of generality, we assume x+1 = Φ(x+0 ) ̸= x+0 , x
+
2 = Φ2(x+0 ) ̸= x+0 and x+n = Φn(x+0 ) for any

x+0 ∈ [xδC ,Φ(xδC)]. For the relations among xδC , Φ(xδC), x
+
0 , x

+
1 and x+2 , there only exist four possible

cases:



                       15

(C1) xδC ≤ x+2 < x+0 < x+1 ≤ Φ(xδC). It is observed that x+1 = Φ(x+0 ) < Φ(x+2 ) = x+3 and x+4 =
Φ(x+3 ) < Φ(x+1 ) = x+2 , so x

+
4 < x+2 < x+0 < x+1 < x+3 . By induction we have

xδC ≤ · · · < x+2n+2 < x+2n < · · · < x+2 < x+0
< x+1 < · · · < x+2n−1 < x+2n+1 < · · · ≤ Φ(xδC).

(C2) xδC ≤ x+0 < x+2 < x+1 ≤ Φ(xδC). Similarly we have Φ(x+1 ) = x+2 < x+3 = Φ(x+2 ) < Φ(x+0 ) = x+1
and x+2 = Φ(x+1 ) < Φ(x+3 ) = x+4 < x+3 = Φ(x+2 ) = x+1 , thus x

+
0 < x+2 < x+4 < x+3 < x+1 . By induction one

obtains

xδC ≤ x+0 < x+2 < · · · < x+2n < x+2n+2

< · · · < x+2n+1 < x+2n−1 < · · · < x+1 ≤ Φ(xδC).

(C3) xδC ≤ x+1 < x+2 < x+0 ≤ Φ(xδC). By using the same analytical techniques as case (C2) one obtains

xδC ≤ x+1 < · · · < x+2n−1 < x+2n+1 < · · ·
< x+2n+2 < x+2n < · · · < x+2 < x+0 ≤ Φ(xδC).

(C4) xδC ≤ x+1 < x+0 < x+2 ≤ Φ(xδC). By using the same analytical techniques as case (C1) one obtains

xδC ≤ · · · < x+2n+1 < x+2n−1 < · · · < x+1 < x+0
< x+2 < · · · < x+2n < x+2n+2 < · · · ≤ Φ(xδC).

It follows from cases (C2) and (C3) that there may be a unique xf such that

lim
n→+∞

x+2n+1 = lim
n→+∞

x+2n = xf , (xf ∈ [xδC ,Φ(xδC)]),

or there may be two fixed points x1f and x2f such that

lim
n→+∞

x+2n+1 = x1f and lim
n→+∞

x+2n = x2f ,

where x1f , x
2
f ∈ [xδC ,Φ(xδC)] and x

1
f ≠ x2f . There results reveal that there either exists a unique order-1

periodic solution or order-2 periodic solution in system (3). Furthermore, for cases (C1) and (C4), there
only exists a unique order-2 periodic solution. In conclusion, it suggests that for system (3) order-k(k ≥ 3)
periodic solutions do not exist other than the order-1 periodic solution or order-2 periodic solution (Fig.1(b)
and (c)). This completes the proof. �

Theorem 7. Let x+m = min{x+ : Φ(x+) = xδC}. If Φ(xδC) > xδC and Φ2(xδC) < x+m, then there exists an
order-3 periodic solution of system (3).

Proof. The results of Theorem 3.1 and Theorem 3.6 suggest that there only exists a unique fixed point
xf for the Poincaré map provided Φ(xδC) > xδC on the interval (xδC ,Φ(xδC)). To show the existence of
an order-3 periodic solution, we only need to show that there is a x∗f ∈ [0,+∞) such that Φ3(x∗f ) = x∗f
and Φ(x∗f ) ≠ x∗f holds. It is observed that Φ3(x) is continuous on [0,+∞) because Φ(x) is continuous on

[0,+∞). Thus, the Poincaré map Φ3 satisfies

Φ3(x+m) = Φ2(xδC) < x+m, and Φ3(0) = Φ2(τ) > 0,

it indicates that there is a fixed point x∗f such that Φ3(x∗f ) = x∗f with x∗f ∈ (0, x+m), x+m < xδC . In addition,

the fixed point xf > xδC , so Φ(x∗f ) ≠ x∗f . Therefore, for the Poincaré map Φ3 there exists a fixed point

which is just an order-3 periodic solution of system (3) (Fig.1(d)). This completes the proof. �

Remark 2. Theorem 3.7 has provided simple conditions for the existence of an order-3 periodic solution.
Further, Li and York pointed out that an order-3 periodic solution means chaos [Devaney , 2003; Li &
Yorke , 1975].

For case (A1) with τ > 0, the conditions for the global stablility of the order−1 periodic solution have
been provided, and the order-k(k ≥ 2) periodic solution has been investigated. Moreover, the bifurcation
diagrams with respect to control parameters have been plotted, the numerical results support the theoretical
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conclusions, with the parameters fixed as shown in Fig.4(b). When σ > 0, there exists a globally stable
order-1 periodic solution. As σ increases, an order-2 periodic solution is generated through period-doubling
bifurcation, which finally leads system (3) to chaos. As σ further increases, system (3) exhibits sharp
transitions from order-(n+ 1) periodic solutions to order-n(n = 1, 2, · · · , 5) periodic solutions via period-
decreasing bifurcations. The results reveal not only that for system (3) complex dynamics exist when τ > 0,
but also that the microbial growth is greatly influenced by the control parameter σ. Besides, it confirms
that small changes in σ will cause the substrate and microorganism populations oscillate periodically with
distinct amplitudes and periods.

4. Complexity of the Poincaré map for case (A2)

4.1. Complex domains of impulsive and phase sets

It follows from Lemma 2.3 that the equilibrium E∗ of system (3) could be stable if a ≥ θ or unstable
if a < θ. For case (A2), as discussed before, if the location of L3, L4 or x∗ changes, then the solution
initiating from the phase set may experience infinitely many times pulses, or a finite number of pulses, or
will not experience a pulse at all. With so many interesting problems arising, what are the exact domains
of the Poincaré map? What are the exact conditions for infinitely many pulses, a finite number of pulses
or no pulses? Also, what types of dynamical behaviour of system (3) will be presented? To address these
questions, it is necessary to define the exact domains of the impulsive set and phase set. Without loss of
generality, unless otherwise specified we assume that E∗ is always a focus of system (3) for simplicity.

For case (A2), if a ≥ θ, then E∗ is a stable focus. From the analysis of Section 3, if (1 − δ)CT < SP ,
then the solution starting from point I1P ((1 − δ)CT , xδC) meets l4 at point Q(CT , xQ). Thus, the exact
domain of the impulsive set is defined as I1 = {(S, x) ∈ R2|S = CT , 0 ≤ x ≤ xQ}, and the exact domain of
the phase set is defined as P. If (1− δ)CT ≥ SP , then the exact domain of the impulsive set is defined as
I and the exact domain of the phase set is defined as P1 = {(S+, x+) ∈ R2 | S+ = (1 − δ)CT , x

+ ∈ D1},
where D1 = {[xmax,+∞)

∪
[0, xmin]} (Fig.5 (a)).
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Fig. 5. The exact domains of the phase set and the impulsive set for case (A2). (a) Case a ≥ θ; (b) Case a < θ. The blue
lines denote the phase sets and the red lines represent the impulsive sets.

If a < θ, then E∗ is an unstable focus and there is a unique stable limit cycle Ω. The isocline l2 and
the limit cycle Ω have two intersection points, denoted by E11(S11, x11) and E12(S12, x12) with S11 < S12
(Fig.5 (b)). In order to provide the exact domains of the impulsive set and phase set, we need to discuss
the following three cases according to the different locations among (1− δ)CT , CT , x11 and x12:

(B1)(1− δ)CT ≤ S11 and CT < S12,
(B2)CT ≥ S12 and (B3)S11 < (1− δ)CT < CT < S12.
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For case (B1) (Fig.5 (b)), it follows from case (A2) for a ≥ θ that the exact domain of the impulsive set
can be defined as I1, and the exact domain of the phase set can be defined as P. Similarly, for case (B2),
if (1 − δ)CT < SP , the exact domain of the impulsive set can be defined as I1, and the exact domain of
the phase set can be defined as P. If (1 − δ)CT ≥ SP , then the exact domain of the impulsive set can be
defined as I and the exact domain of the phase set can be defined as P1. For case (B3), parts of l3 and
l4 are lying in the interior of the limit cycle Ω, in view of the vector fields of the system (3), any solution
from the phase set P (except for E∗) may have finite or infinite intersection points with l3 before reaching
the impulsive set. So the impulsive set can be defined as I and the phase set is defined as P/{E∗}, where
P/{E∗} means E∗ is removed from P.

Table 1. Exact domains of impulsive and phase sets of system
(3)) for case (A2), where Is and Ps denote the impulsive set and
phase set, respectively.

Cases Cases CT (1− δ)CT Is Ps

a ≥ θ SC1 A2 (1− δ)CT < SP I1 P
a ≥ θ SC2 (A2) (1− δ)CT ≥ SP I P1

a < θ SC1 (B1) (1− δ)CT ≤ S11 I1 P
a < θ SC1 (B2) (1− δ)CT < SP I1 P
a < θ SC2 (B2) (1− δ)CT ≥ SP I P1

a < θ SC3 (B3) S11 < (1− δ)CT < S12 I P/{E∗}

From the above analysis, for the case (A2) we have defined all exact domains of impulsive and phase
sets of model (3), and the results are listed in Table 4.1. For simplicity, the identical notations are adopted
to denote cases which have the same impulsive set and phase set, i.e., (SC1) is adopted to denote the
impulsive set I1 and the phase set P; (SC2) is adopted to denote the impulsive set I and the phase set P1;
(SC3) is adopted to denote the impulsive set I and the phase set P/{E∗}. Since the domains of the Poincaré
map are determined by cases (SCi) (i = 1, 2, 3), the Poincaré map is well defined and their properties are
all satisfied as shown in Theorem 1. Like case (A1), we can resort to the same analytical methods to study
the existence and stability of order-k periodic solutions. To avoid repetition, the analytical results which
are different from case (A1) are discussed.

4.2. Different results of case (A2)

Theorem 8. For case (SC2), if Φ(xmin) ≤ xmin or Φ(xmin) ≥ xmax, then system (3) has a unique stable
order-1 periodic solution. If Φ(xmax) > xmax and Φ2(xmax) ≥ xmax, then system (3) has either a stable
order-1 periodic solution or an order-2 periodic solution.

Proof. If Φ(xmin) = xmin or Φ(xmin) = xmax, then xmin or xmax is the fixed point of the Poincaré map,
which is just the order-1 periodic solution of system (3). If Φ(xmin) < xmin, then any solution from P1

experiences infinitely many pulses, and the corresponding impulsive point series x+n ∈ [0, xmin). Theorem
3.1 reveals that Φ is monotonically decreasing on [xmax,+∞) and increasing on [0, xmin]. So there is a
unique xf ∈ [0, xmin) such that limn→+∞ x+n = xf .

When Φ(xmin) > xmax, two possible cases need to be discussed: τ ≥ xmax and τ < xmax. For the
former, any solution from P1 will experience infinitely many pulses. According to Theorem 3.1, there must
be a unique fixed point xf ∈ (xmax,+∞). For the latter, there exists a positive xC such that Φ(xC) = xmax.
If x+0 ∈ [0, xC) ⊂ [0, xmin] (or x

+
0 ∈ (x1C , xC) and 0 < x1C < xC), after a single pulse, the solution never

experiences any more pulses. Thus, on D1/[0, xC) (or D1/(x
1
C , xC)) the Poincaré map is well defined and

the properties as shown in Theorem 1 are all satisfied, which indicates that for system (3) there exists a
stable order-1 periodic solution.

If Φ(xmax) > xmax and Φ2(xmax) ≥ xmax, then Theorem 3.6 suggests that there either exists a stable
order-1 periodic solution or an order-2 periodic solution. This completes the proof. �
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Remark 3. Under case (SC2), if xmin < Φ(xmin) < xmax or xmin < Φ(xmax) < xmax, then the solution
from P1 only experiences a finite number of pulses, and then converges to the invariant set (xmin, xmax). In
particular, if a ≥ θ, (1−δ)CT ≥ SP , CT > S∗ and xmin < Φ(xmin) < xmax, then all solutions will finally tend
to the stable focus E∗ after finite pulses. If a < θ, (1− δ)CT ≥ SP , CT > S∗ and xmin < Φ(xmin) < xmax,
then all solutions will finally tend to the stable limit cycle Ω after a finite number of pulses,

The results of Remark 3 show that for system (3) there exists multi-stable behaviors. It suggests
that the concentrations of the substrate and microorganism population may stabilize at different fixed
levels under different initial concentrations. Furthermore, the final concentrations of the microorganism
population mainly depend on its initial concentrations as well as on the ratios of the initial concentrations
of the substrate and microorganism populations.
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Fig. 6. (a) Bifurcation diagram of case (SC3) with respect to δ when τ = 0.3 and σ = 0.6; (b) Bifurcation diagram for case
(SC3) with with respect to τ when δ = 0.3 and σ = 0.6. All other parameters are fixed as: D = 0.1, SF = 1.5, a = 0.1, b = 8,
µmax = 0.4, KS = 0.95 and CT = 0.4.

For case (SC3), parts of the impulsive and phase sets are lying in the interior of the stable limit cycle
Ω, and all solutions from the phase set P/{E∗} have pulsed actions. On the one hand, the bifurcation
diagrams with respect to δ and τ have shown that system (3) presents very complex dynamics, such as
period-doubling bifurcations, period-halving bifurcations, crisis and chaotic bands (Fig.6). On the other
hand, it is observed that for the Poincaré map there exists complicated shapes with discontinuity points,
as shown in Fig.7, where the discontinuity points are denoted by DCi(i = 1, 2, 3, · · · ). As the control
parameter δ increases, the number of discontinuity points first increases and reaches its maximum value
around E∗, and then decreases (Fig.7). Moreover, there is an interesting fact that for the order-k(k ≥ 2)
periodic solutions there exist discontinuity points (Fig.7 (e), (f) and (g)).

5. Conclusions

Recently, mathematical models of the growth of microorganisms in a chemostat with multiple control s-
trategies have become a popular research topic, with studies mainly focussed on the chemostat models with
impulsive control [Sun & Chen , 2007; Sun et al., 2010, 2011; Tian et al., 2010; Li et al., 2009; Yang et al.,
2017]. However, these studies only viewed the microorganism concentration as the basis for implementation
of control strategies. In fact, the concentration of the substrate which plays an important role in microor-
ganism cultivation can also be considered as another criterion for applying a control strategy [Simkins &
Alexander , 1984, 1985]. Therefore, we proposed a novel impulsive chemostat model with the substrate
concentration as the controllable threshold. There are three aspects which need to be addressed, the first
question involves the comprehensive analysis of the dynamics of system (3), the second problem relates to
providing numerical studies to substantiate our results and the third aspect deals with comparisons with
previous studies.
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In order to solve these problems, two cases were considered. For case (A1), since any solution from the
phase set experiences pulse actions, we first defined the Poincaré map and then investigated its complex
properties. These enable us to show the existence of order−k periodic solution of system (3). First of all,
the threshold condition for the existence and stability of the microorganism eradication periodic solution
was provided. Besides, the PRCC results suggest that microbial extinction is dominated by the control
parameter δ and microbial growth is determined by the control paramter σ. When the microorganism
eradication periodic solution is unstable, the transcritical bifurcation was studied which means an order-
1 periodic solution is generated for system (3). It indicates that the microorganism density is stabilized
along a periodic solution. After that, by discussing the fixed points of the Poincaré map, we investigated
the existence of the order-k(k ≥ 1) periodic solution. The results reveal that for system (3) there exist
periodic solutions with any period.

For case (A2), since the solution initiating from the phase set may not experience pulses, the exact
domains of the impulsive sets which ensure the occurrence of a pulse action need to be discussed, and
all the possible cases are shown in Tab.4.1. To avoid repetition, we just focussed on the dynamics that
are different from case (A1). Theorem 8 told us that system (3) may only exist with an order−1 periodic
solution or order−2 periodic solution. Under conditions of Remark 3, multi-stable behaviors are observed,
and it reveals that the concentrations of the substrate and microorganism populations may stabilize at
different fixed levels. Once E∗ is unstable, many interesting results are found. The dynamics of system (3)
are not only complex, but also sensitive to the control parameters (Fig.6). Meanwhile, the Poincaré map
has a complicated shape with discontinuity points, and the number of discontinuity points first increases
and then decreases as the control parameter δ increases.

Compared to the previous studies of chemostat models with state-dependent feedback control [Sun
et al., 2011; Tian et al., 2010], the following aspects are highlights: (1) the exact domains of impulsive
sets are discussed for all cases; (2) the complex properties of the Poincaré map have been studied, and
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the discontinuity points have been addressed; (3) the transcritical bifurcation near the microorganism
eradication periodic solution has been investigated, and it indicates that an order-1 periodic solution is
generated for system (3); (4) the global stability of the order−1 periodic solution has been proved, and the
conditions for the existence of an order−3 periodic solution are provided; (5) multi-stable behaviors are
observed under certain conditions; (6) system (3) exhibits very rich and complex dynamics other than with
the order−1 or order−2 periodic solutions. All these aspects enrich and improve the results of chemostat
models.

In this paper, we assumed that impulsive state feedback control is an instantaneous process. However,
the control strategy from implementation to reach its purpose requires a certain time. The essential char-
acter of this process is hysteresis, how to depict and further realize this hysteresis process is a challenge in
the near future. It is hoped that such research, planned for the near future and to be reported elsewhere,
will be useful for microbial cultivation.
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