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ABSTRACT

The failure of the buried pipeline are rare events, and when it occurs, it poses a significant 

threat to the environment, human lives, and nearby assets. The performance of the buried 

pipeline is analysed based on the pipe failure modes such as pipe ovality, buckling 

pressure, and total axial and circumferential stresses. Also, the input parameters for pipe 

and soil properties are affected by imprecision and vagueness, particularly in the process 

of estimating the values. In the literature, many researchers have sought for effective 

methods to compute the reliability of buried pipe by considering the effect of uncertain 

variables. However, the existing methods such as Monte Carlo simulation are limited 

because of their computational capability. Often, they can only account for the aleatory 

type of uncertainty. Furthermore, with the increasing need in the use of buried pipelines, 

developing a robust and effective framework becomes necessary to overcome or mitigate 

against the possibility of failure. 

In this research, the concept of Line Sampling (LS), Important Sampling (IS) and a 

combination of LS and IS have been adapted for time-dependent reliability analysis of 

buried pipe. Similarly, a fuzzy-subset simulation framework is developed for the 

performance analysis of buried pipe considering aleatory (random) and epistemic (fuzzy) 

uncertainty. The structural response of the buried pipe was assessed and quantified based 

on the structural failure modes. The methods open a new pathway for a structured 

approach with a good computational efficiency based on complete probability and non-

probability description of input parameters. The performance of buried pipe is also 

assessed based on fuzzy robustness measure, which is a dimensionless measure used to 

account for the impact of the uncertain variables. The approach gains its efficiency by 

scrutinising the structural robustness at every membership level with respect to various 

degrees of uncertainty. The principle of fuzzy set and a Hybrid GA-GAM optimisation 

algorithm is integrated to form a framework employed to determine a robust and 

acceptable design for buried pipe. The purpose of the approach is to optimise the design 

variable while considering the adverse effect of the uncertain fuzzy variables. The 

outcome based on the methods mentioned above demonstrates the importance of 

accounting the effects of uncertain variables. 
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The reliability method based on fuzzy approach has been extended to estimate the optimal 

time for the maintenance of the buried pipeline. The strategy aimed at assessing the cost-

efficiency required for the determination of the optimal time for maintenance using multi-

objective optimisation based on the fuzzy reliability, risk, and total maintenance cost. The 

framework suggested in this study underlines the significance of the analysis of buried 

pipe and provides valuable guidance for improving safety in the reliability-based design, 

which is demonstrated using a numerical example. The key outcome of this research 

shows a new insight into the analysis of buried pipe by considering the effect of aleatory 

and epistemic type of uncertainty. 
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CHAPTER ONE 

1 INTRODUCTION 
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1.1 Background 

Buried pipe networks are vital engineering infrastructure and are mostly used to transport 

crude oil, potable water, sewage sludge, brine and natural gas. The transported fluid and 

the pipe, in many instances, are placed or passed under a railway or roadway. Also, 

pipelines are buried within the top layer of soil deposits and therefore are affected by the 

type of surface loading (cyclic or non-cyclic loading), the geology of the surrounding soil, 

corrosion, frost action, thermal effect and environmental hazard such as an earthquake 

(Abdoun et al., 2009; Moser & Folkman, 2001; Ogawa & Koike, 2001; Sadiq et al., 2004). 

As a result, buried pipelines are designed to resist the adverse effect of the conditions 

mentioned above and including the effect of internal pressure.  

Furthermore, the geological formation of the soil, frost action and thermal effect are 

affected by seasonal climatic changes, which result in variabilities of the design 

parameters (Moser & Folkman, 2001; Phoon & Kulhawy, 1999a; Whidden, 2009). For 

instance, the annual seasonal variation for the soil moisture content or increase/decrease 

in the underground water table can cause significant differences in the soil suction, and 

in some cases result in substantial movement of the ground, which affects the soil 

parameters.  Based on this, the variabilities of the input parameters for a buried pipe can 

increase the possibility of pipe failure over time. Figure 1.1 shows some examples of 

design parameters including different loading and environmental conditions that affect 

the performance of buried pipe over time (St. Clair & Sinha, 2014). The impact of these 

design parameters in relation to a particular type of pipe material can lead to the failure 

of the buried pipe. 

The buried pipeline, like other engineering structures, deteriorates over time (Ahammed, 

1998). The deterioration of a metallic pipe usually occurs due to the damaging effect of 

the surrounding environment and the mechanism that leads to their failure are often 

complex and difficult to completely understand (Kleiner & Rajani, 2001a). For buried 

metallic pipe, one of the most predominant deterioration mechanism of the exterior walls 

of the pipe is active corrosion effect (Mahmoodian & Li, 2017; Ossai et al., 2015; Sadiq 

et al., 2004). This effect is a significant potential threat to the safety of the structure, and 

it usually worsens over time. Kleiner & Rajani (2001b) suggested that the operators of 

buried pipeline throughout the world are challenged with the costly and risky task of 
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operating and maintaining aged pipelines because of corrosion and the associated 

damaging effects.  

 

Figure 1.1: Factors that affect the performance of the buried pipe 

The loss of pipe wall thickness due to corrosion is one of the major causes of failure for 

the buried pipeline (Ji et al., 2017). The corrosion activity can manifest in various forms 

such as uniform or localised and also internally and externally. As suggested in Rajeev et 

al. (2014), the loss of thickness as a result of corrosion can be idealised into two patterns: 

uniform corrosion and pitting corrosion as illustrated in Figure 1.2. The effect of corrosion 

will reduce the resistance of the pipe capacity, which will also decrease the factor of safety 

of the buried pipe (Gomes & Beck, 2014; Sadiq et al., 2004). The reduction of the pipe 

thickness due to the adverse effect of corrosion can induce the failure of the buried pipe 

when structural failure modes such as pipe ovality, through-wall bending stress, ring 

buckling, axial and circumferential stresses are examined. Also, the growing uncertainty 
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associated with other design parameters contributes to the failure problem, which leads 

to a reduction in the performance and safety level of the buried pipeline. Therefore, for a 

buried pipeline in areas that are susceptible to active corrosion effect and in consideration 

of other uncertain parameters, a robust and reliable design is required to ensure an 

optimum working efficiency, safe operation, and insignificant downtimes during the 

designed life. 

 

 

Figure 1.2: Typical corrosion patterns observed in water mains failure (Ji et al., 

2017) 

In recent time, various methods of predicting the reliability of a structure, e.g., First Order 

Reliability Method (FORM), Second Order Reliability Method (SORM), Important 

Sampling (IS), Latin Hypercube Sampling (LHS), Subset Simulation (SS), and Line 

Sampling (LS) have been applied in a range of engineering problems such as building 

and aerospace. The methods mentioned above are all available in the literature and can 

be found in (Au & Beck, 2001; Koutsourelakis et al., 2004; Melchers, 1999; Olsson et 

al., 2003; Schuëller et al., 2004; Zhang & Du, 2010; Zio, 2013). These methods are 

powerful tools used to analyse and assess the safety level of structure or systems at the 
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design stage or during operation. For a buried pipeline, the reliability analysis helps to 

evaluate and assess the performance of the structure over a specific period in order to 

produce an optimum design. Also, the safety assessment of buried pipe structures is 

becoming more and more critical because the failure of a buried pipe system may cause 

a catastrophic environmental effect, especially when used for the supply of crude oil 

(Gomes & Beck, 2014). Halfawy et al. (2008) stated that municipalities are under 

increased pressure to adopt proactive and improved strategies that would lessen the risks, 

cost and maintain a satisfactory level of performance and service. However, since the 

failure of a pipe system may cause disastrous consequences, it is crucial to be able to 

assess the reliability and robustness of the pipe system effectively.  

Uncertainty associated with design parameters is an unavoidable process that affects the 

performance of pipe systems over time. Despite the amount of effort and time put into the 

understanding of the causes of pipe failure, through the collecting and processing of data, 

the propagation and interpretation of uncertainty will remain an essential aspect of pipe 

reliability analysis (Kleiner & Rajani, 2001b; Rajeev et al., 2014). This is because 

randomness and fuzziness are often associated with the design parameters of the buried 

pipe. However, by studying the reliability and maintenance of a buried pipe system, the 

engineer can have a better understanding of the pipe performance at different time and 

when to carry out maintenance. By considering various failure modes, environmental 

effects such as corrosion and carrying out a parametric study, it is possible to identify and 

draw conclusions about which failure mode is the most critical and parameters that are 

the most sensitive over time. By considering uncertainty associated with the design 

parameters of buried pipe in the computation, intuitions into the effects of the variation 

of parameters on the assessment outcomes can be quantified and also useful to the 

designer and decision-makers. 

1.2 Problem Statement 

The study of the reliability of buried pipeline, particularly with the effect of active 

corrosion is an area that has attracted so much attention in the literature and which is vital 

to many engineers and infrastructure managers (Ahammed & Melchers, 1994, 1997; 

Babu & Srivastava, 2010; Caleyo et al., 2009; Sadiq et al., 2004; Tee et al., 2014). Over 
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the years, corrosion effect has affected the safe operation of most engineering structures 

(Barone & Frangopol, 2014a; Sadiq et al., 2004). The development of corrosion is a 

continuous and time-dependent process and is non-uniform, e.g., pitting corrosion ( Sadiq 

et al., 2004; Tee et al., 2013). Undoubtedly, the effect of pipe failure due to corrosion is 

significant, and as such, the buried pipe is provided with extra wall thickness, or external 

coatings to protect it from the adverse effect of corrosion. Ahammed and Melchers (1997) 

pointed out that this practice is not always entirely effective, particularly where pipe 

sections are joined.  

For a buried pipeline, corrosion will gradually reduce the resistance of the mechanical 

and the structural properties, which can increase the possibility of failure over time 

(Gomes & Beck, 2014). This can be challenging for design engineers and infrastructure 

managers. Due to the nature of the deterioration process of the buried pipeline as a result 

of corrosion, the assessment and maintenance would require a robust and reliable 

approach to keep the possibility of failure and the risk under control. Therefore, the 

development of a reliable and efficient technique for the evaluation of the performance 

of buried pipe becomes a vital aspect of this study.  

Pipelines are designed to meet a particular standard and to perform safely throughout their 

entire design life. During the design life, the buried pipe must be able to deal with the 

structural deterioration that diminishes the reliability of the pipe and the ability to 

withstand different types of loads and loading conditions. However, the analysis, 

assessment, and maintenance of pipeline structures involve uncertainties in the design 

parameters. These uncertainties can be due to the randomness of the physical 

phenomenon (aleatory uncertainty) and the incomplete knowledge of the physics of some 

of this phenomenon (epistemic uncertainty) (Apostolakis, 1990). Sadiq et al. (2004) 

suggested that the factors that add to the failure of a buried pipeline are associated with a 

high degree of uncertainty, especially corrosion rates because of large spatial and 

temporal variabilities. Similarly, Gomes & Beck (2014) and Kleiner & Rajani (2001b) 

stated that the deterioration process and the design of buried pipe structures is usually 

associated with a significant level of uncertainties due to limited information in the 

process of estimating the structural parameters. Therefore, it is necessary to perform the 
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reliability analysis of buried pipe by considering the uncertainties associated with the 

design parameters.  

In the design of buried pipeline, disregarding the effects of uncertainty is deplorable and 

can lead to disastrous consequences. Also, the risk associated with pipe failure involves 

high consequences and decisions are made on the basis of quantitative data that is limited 

and often expensive to collect. In spite of the availability of detailed physical failure 

models, designers need to make explicit judgements based on available information 

concerning the design of buried pipe structure. Hence, they must be able to have a high 

level of confidence in any proposed or adapted methodology to analyse the safety of the 

pipe system and avoid making the wrong decision that can be introduced at the modelling 

stage. As a result, a broad modelling approach of uncertainty associated with a buried 

pipe, which takes account of the randomness and fuzziness of the design parameters, 

offers new insight by helping to effectively evaluate the performance of the pipe structure.  

The failure of buried pipe structures are associated with consequences, and as a result, 

risk-based assessment becomes necessary, and also, an essential tool for the evaluation 

and optimisation of maintenance. The risk is generally defined as the product of the 

probability of failure and the expected consequences in monetary terms due to the failure 

(Ang & Tang, 1984; Tee et al., 2014). The foreseeable effects are usually quantified in 

monetary terms, while the likelihood of failure is calculated using reliability techniques, 

and by means of a rigorous mathematical framework. Typically, this requires the 

specification of defined probability distribution models for the input parameters. The 

analyses of engineering structures including buried pipe are investigated based on 

simulation techniques and to obtain a numerical solution, especially where the analytical 

approach is considered not efficient. Simulation methods allow explicit consideration of 

uncertainty on the investigated problem, which provides a more robust tool for evaluating 

the failure probability and allows right decision to be made. 

In a nutshell, five challenges need to be addressed in this study to properly analyse the 

reliability and robustness of buried pipe while considering the effect of uncertain 

variables. These include: 
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 For the propagation of uncertainty associated with the input variable due to 

randomness, the use of MCS can be computationally expensive. Therefore, the 

need to develop or adapt or improve an existing method that is time-dependent 

and  computationally more efficient to evaluate the reliability of a buried pipe is 

essential.    

 In the design of buried pipe, it is possible for the aleatory and epistemic type of 

uncertainties to coexist. Therefore, developing an approach to model the 

performance of the buried pipe by considering randomness and fuzziness 

associated with the input parameters become vital for a robust analysis. 

 Buried pipeline have suffered damage due to the effect of corrosion and 

imprecision associated with the design parameters. Therefore, how can the 

behaviour of the buried pipe be assessed to sustain damage that can be caused by 

extreme loads or changes in environmental conditions without disproportionate 

failure? 

 For the design of buried pipe, is it possible to optimise the performance of the 

structure by considering the adverse effect of the uncertainty associated with the 

input parameters through optimisation? 

 When evaluating the time to carry out maintenance of a buried pipe based on the 

probabilistic approach, it is possible that the pipe segments will not necessarily 

fail at the optimal time. Therefore, the use of a non-probabilistic approach can 

produce an optimal time interval required to carry out maintenance of the buried 

pipe.  

1.3 Aim and Objectives 

The presented work herein contributes towards the solution of the above challenges, and 

this research aims to develop a framework for analysing the reliability and robustness of 

buried pipe structure in order to promote safety in reliability-based design and robust 

assessment. The framework will be developed using reliability methods, which is based 

on probabilistic and non-probabilistic approaches while considering the structural 

response. The responses from the failure modes considering uncertain variables will be 

extended to compute the corresponding reliability and the robustness of the buried pipe 
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with respect to specific failure modes.  However, the aim of this research will be achieved 

by pursuing the following specific objectives: 

 To develop an approach to analysing time-dependent reliability of a buried 

pipeline considering the input parameters as random variables and to examine 

further the effect of varying some of the parameters.  

 To develop and analyse the robustness behaviour of the buried pipeline based on 

the failure modes and taking into account the uncertainty associated with the 

design parameters.   

 To develop an approach to optimise and analyse the performance of buried pipe 

based on the pipe failure mode and the expected value of a fuzzy output.  

 To develop an approach to analyse the reliability of buried pipeline that 

simultaneously considers fuzzy and random variables.  

 To evaluate the optimal time for the maintenance of buried pipe based on multi-

objective optimisation using fuzzy reliability, risk and cost.   

1.4 Research Contributions 

This study has developed a robust conceptual framework for analysing and estimating the 

reliability and robustness behaviour of buried pipe, which plays an essential role in the 

management of pipe systems. The framework would assist in taking a decision at the 

design stage and at the point where maintenance interventions may be required to prevent 

unexpected failure of the buried pipe subjected to different loading conditions. The 

contributions of this research are briefly described as follows: 

 The structural failure modes of buried pipe such as through-wall bending stress 

and total axial stress as explained in Chapter 3, Section 3.3 and 3.4 have been 

modified for a time-dependent problem. The rationale is because corrosion, which 

is one of the main prevalent challenges that affect the performance of buried pipe 

occurs over time. Therefore, the structural reliability of buried pipe has been 

analysed while considering the randomness associated with the design parameters 

and the modified failure mode formulas using LS and IS. Also, a combination of 

LS and IS methods have been adapted to estimate the reliability of a buried pipe 
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while considering the above-mentioned pipe failure modes. For the combined 

approach, there is an improvement in the computational efficiency when 

compared to LS, IS, and MCS methods.  

 The impact of fuzziness associated with the design parameters on the performance 

of buried pipeline is analysed based on the concept of a fuzzy-based robustness 

measure. The approach is based on the principles of robustness measure, fuzzy set 

theory, interval analysis and Shannon’s entropy, which permits the inclusion of 

fuzzy variables in the characterisation of the uncertainty associated with the 

buried pipe structure. The outcome shows that the use of 𝛼 − 𝑙𝑒𝑣𝑒𝑙 discretisation 

in the assessment of a fuzzy-based robustness measure could produce credible 

results with a better understanding of the impact of uncertainties associated with 

the design of buried pipe.   

 The uncertainty associated with the input parameters of a buried pipe is analysed 

through a multi-objective optimisation and the concept of the fuzzy set for an 

efficient design of buried pipeline. The approach is designed to optimise the 

expected value of a fuzzy output when the membership function is computed. The 

principles of fuzzy set and a multi-objective optimisation algorithm are utilised to 

account for the uncertainty associated with the uncertain parameters. Also, a 

Hybrid GA-GAM is used to perform the multi-objective optimisation. The 

outcome of the approach provides a set of optimal solution for the analysis of 

buried pipe. 

 An optimisation based fuzzy-subset simulation approach is proposed for 

estimating the reliability of buried pipe by considering deterministic, random and 

fuzzy variables. The proposed method relies on the performance function of the 

structure, which involves deterministic values, random and fuzzy variables for the 

modelling of the buried pipe. The proposed method inherits the benefits of Monte 

Carlo approach in propagating the uncertainties associated with structural 

parameters but also demonstrates more robustness against the latter.  

 The concept of multi-objective optimisation has been extended to evaluate the 

optimal time for maintenance of buried pipe by considering fuzzy annual 

reliability, risk and total maintenance cost. The purpose of this optimisation 

approach is (a) to maximise and evaluate the minimum annual structural reliability 
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of buried pipe over a 125 years life cycle, and (b) to minimise the total cost 

required to carry out maintenance within the design life. Also, the risk associated 

with the possibility of failure is analysed. It is important to note that the annual 

failure probability and reliability do not have or contain information concerning 

the consequences or severity associated with the pipe failure. Based on this, the 

risk associated with the pipe failure is also employed to determine the optimal 

maintenance time.  

The above-stated contributions can be used to efficiently evaluate and analyse the 

performance of buried pipeline and also, serve as a managerial tool for design engineers 

in assessing and maintaining the performance of buried pipe.  Using the proposed 

framework, the reliability and robustness behaviour of buried pipeline considering 

uncertainties that exist in the input parameters can be analysed. Also, the influence of 

design parameters can be analysed through sensitivity and parametric studies.  

1.5 Structure of Thesis 

The structure of the thesis is as follows:  

CHAPTER 1 - Introduction: This Chapter explains background of the research area 

including problem statement, research aims and objectives, research contributions and 

structure of thesis.  

CHAPTER 2 - Literature review: The concept of uncertainty, physical and environmental 

challenges and uncertainties associated with the design parameters of the buried pipe are 

explained. Also, the causes and consequences of buried pipe are reviewed including 

existing methods used in estimating the reliability, risk and maintenance of buried pipe 

and areas where there are gaps in knowledge.  

CHAPTER 3 - Reliability analysis of buried pipe based on LS and IS methods: In this 

Chapter, LS, IS and a combination of LS and IS has been adapted to estimate the time-

dependent reliability of buried pipe. The failure modes considered include total 

axial/circumferential stress and through-wall bending stress.  
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CHAPTER 4 – Fuzzy-based robustness assessment of buried pipe: The robust behaviour 

of buried pipeline under the influence of uncertain variables including reduction of pipe 

thickness has been analysed considering corrosion-induced failure modes such as pipe 

deflection, buckling pressure, wall thrust and bending strain. A numerical example has 

been used to elucidate the concept of fuzzy-based robustness measure of the buried pipe 

by considering the uncertainty associated with the design parameters.  

CHAPTER 5 - Multi-objective optimisation of buried pipe based on the expected fuzzy 

output: In this Chapter, a fuzzy-based multi-objective design optimisation approach is 

proposed for the optimal analysis of buried pipe based on the expected value of a fuzzy 

output when the membership function is computed. A Hybrid GA-GAM is used to 

perform the optimisation. 

CHAPTER 6 - Reliability analysis of buried pipe based on fuzzy and subset simulation: 

This Chapter presents a numerical strategy for estimating the reliability assessment of 

buried pipe considering random variables and fuzzy variables. The approach is based 

fuzzy set, and subset simulation and the optimisation is performed using GA. The 

proposed method relies on the performance function of the structure, which involves 

PDFs and fuzzy variables for the modelling of the pipe structure. 

CHAPTER 7 - Maintenance of deteriorating buried pipe using optimisation involving 

fuzzy reliability, risk and cost: In this Chapter, a maintenance technique is proposed to 

determine the optimal time interval for the maintenance of the buried pipeline. The 

strategy is aimed at assessing the cost-efficiency required for the determination of the 

optimal time for maintenance using multi-objective optimisation based on the annual 

fuzzy reliability, risk, and total maintenance cost. 

CHAPTER 8 - Conclusions and recommendations for future work: This Chapter presents 

a summary of the work and recommendations for potential future work.  
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2.1 Introduction 

The safety of the structural condition of the buried pipe is crucial to ensure continuity and 

the quality of service provided throughout the design life. The cost required for the 

replacement, repair, and expansion of existing buried pipe is usually high. However, 

targeted research programmes in Canada, Australia, United States and Europe 

acknowledge the need for methodologies to assess the level of deterioration and the 

possibility of failure (Scheidegger et al., 2015). This is because the complete failure of 

buried pipe would have a significant effect on the continuity of service and the 

environment. The understanding of the structural condition, physical and environmental 

condition, causes and consequences of failure and how it develops over time is essential 

to the development of an adequate reliability and maintenance strategies.  

In this Chapter, a brief description of the concept of uncertainty and the characterisation 

of uncertainty is presented. The physical and environmental challenges of buried pipe are 

discussed including the uncertainties associated with the input parameters of the buried 

pipeline. Also, the causes and consequences of the failure of the buried pipe are explained. 

The existing approaches for the reliability, risk, and maintenance of buried pipeline are 

discussed including areas where there are gaps in knowledge. 

2.2 The Concept of Uncertainty  

The design of engineering structures (e.g., underground pipeline, retaining walls, and 

foundation design) is often associated with uncertainties, particularly in estimating the 

values of the design parameters (Beer et al., 2013; Möller et al., 2003). The presence of 

uncertainties affects the performance of engineering structures throughout the design life. 

Zio (2009) suggested that the presences of uncertainties are analysed to gain precise 

information on the performance of the system and failure behaviour, and for the purpose 

of protecting the system from the uncertain failure scenarios. The uncertainties involved 

in the parameter estimation of most engineering structures are classified as aleatory and 

epistemic uncertainties (Hanss & Turrin, 2010; Apostolakis, 1990). Although this 

classification of uncertainties is not in absolute terms, it makes provision for a proper 

distinction to be drawn (Apostolakis, 1990). The classified uncertainties are further 
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described as a property of a structural parameter associated with randomness/variations 

(aleatory) and also, as a property linked to the poor understanding of the phenomenon or 

lack of knowledge (epistemic) (Hanss & Turrin, 2010).  

Aleatory uncertainty is characterised by randomness or natural variability in the 

properties of a design parameter, such as the variation in the determination of the elastic 

modulus of pipe material or the soil modulus. The aleatory uncertainty is random and can 

be related to the outcome of an experiment. Hanss & Turrin (2010) suggested that an 

efficient representation of aleatory uncertainties can be realised by the use of random 

numbers and their PDFs derived from experimental data. Aleatory uncertainty can be 

considered to be intrinsic or inherent uncertainty, which cannot be eliminated from the 

associated parameter.   

Epistemic uncertainty arises as a result of lack of knowledge or even complete absence 

of knowledge concerning the process used in estimating the values of design parameter 

(Hanss & Turrin, 2010). This type of uncertainty results from, for example, the vagueness 

of parameter definition, subjectivity in numerical implementation, or simplification and 

idealisation in the procedure of system modelling (Hanss & Turrin, 2010). Also, 

epistemic uncertainty can arise due to imperfect method of estimating a design parameter, 

such as the use of faulty instrument due to human error. As a result of the certain character 

of epistemic uncertainty, which is entirely different from the aleatory uncertainty, 

probability theory may not be suitable to characterise epistemic uncertainties efficiently. 

Therefore, an alternative approach of quantifying epistemic uncertainties is by the use of 

fuzzy numbers (Hanss & Turrin, 2010; Zadeh, 1965). The impact of all uncertainties on 

engineering structures can be performed systematically using the concepts and techniques 

that are embodied in the theory of probability (Hanss & Turrin, 2010). However, it is 

imperative that the presence of these uncertainties are adequately accounted for in the 

design of an engineering structure. 

2.2.1 Characterisation of Uncertainties  

In most cases, the design of an engineering structure is based on deterministic models, 

however, Khemis et al. (2016) and Li et al. (2016) suggested that the limitations of the 



 

16 

 

deterministic approach paved the way for other models in many scientific works. 

Uncertainties are associated with engineering structures, therefore, considering their 

effect in the analysis becomes crucial for an efficient performance assessment of the 

structure. The determination of the actual value of a structural parameter that is random 

in nature from a possible range of values can be quantified using a probability distribution 

function (Ang & Tang, 2007; Baecher & Christian, 2005). Sriramula & 

Chryssanthopoulos (2009) suggested that the probability distributions form an important 

part of uncertainty modeling and the selection of a particular distribution may 

significantly affect the characteristic values considered in structural design. The 

distribution function is used to assign the probability of occurrence for each possible 

value. However, a discrete probability distribution is employed if the set of possible 

values for a random variable is countable; otherwise, a continuous probability distribution 

is used (Ang & Tang, 2007).  

Table 2.1: Common probability distribution models 

Distribution models 

Aleatory Epistemic 

Continuous Discrete Continuous Discrete 

Normal Poison Interval Real set 

Uniform Binomial Fuzzy set Integer set 

Weibull Distribution Negative Binomial   

Lognormal Geometric   

Exponential    

Student t-Distribution    

 

In most engineering problems, the continuous probability distribution is often used more 

compared to the discrete probability distribution, for example, the design parameters 

associated with a mechanical and geometric property of materials (Ang & Tang, 2007). 

The continuous probability distribution is described using PDF or Cumulative 

Distribution Function (CDF). In the literature, there are several suggestions used to 

characterise the probabilistic models of the uncertainties associated with the input 
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parameters (Beer et al., 2013a). Table 2.1 shows some of the common ones. Also, normal 

and lognormal distributions are among the most commonly used models, which depends 

on the behaviour of the parameter (Beer et al., 2013a; Limpert et al., 2001; Wang et al., 

2016). However, the normal distribution is very popular and often used because of the 

central limit theorem (Beer et al., 2013a) and simplicity (Limpert et al., 2001). Limpert 

et al. (2001) suggested that the concise description of a normal sample is handy, well-

known, and sufficient to represent the underlying distribution. 

The PDFs of the design parameter are usually created from random data, which may not 

be available to a considerable extent and quality because of insufficient data and 

limitation in the experimental processes (Beer et al., 2013b; Hanss & Turrin, 2010; Li & 

Lu, 2014). The scarcity or lack of information concerning the uncertain parameters could 

also arise. However, it may be ideal to lessen the assumptions used for some of the well-

defined probabilistic models because of imprecision in the parameters of the model (Beer 

et al., 2013a).  

Considering a situation where there is an epistemic uncertainty, two different methods 

can be used to model the variabilities of the structural parameters based on subjective 

probability (Khemis et al., 2016). These include the Bayesian method and the set-

theoretical model. The Bayesian approach relies on the theory of probability and denotes 

an excellent way to handle epistemic uncertainty (Beck & Katafygiotis, 1998). The set-

theoretical approach includes fuzzy sets, interval analysis, etc. and is used to model the 

epistemic uncertainty based on set values. In recent times, the use of set-theoretical 

method has attracted strong consideration especially in the reliability assessment of an 

engineering system. The purpose of the fuzzy set permits the simultaneous analysis of 

different bound sets, and this is very useful in situations where the set bounds are not 

known explicitly to examine the sensitivity of input parameters on the possibility of 

failure (Beer et al., 2013a; Beer et al., 2013b; Li & Lu, 2014). In this study, a fuzzy set is 

utilised to analyse the performance of a buried pipe. For more information about fuzzy 

set, see Chapter 4 and 6. 
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2.3 Physical and Environmental Challenges of Buried Pipe 

Buried pipes have sustained substantial physical and environmental damages during the 

service life (Kleiner & Rajani, 2001a; O’Rourke & Liu, 2012; Whidden, 2009). As a 

result of this, there is growing concern about the structural performance and the physical 

mechanism that leads to pipe failure. Kleiner & Rajani (2001a) suggested that the physical 

mechanisms that lead to pipe breakage are often very complex and not completely 

understood. However, the physical and environmental damages of buried pipe involves 

key areas such as: (a) the properties of pipe (e.g. material type and pipe wall thickness) 

and pipe-soil interaction; (b) load and loading condition (e.g. operational pressure, 

external load such as earth load, traffic load, frost load and seismic effect) and (c) 

deterioration of the pipe wall due to active corrosion effect (Kleiner & Rajani, 2001a). 

The behaviour and failure modes of sections of buried pipe are somewhat well-known, 

and information about them is available in standard textbooks and design codes, e.g., 

(Alliance, 2001; Moser & Folkman, 2001; O’Rourke & Liu, 2012). Also, the traditional 

design of buried pipeline has been based on physical behaviour where allowances are 

made to provide pipe with the capacity to resist or withstand expected loads such as live 

or earth loads and with a sufficient safety margin (Moser & Folkman, 2001). However, 

these loads are associated with uncertainties, which affects the performance negatively 

over time. Based on this, it is crucial to overcoming the effect of the uncertainty and 

imprecision that exist in the design parameters. Hence, prediction of the optimal 

performance of buried pipe considering the deterioration of materials requires a good 

understanding of several components and causes of failure as briefly reviewed in the 

following subsections.  

2.3.1 Seismic Action 

Buried pipes have sustained substantial damage in the past, following earthquake 

occurrence (O’Rourke & Liu, 1999). The damage has been ascribed to the impact of 

transient action and permanent ground deformations (Liang & Sun, 2000; O’Rourke & 

Liu, 2012). These effects are further reviewed in the subsequent Section, and they are 
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responsible for the majority of the seismic havoc caused in water distribution pipe 

network and oil and gas underground pipelines. 

2.3.1.1 Transient Action 

The transient action as a result of the earthquake effect is called a “wave propagation 

hazard,” and is characterised by peak ground acceleration and velocity (Karamanos et al., 

2014). Ground shaking causes the action due to the travelling body and seismic surface 

waves (Karamanos et al., 2014; Kouretzis et al., 2006). The transient action is associated 

with peak ground acceleration and velocity. The examination of wave impact on the 

buried pipeline is complicated, thus requires a wave propagation analysis in a three-

dimensional soil-pipe system (Karamanos et al., 2014). Newmark (1967) developed a 

simplified method that can estimate the strain and curvature of the buried pipe that is 

caused by the travelling wave of constant shape regarding peak ground motion. Based on 

the developed approach, the axial strain that would develop due to longitudinal and bend 

deformation triggered by the action of the wave propagating parallel to the pipe can be 

estimated. Therefore, the maximum ground strain towards part of wave propagation is 

expressed in Eq. (2.1). 

    𝜀𝑔 =
𝑃𝐺𝑉

𝐶
      (2.1) 

Where 𝑃𝐺𝑉  is the maximum horizontal ground velocity in the direction of wave 

propagation; 𝐶 represents the apparent propagation velocity of the seismic wave. 

Yeh (1974) extended the analytical solution of Newmark (1967) in other to account for 

obliquely incidence shear and Rayleigh waves. An angle of wave propagation that is 

relative to the longitudinal structural axis is introduced as a random problem variable. 

The hoop and shear strain developed due to the induced stress were addressed with the 

consideration of the time lag that is relative to the axial strains. The uncertainty associated 

with the analytical solution is reflected in most of the current design guideline for 

structures such as (Alliance, 2001; European Commitee for Standardisation, 2004). The 

design guideline for buried pipeline Alliance (2001) called on seismological evidence and 

univocally recommend the use of an ‘‘apparent seismic wave velocity of the bedrock’’. 

The value suggested for the estimation of the axial strains, regardless of local soil 

conditions is equal to 2000 m/s (Kouretzis et al., 2006).  
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2.3.1.2 Permanent Ground Deformation (PGD) 

A significant amount of damage to buried steel pipelines are caused as a result of 

permanent ground induced actions due to earthquakes, such as landslides, movement of 

fault and liquefaction-induced lateral spreading (Dash & Jain, 2007; Datta, 1999, 2010; 

Vazouras et al., 2012). The ground induced actions are applied on the buried pipeline in 

a quasi-static manner and are not essentially linked with severe seismic shaking, but the 

buried pipe could be extremely damaged and evident threats to the environment 

(Karamanos et al., 2014). The analysis of PGD depends on the types of action induced. 

However, there are different methods presented by researchers for the response of buried 

pipeline under seismic event. See the following reference (Alliance, 2001; Dash & Jain, 

2007; Karamanos et al., 2014; Kouretzis et al., 2006) for more information. 

2.3.2 Frost Effect 

The design code (American Water Works Association, 1977) suggested a procedure to 

determine earth and traffic load on the buried pipeline but did not include a process to 

calculate frost pressure, which affects the performance of the buried pipe. The high 

number of water mains breakages in winter has been attributed to the increased earth load 

exerted on the walls of the buried pipe (Kleiner & Rajani, 2001b). Rajani & Zhan (1996) 

presented a model to estimate frost load on buried pipes in trenches and under roadways. 

As described in Kleiner & Rajani (2001b) the frost load in a typical trench can be obtained 

using the expression in Eq. (2.2). 

  𝑝𝑠 = ∑
𝛽ℎ𝑓

𝑖

[(1 𝐾𝑡𝑖𝑝⁄ )+(𝐵𝑑 𝐾𝑠𝑑𝑓
𝑖⁄ )]

𝑁𝑇
𝑖=0 𝐻(𝑠 − 𝑑𝑓

𝑖 , 𝐵𝑑)    (2.2) 

Where 𝑝𝑠 is the frost load at any point 𝑠, 𝑑𝑓 is the frost depth, 𝑖 is the time step number, 

𝑁𝑇 is the number of time steps, ℎ𝑓 is the total frost heave, 𝐵𝑑 is the trench width, 𝐾𝑡𝑖𝑝 is 

the stiffness of elastic half-space of unfrozen soil below freezing front, 𝛽  is the 

attenuation factor, 𝐾𝑠 is the backfill sidewall shear stiffness, 𝐻 is the Bousinesq function 

to determine the influence of stress and 𝑠 is the location below the surface where frost 

load is calculated.  
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In the model, the frost load is a function of the trench width, frost depth penetration, and 

other soil properties. In a trench, the frost load develops primarily as a result of different 

frost susceptibility of the backfill and sidewall of the trench and the interaction at the 

trench backfill sidewall interface (Kleiner & Rajani, 2001b). The introduction of a model 

for frost load has helped to improve the understanding of the mechanism that leads to the 

development of frost load and enabling a mitigation measure. Some of the input 

parameters are not readily available, which makes it difficult to use the model. The current 

validation data as described in Kleiner & Rajani (2001b) indicates that frost loads could 

develop up to twice the geostatic or gravity earth loads. Rajani & Makar (2000) suggested 

an alternative and simplistic approach to estimating frost load. Based on the proposed 

method, the frost load could be determined as a multiple of the earth pressure. For the 

mathematical formulation, see Chapter 3. The typical value of the frost load multiple is 

usually between 1 and 2. A value of 1 is used on a condition where there is no frost load, 

while the value of 2 is used when there is a maximum frost load acting on a buried pipeline 

(Rajani & Makar, 2000). The effect of frost action can lead to further reduction in the 

reliability of the buried pipe. 

2.3.3 Thermal Effect 

The thickness design approach of buried pipe as suggested by American Water Works 

Association (1977) does not consider the impact of the difference in temperature of the 

water mains and surrounding soil explicitly. Rajani & Makar (2000) suggested that this 

difference can lead to a further reduction in the factor of safety as it induces axial stresses 

on the pipeline. Failure of the buried pipeline will occur in longitudinal mode if the 

induced stresses exceed the axial tensile strength of the pipe. Rajani et al. (1996) 

developed an analytical solution for estimating the thermal stress of any pipe material 

under pressure and subjected to thermal and other operational loads. Rajani & Makar 

(2000) suggested that the analytical equation can be specifically simplified for a metallic 

pipe, where the ratio between the soil elastic modulus and the elastic modulus of the pipe 

material is slight? Also, the external pressure as a result of the soil reaction may be taken 

as zero. For the mathematical formulation, see Chapter 3. However, the reliability of the 
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buried pipe depends on pipe size, the geometry of the trench, soil types, pipe thickness, 

and environmental and geo-environmental conditions. 

2.3.4 Corrosion Effect 

Unlike the loading conditions and the impact of geo-hazards on the buried pipe, corrosion 

has proven to be one of the most predominant causes of pipe failures and contributed 

significantly to the downtime. Every year, pipeline companies spent huge amount of 

money on various forms of corrosion control measures in order to maintain the integrity 

of pipelines (Ossai et al., 2015). Regrettably, the difficulties associated with getting an 

optimum and robust design, estimation of reliability, and appropriate maintenance 

strategies highlight the billions of dollars lost due to corrosion-induced failure (Bhaskaran 

et al., 2005; Gomes & Beck, 2014). As suggested in Brown (2014), about 80% per cent 

of failed pipelines are monitored in one form or another and between 20% and 65% of 

the amount spent on corrosion problems could be saved if there was a better 

understanding of corrosion process, protection and control techniques. Corrosion of 

buried pipelines can be attributed to various causes and are related to the physical and 

chemical factors as a result of corrosive environmental conditions. Figure 2.1 (Ossai et 

al., 2015) shows some of the causes of corrosion. 

Corrosion of pipe could occur either internally or externally or both ways (Ahammed & 

Melchers, 1997; Sadiq et al., 2004). In the literature, there are various models developed 

by researchers to model the effect of external corrosion. Some of these models are 

reported in Table 2.2. These models are developed from experimental data using 

regression analysis. The reduction of buried pipe wall thickness due to corrosion loss can 

be relatively uniform or localised (Ahammed & Melchers, 1994). Kleiner & Rajani 

(2001a) suggested that the deterioration mechanism on the exterior walls of the cast and 

ductile pipes is electrochemical corrosion and the damage occurs in the form of corrosion 

pits. Therefore, the physical environmental conditions that surround the buried pipe have 

a significant effect on the rate of deterioration. Some of the factors that accelerate the 

corrosion of metallic pipes include the characteristic of the soil such as chemical and 

biological contents, soil moisture content, electrical resistivity, aeration, etc (Kleiner & 

Rajani, 2001a). Also, the interior of a buried metallic pipe can be subjected to erosion and 
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crevice corrosion that may lead to a reduction in the effective inside diameter of the pipe. 

The internal corrosion can also reduce the performance of the buried pipe over time. 

 

Pipe Corrosion

Physical factors Chemical Factors Environmental Factor

Structural Properties Product properties

 Material properties

 Residual and 

operating stresses

 Design factors

 Crevices

 Deposites

 Inclusions

 Interaction of the 

above variables

 Temperature

 Pressure

 Flow rate

 Entrained solid 

and liquid

 Flow pattern

 Interaction of the 

above variables

 H20

 H2S

 C02

 Dissolved solids

 Organic & inorganic 

acids

 Sulphur and Sulphur 

compounds

 Microorganism

 Hydrocarbons

 pH

 Chemical variabilities

 Trace elements

 Interation of the above 

variables

 Oil field composition

 Soil composition

 Temperature and 

moisture levels

 Nature of operating 

area e.g. software, 

freshwater, land

 

Figure 2.1: Causes of pipe corrosion  

  Table 2.2: Commonly used surface corrosion model 

Model Parameters description 

𝒅 = 𝑲𝑻𝒏  

𝒅𝑻 = 𝒏𝑲𝑻(𝒏−𝟏)  

      (Kucera and Mattson, 1987) 

𝑑  = depth of corrosion pit (mm);  𝐾  = constant 

(usually 2); 𝑛  = constant (usually 0.3); 𝑇  = 

exposure time (yr); 𝑑𝑇 = corrosion rate (mm/yr) 

𝒅 = 𝑲𝒏𝒁
𝒏  where 

𝒁 = [
(𝟏𝟎 − 𝒑𝑯)𝑻

𝝆𝒔𝒐𝒊𝒍
]  

               (Rossum, 1969) 

𝐾𝑛 = constant; 𝜌𝑠𝑜𝑖𝑙 = soil resistivity; 𝑝𝐻 = the 

acidic or alkaline nature of soil;  𝑛 = related to 

soil redox potential;  

𝒅 = 𝒂𝑻 + 𝒃(𝟏 − 𝒆−𝒄𝑻)  

𝒅𝑻 = 𝒂 + 𝒃𝒄𝒆−𝒄𝑻 (𝒕𝒘𝒐

− 𝒑𝒉𝒂𝒔𝒆 𝒎𝒐𝒅𝒆𝒍) 

(Rajani et al, 2000) 

𝑎 = final pitting rate constant (typical value; 0.009 

mm/yr); 𝑏  = pitting depth scaling constant 

(typical value; 6.27 mm); 𝑐 = corrosion rate 

inhibition factor (typical value; 0.14 yr−1) 
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2.4 Uncertainty Associated with the Design of Buried Pipe 

Buried pipes are designed based on soil and pipe properties, and these properties are used 

to model the behaviour of the pipe (Moser & Folkman, 2001; Whidden, 2009). The 

analysis of the pipe response due to a particular failure mode is accurate to the point that 

the assumptions made in the mathematical representation of the soil and pipe properties 

are correct. Indeed, uncertainties affect the performance of a buried pipe and its 

modelling. On the one side, there are conditions where the determination of a particular 

soil or pipe properties, e.g. the estimation of the elastic modulus of pipe material, 

determination of soil modulus, are random. This type of uncertainty for a buried pipe 

system is classified as aleatory uncertainty as explained in Section 2.2. Another aspect of 

uncertainty comes from the incomplete knowledge concerning the properties of the 

design parameters and the conditions in which the phenomena occurs. This type of 

uncertainty is classified as epistemic uncertainty, which affects the performance of buried 

pipe in the hypotheses assumed and the values of the parameter of the model. Zio & 

Pedroni (2009) suggested that model uncertainty arises because mathematical models are 

simplified illustrations of real systems and, therefore, their outcomes can be affected by 

errors.  

In the literature, considerable research has been performed to demonstrate the importance 

of considering uncertainties associated with the design parameters of an engineering 

structure. For example, Nadim (2015) presented an overview on how uncertainty 

associated with mechanical soil properties are dealt with in offshore site investigation and 

suggested ways for optimally utilising the reliability tools for this purpose. In the study, 

two problems were addressed. The first is the extraction of the maximum amount of 

information from site investigation and how to represent soil properties for the purpose 

of design while accounting for the uncertainties caused by natural variability of soil 

properties and interpretation of lab tests. Also, Lacasse & Nadim (1996) present a review 

of the uncertainties in characterising the properties of soil, and stresses the rationale for 

characterising the uncertainties for design purpose. Subsequently, the usefulness of 

estimating and, where possible reducing, the uncertainties is demonstrated using a case 

study.  In the following subsection, sources of uncertainties are explained with particular 

reference to soil and pipe properties. 
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2.4.1 The Inherent Variability  

The properties of soil changes over time due to the natural geologic and environmental 

processes that produced and continually modify the soil mass in situ (Phoon & Kulhawy, 

1999a). Often, these processes will continue to occur and cause changes in the soil 

properties both vertically and horizontally. Soils are formed from weathering of rocks or 

weathered rock and minerals transported by water. Therefore, a soil deposit will consist 

of different layers of weathered rocks, which has been consolidated over a period and 

with different properties. As a result, the soil is seen as a complex engineering material 

with an inherent variability (Phoon & Kulhawy, 1999a). The inherent variabilities of soil 

properties, e.g., the elastic modulus of soil can be described using statistical parameters 

such as the mean, variance, and covariance.  

As reported in Phoon & Kulhawy (1999a), if soil samples are collected over a period of 

one to two weeks, the properties of the soil can be regarded as time-invariant (Rethati, 

1989). Also, if the time periods continue to increase, additional variability may be 

introduced into the data set due to the changes in the soil mass. The variation can be rather 

significant, in some cases. Unfortunately, the time interval over which the soil samples 

will be collected is often not reported. This makes it difficult to evaluate the significance 

of the temporal changes.  

2.4.2 Measurement Error  

For the design of buried pipe, most of the design parameters such as the height of backfill 

material and pipe thickness are measured using physical means. The process of 

measurement can introduce additional variability. The error generated as a result of 

measurement can be attributed to a variety of factors such as human error, equipment 

error, and limitations in the experimental process (Fornasini, 2008). Phoon & Kulhawy 

(1999a) stated that the effect of equipment error comes from inaccuracies in the 

measuring devices and variations in equipment geometries and systems employed for 

routine testing while the impact from the operator occurs from the limitations in the 

existing test standards and how the procedures are followed. However, an experiment that 

depends more on the operator and with a complicated procedure will have higher 
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variability compared to the one with little dependency on the operator and simple 

procedure (Kulhawy & Trautmann, 1996; Phoon & Kulhawy, 1999a).  

The measurement of uncertainty associated with a particular parameter using specific 

equipment can be quantified by taking a repeated measurement of the same parameter. 

The data generated from the experiment can be used to quantify the probability 

distribution model. Kulhawy & Trautmann (1996) suggested that the use of proper quality 

equipment and systematic control of procedure will likely have a small measurement 

error. In principle, the error due to measurement can be determined by analysing the 

variation of the data obtained through repeated measurement.  

2.4.3 Transformation Uncertainty (Model Uncertainty)  

Most often, the design parameters that are determined directly from field measurement 

may not be directly applicable to the design of the structure. Instead, there may be a need 

for the obtained values to be transformed into the appropriate design property using a 

mathematical model. In doing this, Phoon & Kulhawy (1999b) suggested that there may 

be some form of uncertainties that will be introduced because most transformation models 

are determined using empirical data fitting. Because of the simplifications and 

approximations, in theory, transformation uncertainty will still be present. Also, an effort 

to obtain high-quality data to quantify the uncertainty effect, may not significantly reduce 

transformation uncertainty because of the difference between theories and natural 

physical behaviour (Phoon & Kulhawy, 1999b). Therefore, transformation uncertainty 

occurs as an independent uncertainty in engineering structures. For example, when 

evaluating the corrosion empirical constant using values of corrosion pit depth from 

different environmental conditions, the transformation uncertainties will depend on the 

best fitting line for the regression analysis using different years of corrosion pit depth.  

2.5 Analysis of Buried Pipe 

The presence of uncertainties will affect the performance of buried pipe overtime if not 

accounted for at the preliminary stage of the design. As a result of this, it is crucial to 

overcoming the adverse effect of uncertainty in the design of buried pipe. Traditionally, 
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the fundamental criterion used in the design of buried pipe is the resistance to internal 

pressure (Moser & Folkman, 2001). Once the criterion is evaluated, the obtained wall 

thickness is validated for suitability with regards to other measures such as external loads, 

and buckling pressure. This type of design is based on a deterministic approach, and the 

limitations have paved the way for other methods. Schuëller & Jensen (2008) suggested 

that the determination of structural performance based on the deterministic model is 

undoubtedly a simplification because physical measurement always shows variability and 

randomness. Furthermore, the analytical expressions used for the design of buried 

pipeline are formulated and solved based on physical and experimental models (Kleiner 

& Rajani, 2001a). The development of these models is associated with a significant 

amount of subjectivity that can lead to the introduction of an aleatory or epistemic form 

of uncertainty. Therefore, it is essential to consider the variabilities or randomness 

associated with the design parameters of the buried pipe. 

The use of structural optimisation has gained an increasing significance in the design of 

structures and improving performance (Bucher & Frangopol, 2006; Okasha & Frangopol, 

2009; Onoufriou & Frangopol, 2002). Under this trend, substantial progress has been 

made towards the design of engineering structures. Considering the importance and 

consequences associated with the failure of the pipe network, Sadiq et al. (2004) 

suggested that a risk-based maintenance management methodology can be more effective 

and independent. The reason is that it allows the optimisation of various types of 

structures within a network by considering both the probability of failure and the 

consequences of failure. Kleiner et al. (2004) considered the network renewal planning 

problem where the structural and the hydraulic capacity deterioration of the network are 

considered for the determination of the optimal rehabilitation schedule. In recent time, 

considerable attention has been given to the reliability of pipeline systems in conjunction 

with optimisation to achieve maximum benefits with the minimum cost (Moneim, 2011). 

Halfawy et al. (2008) suggested that an optimum management strategy must ensure 

efficient performance after rehabilitation and should provide reliable service with 

minimum interruptions. The causes and consequences of the failure of the buried pipe are 

reviewed in the following subsections.  
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2.5.1 Causes of Pipe Failure 

The selection of the design parameters for buried pipe always varies and depends on the 

use (e.g., water supply and crude oil), service life and the nature of the surrounding 

environment (Whidden, 2009). Buried pipe have sustained substantial damages due to the 

impact of one or more of the aggressive environmental effects such as corrosion, frost 

action, and seismic effect (Karamanos et al., 2014; Ossai et al., 2015; Rajani & Zhan, 

1996). As a result, there is growing concern about the maintenance of pipe integrity 

throughout the designed life. Chughtai & Zayed (2008) suggested that lack of 

comprehensive knowledge of the condition of buried pipelines increases chances of a 

catastrophic failure. However, it is not possible to completely understand all the 

conditions that affect the performance of buried pipe because of lack of knowledge or 

information with regards to the processes that are involved. Hence, the consideration of 

uncertainty of the design parameter becomes an essential part of the analysis of buried 

pipeline. The nature of pipe material, diameter, and age, including factors such as soil 

types and corrosion parameters have shown significant influence on pipe failure (Berardi 

et al., 2008; Fenner et al., 2000). Ahammed & Melchers (1997) suggested that for an 

underground pipe that is subjected to internal and external loading, the primary cause of 

failure is the loss of structural strength that is influenced by localised or overall reduction 

in pipe wall thickness. Table 2.3 shows some of the factors that affect the structural 

deterioration of buried pipelines as defined in Rostum (2000). 

Leis & Parkins (1998) stated that the leading causes of damage or failure of the buried 

pipeline are stress corrosion cracking, wall thickness reduction, and the presence of stress 

concentrators. Corrosion affects buried pipe both internally and externally. In practice, 

there are a considerable amount of anticorrosion protection efforts, but the damage due 

to corrosion still occurs on a large scale and remains a matter of concern because of the 

amount needed for the rehabilitation (Ahammed & Melchers, 1997; Sadiq et al., 2004). 

Fares & Zayed (2010) suggested that the magnitude of failure modes is different among 

pipelines and varies with the life cycle. Farshad (2006) also pointed out that at a 

microscopic level, changes in pipe strength and stiffness are the two most important 

aspects that are involved in the long-term behaviour of the pipe. Similarly, as suggested 

in (Berardi et al., 2008; Fenner et al., 2000) pipe thickness, pipe elastic modulus, diameter, 
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and age, with or without additional factors such as soil types have contributed to pipe 

failure. It is important to note that during installation of buried pipe, other damages such 

as mechanical deformations and thermal effect can affect the residual stress and increase 

the possibility of pipe failure.  

Table 2.3: Factors that affect the structural deterioration of the buried pipe 

Structural 

variables 

External/Environmental 

variables 

Internal 

variables 

Maintenance 

variables 

Location of 

pipe 

Soil type Passing material 

velocity 

Date of failure 

Diameter loading Passing material 

quality 

Date of repair 

Length Ground condition Internal 

corrosion 

Location of 

failure 

Year of 

construction 

Direct stray current  Type of failure 

Pipe material Leakage rate  Previous 

failure history 

Joint method Other network   

Internal 

protection 

Salt for de-icing of roads   

External 

protection 

Temperature    

Pressure class External corrosion   

Wall thickness    

Laying depth    

Bedding 

condition 

   

 

Ahammed & Melchers (1994) pointed out that the reduction of wall thickness for metal 

pipes arises from pitting and crevice corrosion. The study further explains that the 
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decrease in pipe thickness weakens the capacity of the pipe resistance and thus, reduces 

the safety of the structure. Also, Gabriel (2011) states that the mechanical strength of a 

buried pipe begins to reduce soon after installation. The reduction of pipe wall thickness 

due to corrosion could have an adverse impact on the failure modes of buried pipe.  

2.5.2 Consequences of Pipe Failure 

According to Piratla et al. (2012), a significant portion of the buried pipeline for water 

and wastewater in Europe is approaching the end of its service life, and thus, essential 

construction works will be required to perform proper rehabilitation or renewal of this 

vital infrastructure.  The primary design requirement of buried pipeline considering the 

physical and environmental challenges and the associated uncertainties is the safety of 

the structure during the designed life. In recent time, there is an increase in the structural 

performance of a buried pipeline especially in areas that are prone to geo-environmental 

hazards (Karamanos et al., 2014). To accurately quantify the extent of damage on the 

buried pipe, underground-induced action requires appropriate performance criteria 

(Vazouras et al., 2012). However, the consequences of the failure of the buried pipe may 

include loss of life, injuries, and environmental contaminations. Although, some of these 

consequences cannot be evaluated in monetary terms.  

The most common way of quantifying consequences associated with pipe failure is to 

evaluate the losses related to the failure regarding cost. The cost related to structural pipe 

failure can be a direct cost, e.g., cost of replacing the failed part or indirect cost, e.g., 

environmental contaminations cost. Barone & Frangopol (2014a) suggested that the 

direct consequences of structural failure are often associated with repair/replacement cost 

of the structural component while the indirect consequence is the estimation cost derived 

from failure, which may not strictly be related to rebuilding the structure. In this case, the 

indirect effects of pipe failure may contain, for example, injuries, fatalities or 

environmental contaminations as a result of the structural failure of the buried pipe. The 

failure of the underground pipeline can pose severe health and environmental issues to 

the public especially when it is used to transport crude oil.  
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According to Davies et al. (2001), OFWAT, the water services regulation authority in 

England and Wales, estimated the length of public sewer to be about 302 000 km and 

with a gross replacement cost of £104 billion. The report also suggested that water 

companies in England and Wales currently spend approximately £230 million per annum 

on sewer maintenance. About £150 million is spent on infrastructure renewals that is 

planned while the remaining £80 million is spent on operating expenditure, encompassing 

reactive and planned maintenance (Davies et al., 2001). Similarly, in Canada, Canadian 

Water and Wastewater Association (CWWA) estimated that CAN $11.5 billion will be 

required to upgrade the water main by 2013 (Kleiner et al., 2001). These statements 

indicate that a considerable huge amount of money is required to carry pipe maintenance 

per annum.  

2.6 Reliability, Risk, and Maintenance of Buried Pipe 

2.6.1 Estimating the Reliability of Buried Pipe  

The reliability estimation of buried pipelines have received greater attention and 

traditionally defined by a scalar performance function in a d-dimensional space where 

g(x) < 0 denotes the failure domain and g(x) > 0 represents the safe domain. There are so 

many methods in the literature on how to estimate the reliability of a structural system 

based on limit state function and considering the randomness associated with the 

structural parameters. The methods used in the estimation of structural reliability have 

been grouped into an approximate method and a simulation-based method (Schuëller et 

al., 2004). The approximate method includes FORM and the Second Order Reliability 

Methods (SORM). The details of the approximate methods are available in the literature, 

for example, (Melchers, 1999; Schuëller et al., 2004). The second method is based on 

simulation approach, and examples include Monte Carlo Simulation (MCS), Important 

Sampling (IS), Subset Simulation (SS), Latin Hypercube Sampling (LHS), and Line 

Sampling (LS), etc. For more information, see (Au & Beck, 2001; Koutsourelakis et al., 

2004; Pradlwarter et al., 2007; Zio, 2013). The challenges with the use of the FORM is 

that it ignores all the non-linearity and does not provide information on the accuracy, 

which means there is no confidence interval for the estimate that would be determined  
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(Schuëller et al., 2004). On the other hand, SORM does not ignore all the non-linearity. 

The use of MCS is not computationally efficient because it takes a long time to calculate 

small failure probability due to the required number of samples. However, the advanced 

MC methods such as IS, LS, and SS are sometimes called ‘variance reduction techniques’ 

and are considered more computationally efficient.  

For the reliability of buried pipeline, Babu & Srivastava (2010) pointed out that the 

reliability factors that represent the combined influence of total variability and derivations 

of analytical formulations are often challenging to compute. The prediction of the 

reliability of the response of an engineering structure throughout its life cycle depends on 

probability modelling of the load and strength of the structural system as well as the use 

of appropriate structural reliability methods (Estes & Frangopol, 2001). Fetz & Tonon, 

(2008) suggested that the implementation of a probability assessment for a structural 

system faces challenges from (1) relationship between random variables, (2) too many 

random variables involved, (3) information about the rare scenarios, and (4) too many 

interactive response variables. In a simulation-based method for estimating the 

probability of failure, the input parameters are treated as continuous random variables 

(Sivakumar & Rao, 2005). The performance of the structural system due to different 

failure criteria is express in a probabilistic framework (Sivakumar & Rao, 2005). This 

probabilistic framework could either be a probability of failure or as a reliability index. 

In other to account for different sources of uncertainties involved in the estimation of 

input parameters of the buried pipeline and also, the selection of a proper value for the 

factor of safety, an adequate level of past experiences and sound engineering judgements 

is required (Sivakumar et al., 2006). 

Consequently, the approximate and simulation methods are used to capture uncertainty 

due to randomness associated with the design parameters and are called the probabilistic 

methods. The probabilistic approach has attracted the most attention among researchers 

(Kroese & Chan, 2014; Pradlwarter et al., 2005; Schuëller & Jensen, 2008; Tee & Khan, 

2014). For a buried pipe, Sivakumar et al. (2006) analysed underground steel pipe 

reliability due to deflection, buckling and wall thrust, which is based on pipe installation 

time. Sadiq et al. (2004) used MC simulations to estimate the failure probability of buried 

pipe for a probabilistic risk analysis while considering a corrosion associated failure. 
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Similarly, Tee et al. (2014) estimated a time-dependent failure probability of buried pipe 

considering the failure mode of deflection, buckling bending stress, and wall thrust using 

subset simulation.  

However, Beer et al. (2013) suggested that the use of the probabilistic technique can be 

difficult because the data needed for the estimation of the mathematical statistics are 

always not available to a large extent. Therefore, the drawback with the use of the 

probabilistic method is the inability to obtain sufficient information to precisely define 

the PDF of the uncertain parameter in practice (Yin et al., 2018). Based on this, the 

probabilistic method can be used only when there is precise information about the input 

variables in order to define their PDFs. In the design of buried pipe, the statistical data to 

determine the PDFs of the input variables, e.g., loads and resistance may not be present.  

As a result, an alternative non-probabilistic method (e.g., interval modelling and fuzzy 

set) can provide the required framework for the reliability assessment of a buried pipeline. 

The buried pipe is designed to meet some specific requirement and for a safe operation 

throughout their entire design life. To achieve this, the design needs to be robust and to 

be able to deal with the uncertainties associated with the design parameters. However, it 

is possible for fuzzy variables with membership functions and random variables with 

PDFs to occur simultaneously.  

2.6.2 Risk Assessment and Maintenance of Buried Pipe 

Assessment of risk associated with a buried pipe can be analysed qualitatively or 

quantitatively. Qualitative risk assessment deals with simple descriptions of different 

types of hazards, the associated consequences and likelihood, and reporting all these 

aspects in a constructive and opportunely built risk matrices (Arunraj & Maiti, 2007; 

Barone & Frangopol, 2014b). The assessment of risk associated with pipe failure is 

crucial for prioritising the renewal of pipeline and also the inspection scheduling and 

monitoring of performance (Rahman & Vanier, 2004). Halfawy et al. (2008) suggested 

that a risk index that starts from 5 is regarded as the most critical, while 1 is considered 

as least critical. The least critical with an index 1 is equivalent to category C manuals, 

and an index 5 is equivalent to a risk category A, as reported in (Water Research Centre, 

2001). Chughtai & Zayed (2008) analysed risk assessment by using a ‘risk factor’ that is 
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measured on a 1–5 scale, ranging from ‘acceptable’ to ‘critical,’ which reflects the 

consequence of pipe failure instead of using a monetary value. 

Rajani & Makar (2000) stated that the decision to repair or replace the current pipe is 

typically based on the level of performance indicators such as structural integrity, 

hydraulic efficiency, and system reliability. However, the planning process for the 

renewal of the buried pipeline remains subjective and heuristic, which is considered 

mainly as an art as it is science (Halfawy et al. 2008). Water Research Centre (WRC) in 

the UK, used a ‘priority index’ to obtain the emergency of pipe management. The ‘priority 

index’ is defined for each pipe to illustrate the level of urgency for intervention. The 

‘priority index’ ranges from A – F, where index A, denotes an immediate intervention is 

required, and index F shows that no action is needed (Water Research Centre, 2001). 

Similarly, McDonald & Zhao (2001) suggested a rating system ranging from 1 – 5, which 

can be customised to assess the priority index for a group or a particular pipe in the 

network, given its condition and risk indexes.  

The quantitative risk assessment associated with the failure of the pipe is defined as the 

product of the failure probability for each pipe segment at time t and the associated 

consequences due to failure. Due to the deteriorating condition of the buried pipeline, the 

assessment and maintenance would require proper inspection and maintenance activities 

to keep the risk under control. Therefore, the evaluation and determination of the optimal 

time for maintenance of engineering structures become an essential research area in the 

field of engineering (Faber et al., 1996). Considering the safe operation of the buried pipe, 

Hong (1999) stated that the optimal maintenance programme should be defined based on 

a minimum acceptable level of failure probability. Similarly, regarding cost Laggoune et 

al. (2010) suggested that the optimal maintenance planning should be defined based on 

the minimum expected cost. The two viewpoints play a vital role in regards to when 

maintenance should be carried out. Also, Barone & Frangopol (2014a) suggested that the 

increase in the number of systems that reached critical conditions, due to deterioration of 

the structural resistance, has directed the attention of researchers to the development of a 

method that would provide cost-effective maintenance approach.  

Several techniques are proposed to analyse the structural performance of a deteriorating 

buried pipe. These methods are aimed at the assessment of the structure using a robust 
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and comprehensive framework and to ensure the reliability of the structure. Risk 

assessment of an engineering structure has been recognised in recent time as a crucial part 

of decision making (Barone & Frangopol, 2014b). As a result of this, several performance 

indicators have been proposed to evaluate a time-dependent structural performance of 

deteriorating buried pipeline structures (Ahammed & Melchers, 1997; Sadiq et al., 2004; 

Tee et al., 2014). Over the years, optimisation algorithms are used while considering 

maintenance times as design variables and allow the identification of possible opportunity 

for maintenance during the design life cycle.  

2.7 Research Gaps and Limitations 

In Sections 2.2 to 2.6, a detailed review and explanation of uncertainties, physical and 

environmental challenges, uncertainties in the design of buried pipe, causes and 

consequences of pipe failure and reliability, risk and maintenance of the buried pipeline. 

Based on the review, the following areas in the subsections are identified as the research 

gaps and have been addressed in the subsequent Chapters.  

2.7.1 Reliability of Buried Pipe Considering Random and Fuzzy Variables 

In the literature, the reliability prediction of the buried pipeline has been analysed based 

on the approximate method (e.g., FORM) and simulation methods (e.g., MCS and Subset 

simulation) as explained in Section 2.6.1. While most of the works are based on the 

installation time of pipe, few have addressed time-dependent reliability. In all, the 

computational efficiency and applicability of the structural reliability methods play a vital 

role in choosing a particular method. In such case, the use of advanced Monte Carlo 

Simulation such as Line Sampling (LS), Important Sampling (IS), Subset Simulation (SS) 

methods, etc. represents a useful option for analysing the reliability of buried pipe. As a 

result, this part of the report proposed time-dependent reliability by adapting a 

combination of LS and IS to estimate the failure probability of buried pipe while 

considering the randomness associated with the design parameters. The adapted approach 

increases the computational efficiency and is used to determine the reliability of a buried 

pipe considering the randomness of input parameters and the effect of the underground 

water table. 
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In most practical engineering design of buried pipeline, fuzzy variables with membership 

functions and random variables with PDFs could co-occur. In such a situation, pipe 

structures are designed to meet some specific requirement and for a safe operation 

throughout their entire design life. To achieve this, the design needs to be robust and to 

be able to deal with the uncertainties associated with the design parameters. The presence 

of this form of uncertainty makes the analysis more complicated and thus requires a more 

robust and efficient modelling approach. Based on this, an optimisation based fuzzy-

subset simulation approach for the reliability analysis of buried pipeline is proposed. The 

method has been utilised to deal with the limitations of the probabilistic approach, 

especially where the data for proper evaluation of the PDF of the input parameters is 

considered not adequate. Also, there is no such work found in the literature for the 

reliability analysis of flexible buried pipe considering fuzzy and random variables. 

2.7.2 Fuzzy-based Robustness Assessment of the Buried Pipeline 

In practice, the sources of uncertainties for the design of buried pipe are quite diverse, 

e.g., variations in loading conditions of the structural system, properties of the 

engineering material, geometry, and the boundary conditions. So a fuzzy-based robust 

assessment of buried pipeline is proposed based on the fuzzy alpha-level set, interval 

analysis and evaluation of fuzziness using an analogy to Shannon’s entropy. The aim is 

to analyse the capability of the buried pipe system to resist the variabilities associated 

with the design parameters and without obvious effects on the serviceability. The 

robustness is considered as a measure to assess the ability of buried pipe to sustain damage 

that may be caused by extreme loads or changes in environmental conditions without 

disproportionate failure. As a result, the structural robustness illustrates a high degree of 

objectivity between the variability of the design parameters and the equivalent variability 

in the response of the structure. Therefore, a buried pipe structure can be considered as 

robust if it can survive dangerous circumstances such as exceptional overloading, 

unpredicted events, and severe environmental conditions without any significant damage 

to safety and serviceability state of the structure. However, there is no such work found 

in the literature with respect to fuzzy-based robustness assessment of buried pipe. 
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2.7.3 Design Optimisation Considering Uncertain Variable  

The presence of unavoidable uncertainties in the structural parameters contributed to the 

introduction of the concept of “robust design” in the optimisation of engineering structure 

to reduce the adverse effect of the uncertain variables (Beyer & Sendhoff, 2007). Marano 

& Quaranta (2008) suggested that the standard optimal solutions can be very sensitive to 

small parameters variations and because they deal only with the best structural 

performances, by minimising a deterministic objective function without taking into 

account the parameters of uncertainty. Based on this, fuzzy-based multi-objective design 

optimisation is proposed and applied to the design of buried pipe. There is no such work 

found in the literature, and the optimisation is performed using a Hybrid GA-GAM. 

2.7.4 Reliability and Risk-based Maintenance of Buried Pipe 

Structural deterioration of buried pipeline due to adverse corrosion effect is among the 

leading causes of increasing possibility of pipe failure. As a result, maintenance 

intervention becomes a fundamental task for good engineering management programme. 

Also, due to the effect of uncertainty in the design of a buried pipeline, there is a need to 

develop a maintenance approach based on the non-probabilistic method that can help to 

determine an optimal time interval for maintenance. For this reason, a maintenance 

technique is developed to determine the optimal time for the maintenance of buried 

pipeline using the fuzzy-based approach as a non-probabilistic method for computing 

pipe reliability and risk, based on α-level set. The strategy aimed at assessing the cost-

efficiency required for the determination of the optimal time for maintenance using multi-

objective optimisation based on the fuzzy annual reliability, risk, and total maintenance 

cost. Also, there is no such work found in the literature. 

2.8 Chapter Summary 

In this Chapter, the concept of uncertainty and the characterisation of uncertainties are 

explained. An overview of the physical and environmental challenges which affect the 

performance of buried pipeline are discussed. These include seismic action, frost effect, 

thermal effect, and corrosion effect. Also, the sources of uncertainties associated with the 
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input parameters for the design of buried pipe are explained regarding the inherent 

variability, measurement error, and transformation uncertainty. Subsequently, the causes 

and consequences of the failure of the buried pipe are reviewed. The understanding of the 

challenges and the causes of failure is essential in formulating an approach that will be 

used to solve the problem. The adverse effects of these challenges and causes of failure 

cannot be undermined in any proper analysis of a buried pipe system. Also, a 

comprehensive review of the existing methods used in the design optimisation, reliability, 

and maintenance of buried pipeline is reported including areas where there are gaps in 

knowledge. The reviewed works cut across other engineering field and in some cases may 

not be directly linked to the subject area. However, their importance in engineering 

disciplined has been acknowledged. The identified gaps in knowledge have formed the 

reason for this research, and they have been addressed in the later Chapters of this Thesis. 

In Chapter 3, the reliability of a buried pipeline has been analysed considering an aleatory 

type of uncertainty using LS and IS, and a combination of LS and IS. The combined 

approach has been utilised to analyse the effect of the underground water table, corrosion 

empirical constants, and bending moment coefficient on the performance of buried 

pipeline.  
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3 RELIABILITY ANALYSIS OF BURIED PIPE BASED 

ON LINE AND IMPORTANT SAMPLING METHODS 
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3.1 Introduction 

A significant level of uncertainties exists in the processes and methods of estimating the 

values of the input parameters for the design of buried pipe. The uncertainties can be due 

to the imprecision associated with the methods of estimating the values of the parameters 

(aleatory uncertainty) or lack of knowledge concerning the processes involved in 

estimating the values of the parameter (epistemic uncertainty). However, an aleatory type 

of uncertainty due to randomness associated with the input parameters is considered in 

this Chapter. Estimating a small failure probability using MCS can be significant because 

of the required number of samples. In such a situation, the use of advanced MCS methods 

such as LS, IS, and SS methods represent a useful option for evaluating the reliability of 

a buried pipeline.  

In this Chapter, the reliability of buried pipe is performed by adapting LS, IS and a 

combination of LS and IS. For the LS and the combined methods, an “important 

direction” that points towards the failure domain of interest is determined. The considered 

methods are aimed to reduce the variance of the failure probability estimator while 

considering the randomness associated with the input parameters. Also, the methods are 

adapted for time-dependent reliability since corrosion, which is one of the main prevalent 

challenges that affect the performance of buried pipe occurs over time. The application 

to the buried pipe is investigated based on the failure modes of total axial stress and 

through-wall bending stress due to concentrated load. In addition, the work performed a 

parametric study by analysing the effect of having the underground water table located 

above and below the buried pipeline.  

The rest of this Chapter is organised as follows. Section 3.2 presents the concept of 

structural reliability analysis of buried pipe, which includes methods that can be used to 

estimate the reliability of buried pipeline such as MCS, LS and IS. In this Section, the 

computational steps for the combination of LS and IS is also presented. Section 3.3 

presents an application to the buried pipe and the considered failure modes (pipe ovality, 

through-wall bending stress, ring buckling, and wall thrust). Section 3.4 explained the 

total circumferential and axial stresses. Section 3.5 explained the pipe corrosion while 

Section 3.6 presents the limit state function for the failure mode. In Section 3.7, the 
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numerical example is explained, and Section 3.8 shows the results and discussion 

including the parametric studies. Section 3.9 summarises the Chapter. 

3.2 The Concept of Pipe Structural Reliability 

The structural behaviour of a buried pipeline can be described using a response variable 𝑦. 

This response variable can represent the failure mode or displacement of the pipe structure 

from the original position. The values of the response variable will depend on the input 

variables  𝑥 = (𝑥1, … , 𝑥𝑛), which may represent the material properties of pipe and soil, 

and loading conditions. The relationship between the response variable and the input 

variables of pipe structure can be expressed as shown in Eq. (3.1) 

    𝑦 = 𝑔(𝑥1, … , 𝑥𝑛)     (3.1) 

Where 𝑔(𝑥)  denotes the pipe performance function. The performance of the pipe 

structure can be measured by comparing the pipe structural response against a particular 

critical value 𝑦∗. If the critical value  𝑦∗ is greater than the pipe structural response 𝑦, then 

the structure is safe; but, if the critical value  𝑦∗ is less than the pipe structural response 𝑦, 

then the structure is considered to have failed. Considering any of the pipe failure 

criterion, the failure domain of the pipe can be defined in the input space as expressed in 

Eq. (3.2) 

    𝐹 = {𝑥:  𝑔(𝑥) >  𝑦∗}     (3.2) 

Based on Eq. (3.2), the failure domain of the pipe structure will comprise a set of values 

from the input variables that will lead to the failure of the structure considering the 

exceedance of the critical value or threshold. The design of most engineering structure 

including a buried pipeline is often based on a deterministic approach, that is the loads, 

and the structural parameters are assumed as deterministic values. However, Pradlwarter 

et al. (2005) suggested that the deterministic approach is a simplification of the actual 

problem because the inherent uncertainties associated with the parameters are not treated 

by rational means. This implies that there is a need to account for the uncertainties 

associated with the input parameters in analysing the performance of engineering 

structure. In this Chapter, the randomness associated with the input parameters are 
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considered, and probabilistic methods (LS, IS, MCS and a combination of LS and IS) 

adapted to estimate the failure probability of a buried metal pipe. The methods are briefly 

described in the subsequent subsection.   

3.2.1 Monte Carlo Simulation 

The MC approach is a statistical sampling approach that has been used in different 

engineering fields and to analyse the performance of structures. From a mathematical 

viewpoint, MC can be used to estimate the expected value of a specific quantity of interest 

(Robert & Casella, 2004). In particular, the goal is to evaluate the expectation 𝐸𝜋[ℎ(𝑥)] 

of a function ℎ: 𝑋 → ℝ with respect to the PDF 𝜋(𝑥), 

    𝐸𝜋[ℎ(𝑥)] = ∫ ℎ(𝑥)𝜋(𝑥)𝑑𝑥
𝑥

.    (3.3) 

The concept behind MC technique is a direct application of the law of large numbers 

(Zuev, 2015). This law suggests that if 𝑥1, 𝑥2, … 𝑥𝑁  are independent and identically 

distributed from the PDF 𝜋(𝑥), then the empirical average i.e.,  
1

𝑁
∑ ℎ (𝑥𝑖)𝑁
𝑖=1  converges 

to the true value as N goes to +∞ (Zuev, 2015). Consequently, if the number of sample 

is large enough, then, the expectation of the function can be estimated using the 

expression in Eq. (3.4).  

    𝐸𝜋[ℎ(𝑥)] =
1

𝑁
∑ ℎ(𝑥𝑖)𝑁
𝑖=1      (3.4)  

Therefore, in the standard normal space, the probability of failure can be expressed as 

shown in Eq. (3.5). 

    𝑃𝐹 = ∫ 𝜋𝑛(𝑥)d𝑥1, … ,
𝐹

d𝑥𝑛    (3.5) 

Where 𝜋𝑛  is the joint Gaussian Probability Density Function (PDF) of 𝑥 . Therefore, 

introducing the failure counter, where 𝐼𝐹(𝑥) = 0 if g(𝑥) > 0 and 𝐼𝐹(𝑥) = 1 if  g(𝑥) ≤ 0. 

The failure probability associated with a structure is analysed as the expectation of the 

indication function and can be expressed as (Zio, 2013). 

 𝑃𝐹 = ∫ 𝜋𝑛(𝑥)d𝑥1, … ,
𝐹

d𝑥𝑛 = ∫ 𝐼𝐹(𝑥)𝜋𝑛(𝑥)d𝑥1, … ,
𝐹

d𝑥𝑛 = 𝐸𝜋[𝐼𝜋(𝑥)]  (3.6) 
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With respect to Eq. (3.6), the failure probability can be estimated using MCS as expressed 

in Eq. (3.7). 

    𝑃𝐹 ≈ �̂�𝐹 =
1

𝑁
∑ 𝐼𝐹(𝑥

𝑖𝑁
𝑖=1 )    (3.7) 

In analysing the reliability of a structure, the standard measure of the accuracy of the 

unbiased estimate of the probability of failure is the coefficient of variation (COV). COV 

is a measure of the relative variability and can be defined as the ratio of the standard 

deviation to the expected value of �̂�𝐹 , (i.e. 𝛿�̂�𝐹 = √𝑉[�̂�𝐹] 𝐸𝜋[�̂�𝐹]⁄ ) (Zuev, 2015). The 

smaller the COV, the more accurate the method used to compute the failure probability. 

Therefore, the COV for MCS can be estimated using  

    𝛿𝑀𝐶𝑆 = √
1−�̂�𝐹

𝑁�̂�𝐹
      (3.8) 

MCS is a very convenient method to estimate the failure probability of a structure, but 

the approach requires a significant sample size in order to simulate a small failure 

probability. In this study, MCS is used to provide the benchmark result and validate the 

outcome of the LS, IS and a combination of LS and IS. 

3.2.2 Important Sampling (IS) 

In the reliability analysis of a structural system, the estimation of a small failure 

probability using MCS, that is, an unacceptable performance is often challenging because 

of the required number of samples. Also, the computational process can be time-

consuming due to the sample size. As suggested in the literature, Important Sampling, 

which is one of the most prevalent methods in the context of simulation can be used to 

assess the reliability of a structure (Schuëller et al., 2004). The underlying theory is to 

draw samples of the vector of random parameters from a distribution that is concentrated 

in the ‘important region’ of the random parameter, which is the failure domain (Echard 

et al., 2013). Based on the rules of IS and considering the weighting of the samples, IS 

requires the definition of a joint PDF for the new sampling. Considering that the design 

point 𝑥∗ can be identified by FORM, therefore, an auxiliary PDF denoted as the 

importance density can be expressed as  
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    ℎ𝑥(𝑥) = 𝑓𝑥(𝑥)|𝜇=𝑥∗        (3.9)  

This means that the expression ℎ𝑥(𝑥) is similar to the original joint PDF 𝑓𝑥(𝑥) if the 

mean values of the input variables is changed as the design point. Therefore, the failure 

probability can be expressed as (Der et al., 1987; Echard et al., 2013) 

   𝑃𝐹 = ∫ 𝐼𝐹(𝑥)
𝑓𝑛(𝑥)

ℎ𝑛(𝑥)ℝ𝑛
ℎ𝑛(𝑥)𝑑𝑥1…  𝑑𝑥𝑛  (3.10) 

Usually, the joint PDF is often taken in the standard space as an n-Gaussian one centred 

in the most probable failure point (Echard et al., 2013). Since ℎ(. ) is a PDF, the integral 

can be interpreted as an expectation. Therefore, the integral can be estimated using  

   𝑃𝐹 ≈ �̂�𝐹 =
1

𝑁𝐼𝑆
∑ 𝐼𝐹(�̃�

𝑖)
𝑓𝑛(�̃�

𝑖)

ℎ𝑛(�̃�𝑖)

𝑁𝐼𝑆
𝑖=1    (3.11)  

The variance and the COV for the probability of failure can be estimated using the 

expression in Eq. (3.12) and Eq. (3.13). 

  V[�̂�𝐹] =
1

𝑁𝐼𝑆
(

1

𝑁𝐼𝑆
∑ (𝐼𝐹(�̃�

𝑖) (
𝑓𝑛(�̃�

𝑖)

ℎ𝑛(�̃�𝑖)
)
2

)
𝑁𝐼𝑆
𝑖=1 − �̂�𝐹

2
)  (3.12)  

    𝛿𝐼𝑆 =
√V[�̂�𝐹]

�̂�𝐹
     (3.13)  

3.2.3 Line Sampling  

3.2.3.1 General Concept  

LS approach was developed by Schuëller et al. (2004) to estimate the reliability of a 

structure with high dimension involving linear and non-linear problems. The method uses 

lines instead of points to probe the failure space of interest and reduces a high dimensional 

problem that is in standard normal space to a number of conditional one-dimensional 

problems (Koutsourelakis et al., 2004; Pradlwarter et al., 2007). The conditional failure 

probability of the structural systems is computed from the normal cumulative 

distribution Φ(. ) (Schuëller et al., 2004). The efficiency of LS has been demonstrated in 
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the literature (Koutsourelakis et al., 2004; Pradlwarter et al., 2007) to estimate the 

reliability of linear and non-linear systems associated with the random process.  

For the analysis of a structure using LS, the vector 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑗 , … , 𝑥𝑛 ∈ ℝ𝑛 of an 

uncertain parameter defined in the original space can be transformed into the vector 

𝜃 ∈ ℝ𝑛 , where each element of the vector 𝜃𝑗 , 𝑗 = 1, 2, 3, … , 𝑛  is associated with the 

standard Gaussian distribution (Koutsourelakis et al. 2004; Schuëller et al. 2004; Zio, 

2013). Therefore, the joint PDF 𝜃𝑗 , 𝑗 = 1, 2, 3, … , 𝑛, of the random parameter can be 

expressed as shown in Eq. (3.14) 

    φ(𝜃) =∏ 𝜙𝑗(𝜃𝑗)
𝑛
𝑗=1      (3.14)    

Where 𝜙𝑗(𝜃𝑗) =
1

√2𝜋
𝑒−

𝑥𝑗
2

2 ,    𝑗 = 1, 2, 3, … , 𝑛. The mapping of the initial physical vector 

 𝑋 ∈ ℝn  to the standard normal vector 𝜃 ∈ ℝ𝑛  is denoted as SXθ(. )  and the inverse 

is  SθX(. ) . The transformations of the physical space into standard normal space is 

generally non-linear and can be obtained by applying Rosenblatt’s or Nataf’s 

transformations (Huang & Du, 2006; Zio & Pedroni, 2010). Using transformation, the 

limit state function gx(. ) of the structural system define in the physical space can be 

transformed into gθ(. ) of the standard normal space.  

3.2.3.2 Determination of the “Important Unit Vector”  

The use of LS method requires the determination of an “important unit vector” 𝛼. In the 

literature, three different methods are available for the determination of the important unit 

vector. The methods are the design point direction, the gradient of performance function 

in the standard normal space and the normalised centre of mass. For more information, 

see (Koutsourelakis et al. 2004; Zio, 2013). Herein, the normalised centre of mass is used 

because it provides a good approximation of the important domain of the failure space. 

When using the normalised centre of mass approach, a point  𝜃0 , which falls within the 

failure space  𝐹  is chosen. This point can be determined using MCS approach and 

subsequently used as the initial point of a Markov chain since it lies entirely in the failure 

domain. Because of this, a Metropolis–Hastings algorithm can be employed to evaluate a 

sequence of 𝑁𝑠  points {𝜃𝑢, 𝑢 = 1, 2, 3, … , 𝑁𝑠}  that lie within the failure domain 

(Metropolis et al., 1953). The point taken from the failure domain is used as the initial 
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point of a Markov chain and Metropolis– Hastings algorithm is employed to generate a 

sequence of  𝑁𝑠  points that lied in the failure domain. The Markov chain simulation 

technique is used because it can accelerate the efficiency of exploring the failure region. 

Then, the unit vector θu ∥ θu ∥⁄ , u = 1, 2, 3, … , 𝑁𝑠  are averaged to determine the 

important unit vector as 𝛼 =
1

𝑁𝑠
∑ θu ∥ θu ∥⁄𝑁𝑠
𝑢=1  as shown in Figure 3.1 (Koutsourelakis 

et al., 2004). This method provides a good approximation of the important unit vector by 

considering all the relevant samples within the failure region. 

 

Figure 3.1: Important unit vector as the normalised “centre of mass” 

3.2.3.3 Formulation of LS Method 

Mathematically, the probability of the event F of a structural failure can be expressed as 

a multidimensional integral as shown in Eq. (3.15) 

   𝑃𝐹 = P(𝜃 ∈ 𝐹) = ∫ 𝐼𝐹(𝜃)𝑞𝜃(𝜃)𝑑𝜃       (3.15) 

F 

 𝑔𝜃(𝜃) > 0 

“Centre of 

mass” for the 

failure domain 

F 

𝛼 =
1

𝑁𝑠
 

𝜃𝑢

 𝜃𝑢 

𝑁𝑠

𝑢=1

  

 𝜃0 

 𝜃𝑢 

 𝜃𝑁𝑠 

 𝑔𝜃(𝜃)

= 0 

𝛼 

 𝜃2 

0 
 𝜃1 



 

47 

 

Where 𝜃𝑗 , 𝑗 = 1, 2, 3, … , 𝑛  denotes the vector of uncertain input variables in the standard 

normal space, 𝑞𝜃: ℝ
𝑛 → [0, ∞)  is the multidimensional PDF, 𝐹 ⊂ ℝ𝑛  is the failure 

domain and 𝐼𝐹 ∶ ℝ
𝑛 → {0, 1} is the indicator function. With no loss of generality, the 

standard normal random variables in the direction of the important unit vector 𝛼 can be 

assured by a suitable rotation of the axes (Koutsourelakis et al., 2004). Therefore, the 

failure domain 𝐹 can be expressed alternatively as shown in Eq. (3.16)  

   𝐹 = {𝜃 𝜖 ℝ𝑛: 𝜃1 𝜖 𝐹1(𝜃2, … , 𝜃𝑛)}        (3.16) 

Where 𝐹1 is a function define in ℝ𝑛−1 and which takes values on the set of all subsets 

of ℝ. Considering an example of a failure domain that corresponds to a performance 

function as expressed in Eq. (3.17), 

   𝑔(𝜃) = 𝑔1(𝜃−1) − 𝜃1 ≤ 0     (3.17) 

Where 𝜃−1 denotes the 𝑛 − 1 dimensional vector (𝜃2, … , 𝜃𝑛). In that case,  𝐹1(𝜃−1) is the 

half open interval [𝑔1(𝜃−1),∞) (Koutsourelakis et al., 2004). Then, the function that are 

similar to 𝐹1 can be defined with respect to any direction in the random parameter space 

and for all measurable F.  Therefore, combining Eq. (3.15) and Eq. (3.16), the probability 

of failure can be expressed as (Koutsourelakis et al., 2004; Zio, 2013): 

  𝑃𝐹 = ∫ …
𝑛

∫ 𝐼𝐹(𝜃)∏ ∅𝑗(𝜃𝑗)𝑑𝜃
𝑛
𝑗=1      (3.18) 

  = ∫ …
𝑛−1

∫(∫ 𝐼𝐹(𝜃−1) ∅1(𝜃1)𝑑𝜃)∏ ∅𝑗(𝜃𝑗)𝑑𝜃−1
𝑛
𝑗=2    (3.19) 

  = ∫ …
𝑛−1

∫Φ(𝐹1(𝜃−1))∏ ∅𝑗(𝜃𝑗)𝑑𝜃−1
𝑛
𝑗=2            (3.20) 

  = 𝐸𝜃−1[Φ(𝐹1(𝜃−1))]       (3.21) 

Where Φ(𝐴) =  ∫ 𝐼𝐴(𝑥)𝜑(𝑥)𝑑𝑥  is called the Gaussian measure of A. From the Eq. 

(3.21), an unbiased MC estimator of 𝑃(𝐹) can be computed as: 

  �̂�𝐹 =
1

𝑁𝑇
. ∑ Φ(𝐹1(𝜃−1

𝑘 ))
𝑁𝑇
𝑘=1               (3.22) 
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Where 𝜃−1
𝑘 , 𝐾 = 1, 2, … , 𝑁𝑇 are independent and identically distributed samples in the 

standard normal space. The variance of the estimator can be determined by the variance 

of Φ(𝐹1(𝜃−1)). It is significant to note that the variance of the estimator takes values in 

(0, 1) i.e.  0 ≤ Φ(𝐹1(𝜃−1)) ≤ 1  and Φ2(𝐹1(𝜃−1)) ≤ Φ(𝐹1(𝜃−1)), ∀𝜃−1 ∈ ℝ𝑛−1 

(Koutsourelakis et al. 2004; Zio, 2013). This means: 

 𝑉𝑎𝑟[Φ(𝐹1(𝜃−1))] =  𝐸𝜃−1[Φ
2(𝐹1(𝜃−1))] − 𝐸𝜃−1

2 [Φ(𝐹1(𝜃−1))]  (3.23) 

 ≤ 𝐸𝜃−1[Φ(𝐹1(𝜃−1))] − 𝐸𝜃−1
2 [Φ(𝐹1(𝜃−1))]             (3.24) 

 = 𝑃𝐹(1 − 𝑃𝐹) = 𝑉𝑎𝑟[𝐼𝐹(𝜃)]              (3.25) 

From the derivation, the COV 𝛿𝐿𝑆 = √(𝑉𝑎𝑟[�̂�𝐹] )/𝑃𝐹 of the estimator in equation (3.22) 

will be smaller when compare to standard MC (Δ𝑀𝐶) approach (Koutsourelakis et al. 

2004; Zio, 2013). This means that the convergence rate that will be achieved using the 

LS method will always be smaller than the MC method. The variance of the estimator �̂�𝐹 

in LS will always depend on the variability of the random variables Φ(𝐹1(𝜃−1)) instead 

of the probability content (Zio, 2013).  
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Figure 3.2: LS procedure 

3.2.4 Methodology 

The concept of LS, IS, MCS and a combination of LS and IS have been adapted in this 

Chapter to estimate the time-dependent reliability of buried pipe and considering the 

failure modes explained in Section 3.3 and 3.4. Figure 3.3 shows the flowchart of the 

adapted LS method used in the analysis. However, the rationale for combining the LS and 

IS techniques is to improve the efficiency of the approach for estimating the reliability of 

a structure while considering the randomness associated with the structural parameters. 

The computational procedure can be summarised as a two-stage process. The first stage 

deals with the determination of the “important unit vector 𝛼” and the second stage 

evaluates the probability of failure using the adapted method. The efficiency of the 

method will depend on the determination of the important unit vector. Therefore, the 

primary step is the searching of the optimal important unit vector and the drawing of the 

F 

 𝑔𝜃(𝜃) > 0 

𝑘𝑡ℎ  conditional one dimensional 

failure probability estimate 

�̂�𝑘 = 1 − 𝛷(𝑐−𝑘) =  𝛷(−𝑐−𝑘)

  

  𝛼,𝜃
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 𝛼 

 𝑔𝜃(𝜃)

= 0 
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 𝜃
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samples to estimate failure probability. The computational steps for the combined 

methods are summarised briefly below.  

1. Generate samples from the PDFs of the input parameters.  

2. Using a standard MCS, sample 𝑁𝑇  vectors {𝑥𝑘: 𝐾 = 1,2,3,… , 𝑁𝑇}  with 𝑥𝑘 =

{𝑥1
𝑘, 𝑥2

𝑘, 𝑥3
𝑘, … , 𝑥𝑗

𝑘, … , 𝑥𝑛
𝑘 }  from the multidimensional joint PDF  𝑞(. ): ℝ𝑛 →

[0, 1) of the input parameters. 

3. The transformation of the input vectors. Transform the 𝑁𝑇  sample vectors 

{𝑥𝑘: 𝐾 = 1,2,3, … ,𝑁𝑇} defined in the physical space into  𝑁𝑇 samples {𝜃𝑘: 𝐾 =

1,2,3, … ,𝑁𝑇} defined in the standard normal space where each component of the 

random variables is associated with an independent central unit Gaussian standard 

distribution.  

4. In the standard normal space, evaluate the “important unit vector” 𝛼 =

(𝛼1, 𝛼2, … , 𝛼𝑗 , … 𝛼𝑛)   that points towards the failure domain of interest, (see 

Section 3.2.3.2 and Figure 3.1). 

5. Once the “important unit vector” has been determined, then estimate a conditional 

one-dimensional failure probabilities {�̂�𝐹
𝑘: 𝐾 = 1,2,3, … ,𝑁𝑇}  associated with 𝑁𝑇 

vectors corresponding to each one of the standard normal samples {𝜃𝑘: 𝐾 =

1,2,3, … ,𝑁𝑇} . For each samples,  {𝜃𝑘: 𝐾 = 1,2,3, … ,𝑁𝑇}   that falls within the 

failure domain, the following steps can be performed, see Figure 3.2. 

a. For each sample vectors {𝜃𝑘: 𝐾 = 1,2,3,… , 𝑁𝑇}, determine a vector {�̃�𝑘, 𝐾 =

1,2,3, … ,𝑁𝑇} as the sum of a deterministic multiple of the important unit 

vector 𝛼 and a vector 𝜃𝑘,⊥, 𝐾 = 1,2,3, … ,𝑁𝑇  that is perpendicular to the 

direction of the important unit vector 𝛼. This can be expressed as:  

   𝜃𝑘 = 𝑐𝑘𝛼 + 𝜃𝑘,⊥              (3.26)  

Where 𝑐𝑘 is a real number with values between −∞ 𝑎𝑛𝑑 +∞.  

The relationship for the perpendicular direction is given as: 

   𝜃𝑘,⊥ = 𝜃𝑘 −  𝛼, 𝜃𝑘 𝛼              (3.27) 

Where  𝜃𝑘: 𝐾 = 1,2,3, … ,𝑁𝑇  represents a random realisation of the input 

variables and  𝛼, 𝜃𝑘  represents the scaler product between the unit vector 𝛼 and 

the random variables 𝜃𝑘, 𝐾 = 1,2,3, … ,𝑁𝑇. 
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b. Calculate the value of 𝑐−𝑘 as the intersection between the limit state function 

LSF 𝑔𝜃(�̃�
𝑘) = 𝑔𝜃(𝑐

𝑘𝛼 + 𝜃𝑘,⊥) = 0 and the line 𝑙𝑘(𝑐𝑘, 𝛼) passing through 

𝜃𝑘 and parallel to the important unit vector 𝛼. The value of 𝑐−𝑘 is determined 

by fitting a first or second order polynomial and find its root. For each standard 

normal random samples, two or three system performance evaluation is 

required. 

c. Estimate the conditional one-dimensional probability associated with each 

random sample 𝜃𝑘, 𝐾 = 1,2,3, … , 𝑁𝑇 . The associated conditional failure 

probability �̂�𝐹
𝑘, 𝐾 = 1,2,3, … ,𝑁𝑇 is given as: 

  �̂�𝐹
𝑘 = 𝑃[𝑁(0,1) > 𝑐−𝑘] = 1 − 𝑃[𝑁(0,1) > 𝑐−𝑘]            (3.28) 

  = 1 − 𝛷(𝑐−𝑘) =  𝛷(−𝑐−𝑘)              (3.29) 

Where Φ(. ) designates the standard normal cumulative density function. 

d. Becuase the values of the variables 𝑐−𝑘  follows a standard normal 

distribution, the sampling can be carry out in the important domain, rather than 

on the origin of the standard space. Therefore, the unbiased estimator of the 

failure probability from the important domain  �̂�𝐹
𝑘, 𝐾 = 1,2,3, … , 𝑁𝑇 can be 

estimated using Eq. (3.30). 

  �̂�𝑓
𝑘 = (1 − 𝛷(𝑐−𝑘))

∑ �̂�𝑗(𝑐𝑘𝛼+𝜃𝑘,⊥)𝑒−
(𝑐𝑘)2

2
⁄𝑁𝑇

𝑗=1

∑ 𝑒−
(𝑐𝑘)2

2
⁄𝑁𝑇

𝑗=1

    (3.30) 

6. From the result of the conditional one-dimensional failure probability �̂�𝐹
𝑘, 𝐾 =

1,2,3, … ,𝑁𝑇, calculate the failure probability and reliability of the structure using 

Eq. (3.31) and Eq. (3.32).  

   𝑃𝐹 ≈ �̂�𝐹 =
1

𝑁𝑇
∑ �̂�𝑘(𝐹)
𝑁𝑇
𝑘=1              (3.31) 

     𝑃𝑅 = 1 − 𝑃𝐹     (3.32) 
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Figure 3.3: Flow diagram of the adapted LS method 
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3.3 Application to Buried Pipe 

The design of buried metal pipe can be a fairly complicated process due to the loading 

conditions and the geo-environmental effects (Whidden, 2009). Stresses and strains can 

develop as a result of the impact of load and will affect the performance of pipe over time. 

For underground pipes under pressure, the impact of the load is usually classified into 

two broad categories: internal pressure and external loads (Moser & Folkman, 2001). The 

internal pressure is made up of the hydrostatic pressure and the surge pressure while the 

external loads are those caused by external soil pressure or live loads (Moser & Folkman, 

2001). The loads due to differential settlement, longitudinal bending, and shear loadings 

are also considered to be external loads. Buried pipes are designed to sustain various loads 

that are expected to affect the performance during the intended life.  

  

Figure 3.4: (a) Flexible pipe and (b) Rigid pipe 

The classification of the buried pipe is based on their behaviour during installation and 

operation. Broadly, the buried pipe is classified as rigid or flexible pipe as shown in Figure 

3.4 (Gabriel, 2011). The response of a rigid or flexible pipe to the external loads are 

different. Therefore, the failure modes will be different as well. In this study, a buried 

flexible metal pipe is considered. Cameron (2005) suggested that the amount of load a 

pipe can sustain will depend on the relative height of cover, nature of the backfill material, 

geometry of the trench and the relative stiffness of the pipe to the backfill. Similarly, 

Marston load theory, as cited by Moser & Folkman (2001), shows that the amount of load 
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taken by a pipe will be affected by settlement or the relative movement of the backfill soil 

and the nature of the pipe material.  

As a result of the impact of the internal and external loads, failure of buried pipe will 

occur when the applied stress (internal or external) exceeds the ultimate strength of the 

pipe material. In this case, the applied stress represents the response of the input variables 

𝑦 and the ultimate strength of the pipe material represents the critical value or 

threshold 𝑦∗. In the literature such as Alliance (2001) and BS EN 1295:1 (1997) different 

failure modes has been  suggested for the design and assessment of buried pipeline. 

However, it is vital to have an approach that will be used to identify the most critical 

failure mode in order to avoid accidental economic loss and environmental pollution. The 

most critical failure mode will have a more significant contribution to the failure of the 

buried pipe structure. This study is concerned about a flexible buried pipe and the 

associated dominating failure modes as defined in the literature (Alliance, 2001; Babu & 

Srivastava, 2010; Sadiq et al., 2004). The failure modes include pipe ovality, through-

wall bending stress, buckling pressure, wall thrust, and total circumferential and axial 

stress. These are succinctly explained in the following subsections.  

3.3.1 Pipe Ovality 

A buried pipe tends to resist the impact of live and earth load imposed on them, thereby 

causing the pipe to ovalise due to the resulting stress from the external pressures as shown 

in Figure 3.5. To analyse this effect, the Iowa deflection formula as defined in BS EN 

1295:1 (1997) and BS 9295 (2010) can be modified to estimate the pipe ovality under the 

influence of earth and live loads. The modified Iowa deflection formula is expressed in 

Eq. 3.33. As stated in Gabriel (2011), the critical deflection for a flexible buried pipe can 

be estimated using 5% - 7% of the inside diameter. 

   
∆𝑦

𝐷
=

𝐷1𝐾𝑃

(
𝐸𝐼

𝑅3
+0.061𝐸′)

                          (3.33) 

Where ∆𝑦 = deflection of pipe in millimetre, 𝐾 = bedding constant, 𝑃 = the pressure on 

pipe due to soil load plus live load i.e.  (𝑃𝑣 + 𝑃𝑝), 𝑃𝑝 = pressure transmitted to the pipe as 

a result of the concentrated load, 𝑃𝑣= pressure on pipe due to soil load,  𝐷1 = deflection 
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lag factor, 𝑅 = the radius of pipe, 𝐸 = the elastic modulus of pipe, 𝐼 = the moment of 

inertia (𝑡^3/12) and 𝐸′ = the modulus of soil reaction and can be expressed as shown in 

Eq. (3.34). The modulus of soil reaction 𝐸′ is a measure of the stiffness of the embedment 

material surrounding the pipe. 

   𝐸′ = 
𝐾′𝐸𝑠(1−𝑉𝑠)

(1+𝑉𝑠)(1−2𝑉𝑠)
               (3.34) 

Where 𝑣𝑠  is the poison ratio of the soil, 𝐾′ is the numerical value which depends on 

poison ratio and 𝐸𝑠 is the modulus of soil. 

Buried pipes are also, predisposed to the action of concentrated or distributed live loads. 

The effect of concentrated live load on the buried pipe can be enormous, for example, 

locomotive loads, railway car, and truck wheel loads. In this situation, Alliance (2001) 

stated that Boussinesq’s equation as expressed in Eq. (3.35), can be used to estimate the 

pressure of the concentrated surface load exerted on the buried pipe.  

   𝑃𝑝 =
3𝑃𝑠

2𝜋𝐶2[1+(
𝑑

𝐶
)
2
]
2.5               (3.35) 

Where 𝑃𝑝 = pressure transmitted to the pipe, 𝑃𝑠 = concentrated load at the surface, above 

pipe, 𝐶 = the depth of soil cover above the buried pipe, 𝑑 = distance from the pipe to the 

point of application of surface load. 

  

Figure 3.5: Ovality of buried pipe 
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3.3.2 Through-wall Bending Stress  

A buried pipe subjected to live and earth load and a continuous increase in bending will 

fail due to increased ovalisation of the pipe cross-section and reduced slope in the stress-

strain curve (Tee & Khan 2014). The bending stress of a buried pipeline depends on the 

dead and live loads acting on the pipe wall. For the safe performance of the buried pipe 

throughout the design life, the induced through-wall bending stress should not go beyond 

the tensile strength of the pipe material. Similarly, the induced longitudinal bending strain 

should not exceed the allowable bending strain. For most buried metal pipe, the allowable 

bending strain is between 0.15% - 2% and the allowable bending stress is the long-term 

tensile strength of the pipe material (Alliance, 2001; Mohr, 2003)  

Considering the impact of surface and earth loads, the through-wall bending stress 

induced in the buried pipe, distributed as illustrated in Figure 3.6 can be calculated using 

the relationship in Eq. (3.36) (Alliance, 2001; BS EN 1295-1:1997). 

    𝜎𝑏 = 4𝐸 (
∆𝑦

𝐷
) (

𝑡

𝐷
)              (3.36)  

Where 𝜎𝑏 = through-wall bending stress, ∆𝑦 𝐷⁄  = pipe ovality. 

  

 

Figure 3.6: Through-wall bending stress  
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3.3.3 Ring Buckling 

Ring buckling or buckling pressure of the buried pipe depends on the total vertical 

pressure (soil and surface load) that act on the pipe as illustrated in Figure 3.7 (Alliance, 

2001). If the total vertical force is excessive, then the pipe can buckle in response to the 

applied load. However, with the increase in the vertical pressure, there will be a 

corresponding increase in the tangential compressive stress, and this will get to a state 

where the pipe will not be able to keep its initial circular shape and buckle as a result. 

Ring buckling of buried pipe can occur due to the insufficient stiffness of the pipe 

(AWWA, 1999). For the safe performance of buried pipe, the actual buckling pressure 

must be less than the critical buckling pressure. Based on the impact of the live and earth 

load, the actual and critical buckling pressure can be estimated using Eq. (3.37) and Eq. 

(3.38) (AWWA, 1999). 

   𝑃𝑎 = 𝑅𝑤𝛾𝑠 + 𝛾𝑤𝐻𝑤 + 𝑃𝑠     (3.37) 

   𝑃𝑐𝑟 = √(32𝑅𝑤𝐵′𝐸𝑠
𝐸𝐼

𝐷3
)     (3.38) 

Where 𝑅𝑤  is the water buoyancy factor which can be expressed as 𝑅𝑤 = 1 −

0.33(𝐻𝑤/𝐻),  𝐸𝑠 is the modulus of soil, 𝐻𝑤  is the height of ground water above the pipe 

and 𝐵′ is the empirical coefficient of elastic support which can be expressed as  𝐵′ =

1/(1 + 4e−0.213𝐻). 

    

Figure 3.7: Ring buckling  
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3.3.4 Wall Thrust 

Wall thrust or crushing of pipe wall is characterised with localised yielding and occurs 

when the induced wall stress reaches the yield stress of the pipe material. A buried 

pipeline can crush due to earth and surface loading acting on the pipe if burial depth is 

not enough (Gabriel 2011). Considering the effect of dead and live load, Gabriel (2011) 

suggested two conditions for analysing the wall thrust and they are as follows:  

 Use short-term material properties if both dead and live loads need to be 

accounted for;  

 Use long-term material properties if only dead load needs to be accounted 

for.  

Based on the two conditions, the more conservative limit state function value would be 

considered for wall thrust analysis. Note that some flexible pipes have both short-term 

and long-term material properties (elasticity of modulus), where the short-term value is 

higher than long-term value, e.g., polyethylene pipe (Gabriel, 2011). In this case, the two 

conditions will be required to analyse the performance of the pipe based wall thrust. 

However, for metal pipes, e.g., ductile iron or steel pipe, only the first condition is 

considered for the assessment because the short-term and long-term properties of the pipe 

material are the same (Gabriel, 2011). The critical and the actual wall thrust can be 

evaluated using Eq. (3.39) and Eq. (3.40) respectively (Gabriel, 2011).  

    𝑇𝑐𝑟 = 𝐹𝑦𝐴𝑠𝜑𝑝      (3.39) 

   𝑇𝑎 = 1.3(1.5𝑊𝐴 + 1.67𝑃𝑠𝐶𝐿 + 𝑃𝑊)(𝐷𝑜 2⁄ )   (3.40) 

Where 𝐹𝑦  denotes the minimum tensile strength of pipe, 𝐴𝑠 = the cross- sectional area of 

pipe wall per unit length and 𝜑𝑝 = the capacity modification factor for pipe. 𝐷𝑜 = the pipe 

outside diameter, 𝐶𝐿  = live load distribution coefficient (the lesser of 𝐿𝑊 𝐷𝑜⁄  or 1.0), 

𝐿𝑊 = live load distribution width. The loads acting on the pipe considered in wall thrust 

analysis are soil arch load 𝑊𝐴 , live load, 𝑃𝑠 and hydrostatic pressure 𝑃𝑊. The soil arch 

load and hydrostatic pressure can be calculated using Eq. (3.41) and Eq. (3.42). 

    𝑊𝐴 = 𝑃𝑠𝑝𝑉𝐴𝐹      (3.41) 

    𝑃𝑊 = 𝛾𝑠𝐻𝑤      (3.42) 
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Where 𝑃𝑠𝑝 = geostatic load (𝑃𝑠𝑝 = 𝛾𝑠(𝐻 + 0.11𝑥10−7(𝐷𝑜)) , 𝑉𝐴𝐹 = vertical arching 

factor 𝑉𝐴𝐹 = 0.76 − 0.71(
𝑆ℎ−1.17

𝑆ℎ+2.92
), 𝑆ℎ = the hoop stiffness factor (𝑆ℎ = 𝜑𝑠𝑀𝑠 𝑅 𝐸𝐴𝑠)⁄ , 

𝜑𝑠  = soil capacity modification factor, 𝑀𝑠  = secant constrained soil modulus, 𝑅 = the 

effective radius of pipe. 

     

Figure 3.8: Wall thrust  

3.4 Total Circumferential/Axial Stress 

The pressurised underground pipeline can continuously be exposed to the action of both 

external and internal forces. The forces includes soil/earth load, traffic/vehicular load 

(such loads may be from the roadway or railway), the load due to frost action, internal 

fluid pressure, and stress due to thermal effect (Sadiq et al., 2004). The adverse impact of 

these forces needs consideration at the design stage. The stress produced by the internal 

pressure is considered due to uniform circumferential tension generated across the inner 

wall of the pipe. For pressurised buried pipelines, the primary stress is produced by 

internal pressure (Amirat et al., 2006). Also, the influence of other different forces as 

explained in Section 3.3.1 to 3.3.4 can be considered in the analysis of buried pipeline. 

Amirat et al. (2006) suggested that internal pressure of a buried pipe produces a uniform 

circumferential tension across the pipe wall, while external loads may produce bending 

stress in longitudinal and circumferential directions.  

The external forces acting on a pressurised pipe can produce stresses in both 

circumferential and axial direction (Sadiq et al., 2004). However, Ahammed & Melchers 

(1994) suggested that if a pipe is loaded uniformly and supported along its length, then 
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circumferential stresses could be more important than axial stresses. Internal fluid 

pressure produces the circumferential bending stresses in a pipe wall (due to external 

loads) in addition to the tensile hoop stress. Rajani et al. (2000) suggested a method for 

estimating the total external stresses including all circumferential and axial stresses acting 

on a buried pipeline. These stresses are shown in Table 3.1. As defined in Rajani et al. 

(2000), the circumferential stress  𝜎𝜃 acting on the buried pipe can be expressed as shown 

in Eq. (3.43).  

   𝜎𝜃 = 𝜎𝐹 + 𝜎𝑆 + 𝜎𝐿 + 𝜎𝑉            (3.43) 

Where 𝜎𝐹 = stress due to internal fluid pressure; 𝜎𝑆 = stress due to external soil loading; 

𝜎𝐿 = stress due to frost pressure and 𝜎𝑉 = stress due to traffic/vehicular load. 

Similarly, the axial stress 𝜎𝑋 acting on the pipe can be expressed as shown in Eq. (3.44). 

   𝜎𝑋 = 𝜎𝑇 + (𝜎𝐹
/
+ 𝜎𝑆 + 𝜎𝐿 + 𝜎𝑉)𝑣𝑝        (3.44) 

Where 𝜎𝑇 = stress as a result of a temperature difference; 𝜎𝐹
/
 = axial stress due to internal 

fluid pressure and 𝑣𝑝 = Poisson’s ratio of the pipe material. 
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Table 3.1: Summary of stresses/pressures acting on the buried pipe 

Stresses acting 

on Buried Pipe 

Model Parameters description 

Circumferential 

stress due to 

internal fluid 

pressure 𝝈𝑭 

𝜎𝐹 = 𝜌𝐷/2𝑡   

        Rajani et al. (2000) 

𝜌 = internal fluid pressure (MPa); 

𝐷 = pipe diameter; 𝑡 = pipe 

thickness 

Stress due to 

external soil 

loading 𝝈𝑺 

𝜎𝑆 =
3𝐾𝑚𝛾𝐵𝑑

2𝐶𝑑𝐸𝑝𝑡𝐷

𝐸𝑝𝑡3 + 3𝐾𝑑𝜌𝐷3
   

Ahammed and Melchers 

(1994) 

𝐾𝑚 = bending moment 

coefficient; 𝛾 = unit weight of the 

backfill soil; 𝐵𝑑 = width of ditch; 

𝐶𝑑= calculation coefficient for 

earth load; 𝐸𝑝= modulus of 

elasticity of pipe material (MPa); 

𝐾𝑑 = deflection coefficient 

Stress due to 

frost action 𝝈𝑳 

𝜎𝐿 = 𝑓𝑓𝑟𝑜𝑠𝑡𝜎𝑠 

     Rajani et al. (2000) 

𝑓𝑓𝑟𝑜𝑠𝑡 = frost load multiple; 𝜎𝑆 = 

stress due to external soil loading 

Stress due to 

traffic load 𝝈𝑽 

𝜎𝑉

=
3𝐾𝑚𝐼𝑐𝐶𝑡𝐹𝐸𝑝𝑡𝐷

𝐴(𝐸𝑝𝑡3 + 3𝐾𝑑𝜌𝐷3)
   

Ahammed and Melchers 

(1994) 

𝐼𝑐= impact factor; 𝐶𝑡 = surface 

load coefficient; 𝐹 = wheel load 

on surface (N); 𝐴 = effective 

length of pipe which the load is 

computed;  

Stress due to 

temperature 

difference 𝝈𝑻 

𝜎𝑇 = −𝐸𝑝𝛼𝑝∆𝑇 − 𝑣𝜎ℎ 

         Rajani et al. (2000) 

𝛼𝑝 = expansion coefficient of 

pipe; ∆𝑇 = temperature difference 

between the fluid and the 

surrounding group; 𝑣 = poison 

ratio; 

Axial stress due 

to internal fluid 

pressure 𝝈𝑭
/
 

𝜎𝐹
/
=
𝑣𝑝

2
𝜌 (

𝐷

𝑡
− 1) 

         Rajani et al. (2000) 

𝑣𝑝 = poison ratio of the pipe 

material 
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3.5 Pipe Corrosion 

The gradual loss of pipe thickness as a result of corrosion can be relatively uniform or 

localised (Ahammed & Melchers, 1997; Sadiq et al., 2004). The rate of corrosion in 

uncoated CI pipes is generally high in early age (Sadiq et al., 2004). The corrosion of 

underground pipe is a time-variant process, which depends on external factors such as 

geo-environmental conditions and internal factors such as chemical composition of the 

transported fluid and could be influenced by temperature and flow rate (Mahmoodian & 

Li, 2017; Ossai et al., 2015). In the literature, the power law formula as expressed in Eq. 

(3.45), can be used for representing both localised and general (uniform) corrosion (Sadiq 

et al., 2004).  

    𝐶𝑇 = 𝑘𝑇𝑛      (3.45) 

Where 𝑘 and 𝑛 are empirical constants (𝑛 ≤ 1); and 𝑇 represents the time of exposure.  

The rate of corrosion can be calculated from Eq. (3.45) by differentiating with respect to 

time. In the literature, the rate of corrosion using Eq. (3.45) has been found to be relatively 

high at the beginning of the damage process and attenuates gradually as the service age 

increases (Engelhardt & Macdonald, 2004; Wang et al., 2015). As a result, Engelhardt & 

Macdonald (2004) suggested a corrosion rate model as shown in Eq. (3.46)  

   
𝑑(𝐶𝑇)

𝑑𝑡
= 𝑉0 (1 +

𝑇

𝑇0
)
𝑛−1

     (3.46) 

Where 𝑉0  denotes the initial corrosion rate, and 𝑇0 represents constant which has the 

effect on the time interval for reaching a stable corrosion rate. 

The rate of corrosion as expressed in Eq. (3.46) considers the early stages of corrosion, 

and when the metal is exposed to a relatively high concentration of corrosive species 

(Wang et al., 2015). However, it requires the determination of the initial corrosion rate. 

The depth and location of a possible indicator of corrosion can be measured and obtained 

through the use of magnetic flux leakage (MFL) or ultrasonic tools (UTs). Wang et al. 

(2015) suggested that because of the cost associated with the direct inspection, which is 

typically scheduled at different times, it is highly impractical to apply the technology to 
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obtain the initial corrosion rate. Rajani et al. (2000) proposed a two-phase model 

expressed in Eq. (3.47).  

    𝐶𝑇 = 𝑎𝑇 + 𝑏(1 − 𝑒−𝑐𝑇)             (3.47) 

Where 𝑎 is the final pitting rate constant (typical value; 0.009 mm/yr); 𝑏  represents the 

pitting depth scaling constant (typical value; 6.27 mm); 𝑐  is corrosion rate inhibition 

factor (typical value; 0.14 yr-1 ) and 𝑇 is the time.  

The effect of corrosion reduces pipe thickness over time. Therefore, pipe thickness 

expressed in all the considered failure modes are replaced with a residual pipe thickness. 

The residual pipe thickness is the original pipe thickness minus the corrosion model. In 

this study, the effect of corrosion is assumed to be uniform over the pipe surface area. 

Corrosion of buried pipeline is one of the most critical factors that contribute to the failure 

of buried steel pipe. It can occur both internal and external. External corrosion occurs at 

the outer surface of the pipe, and it is the most common form of deterioration of the buried 

pipeline. The level of the impact of external corrosion on buried pipeline depends on the 

surrounding environmental condition and the material properties of the pipe. Internal 

corrosion occurs inside the pipe. However, the effect is minimal when compared to the 

external corrosion. Figure 3.9 shows an example of internal and external corrosion data 

for a buried iron pipe as defined in (Marshall, 2001). Based on Figure 3.9, it can be 

deduced that external corrosion is higher than internal corrosion and in both, the rate of 

corrosion is high at the early stage. 
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Figure 3.9: Internal and external corrosion rate for iron pipe 

 

Table 3.2: Limit state functions for the failure modes 

Failure mode Limit state 

Pipe ovality 
𝐺𝑃𝑖𝑝𝑒 𝑜𝑣𝑎𝑙𝑖𝑡𝑦 = 6% − 

∆𝑦

𝐷
   

Through-wall bending 

stress 

𝐺𝐵𝑒𝑛𝑑𝑖𝑛𝑔 𝑠𝑡𝑟𝑒𝑠𝑠 = 𝜎𝑦 − 𝜎𝑏 

Ring buckling 𝐺𝑅𝑖𝑛𝑔 𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 = 𝑃𝑐𝑟 − 𝑃𝑎 

Wall thrust 𝐺𝑊𝑎𝑙𝑙 𝑡ℎ𝑟𝑢𝑠𝑡 = 𝑇𝑐𝑟 − 𝑇𝑎 

Total circumferential 

stress 

𝐺𝑇𝑜𝑡𝑎𝑙 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠

= 𝜎𝑦 − 𝜎𝜃 

Total axial stress 𝐺𝑇𝑜𝑡𝑎𝑙 𝑎𝑥𝑖𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 = 𝜎𝑦 − 𝜎𝑋 

3.6 Limit State Function 

The reliability analysis of an engineering structure requires the limit state function to 

evaluate the performance of the structure. In this study, the method of reliability analysis 
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is applied to a buried pipeline made of steel and considered to be buried under a roadway. 

The maximum applied load during the lifetime of the buried pipe is considered to be the 

traffic wheel load. However, the effect of the cyclic loading is not considered.  The 

reliability analysis is carried out through the study of the failure modes as explained in 

Section 3.3 and Section 3.4. In all cases, the limit state function that corresponds to the 

safety of the pipe structure as defined in the literature is shown in Table 3.2. As reported 

in Table 3.2, the limit state function for a particular failure mode can be expressed as 

shown in Eq. (3.48). If the outcome of the limit state is positive, that is ( 𝑅 > 𝑆(𝑥)), then 

it signifies a safe state and if it is negative, then it indicates a failure state (𝑅 < 𝑆(𝑥)) and 

the limit state is denoted as 𝑔(𝑥) = 0.  

    𝑔(𝑥) = 𝑅 − 𝑆(𝑥)     (3.48) 

Where 𝑅 represents the strength or resistance; 𝑆(𝑥) is the load term defined in terms of 

random variables.  

From the limit state function, one can evaluate the failure probability of an engineering 

structure by running some random samples to generate different pipeline realisations. 

Then, use a Monte Carlo (MC) technique to estimate the probability of failure. However, 

the use of the MC approach requires a large number of samples, especially when there is 

a need to determine a small failure probability. In order to reduce the computational effort, 

advanced MCS are often used.   

3.7 Numerical Example 

In this example, a pressurised and underground steel pipe is examined and is considered 

to be located under a roadway where the groundwater table can rise above or stay below 

the buried pipe. The buried pipe is considered to be exposed to corrosion and stresses 

from live and earth loads. The pipeline had a diameter of 1.21 m and the pipe wall 

thickness of 21.0 mm and considered to be under a heavy traffic condition with a wheel 

load of 80 kPa. The remaining numerical values of pipe and soil properties used in the 

analyses are listed in Table 3.3 and Table 3.4. The values of the parameters are based on 

industry standard and have been acquired from the literature such as Ahammed and 

Melchers (1994, 1997); Sadiq et al. (2004); and Tee et al. (2014). This example is to 
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illustrate the confidence level in the analysis of buried pipeline under the influence of 

internal and external stresses and to demonstrate the efficiency of the combined approach. 

Table 3.3: Statistical properties of the input parameters 

Material properties Mean Standard deviation 

Elastic modulus of pipe 𝑬𝒑 213.74x106 kPa 

(normal) 

2.1374x106 kPa 

Backfill soil modulus 𝑬𝒔 103kPa (normal) 50 kPa 

Unit weight of soil 𝜸𝒔 18.0kN/m3 (normal) 0.45 kN/m3 

Wheel load (live load) 𝑷𝒔 150 kN (normal) 15 kN 

Thickness of pipe t 0.021 m (normal) 0.00021 

Height of backfill H 3.75 m (normal) 0.00375 

Internal diameter 0.64 m (normal) 0.01143 

Bending moment coefficient 

𝑲𝒎 

0.235 (lognormal) 0.05 

Deflection coefficient 𝑲𝒃 0.108 (lognormal) 0.0216 

Calculation coefficient 𝑪𝒅 1.32 (lognormal) 0.20 

Surface load coefficient 𝑪𝒕 0.12 (lognormal) 0.024 

Width of ditch 𝑩𝒅 0.5 m (normal) 114.3 m 

Pipe effective length 𝑨 6.1 m (normal) 0.2 m 

Concentrated live load 80 kPa (normal) 2.4 kPa 

Internal pressure 𝝆 0.45 MPa (normal) 0.12 

Multiplying constant 𝒌 2.0 (normal) 0.1 

Exponential constant 𝒏 0.3 (normal) 0.015 

 

In this study, the relationship expressed in Eq. (3.45) is used to model corrosion. Based 

on this, the wall thickness t which is a variable in the equations for modelling various 

pipe failure modes is replaced with residual wall thickness. This means as the time of 

exposure increases, and in consideration of corrosion effect, the thickness of the pipe wall 

decreases and the reliability of the buried pipe also decreases. The corrosion effect is 

assumed to be uniform over the entire surface area of the pipe and that the pipe is thin-
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walled and circular. The bending moment coefficient 𝐾𝑚 and deflection coefficient 𝐾𝑏 

depends on the distribution of the applied stress across the top of the pipe and the 

distribution of the generated reaction across the bottom of the pipe (Ahammed & 

Melchers, 1997). The deflection coefficient 𝐾𝑏 accounts for the bedding support which 

varies with the bedding angle. 

Table 3.4: Material properties of the input parameters 

Material properties Value Min Max 

Temperature differential - -10.0 (uniform) 0 

Frost load multiplier 𝒇𝒇𝒓𝒐𝒔𝒕 - 0 (uniform) 1 

Thermal coefficient of pipe  11 x 10−6 - - 

Height of water above buried 

pipe 

1.0 m - - 

Unit weight of water 𝜸𝒘 9.81 kN/m3 - - 

Yield strength 𝝈𝒚 475 MPa - - 

Buoyancy factor 𝑹𝒘 1.0 - - 

Trench width 𝑩𝒅 2.0 m - - 

Shape factor 𝑫𝒇 4.0 - - 

Deflection lag factor 𝑫𝑳 1.0 - - 

Capacity modification factor 

for soil 𝝋𝒔 

0.9 - - 

Capacity modification factor 

for pipe 𝝋𝒑 

1.0 - - 

Live load distribution 

coefficient 𝑪𝑳 

1.0 - - 

Poison ratio  𝒗𝒔 0.3 - - 

𝒌′ value 1.5 - - 

Allowable strain 𝜺𝒄𝒓 0.2 % - - 
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3.8 Results and Discussion 

The failure probability of buried pipe is determined based on the total axial stress and the 

through-wall bending stress due to pipe ovality.  The power law formula as expressed in 

Eq. (3.45) is used in the computation to account for the corrosion effect, which denotes 

both localised and general (uniform) corrosion. The outcome of the MCS method is 

referred to as the benchmark and is used to validate the accuracy of the other methods 

such as LS, IS and a combination of LS and IS. The methods were used to evaluate the 

reliability of buried pipe by considering the adverse effect of corrosion and the 

uncertainties that exist with the pipe and soil parameters. For the through-wall bending 

stress, the concentrated live load effect is obtained using Boussinesq’s equation to 

estimate the pressure of the load on the buried pipe. The failure criterion utilised in this 

study is based on the yield stress of the steel pipe, and the impact of the seasonal change 

in the groundwater table is considered in the analysis. 

The outcome based on the various methods have been compared with the combined 

approach, and Table 3.5 shows the result. From the study, the combined method uses a 

total of 𝑁𝑇 = 500 samples, while LS uses a total of 𝑁𝑇 = 600 samples, IS uses a total of 

𝑁𝑇 = 10000 samples and MCS uses a total of  𝑁𝑇 = 100,000  samples, to achieve a 

small failure probability that is close to 10−3. The number of samples are considered for 

the purpose of evaluating and validating the failure probability of buried pipeline. Also, 

the various methods have been compared using a numerical index, which is called the 

“unitary coefficient of variation 𝛿𝑢” as defined in Zio (2013). The 𝛿𝑢 can be expressed 

as 𝛿𝑢 = 𝛿.√𝑁𝑇 =
𝜎

�̂�(𝐹)
. √𝑁𝑇, where 𝜎 is the standard deviation, 𝛿 denotes the coefficient 

of variation and �̂�(𝐹) represent the estimate of the probability of failure. For all structural 

reliability methods, which is based on MCS technique for estimating the probability of 

failure, the standard deviation decays with the rate (1 √𝑁𝑇⁄ ) and 𝛿𝑢 is independent of the 

total number of sample 𝑁𝑇 (Zio, 2013). This means that the smaller the value of unitary 

coefficient of variation 𝛿𝑢, the variability of the failure probability estimator will be lower 

and as a result, the higher the efficiency of the simulation approach. Therefore, the small 

number obtained using a combination of LS and IS demonstrates the efficiency and 

robustness of the method. Table 3.5 reports the outcome, which shows the efficiency of 

the combined approach compared to others. As a result, it can be stated that the combined 
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approach maintains a considerable improvement with regards to efficiency over MCS, IS 

and LS when used independently.   

Table 3.5: Failure probability of buried pipe due to total axial stress 

Methods Failure condition 

Total axial stress acting on buried pipeline 

𝑃𝑓 𝛿𝑢 

MCS 3.1 x 10-3 1.42 

IS 2.7 x 10-3 0.36 

LS 2.2 x 10-3 0.073 

LS & IS 2.0 x 10-3 0.018 

  

The impact of a seasonal change in groundwater level is performed considering the 

through-wall bending stress induced on the buried pipe due to pipe ovality. In practice, 

this effect is often ignored and in most cases assumed to be inconsequential. Herein, the 

study examines the implications of having the underground water table located below and 

also, above the buried pipe. Figure 3.10 shows the outcome of this investigation, which 

is time dependent. As can be seen, having the underground water table above the buried 

pipeline can increase the possibility of pipe failure. Based on Figure 3.10, the probability 

of failure started from 25 years when the underground water table is located below the 

buried pipe, whereas it started from 18 years when the location of the underground water 

table is above the buried pipe. The result shows that the rise in the underground water 

table above the buried pipe can affect its performance by increasing the probability of 

failure.  
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Figure 3.10: Probability of failure by considering water table above and below 

buried pipe 

  

Figure 3.11: Probability of failure by considering undisturbed soil and 

underground water table 
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Furthermore, another reliability assessment is performed by considering a situation 

whereby the buried pipe is jacked into an undisturbed soil as defined by (Moser & 

Folkman, 2001). In this case, the buried pipe is assumed to be jacked into an undisturbed 

soil as an alternative to being placed in a trench. As a result, the friction and cohesion of 

soil on the buried pipe are significantly reduced as against situation where there is a prism 

load resting on the buried pipe. The result of this and combined with the water table effect 

is illustrated in Figure 3.11. Again, the result indicates a high reduction in the probability 

of failure as compared to an open trench where the backfill soil is resting on the buried 

pipe.  

3.8.1 Parametric Studies 

The effect of corrosion empirical constants and soil parameters on the performance of a 

buried pipeline have been investigated through parametric studies based on the failure 

modes of total axial stress and through-wall bending stress. Sadiq et al. (2004) suggested 

that the parameters that have the greatest effect could be those for which a decrease in the 

level of uncertainty, would add to reducing the most significant amount of the uncertainty 

of the output results. However, this study will assist to identify critical parameters that 

affect the performance of buried pipe and the parameters used include the multiplying 

constant 𝑘, the exponential constant 𝑛, bending moment coefficient 𝐾𝑚 and deflection 

coefficient 𝐾𝑏. 

In Figure 3.12 and Figure 3.13, the contribution of the multiplying constant 𝑘 and the 

exponential constant 𝑛 on the failure probability of the buried pipe over time are analysed. 

The analysis is performed by changing the values of the corrosion parameters (𝑘 and 𝑛) 

in order to evaluate their impact on the probability of failure. In Figure 3.12, it can be 

deduced that any changes which results in an increase in the values of the 𝑘 (from 1.8 to 

2.4) will correspondingly increases the possibility of  pipe failure over time. This scenerio 

can be visualised by considering different service years between 0 to 150 years. This is 

expected because the higher the values of 𝑘 , the greater is the degree of corrosion 

penetration which increases the probability of pipe failure. Similarly, Figure 3.13 shows 

that a reduction in the values of 𝑛 (from 0.3 to 0.2) could reduce the possibility of pipe 

failure over time. Again, this effect is evident by looking at different service years 
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between 0 to 150 years. The two outcome demonstrate the key roles of corrosion 

empirical constants 𝑘 and 𝑛 in estimating the failure probability of a corroded, buried 

pipeline. Also, the parametric effects of the corrosion empirical constants as reported in 

Figure 3.12 and Figure 3.13 shows the dynamic and variable nature of corrosion. Thus, a 

good understanding of the corrosion would provide a useful and better analysis of the 

reliability of buried pipe.  

Figures 3.14 and 3.15 report the impact of the bending moment 𝐾𝑚  and deflection 

coefficients 𝐾𝑏 on the reliability of buried pipe over time. In Figures 3.14, the effect of 

reasonably varing the values of the bending moment coefficient 𝐾𝑚 is reported and the 

outcome shows that the small failure probability increases with an increase in 𝐾𝑚  at 

different service years between 0 to 150 years. This scenerio is expected because if the 

values of 𝐾𝑚 is high, the bending moment could be high and stress that is induced in the 

buried pipe will result in higher failure probability. For the deflection coefficients 𝐾𝑏, a 

change in the values results to an insignificant change in the failure probability as shown 

in Figures 3.15. 

  

Figure 3.12: The effect of different k values on probability of failure over time 
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Figure 3.13: The effect of different n values on probability of failure over time 

  

Figure 3.14: The effect of different km values on probability of failure over time 
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Figure 3.15: The effect of different kd values on probability of failure over time 

3.9 Chapter Summary  

In this Chapter, the reliability analysis of buried pipeline is investigated considering the 

effect of aleatory uncertainty that is associated with pipe, soil and corrosion parameters. 

The failure probability of buried pipe is estimated using an advanced MCS method such 

as LS, IS and a combination of LS and IS. The concepts behind the methods are explained, 

and the procedure for the implementation of the combined approach are outlined. The 

methods are used to estimate the failure probability of buried pipeline subjected to 

structural failure modes of total axial stress and through-wall bending stress based on 

point load considering the impact of corrosion. The results obtained from the methods 

have been compared with the MCS approach for the purpose of estimating small failure 

probability.  The choice of using the MCS method as a benchmark and for the validation 

of the results is due to its general acceptance and efficiency in estimating the failure 

probability of an engineering structure.  

Also, the effect of groundwater table located below and above the buried pipe is 

investigated, and the outcome indicates that undermining this effect could adversely 
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decrease the design life of the pipe. Furthermore, another assessment is performed by 

considering a situation whereby the buried pipe is jacked into undisturbed soil. In this 

case, the buried pipe is considered to be jacked into an undisturbed soil where the friction 

and cohesion of soil on the buried pipe are significantly reduced. The result shows a 

significant reduction in the probability of failure as compared to an open trench where the 

backfill soil is resting on the buried pipe. The result from the parametric studies shows 

the dynamic and variable nature of corrosion empirical constants, which indicates that a 

slight change in the numerical values can have a significant impact on the pipe failure 

probability. Considering the impact of uncertain variables, a fuzzy-based robustness 

assessment is presented in Chapter 4 to analyse the robustness behaviour of buried 

pipeline. The method is based on the principles of robustness measure, fuzzy set theory, 

interval analysis, and Shannon’s entropy. In Chapter 4, both aleatory and epistemic type 

of uncertainty are considered.  
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4 FUZZY-BASED ROBUSTNESS ASSESSMENT OF 
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4.1 Introduction 

The design of buried pipe structure is associated with uncertainties due to randomness 

and fuzziness (or vagueness) that exist in the structural parameters. The occurrence of 

randomness or fuzziness can be due to manufacturing errors, measurement errors, and 

scarceness of information concerning the determination of the input parameter. The 

presence of uncertainties has influenced negatively the performance of buried pipe over 

time. As a result, it is indispensable to evaluate the performance of the buried pipe 

structure by considering the impact of the associated uncertainties.  

In this Chapter, a fuzzy-based robustness assessment of buried pipelines is proposed 

considering the randomness (aleatory uncertainty) and fuzziness (epistemic uncertainty) 

that exist in the structural parameters. The approach utilises the principles of robustness 

measure, fuzzy set theory, interval analysis and Shannon’s entropy, which permits the 

inclusion of random and fuzzy variables in the quantification of the uncertainty associated 

with the performance of buried pipe. Zhang et al., (2015) suggested that robustness 

measures analyse robustness as a property of the structure rather than damage. Herein, 

robustness is used as a measure to assess the ability of buried pipe to sustain damage that 

may be caused by extreme loads or changes in environmental conditions without 

disproportionate failure. Therefore, a pipe structure is considered to be robust if it can 

survive some extreme conditions such as exceptional overloading, unforeseen events, and 

adverse environmental conditions without any substantial loss of safety and 

serviceability. 

The rest of this Chapter is arranged as follows. Section 4.2 explains an overview of fuzzy 

set and fuzzy uncertainty. Section 4.3 gives a review of the literature concerning the 

concepts of robustness measure. Section 4.4 provides the application to buried pipe, 

which includes the structural failure modes, a numerical example and the damage 

modelling of buried metal pipe under uniform corrosion. Section 4.5 discusses the results, 

and significant findings from the study and Section 4.6 provides the Chapter summary.  
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4.2 Fuzzy Set and Fuzzy Uncertainty 

The uncertainty associated with structural parameters and whose uncertain characteristics 

could be identified as fuzziness can be evaluated using fuzzy set theory (Zadeh, 1965). A 

fuzzy set is a mathematical tool used in describing an uncertain data whose information 

may be described as a set of intervals and their associated gradual assignment (Zadeh, 

1965). This definition offers a framework for analysing varieties of information 

associated with uncertain parameters starting from discrete data, continuous data, interval 

value data and linguistic knowledge. Ross (2010) suggested that a fuzzy set theory allows 

an ongoing assessment of the elements in relation to a set. However, in modelling the 

uncertainty of a fuzzy variable, an interval value of the uncertain parameter can be 

evaluated with the aid of a membership function μ𝑋(𝑥). The membership function of a 

fuzzy variable can be represented graphically using different shapes, which helps to 

classify the element in the set, whether it is discrete or continuous.  

A fuzzy variable with linear membership functions between μX(x) = 0 and μ𝑋(𝑥) = 1 

can be represented using fuzzy triangular membership function or a trapezoidal 

membership function as illustrated in Figure 4.1 and 4.2 (Möller & Beer, 2004; Ross, 

2010). The fuzzy triangular numbers are determined by specifying the smallest  𝑥1 , 

mean 𝑥𝑚 and the largest 𝑥2 values that belong to the functional value. For the trapezoidal, 

the interval 𝑥2 and 𝑥3 define the bounds of the interval with the functional value μ𝑋(𝑥) =

1. In the literature, a triangular membership function is generally used to model epistemic 

uncertainty. Herein, a triangular membership function is used to describe the uncertain 

fuzzy variable because it appears more direct and efficient in modelling epistemic 

uncertainties associated with design parameters. 
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Figure 4.1: Fuzzy triangular membership function 

  

Figure 4.2: Fuzzy trapezoidal membership function 

4.2.1 Analysis of Fuzzy Set and α-level Discretisation 

Usually, the membership function  μ𝑋(𝑥) is discretised into ten equal level and denoted 

using values between 0 and 1 (Möller & Beer, 2004). The values for the membership 

function could be used to signify several practical meanings. For example, the various 

level of the membership function of the uncertain parameter could be used to denote the 

level of variability associated with the parameter. However, the fuzziness associated with 
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a fuzzy variable can be characterised by its normalised membership function μ𝑋(x) as 

expressed in Eq. (4.1). 

    0 ≤ μ𝑋(𝑥) ≤ 1    ∀𝑥 ∈ ℝ     (4.1) 

Figure 4.3 shows a typical triangular membership function μ𝑋(𝑥) of a convex fuzzy 

variable 𝑥. From Figure 4.3, 𝐿𝑋(𝑥) and 𝑈𝑋(𝑥) denote the lower bound and the upper 

bound of the membership function of the fuzzy variable. The 𝐿𝑋(𝑥) and 𝑈𝑋(𝑥) bound are 

increasing and decreasing monotonic functions with respect to the fuzzy variable 𝑥. Also, 

the fuzzy variable can be expressed as: 

   μ𝑋(𝑥) =  

𝐿𝑋(𝑥)        𝐶1 ≤ 𝑥 ≤ 𝐶𝑚

𝑈𝑋(𝑥)        𝐶𝑚 ≤ 𝑥 ≤ 𝐶2 
    (4.2) 

Other shapes such as Trapezoidal or Gaussian may be selected if considered appropriate 

to quantify the uncertainty of a particular structural parameter. As described in the 

literature Möller & Reuter (2007), the α-level set of a fuzzy variable can be characterised 

with a family of α-level sets 𝑋(𝛼). 

   𝑋(α) = {[𝑥𝑙(𝛼), 𝑥𝑢(𝛼)], 𝛼 ∈ [0,1]}    (4.3) 

For each α-level, the set 𝑋(α) is associated with interval values, that is, [𝑥𝑙(𝛼), 𝑥𝑢(𝛼)]. 

And for every bound 𝑥𝑙(𝛼) and 𝑥𝑢(𝛼) where α ≠ 0, the following expressions exist. 

   {
𝑥𝑙(𝛼) = 𝑚𝑖𝑛[𝑥 ∈ ℝ|𝜇𝑋(𝑥) ≥ 𝛼] = (𝐿𝑋)

−1(𝛼)

𝑥𝑢(𝛼) = 𝑚𝑎𝑥[𝑥 ∈ ℝ|𝜇𝑋(𝑥) ≥ 𝛼] = (𝑈𝑋)
−1(𝛼)

  (4.4) 
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Figure 4.3: The membership function of a fuzzy variable 

4.3 The Concept of Robustness Measures  

The concept of the robustness measure has been used in different engineering context and 

applications. An adequate robustness assessment of a structural system requires a measure 

of its uncertainty (Beer & Liebscher, 2008; Hanss & Turrin, 2010). However, there are 

no well-established and acceptable criteria for a consistent definition and determination 

of structural robustness (Starossek & Haberland, 2011). Herein, robustness is considered 

as a measure to assess the ability of buried pipe to sustain damage that may be caused by 

extreme loads or changes in environmental conditions without disproportionate failure 

with respect to the causes of the damage. The variabilities of the load or other design 

parameters can be modelled using deterministic, probabilistic and non-probabilistic 

approaches. Based on these methods, the concept of robustness measures is reviewed 

under the following subsections. 

4.3.1 Deterministic Measures  

The deterministic measure of the robustness of a structure is developed by evaluating the 

performance of the structure in both intact and damaged states, using the ultimate strength 

analysis (Biondini et al., 2008). For the investigated buried pipe structure, the ultimate 
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strength will depend on the non-linear response of the pipe structure and the interaction 

between the pipe wall, the soil, earth and live loads. However, the concept of reserve 

strength and residual strength are considered to evaluate the structural robustness 

associated with the buried pipe based on the failure modes. As defined in Zhang et al. 

(2015), the reserve strength of a structural system is the ratio between the ultimate 

resistance of the intact state structure and the environmental design load that is applied to 

measure the residual strength. This can be expressed as shown in Eq. (4.5). 

   𝑅𝑆𝑅 =  
𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑖𝑛𝑡𝑎𝑐𝑡 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒

𝑑𝑒𝑠𝑖𝑔𝑛 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑙𝑜𝑎𝑑
   (4.5) 

The damage of engineering structures occurs over time. Therefore, Biondini et al. (2008) 

suggested a general approach to measure the time-variant structural robustness of 

concrete structures subjected to diffusive attacks from aggressive environmental agents 

on the ultimate strength analysis. From the expressed measure, the amount of local 

damage is first obtained at the member level using dimensionless damage index 0 ≤ δ ≤ 

1, i.e., associated with the progressive deterioration of the material properties at a spatial 

point named x and time t. The global measure of the damaged ∆(t) at the cross-sectional 

level can be represented as follows: 

    ∆(t) = [1 − 𝜔(𝑡)]∆𝑐(𝑡) + 𝜔(𝑡)∆𝑠(𝑡)   (4.6) 

   ∆𝑐(t) =
∫ 𝑊𝑐(𝑥,𝑡)𝛿𝑐(𝑥,𝑡)𝑑𝑥𝐴𝑐

∫ 𝑊𝑐𝐴𝑐
(𝑥,𝑡)𝑑𝑥

     (4.7) 

   ∆𝑠(t) =
∑ 𝑤𝑠𝑚(𝑥,𝑡)𝛿𝑠𝑚(𝑥,𝑡)𝐴𝑠𝑚𝑚

∑ 𝑤𝑠𝑚𝑚 (𝑥,𝑡)𝐴𝑠𝑚
     (4.8) 

Where 𝜔 = 𝜔(𝑡) , 𝑤𝑐 = 𝑤𝑐(𝑥, 𝑡)  and 𝑤𝑠𝑚 = 𝑤𝑠𝑚𝜔(𝑥, 𝑡)  are the suitable weight 

functions. 𝐴𝑐 is the area of the concrete, and 𝐴𝑠𝑚 is the area of the 𝑚𝑡ℎ steel bar.  

The cross-section formulation can be extended at the structural level by integration over 

all the members of the system. Therefore, to account for the uncertainties due to 

environmental loading and structural resistance for the intact and damaged state, a time-

variant measure of the structural system is expressed in Eq. (4.9) (Biondini et al., 2008). 

     𝜌(𝑡) =  
𝜆𝑐(𝑡)

𝜆𝑐(0)
      (4.9) 
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Where λ𝑐(t) is the load multiplier that corresponds to the ultimate capacity in a damaged 

state and λ𝑐(0) represents the ultimate capacity of the intact state.  

4.3.2 Probabilistic Measure 

Because of unavoidable uncertainties due to loading conditions and determination of 

structural parameters, a probabilistic measure of robustness has been developed based on 

system reliability analysis. The probabilistic measure of system redundancy as proposed 

in Frangopol & Curley (1987) is based on a reliability index for the full system and the 

union of the first member failures. This can be expressed in Eq. (4.10). 

    𝛽𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 = 
𝛽𝑖𝑛𝑡𝑎𝑐𝑡

𝛽𝑖𝑛𝑡𝑎𝑐𝑡− 𝛽𝑑𝑎𝑚𝑎𝑔𝑒
   (4.10) 

Where βdamage denotes the reliability index of the damaged structural system and βintact 

represents the reliability index of the intact system. Similarly, Lind (1995) suggested a 

probabilistic measure called the damage factor of a system as expressed in Eq. (4.11). 

This will assist to assess the capacity of the structure and to withstand damage without 

detrimental response. However, these possible approaches are limited to cases in which 

probabilistic models can be specified for all the variables with sufficient confidence. 

     𝑅𝑑𝑓 = 
𝑃𝑓,𝑖𝑛𝑡𝑎𝑐𝑡

 𝑃𝑓,𝑑𝑎𝑚𝑎𝑔𝑒
    (4.11) 

4.3.3 Entropy-based Robustness Measure 

Entropy-based robustness measure can be used for the assessment of uncertainty specified 

with the aid of a fuzzy set (Zhang et al., 2015). The robustness assessment of the fuzzy 

uncertainty of structural parameters can be computed based on Shannon’s entropy (Zhang 

et al., 2015). The Shannon’s entropy provided the needed information of the total amount 

of uncertainty contained in the declared character set (Zimmermann, 2001). Based on 

Shannon’s approach, the uncertainty of a fuzzy variable can be quantified.  Shannon’s 

entropy 𝐻 can be expressed using a probability distribution function 𝑃(𝑥) on a finite set 

as shown in Eq. (4.12).  
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    𝐻 = −∑ 𝑃(𝑥) log2 𝑃(𝑥)𝑥∈𝑋      (4.12) 

   𝐻 = −∫ 𝑓(𝑥). log2 𝑓(𝑥)𝑑𝑥
+∞

−∞
    (4.13) 

For an infinite set, the expression in Eq. (4.13) can be applied. In assessing the fuzziness 

of the fuzzy set, the functional values of the membership function 𝜇(𝑥) are applied as 

measure values of the elements (Zhang et al., 2015). Therefore, an entropy measure of 

the fuzziness of an uncertain parameter as defined in Zimmermann (2001) can be 

expressed as: 

 𝐻(�̃�) =  −𝐾. ∫ {𝜇(𝑥). ln[𝜇(𝑥)] + [1 − 𝜇(𝑥)]. ln [1 − 𝜇(𝑥)]}𝑑𝑥
+∞

−∞
 (4.14) 

Where �̃�  is the fuzzy set which is a subset of the fundamental set X. This entropy 

measurement equation evaluates the ‘steepness’ of the membership function μ(x) of �̃�.  

The coefficient 𝐾 does not affect the entropy values because entropies appears to be 

ratios. Therefore 𝐾  will cancel out. However, 𝐾  was introduced during the 

transformation of the dyadic logarithm in Shannon’s entropy in Eq. (4.13) into the natural 

logarithm in Eq. (4.14). Based on the expression in Eq. (4.14) for the entropy, the 

following properties hold (Zhang et al. 2015): 

 𝐻(�̃�) = 0 if 𝜇(𝑥) = 0 or 𝜇(𝑥) = 1.0 for all 𝑥; 

 𝐻(�̃�) reaches maximum if 𝜇(𝑥) = 0.5 for all 𝑥; 

 If �̃�𝑖 denotes any sharpened version of �̃�𝑗 [i.e., if 𝜇A𝑗(𝑥) ≤ 0.5, then  𝜇A𝑖(𝑥) ≤

 𝜇A𝑗(𝑥); and if 𝜇A𝑗(𝑥) ≥ 0.5, then 𝜇A𝑖(𝑥) ≥  𝜇A𝑗(𝑥)], then 𝐻(�̃�𝑖  ) ≤ 𝐻(�̃�𝑗  ) and  

 The symmetry property holds, i.e.,  𝐻(�̃�) = 𝐻(�̃�𝑐) . Where �̃�𝑐  denotes the 

complement of �̃� and can be defined as �̃�𝑐 = {[𝑥, 𝜇𝐴𝑐(𝑥)]|𝑥 ∈ 𝑋;  𝜇𝐴𝑐(𝑥) = 1 −

𝜇𝐴(𝑥).  

As defined in Beer & Liebscher (2008), the robustness of a structural system can be 

defined as the ratio between the entropy of input parameters and the entropy of associated 

structural responses when the uncertainty of structural parameters is quantified as 

fuzziness. Using the notation �̃�  for the fuzzy input vector for the structural analysis and 
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�̃� for the fuzzy structural response, the structural robustness measure 𝑅(�̃�, �̃�), regarding �̃� 

with respect to �̃�  can be expressed as:  

    𝑅(�̃�, �̃�) =  
𝐻(�̃�)

𝐻(𝑧)
     (4.15) 

Based on the expression for the robustness of a structure, the following properties hold: 

 𝑅(. ) ≥ 0 ∀ 𝐻(�̃�), 𝐻(�̃�) > 0; 

 𝐻(�̃�2) ≤ 𝐻(�̃�1) ⟹ 𝑅2(. ) ≥ 𝑅1(. )|𝐻(�̃�1) = 𝐻(�̃�2); 

 𝐻(x̃) → 0 ⟹ 𝑅(. ) ⟶ 0 |𝐻(z̃) > 0; and  

 𝐻(z̃) → 0 ⟹ 𝑅(. ) ⟶ +∞ |𝐻(x) > 0. 

Following the properties of the robustness of a structure, the outcome of the robustness 

measure can lead to a global statement about the degree of variation in the structural 

output with respect to fluctuation in the structural input (Beer & Liebscher, 2008; Zhang 

et al., 2015). For example, the second property shows that the smaller the uncertainty 

associated with the output in relation to the uncertainty associated with the input 

variables, the higher the robustness of the structure. In practice, Zhang et al. (2015) 

suggested that this shows that moderate changes applied to structural parameters, e.g. 

changes in the design parameters and moderate errors, can affect the structural response 

only marginally. Based on the suggestion of Zhang et al. (2015), entropy-based 

robustness measure can be assessed at various membership levels with respect to the 

degree of imprecision in the fuzzy inputs and the associated imprecision in the fuzzy 

outputs. This is realised by considering each component of the structural system. For 

instance, for a given fuzzy set �̃� at α-level 𝛼𝑘 ∈ (0,1], a new fuzzy set can be defined as 

the intersection of fuzzy set �̃� and the corresponding α-level set �̃�𝛼𝑘. This is expressed in 

Eq. (4.16). 

    �̃�𝛼𝑘 = �̃� ∩ 𝐴𝛼𝑘     (4.16) 

Now, the entropy-based robustness assessment can be evaluated at each α-level, as the 

ratio of the entropy of the fuzzy input to the entropy of the fuzzy structural response. This 

can be expressed as shown in Eq. (4.17). 
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    𝑅(𝛼𝑘) =  
𝐻(�̃�𝛼𝑘)

𝐻(𝑧𝛼𝑘)
     (4.17) 
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Figure 4.4: Flow diagram for the computation of fuzzy-based robustness measure 
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4.3.4 Methodology  

In Section 4.3.1 to 4.3.3, various approaches for the assessment of the robustness of a 

structure considering different conditions and uncertainties are reviewed. The entropy-

based robustness measure is considered because it provides a potential to assess the 

robustness in the form of a function that depends on the magnitude of uncertainty that 

exists in the structure. Therefore, the fuzzy-based robustness assessment is developed 

based on the concept of the entropy-based robustness measure and the computation is 

performed in two stages. The first stage deals with interval analysis concept for the 

solution of the α-level cut. This stage is based on the concept of Dong, Shah, and Wong 

(DSW) algorithm (Ross, 2004). The method uses the decomposition of a membership 

function into a series of α-cut intervals and also uses the full α-cut intervals in a standard 

interval analysis. While the second stage takes care of the robustness assessment that is 

an analogy to Shannon’s entropy based on the concept of Zhang et al. (2015). Figure 4.4 

shows the flow diagram for the two stages and the procedures are summarised as follows: 

Stage 1 

1. Construct the triangular membership function for a fuzzy set model of the 

corrosion loss.  

2. Discretise the membership function into 10 parts between 0 and 1, where the 

values will be 𝛼1 = 0 < 𝛼2 = 0.1 < 𝛼3 = 0.3… < 𝛼11 = 1. 

3. For every 𝛼 −  level, determine the  corresponding interval values each 

membership level 𝛼𝑖, find the correspong interval from the fuzzy sets. 

4. Generate N samples 𝜃0,𝑗(𝑗 = 1,2,3,… , 𝑁)  from the random normal variable 

parameters using their original PDF from the example problem.  

5. Using standard interval arithmetic, compute the corresponding response 

variables 𝑌𝛼𝑖,(𝑖 = 0, 0.1, 0.2, 0.3… , 1)for the output membership function of the 

selected α-level. 

6. Repeat the processes from step 3 to 5 at every α-level cut until 𝛼11 = 1. 

7. Integrate all the interval output results for each α-level (𝛼1 = 0 < 𝛼2 = 0.1 <

𝛼3 = 0.3… < 𝛼11 = 1) to obtain the overall results of the solution model.  
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Stage 2 

1. Normalise the uncertain quantities of the fuzzy input and the structural response 

2. Compute the entropy of the fuzzy input and structural response for every α-level 

from the analogy Shannon’s entropy using Eq. (4.14) 

3. Compute the robustness measure of the structural system using Eq.(4.17) 

4.4 Application to Buried Pipe 

4.4.1 Structural Failure Mode and a Numerical Example 

The numerical example is used to demonstrate the applicability of the method in Section 

4.3.4 and the technique is used to assess the structural robustness of a buried pipe while 

considering the impact of corrosion and uncertain variables. The considered failure modes 

used in the analysis include pipe deflection, buckling pressure (ring buckling), bending 

strain and wall thrust as explained in Chapter 3, Section 3.3. The statistical values of the 

soil and pipe parameters used in the computation are shown in Table 3.3 and Table 3.4. 

The values are based on industry standard and have been obtained from the works of 

(Ahammed & Melchers 1994; Sadiq et al., 2004; Tee et al., 2014). As a useful extension, 

the effect of corrosion on the buried pipe is assessed herein using the intrinsic features of 

a fuzzy set, and modelling of the damage is explained in the subsequent section.  

4.4.2 Damage Modelling of Buried Metal Pipes Under Uniform Corrosion 

In this numerical example, the buried metal pipe is assumed to undergo gradual 

deterioration caused by uniform corrosion. The degradation process can lead to different 

failure modes such as pipe deflection, buckling pressure, bending strain and wall thrust. 

The investigation of the corrosion effect was performed using the immersion corrosion 

data collected by Melchers (2003) as shown in Figure 4.5 to model the corrosion pit depth. 

A fuzzy corrosion depth associated with the exposure time is derived from the data based 

on a subjective assessment of deterioration of mild steel coupons as shown in Figure 4.6. 

Generally, Marano et al. (2008) suggested that it is possible to state that a unitary 

approach does not exist for the so-called fuzzification, but different procedures can be 
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adapted for each situation. Therefore, the methods for constructing the membership 

function of a fuzzy variable can be direct or indirect with a single expert or multiple 

experts (Klir, 2006; Marano et al., 2008).  

 

Figure 4.5: Fuzzy input model for corrosion loss based on mild steel coupons 

pooled from all available data sources until 1994, with 5th and 95th percentile 

bands. 

The membership function for the fuzzy corrosion depth at time T = 4, 8, 12 and 16 years 

are subjectively constructed according to the data points plotted in Figure 4.5, and the 

developed membership function is shown in Figure 4.6. The membership function is 

considered as linear where it connects the 5 percentile, the mean and the 95 percentile 

values in the experimental data. In this study, the uncertainty of corrosion pit depth is 

considered for the four failure modes of the buried pipeline. For simplicity, the analysis 

considers exposure periods of 4, 8, 12, and 16 years (as shown in Figure 4.6). The amount 

of damage on the pipe wall or cross-sectional area of the buried pipe is evaluated using 

the concept of (Watkins & Anderson, 1999). Therefore, for a flexible metal pipe, the 

moment of inertia and the cross-sectional area of the pipe wall per unit length can be 

obtained using Eq. (4.18) and Eq. (4.19). 

Moment of inertia,         𝐼 =  (𝑡 − 𝐶𝑇)
3/12            (4.18)  

Cross-sectional area           𝐴𝑠 = 𝑡 − 𝐶𝑇            (4.19) 
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Where 𝑡 represents the thickness of the pipe wall, 𝐶𝑇  is the pit depth and 𝑇 is the time of 

exposure.  

 

 

Figure 4.6: Membership functions developed from the immersion corrosion data of 

mild steel coupons for 4, 8, 12, and 16 years 

4.5 Results and Discussion 

The specified fuzzy variable 𝑐 ̃(𝑇 =  4, 8, 12 𝑎𝑛𝑑 16 𝑦𝑒𝑎𝑟𝑠) is employed in modelling 

the impact of corrosion pit depth and the impact of other uncertain variables for the 

determination of the structural robustness of a buried steel pipe. The external surface area 
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of the buried pipe wall is considered to suffer corrosion loss that is uniform. Four failure 

modes are considered in this analysis which includes deflection, wall thrust, bending 

strain and buckling pressure (see Chapter 3, Section 3.3 for more information). The 

computed membership function outcome for each failure are shown in Figure 4.7 for the 

failure modes of pipe deflection and wall stress/thrust, and Figure 4.8 for the failure 

modes of bending strain and buckling pressure. The results provide clear information 

about transferring the fuzzy corrosion uncertainty to the pipe failure modes. In each 

failure mode, the fuzzy model can incorporate and simulate the probabilistic and 

vagueness associated with pipe, soil and corrosion parameters for the buried pipe. 

However, the degrees of uncertainty increase as the number of service years increases.  

The outcome of the entropy values associated with the α-level of the fuzzy output for 

different failure modes, normalised by H(p) are reported in Figure 4.9 and Figure 4.10 for 

an exposure period of 16 and 8 years, respectively. The result clearly indicates a reduction 

of imprecision in the fuzzy input would lead to a reduction of imprecision in the fuzzy 

output. It could be noticed from the results that the imprecision associated with the input 

parameter has a trade-off in reducing the imprecision associated with the computed output 

for different failure modes. However, for the various failure modes, the entropy states 

exhibit different characteristics. For example, the imprecision associated with wall thrust 

and buckling pressure decreases much faster than the imprecision in deflection and 

bending strain when input uncertainty decreases. This indicates that a small reduction of 

imprecision in the fuzzy input variable can result in a significant decrease in imprecision 

in the failure modes of buried pipe for wall thrust and buckling. 
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(a) Deflection 

   

(b) Wall stress/thrust 

Figure 4.7: Membership function of pipe failure mode for (a) deflection (b) wall 

thrust 
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(a) Bending strain 

   

(b) Buckling pressure 

Figure 4.8: Membership function of pipe failure mode for (a) bending strain (b) 

buckling pressure 
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Figure 4.9: Entropy state for different failure modes after 16 years 

  

Figure 4.10: Entropy state for different failure modes after 8 years 
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The entropy state of each failure mode is computed for different α − level  with the 

intersection of characteristic membership functions of both inputs and outputs. The 

intersection is based on the mathematical operations of fuzzy set theory. The outcome of 

the corrosion effects of the fuzzy-based robustness measure 𝑅(𝛼𝑘) for different pipe 

failure modes of buried pipe are reported in Figure 4.11 and Figure 4.12. This is calculated 

based on Eq. (4.14) and (4.17), which is the ratio between the entropy of the fuzzy input 

to the entropy of the fuzzy output at each 𝛼 − 𝑙𝑒𝑣𝑒𝑙. The outcome of the pipe robustness 

for deflection for the periods of 16 and 12 years demonstrates a close robust behaviour of 

the buried pipe when 𝛼𝑘 ≤ 0.2.  

On the other hand, as the 𝛼 − 𝑙𝑒𝑣𝑒𝑙 increases, the outcome of pipe deflection for the 

period of 12 years continues to display a value that is greater than the case for 16 years. 

For the other years (4 and 8 years), the robustness measure of the buried pipe is quite 

distinctive. Similarly, for the period of 4 and 8 years, and when the alpha-level 𝛼𝑘 ≥ 0.8, 

there is a sudden increase in the robustness value. This could mean that the buried pipe 

under deflection failure modes is more robust when the alpha-level 𝛼𝑘 ≥ 0.8 compared 

to when the alpha-level  𝛼𝑘 ≤ 0.8 . At this level, it is possible that the robustness 

assessment of pipe deflection would require additional information concerning the 

corrosion processes. Moreover, as the number of pipe service years increases, the pipe 

robustness behaviour tends to normalise and shows a similar trend, which illustrates the 

ductility nature of the pipe material. For the other failure modes, the results show similar 

behaviour as the number of service years increases 
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(a) Deflection 

   

(a) Wall stress/thrust 

Figure 4.11: Fuzzy-based robustness assessment of buried pipe (a) deflection (b) 

wall stress/thrust 
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(a) Bending strain 

   

(b) Buckling pressure 

Figure 4.12: Fuzzy-based robustness assessment of buried pipe (a) bending strain 

(b) buckling pressure 



 

98 

 

  

Figure 4.13: Fuzzy-based robustness assessment of buried pipe after 16 years 

  

Figure 4.14: Fuzzy-based robustness assessment of buried pipe after 12 years 
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Consequently, the outcome of the four different years (4, 8, 12, and 16 years) shows that 

the values evaluated for the pipe robustness measure would continue to decrease as the 

number of pipe service years continues to increase. For instance, the pipe robustness 

values for the failure mode of deflection for different alpha levels between 𝛼1 to 𝛼11 

reduces from (1,139, 1,254, 1,452, 1,184, 1,212, 1,790, 1,207, 745, and 981) in 4 years to 

(225, 268, 240, 228, 237, 279, 292, 347, and 351) in 16 years. This demonstrates that the 

level of uncertainty based on the adverse effect of corrosion-induced failure could 

potentially reduce the performance of the buried pipe. In the same way, for an exposure 

time of 4 and 16 years, the pipe failure modes of deflection and bending strain expresses 

close behaviour while that of wall thrust and buckling are quite similar. This could mean 

that the buried pipe shows more resistance against deflection and bending other than wall 

thrust and buckling as illustrated in Figure 4.13 and Figure 4.14. 

4.6 Chapter Summary 

In this Chapter, a methodological approach for the assessment of fuzzy-based robustness 

behaviour of the buried pipe is presented. The concepts behind the method and including 

the computational procedure are explained. The fuzzy-based robustness problem is 

formulated based on the failure modes of a buried steel pipe and includes pipe deflection, 

wall thrust, buckling pressure, and bending strain using the principles of fuzzy set and 

Shannon’s entropy. The proposed method gains its effectiveness in the assessment of the 

structure by scrutinising the robustness at every membership level. Other pipe failure 

modes due to corrosion can be analysed using the proposed method. The fuzziness 

associated with the corrosion effects at various times in the life of a buried steel pipe are 

quantified using a fuzzy model and based on the immersion corrosion data collected by 

Melchers (2003). Corrosion is used as a fuzzy variable in order to account for the 

uncertainties that characterise the corrosion processes. The estimation of pipe robustness 

is conducted by considering various levels of uncertainties that affect the performance of 

the buried pipe, and the modelling of the failure modes based on fuzzy sets, which 

considers various levels of the α-level cut. The outcome illustrates that evaluating the 

performance of buried steel pipe using the fuzzy-based robustness measure can deliver a 

wide-ranging understanding concerning the adverse effect of corrosion uncertainty to the 
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examined pipe failure problems. This result can lead to an optimal decision concerning 

buried pipe structures where a degree of accuracy is needed. The proposed method can 

be used to assess any type of corrosion-induced failures for buried pipe and also for other 

engineering structures. The consequences posed by the uncertain variables for the design 

of buried pipeline requires an adequate level of reliability. As a result, a multi-objective 

optimisation of buried pipe based on the expected fuzzy output is proposed in Chapter 5. 

The formulation is based on fuzzy set and multi-objective optimisation for a robust 

analysis of a buried pipeline. 
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5.1 Introduction 

Buried pipelines are usually designed based on deterministic parameters and without 

considering the randomness and fuzziness associated with the design parameters. 

However, the limitation of the deterministic approach has paved the way for other models 

in many scientific works. Therefore, the evaluation of the performance of buried pipe 

based on the deterministic parameter is undoubtedly a simplification because the 

measurement of pipe or soil parameters such as elastic modulus always shows variability 

and randomness.  

The concept of robust design optimisation (RDO) has been introduced in the literature to 

deal with the uncertainties that are random, but the occurrence of variables that are vague 

and cannot be ignored from the practical point of view. Considering the consequences 

posed by the uncertain variable for the design of buried pipe, an adequate level of 

reliability on the performance is required for design purpose. However, given the benefit 

of the fuzzy model approach in modelling uncertainties associated with design 

parameters, its capability is employed in the multi-objective optimisation of buried pipe. 

Therefore, this Chapter presents a formulation based on fuzzy set and multi-objective 

optimisation for a robust analysis of a buried pipe structure. The proposed approach 

employs the optimal performance of a Hybrid GA-GAM for the optimisation, and the 

purpose is to optimise the design variable while considering the adverse effect of the 

uncertain fuzzy variables and variability of the structural performance. 

The remaining part of this Chapter is summarised as follows: Section 5.2 presents the 

concept of robust design optimisation while Section 5.3 describes the fuzzy-based robust 

multi-objective design optimisation. Section 5.4 explains the Hybrid GA-GAM, which 

include a GA, Goal Attainment Method (GAM), Hybrid GA-GAM and the methodology. 

The numerical example is explained in Section 5.5, while Section 5.6 presents the results 

and the significant findings from the study. Finally, Section 5.7 shows the Chapter 

summary, which summarises the outcome of the study. 
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5.2 The Concept of Robust Design Optimisation 

Generally, the optimum design of a structural system can be expressed by the following 

expression in Eq. (5.1). 

   max/min          𝐹(𝑦) 

   subject to         𝑔𝑖(y, θ) ≤ 0,        i = 1,… , I, 

     ℎ𝑗(y, θ) = 0,          j = 1, … , J,    (5.1) 

     𝑠𝑘(y) ≤ 0,             k = 1,… , k 

Where 𝑦 is the vector of the design variable, θ is the vector of the uncertain structural 

parameter, 𝐹(𝑦) is the objective or the cost function, 𝑔𝑖, i = 1,… , I and   ℎ𝑗 , j = 1,… , J, 

denotes the functions that define a set of inequality and equality constraints, and  𝑠𝑘, 𝑘 =

1, … , 𝑘, are functions that represent the sets of deterministic constraints.  

The design variables can be the structural parameters representing or defining the shape 

or the dimensions of the structure. The objective and constraint function could represent 

the limitations of the structural performance. For the buried pipe problem, the solution to 

the problem relating to Eq. (5.1) can be sensitive to changes that may occur from different 

sources such as geo-environmental conditions. These include corrosion, temperature 

variation, pressure and humidity fluctuation, and changes in material properties. Based 

on these issues, the principal target is to provide an optimal design with a high degree of 

robustness. The process of finding an optimal solution with some level of robustness is 

called RDO. For more information, the reader can refer to the works of (Beyer & 

Sendhoff, 2007; Doltsinis & Kang, 2004; Schuëller & Jensen, 2008).  

The design of a structure using the principles of robust design is considered as an 

optimised design because the technique considered the uncertainties that are explicit in 

the optimisation process (Schuëller & Jensen, 2008). In the literature, the concept of RDO 

has been used in different engineering applications. The design of engineering structures 

always involves a considerable level of uncertainties, and the design engineer needs to 

take care of it at the design stage. Many approaches, design guides, and codes have been 

developed for different ranges of engineering problems to support the decision of the 

designer and also achieve the best solution for a particular case. The structural 
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performance often exhibits high sensitivity to the natural variability of the data. 

Therefore, conventional robust design can be formulated as: 

min 
𝑦
{ 𝑓(𝑦, 𝑑) , 𝜎[𝑓(𝑦, 𝑑)]}   𝑠. 𝑡. ℎ̌𝑗(𝑦, 𝑑) ≤ 0   𝑗 = 1,… , 𝐽     𝑦𝑙 ≤ 𝑦 ≤ 𝑦𝑢  (5.2) 

Where 𝑓(𝑦, 𝑑) is the performance or objective function,  .   and 𝜎[. ] are the expected 

value and the standard deviation operators; 𝑦 is the design vector and 𝑑 is the vector of 

the uncertain variables, 𝑦𝑙 and 𝑦𝑢 are the lower and upper limits. 

5.3 Fuzzy-based Multi-objective Design Optimisation 

5.3.1 Fuzzy Design Optimisation 

Marano & Quaranta (2008) stated that the expected value and the entropy of the fuzzy 

variable are often in conflict. As a result, it is ideal to adopt a robust strategy with the 

intention of solving the Multi-Objective Optimisation Problem (MOOP) and possibly be 

able to define the equivalent Pareto front.  However, searching for the Pareto optimal set 

for a multi-objective function is the primary goal of the optimisation algorithm. For an 

engineering problem, finding an optimum solution of a function based on the single 

objective is limited and does not account for other functions in justifying the outcomes 

and the evaluation of the optimal design solutions. Therefore, it is important to consider 

a multi-objective function in the optimisation process so that an accurate representation 

of the structure is reflected in the evaluation of the Pareto front for the design of an 

engineering structure.  

The use of fuzzy set in the robust design of structures has been studied in the literature 

(Fang et al., 2016; Marano & Quaranta, 2008). Herein, fuzzy-based multi-objective 

design optimisation is utilised in the structural analysis of buried pipe. A fuzzy variable 

can be defined as a function from a possibility space to the set of real numbers (Marano 

& Quaranta, 2008) and the membership function of every fuzzy variable could be 

expressed from the possibility measure as explained in (Liu, 2004). The computation of 

the membership function of a fuzzy variable is one of the challenging factors for a 

structural analysis using fuzzy set theory. However, different methods have been adopted 
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in the literature to achieve or construct the membership function. For instance, Klir (2006) 

suggested that the construction of the membership function could be done using direct or 

indirect information from a single expert or multiple experts. A vector is fuzzy if and only 

if all the elements is a fuzzy variable (Liu, 2004).  

5.3.2 Fuzzy Variable and the Expected Value 

The expected value of a fuzzy output variable plays a vital role in the fuzzy-based multi-

objective design optimisation. If a fuzzy variable and the membership function are 

represented as 𝑥 and 𝜇(𝑥), then, the corresponding fuzzy set model can be expressed as 

shown in Eq. (5.3) 

  𝐹 = {((𝑥, 𝜇(𝑥)) 𝑥 ∈ ℝ, 𝜇(𝑥) ∈ [0,1]  )}    (5.3) 

Where ℝ is the universal set. 

Also, if a fuzzy variable x with assigned membership function  𝜇(𝑥), is specified, then 

the following formula in Eq. (5.4), Eq. (5.5), Eq. (5.6) can be utilised to calculate the 

credibility (Liu, 2004; Marano & Quaranta, 2008). The credibility of a fuzzy variable can 

be defined as the average between the possibility and the necessity values (Marano & 

Quaranta, 2008)  

   Cr {𝑥 = 𝜌} =
1

2
(μ(𝜌) + 1 − sup

𝑧≠𝜌
{𝜇(𝑧)})   ∀d ϵℝ    (5.4) 

  Cr {𝑥 ≤ 𝜌} =
1

2
(sup 
𝑧≤𝜌

{𝜇(𝑧)} + 1 − sup
𝑧>𝜌

{𝜇(𝑧)})   ∀d ϵℝ   (5.5) 

   Cr {𝑥 ≥ 𝜌} =
1

2
(sup 
𝑧≥𝜌

{𝜇(𝑧)} + 1 − sup
𝑧<𝜌

{𝜇(𝑧)})   ∀d ϵℝ   (5.6) 

Based on this concept of credibility measure, the expected value of a fuzzy variable can 

be determined using the expression given in Eq. (5.7) (Liu & Liu, 2002).  

  E[𝑥] =  ∫ Cr {𝑥 ≥ 𝜌}𝑑𝜌
+∞

0
− ∫ Cr {𝑥 ≤ 𝜌}𝑑𝜌

0

−∞
    (5.7) 

This expression provides a general statement for the expected value of a fuzzy variable. 

For a continuous fuzzy variable, if the membership function follows a monotonically 
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increasing law in the range of  [−∞, 𝜌𝑜] and a monotonically decrease in the range of 

[𝜌𝑜, +∞], therefore a more convenient rule could be adopted as shown in Eq. (5.8) (Liu 

& Liu, 2002; Marano & Quaranta, 2008). This expression can be used to evaluate the 

expected value of the fuzzy variable. 

  E[𝑥] =  𝜌𝑜 + 
1

2
∫ 𝜇(𝜌)𝑑𝜌
+∞

𝜌𝑜
− 

1

2
∫ 𝜇(𝜌)𝑑𝜌
𝜌𝑜

−∞
    (5.8) 

5.3.3 Entropy Value of a Fuzzy Variable 

The concept of fuzzy entropy can be used to analyse and quantify uncertainties associated 

with the design parameters. The fundamentals of Shannon’s entropy could provide the 

desired information of the total amount of uncertainty contained in the fuzzy set. 

Therefore, Shannon’s entropy can be used as an integral part of information theory to 

assess the performance of the structural system. The concept of entropy plays a significant 

role in measuring the fuzzy information such as evaluation of fuzzy degree between two 

fuzzy sets. In the literature, there are various expressions for computing fuzzy entropy 

that has been proposed; however, see the work of (Beer & Liebscher, 2008; Liu, 2007; 

Liu & Liu, 2002) for more information.  

From Eq. (5.8), if a continuous variable tends to be a crisp number, its entropy tends 

towards the minimum value of zero. Herein, the suggestion by Liu (2007) is used, where 

the entropy of a continuous fuzzy variable is defined as expressed in Eq. (5.10). 

 𝐻(𝑥) = ∫ (−𝐶(𝜌) ln 𝐶(𝜌) − (1 − 𝐶(𝜌)) ln(1 − 𝐶(𝜌)))d𝜌
+∞

−∞
    (5.9) 

Where 𝐶(𝜌) = 𝐶𝑟(𝑥 = 𝜌) and for a continuous fuzzy variable 𝑥, 𝐶(𝑟) = 𝐶𝑟(𝑥 = 𝜌) =

1

2
𝜇(𝜌), thus  

 𝐻(𝑥) = −∫ (
1

2
𝜇(𝜌) ln

1

2
𝜇(𝜌) + (1 −

1

2
𝜇(𝜌)) ln (1 −

1

2
𝜇(𝜌))) d𝜌

+∞

−∞
  (5.10) 

From Eq. (5.8) and (5.10), the expectation and the entropy of a fuzzy variable can be 

computed as soon as the membership function is given. 
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5.3.4 Formulation of Fuzzy-based Multi-objective Design Optimisation 

The design of engineering structure has moved from single objective optimisation to 

evaluating an optimal solution by considering multi-objective functions. This is because 

the design of engineering structures requires a resolution of conflicting objectives. Based 

on the fuzziness of the uncertain parameters for a particular structure, the fuzzy-based 

multi-objective design optimisation problem can be formulated as expressed in Eq. (5.11). 

min
𝑦

 {𝐸1 𝑓1(𝑦, �̌�) , 𝐸2 𝑓2(𝑦, �̌�) } 

  𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ℎ̌𝑗(𝑦, �̌�) ≤ 0   𝑗 = 1,… , 𝐽   𝑦𝑙 ≤ 𝑦 ≤ 𝑦𝑢      (5.11) 

Where 𝑓1(𝑦, �̌�)  and 𝑓2(𝑦, �̌�)represent the performance function based on design and 

fuzzy variable for objective 1 and obejective 2; 𝐸1[. ] and 𝐸2[. ] are the expected values 

of the fuzzy variable based on objective 1 and obejective 2. �̌� is the fuzzy vector of the 

uncertain variable and 𝑦 is the design vector where 𝑦𝑙  𝑎𝑛𝑑 𝑦𝑢 are the lower and upper 

values of the design vector. Based on this idea, it is vital to observe that each of the 

constraints ℎ𝑗  is a fuzzy variable and it is important to extract a specific value ℎ̌𝑗  from the 

fuzzy output variable. 

Since most engineering structures are associated with more than one objective, therefore, 

employing multi-objective optimisation technique becomes a vital aspect for the optimal 

design (Zhang et al., 2017). Also, it is essential to consider the opportune strategies with 

the intention of solving the MOOP to obtain the Pareto front. In practice, the decision 

with regards to the final solution to be used based on the outcome of the Pareto front is 

formulated by the decision maker. However, a preference-based method which allows 

preference information to be used in the search to influence the Pareto optimal solution 

can be used (Coello, 2000). The search for the Pareto optimal set can be determined 

through the use of any multi-objective optimisation algorithm. Herein, the optimisation 

is performed using a Hybrid GA-GAM algorithm to determine the Pareto front. This 

approach is briefly discussed in the next Section.  
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5.4 Hybrid GA-GAM Approach  

5.4.1 Genetic Algorithm (GA) 

GA is a population-based metaheuristic algorithm that is widely used for most 

optimisation problems because of its robust and independent objective function (Li & Lu, 

2014; Garg, 2016; Goldberg, 1989; Fonseca & Fleming, 1993). The concept uses the 

survival of the fittest and a biological mechanism to process a set of solutions iteratively 

in order to converge and produce an optimum solution. The survival of the fittest which 

GA adopts is based on Darwinian’s theory that begins with a set of solutions denoted as 

chromosomes, called population. The solutions determined from one population would 

be used to form another new population, and that population is motivated based on the 

likelihood that the new population will be preferred when compared to the older 

population. In addition, the solutions are selected based on their fitness to form a new 

solution. The computational steps in executing GA is given in Chapter 6, Section 6.3.1. 

5.4.2 Goal Attainment Method (GAM) 

GAM is usually employed to solve a MOOP. As suggested by Chankong & Haimes 

(1983), GAM is a powerful optimisation tool that can determine the best possible solution 

to a multi-objective problem. The GAM approach has the advantage of posing or being 

converted as a non-linear programming problem (Fonseca & Fleming, 1993) and the 

characteristic of the problem can be exploited in a non-linear programming algorithm. 

The GAM method is used as the hybrid solver, and for more information, the reader can 

refer to (Fonseca & Fleming, 1993). 

5.4.3 Hybrid GA-GAM and Multi-objective Design Optimisation 

Multi-objective optimisation is an approach to determine a vector of design variables that 

are located within a feasible region, which minimises the vector of the objective function 

that could conflict with one another (Cheng & Le, 1997). The optimal solution is called 

the Pareto front, and this is obtained based on the concept of dominance. The formulation 

of the multi-objective optimisation takes the form of the expression in Eq. (5.12). 
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  min  {𝑓1(𝑦), 𝑓2(𝑦), … , 𝑓𝑛(𝑦) }   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔(𝑦) ≤ 0             (5.12) 

Where 𝑦  denote the vector of design variables; 𝑓1(𝑦)  represents the  𝑖𝑡ℎ  objective 

function and 𝑔(𝑦) is the constraint vector.  

The multi-objective optimisation algorithm tries to locate the best sets of solutions that 

could satisfy the various objective/constraint functions to form the Pareto optimal set. 

The solution of the multi-objective function is always situated in its Pareto optimal front 

set (Cheng & Le, 1997; Deb, 2001). The Pareto optimum gives a set of non-dominated 

solutions, which also varies depending on the search technique. These are solutions for 

which no objective could be improved without detracting from the other objective 

functions. The multi-objective programme does not have a unique solution that can 

simultaneously optimise all the objective functions (Cheng & Le, 1997; Deb, 2001). 

Therefore, any point located within the Pareto optimal set can become an ‘optimum 

solution,’ which invariably depends on the decision of the design engineer. For more 

details on multi-objective optimisation, the reader can refer to (Cheng & Le, 1997; Deb, 

2001; Tang et al., 2011). The rationale behind the introduction of GAM as the hybrid 

solver for the MOOP is to utilise its efficiency in local search and to enable evaluation of 

fewer functions in order to achieve convergence. The procedure for evaluating the Hybrid 

GA-GAM function is described in the following steps.  

1. Define the objective functions, and set the operators of the GA, e.g. population 

size, parent/offspring ratio, selection methods, and mutation rate. 

2. Initialise the parameters and generate initial population. 

3. Set the solution counter 𝑖 = 1. 

4. Calculate the number of solutions 𝑛𝑖 that dominates solution 𝑖. 

5. Compute the rank 𝑟 of the 𝑖 − th solution as 𝑟𝑖 = 1 + 𝑛𝑖. This will increase the 

number of count of the solutions in rank 𝑟𝑖 by one. That is 𝜇(𝑟𝑖) = 𝜇(𝑟𝑖) + 1. 

6. If the solution counter 𝑖  is less than the number of population 𝑃𝑛  i.e. 𝑖 < 𝑃𝑛 , 

increase 𝑖 by one and go to step 2. Otherwise, go to step 7. 

7. Identify the maximum rank 𝑟𝑚𝑎𝑥 by checking for the biggest 𝑟𝑖 which has 𝜇(𝑟𝑖) >

0. Then, set a rank counter 𝑟 = 1. 
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8. For each solution 𝑖  in the rank  𝑟 , evaluate the niche count 𝑛𝑐𝑖  with the other 

solutions of the same rank. 

9. If the rank 𝑟 < 𝑟𝑚𝑎𝑥, increase the rank 𝑟 by one and go to step 7. Otherwise, go 

to step 10. 

10. Perform a local search on each solution using GAM, compute the corresponding 

fitness of each new location, and replace the solution if there is a locally improved 

option. 

11. If convergence is achieved, stop the algorithm. Otherwise, got to step 3. 

5.4.4 Methodology 

Figure 5.1 shows a flow diagram for the computation. Also, the steps used to determine 

the response of the fuzzy-based multi-objective design optimisation of an engineering 

structure considering the expected values of the fuzzy output variable based on objective 

1 and objective 2 using a Hybrid GA-GAM algorithm are summarised as follows:  

 Initialise the input parameters. 

 Evaluate the expectation of the fuzzy structural response based on objective 1 and 

objective 2 using Eq. (5.8). 

 Construct the mathematical formulation for the fuzzy-based multi-objective 

design optimisation as explained in Section 5.3.4.  

 Perform the multi-objective optimisation using the Hybrid GA-GAM algorithm 

as explained in Section 5.4.3. 

 Check whether the constrained is satisfied. 

 Use the maximum and minimum values in the Pareto front for the computation of 

the fuzzy structural response and perform the fuzzy entropy-based analysis.  
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Start

Initialise the input parameters

Evaluate the expectation of the fuzzy 

structural response based on objective 1 

and objective 2 using Eq. (5.8)

Construct the mathematical 

formulation as explained in 

Section 5.3.4. 

Use Hybrid GA-GAM algorithm to 

perform the multi-objective 

optimisation 

Use the maximum and minimum 

values to perform fuzzy entropy-

based analysis

End

Did the optimisation 

converge?

Yes 

No

 

Figure 5.1: Flow diagram of fuzzy entropy analysis using multi-objective 

optimisation 
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5.5 Numerical Example 

The purpose of this numerical example is to demonstrate the applicability and the 

confidence level in the design of buried pipeline by incorporating a multi-objective 

optimisation approach.  The method is used to analyse the performance of buried pipe 

structure based on multi-objective functions considering the design variables and the 

uncertain fuzzy variables. The possible pipe failure modes used in the analysis include (i) 

ovality of pipe, and (ii) buckling pressure. For details concerning the pipe failure, see 

Chapter 3, Section 3.3. The statistical values of the soil and pipe parameters used in the 

computation are given in Table 3.3 and 3.4. The values are based on industry standard 

and have been obtained from the works of (Ahammed & Melchers 1994; Sadiq et al. 

2004; Tee et al. 2014). 

As a useful extension, the effect of corrosion on the buried pipe is assessed herein using 

the intrinsic features of a fuzzy set to develop the membership function. In this case, the 

sensitivities of the responses with respect to the uncertainties associated with the 

empirical constants are analysed, and an acceptable interval size determined and used to 

construct the membership function as illustrated in Figure 5.2 and for the exposure period 

of 25, 50 and 100 years. This approach provides the possibility to consider a gradual 

assessment of the uncertainties in relation to interval values. Generally, Marano et al. 

(2008) suggested that it is possible to state that a unitary approach does not exist for the 

so-called fuzzification, but different procedures can be adopted for each situation. 

Therefore, the methods for constructing the membership function of a fuzzy variable can 

be direct or indirect with a single expert or multiple experts (Klir, 2006; Marano et al., 

2008). For more information, see (Klir & Yuan, 1995; Klir, 2006). Herein, the reason for 

treating corrosion as a fuzzy variable is to account for the uncertainties in the values of 

the parameters that characterise the environment, variables that affect the time to 

corrosion initiation, and the rate of corrosion propagation (Anoop & Balaji, 2007; Marano 

et al., 2008). 
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Figure 5.2:  Corrosion pith depth at T = 25 years, 50 years and 100 years 

5.6 Results and Discussion 

The applicability and the usefulness of the proposed method are demonstrated using the 

numerical example in Chapter 3, Section 3.7. The output of the multi-objective 

optimisation is the Pareto front as shown in Figure 5.3. In this work, a Hybrid GA-GAM 

as explained in Section 5.4.3 is used for the multi-objective optimisation, and the outcome 

has been compared with the GA. It is clear from Figure 5.3 that the performance of the 

two methods is very close. However, for the Hybrid GA-GAM approach, a total of 7255 

function evaluations was needed to converge while the GA used a total of 10051 function 

evaluations. The two optimisation algorithms have been measured running on a central 

processing unit (CPU) time using a 1.60 GHz Pentium 4 computer. The time taken for 

the former to converge is 23 minutes while the latter used about 35 minutes. Based on the 

execution time, it can be concluded that the difference in time is not significant. However, 

the introduction of the Hybrid GA-GAM has enabled evaluation of fewer functions to 



 

114 

 

achieve convergence. The GA is performed independently for the assessment of the 

optimal solution from the multi-objective function. The rationale behind this is to act as 

a verification and validation of the results from the Hybrid GA-GAM approach. Herein, 

the primary aim of using the Hybrid GA-GAM for the multi-objective optimisation is to 

find the minimum pipe thickness that could satisfy the design intent by considering the 

possible failure conditions. The multi-objective optimisation is considered in order to 

ascertain the trade-offs between the failure conditions of the buried pipe. The purpose of 

applying a Hybrid GA-GAM algorithm is to perform the optimisation with the goal of 

finding a set of Pareto front values for the pipe thickness that can withstand the adverse 

effect of corrosion.  

  

Figure 5.3: The Pareto front for pipe design based on GA and Hybrid GA-GAM 
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Figure 5.4: Performance of buried pipe due to buckling pressure after 100 years 

  

Figure 5.5: Performance of buried pipe due to deflection after 100 years 
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Figure 5.6: Fuzzy entropy state of buried pipe after 100 years 

  

Figure 5.7: Performance of buried pipe due to buckling pressure after 50 years 
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Figure 5.8: Performance of buried pipe due to deflection after 50 years 

  

Figure 5.9: Fuzzy entropy state of buried pipe after 50 years 



 

118 

 

  

Figure 5.10: Performance of buried pipe due to buckling pressure after 25 years 

  

Figure 5.11: Performance of buried pipe due to deflection after 100 years 
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Figure 5.12: Fuzzy entropy state of buried pipe after 25 years 

From the Pareto front, the two extreme values were used in the computation of the fuzzy 

structural response of buried pipe, and the results are shown in Figures 5.4 and 5.5 for the 

failure mode of buckling pressure and pipe deflection respectively. The first extreme 

value of the optimal solution set (black line and circle markers) is characterised by less 

performance, less robustness, and more significant variability. The investigated pipe 

failure conditions give a small value of the fuzzy output as against the second extreme 

value, but also a substantial value of the fuzzy entropy for buckling pressure as shown in 

Figure 5.6. Similarly, the second optimum outcome is used in the computation of fuzzy 

structural response for the same number of years. The result from this is characterised by 

best performance, greater robustness, and less variability. Figures 5.4, 5.5, and 5.6 

demonstrate how the expected value of the fuzzy variable and the fuzzy entropy values 

vary with regards to the maximum and minimum values for the design variable. The 

outcome of this investigation shows that the two failure conditions of the pipe are in 

mutual opposition with regards to design variables and the expected entropy values.  

Evidently, on the grounds of Figures 5.3, 5.4, 5.5, and 5.6, the designer or decision maker 
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could have the opportunity to decide on the final solution for a buried pipe having 100 

years of design life.  

Subsequently, for the design life of 50 years and 25 years, a similar analysis was 

performed to determine the optimal solution set. Again, the two extreme values were 

employed in the computation of the fuzzy structural response of buried pipe and the 

outcomes are shown in Figures 5.7, 5.8, 5.10 and 5.11. The first extreme value of the 

optimal solution set (black line and circle markers) is characterised by less performance, 

less robustness, and more significant variability. Similarly, the second optimum outcome 

is used in the computation of fuzzy structural response of buried pipe for the same number 

of years. The result from this is characterised by best performance, greater robustness, 

and less variability. Again, the investigated pipe failure conditions give a small value of 

the fuzzy output as against the second extreme value, but also a significant value of the 

fuzzy entropy for buckling pressure as shown in Figures 5.9 and 5.12.  

The engineering application of fuzzy-based multi-objective design optimisation has 

proved to be an instrumental and vital part of pipe design, especially with corrosion 

uncertainty. It is worth stating that the results reported in this study are the primary 

motivation. Another contribution of this approach is the importance of analysing the 

fuzzy variables. By comparing the results of the fuzzy-based multi-objective design 

optimisation for different years of fuzzy variables and their corresponding impact on the 

failure conditions, the design engineer would be able to gauge the negative impact on the 

safety of the structure. Therefore, reducing the variability of the fuzzy variable, e.g., by 

performing more test or collecting additional information, could help to mitigate 

structural failure. In addition, a suggestion by Liu (2007) is used to compute the fuzzy 

entropy of a structural system. The approach is evaluated along the membership level, 

which permits the assessment of the variability and sensitivity of the structural response 

concerning various failure modes.  
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5.7 Chapter Summary 

In this Chapter, an approach is presented for the optimum design of buried pipes involving 

design variables and fuzzy variables, using multi-objective optimisation algorithm. The 

method is based on the expected value of a fuzzy output variable for the pipe failure 

modes. The concepts and the processes of the proposed algorithm are introduced, and a 

numerical example is used to demonstrate its applicability and usefulness in the design of 

buried pipe structure. The outcome demonstrates that the uncertainty of the fuzzy 

variables for the input parameters could be propagated for the optimal design of buried 

pipe structure by employing a multi-objective optimisation algorithm for finding the 

optimal solution set. The fuzzy-based multi-objective design optimisation problem has 

been expressed by using the expected value of a fuzzy output variable for the pipe failure 

modes. The outcome of the expected value controls the performance of the optimal 

solution and the entropy deals with the variability and sensitivity of the structural 

problem.  

Furthermore, a multi-objective optimisation is considered because it offers the potential 

to consider several mutually conflicting design requirements that are associated with pipe 

failure modes. Based on this, it is essential to locate the Pareto optimal set which plays a 

vital role for a pipe designer to decide, because of the opportunity of having a trade-off 

kind of analysis. Also, to improve the approach, other improved optimisation and multi-

objective optimisation methods with better computational efficiency and require a lower 

number of function evaluations with regards to achieving convergence may exist in 

practice and could be used to improve the methodology. The possibility of using up to 

four and five objective functions can be included in the optimisation process. In practical 

design of buried pipeline, it is possible for fuzzy variables with membership functions 

and random variables with PDFs to co-occur. Based on this, the reliability analysis of 

buried pipeline based on fuzzy and subset simulation is proposed in Chapter 6. The 

method is based on the fuzzy set, subset simulation, and GA. The approach considers 

deterministic, random and fuzzy variables.  

 

 

 



 

122 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER SIX 
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6.1 Introduction 

The impact of uncertain variables can be propagated using the probabilistic method (e.g. 

MCS, IS, LS, and FORM) or non-probabilistic method (e.g. interval modelling and fuzzy 

set). Beer et al. (2013) suggested that the use of the probabilistic technique can be difficult 

because the data needed for the estimation of the mathematical statistics are always not 

available to a large extent. Therefore, the characterisation of the uncertain parameters 

based on PDFs may be subjective due to none availability of the required data in most 

cases. Also, the scarcity of information and partial knowledge of design parameters 

characterises the design of most engineering structures. Oftentimes, expert knowledge is 

usually used to quantify this type of vague information, rather than rigorous analysis.  

In most practical engineering design, where there are various parameters involved, fuzzy 

variables with membership functions and random variables with PDFs could co-occur. 

This type of situation can be found in the design of buried pipes considering different 

loading and environmental conditions. As a result, the fuzzy reliability analysis of buried 

pipeline considering deterministic, random and fuzzy variables using optimisation based 

fuzzy-subset simulation approach is proposed in this Chapter. The approach relies on the 

performance function, which involves deterministic values, random and fuzzy variables. 

The rationale is to locate a failure domain or region where the objective function is 

minimised or maximised and compute the reliability using subset simulation. 

The rest of this Chapter is organised as follows: Section 6.2 presents the propagation of 

uncertain input variables. Section 6.3 explains optimisation based fuzzy-subset 

simulation approach which includes the GA, Subset simulation, Markov Chain Monte 

Carlo, the proposed method and the applicability. In Section 6.4, the numerical example 

is presented, which includes investigation 1 for pipe ovality, investigation 2 for through-

wall bending stress, and discussion. Section 6.5 presents the Chapter summary.  

6.2 Propagation of Uncertain Input Variables  

Usually, the uncertain input variables can be dependent or independent normal or non-

normal random variables. The dependent normal random variables can be systematically 

transformed into the independent ones, and the dependent non-normal random variables 
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can also be numerically transformed into the independent normal ones using Rosenblatt 

or Nataf transformation (Li & Lu, 2014).  

The number of input variables 𝜽 = (𝜃1, 𝜃2, … , 𝜃𝑛)  is denoted as  𝑛 =  𝑛𝑑 + 𝑛𝑟 + 𝑛𝑓 

where 𝑛𝑑  denotes the number of deterministic parameter; 𝑛𝑓  represents the number of 

fuzzy parameter; and  𝑛𝑟  is the number of random parameter in a structural system. 

Therefore, the number of deterministic parameter 𝑛𝑑  with values 𝜽𝒅 = 𝜃  can be 

described in the computational process using their corresponding values. The number 

𝑛𝑟 of input parameter (random variable) 𝜽𝒓 = (𝜃1, 𝜃2, … , 𝜃𝑛𝑟)  are independent and 

random variables with PDFs 𝑓𝜃𝑖(𝜃𝑖)(𝑖 = 1, 2, … , 𝑛𝑟). Similarly, the number 𝑛𝑓 of fuzzy 

parameter (fuzzy variable) 𝜽𝒇 = (𝜃𝑛𝑟+1, 𝜃𝑛𝑟+2, … , 𝜃𝑛) are independent fuzzy variables, 

which are defined by their associated membership function 𝜇𝜃𝑗(𝜃𝑗)(𝑗 =  𝑛𝑟 + 1, 𝑛𝑟 +

2,… , 𝑛). The performance function 𝐺(𝜃𝑑 , 𝜃𝑅 , 𝜃𝐹) of the structure is the function of 𝜃 =

(𝜃𝑑 , 𝜃𝑅 , 𝜃𝐹), which involves deterministic values, fuzzy variables and random variables. 

Since the performance function of the engineering structure is associated with 

deterministic values, fuzzy and random variables, therefore the reliability would be fuzzy 

and it depends on the fuzziness of the fuzzy input variables. Consequently, the reliability 

of the structure is expressed as 𝑃𝑟 = 𝑃{𝐺(𝜃) > 0}. 

Figure 6.1 shows the propagation of the input variables based on fuzzy uncertainty in the 

determination of fuzzy reliability. For the membership function, the variation of a fuzzy 

variable is defined using lower and upper bounds, i.e. 𝜃𝐹(𝛼)  ∈ (𝜃𝐹
𝑙 (𝛼), 𝜃𝐹

𝑢(𝛼))  for 

every α − level. α − levels are used to represent the discretised membership function of 

a fuzzy variable i.e. α0, α1, α2, … , α10.  Therefore, by mapping 𝑃𝑟 =

𝑃{𝑔(𝜃𝑅(𝛼), 𝜃𝐹(𝛼)) > 0} between 𝜃𝐹(𝛼) and 𝑃𝑟, and the fuzzy reliability of the structure 

can be determined using any of the reliability method in the reduced random variable 

space at the bounds. The structural reliability can be computed at the bounds on 𝜃𝐹(𝛼) 

for every membership level, which would lead to 𝑃𝑟
𝑙(𝛼)  and  𝑃𝑟

𝑢(𝛼) . So different 

membership levels would produce different bounds of reliability. 
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Figure 6.1: The propagation of input variables based on fuzzy uncertainty 

6.3 Optimisation Based Fuzzy-subset Simulation Approach  

Following the discussion on the propagation processes of the input parameters, it is 

evident that at every 𝛼 − 𝑙𝑒𝑣𝑒𝑙, the values of the fuzzy variables turn into sets of intervals. 

This means that the challenge of propagating the uncertainties of the fuzzy input variables 

becomes an interval analysis. The outcomes are bounding functions and consequently, an 

interval for the reliability of the structure. The combination of the interval nature of the 

uncertainty and the random parameters is carried out by performing a probabilistic 

assessment on every bound of the 𝛼 − 𝑙𝑒𝑣𝑒𝑙 set. As a result of this, the minimum and 

maximum values of the membership function of the fuzzy reliability of a structure can be 

estimated for every 𝛼 − 𝑙𝑒𝑣𝑒𝑙. The propagation of the uncertainty of the fuzzy input 

variables for the determination of the membership function of fuzzy reliability at every 

membership level can be seen as a double loop method, where the inner loop evaluates 

the fuzzy failure probability and the outer loop searches for the bounds at various alpha 

levels. A direct optimisation approach is employed to estimate the extreme values. Herein, 
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a GA is used to compute the outer loop sampling, which would evaluate the desired 

interval outcome directly. On this basis, the structural reliability problem can be seen as 

a function of the random variable, the lower and upper values of the fuzzy variables and 

the deterministic values. Therefore, similar to the works of Eldred et al. (2011) and Li & 

Lu (2014), the computation of the fuzzy reliability can be seen as two optimisation 

problems and could be expressed as shown in Eq. (6.1) and Eq. (6.2).  

 min 𝑃𝑅(𝛼)           subjected to   𝜽𝐹
𝑙 (𝛼) ≤ 𝜽𝐹(𝛼) ≤ 𝜽𝐹

𝑢(𝛼)   (6.1) 

 and 

 max 𝑃𝑅(𝛼)          subjected to   𝜽𝐹
𝑙 (𝛼) ≤ 𝜽𝐹(𝛼) ≤ 𝜽𝐹

𝑢(𝛼)              (6.2) 

6.3.1 The Outer Loop: Genetic Algorithm (GA) Approach 

GA is a population-based metaheuristic algorithm that is widely used for most 

optimisation problems because of its robust and independent form of the objective 

function (Li & Lu, 2014). The concept uses the survival of the fittest and a biological 

mechanism to process a set of solutions iteratively in order to converge and produce an 

optimum solution. The survival of the fittest which GA adopts is based on Darwinian’s 

theory that begins with a set of solutions denoted as chromosomes, called population. The 

solutions determined from one population would be used to form another new population, 

and that population is motivated based on the likelihood that the new population will be 

preferred when compared to the older population. In addition, the solutions are selected 

based on their fitness to form a new solution. This process of selection would happen at 

every iteration of the algorithm, and this would continue until all the conditions are 

satisfied and the best individual is generated. The procedure of GA employed in this study 

is summarised below (Haupt & Haupt, 2004; Li & Lu, 2014): 

The computational process of GA is outlined below: 

 Set the solution counter 𝑙 = 0, initialise the parameters and generate an initial 

population of the chromosomes 𝜑𝑖
(𝑙)

 randomly based on the population size 𝑁. 
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 Define the objective function 𝑓(𝜑𝑖
𝑙) and evaluate the fitness of each chromosomes 

in the population. The outcome is used to find the optimum solution (𝜑𝑏𝑒𝑠𝑡) in 

the current population. 

 Create a new sequence of population 𝜑𝑖
𝑙+1𝜖 Ω(i = 1,2, … ,𝑁) by repeating steps a 

to d. The algorithm uses individuals from the current generation to create the next 

population.  

a. Select two parent chromosomes from the population 𝜑𝑖
𝑙𝜖 Ω(i = 1,2, … ,𝑁) 

according to their fitness 𝑓(𝜑𝑖
𝑙) 𝜖 Ω(i = 1,2, … ,𝑁). The better the fitness, 

the more chances it will have to be the parent. 

b. Perform a cross-over probability over the parents to form a new offspring. 

However, if there is no cross-over of the offspring by the parent, then 

offsprings becomes the exact copy of the parents. 

c. Perform mutation probability of the new offsprings at each locus. 

d. Place the new offsprings in the new population 

 If the condition is satisfied, stop the algorithm and return the best individual in the 

current population. Otherwise, let 𝑙 = 𝑙 + 1 and start the process again from step 

2. 

6.3.2 The Inner Loop: Subset Simulation (SS) 

Subset simulation (SS) method is an adaptive stochastic simulation approach developed 

for estimating efficiently the small failure probabilities of a structural system (Au & Beck, 

2001). In the literature, the use of the SS method has shown to be a powerful technique 

in structural analysis over the years and it has been successfully applied in different fields 

like aerospace, geotechnical engineering and buried pipelines (Schuëller et al., 2004; Tee, 

et al., 2014; Zio, 2013). The fundamental concept of SS is to express the failure 

probability as a product of conditional probabilities on the intermediate failure events. To 

achieve this, the SS approach probes the input space of the structural system by generating 

a set of a small number of independent and identically distributed samples and evaluating 

the equivalent system response.  
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Based on the framework of subset simulation, Markov Chain Monte Carlo (MCMC) and 

Splitting techniques can be used in the conditional sampling of the nested subsets. For the 

splitting techniques, the conditional sampling in the nested subsets is determined by 

splitting the trajectories that reach each subset instead of using them as seeds to generate 

more samples from Markov chains in their stationary state. Therefore, in generating the 

number of samples at a level, the splitting technique is slightly more efficient than the 

MCMC approach using the Modified Metropolis Algorithm (MMA) because when the 

conditional samples are generated, the input offspring trajectories already have available 

the first part of the corresponding output trajectories (Beck & Zuev, 2017). However, as 

suggested in Beck & Zuev (2017), splitting technique cannot handle parameter 

uncertainty in the model since the offspring trajectories must use the same parameter 

values as their mothers. As a result, the splitting can only be applied to dynamic problems, 

while the MCMC version can be applied to both static and dynamic uncertainty problems 

and can handle parameter uncertainty. So, the conditional samples of the target 

distribution are generated using a Markov chain. Markov chain is designed in a way that 

the limiting stationary distribution would become the conditional distribution of the 

adaptive failure event. This would allow the conditional samples to progressively 

populate the successive intermediate failure domain and up to the final target failure 

domain (Schuëller et al., 2004). 

The use of SS simulation approach overcomes the ineffectiveness of direct MC method 

in assessing the small failure probability of a structure. The failure probability 𝑃𝐹 can be 

expressed as a product of larger conditional probabilities. This is realised by defining a 

reducing sequence of failure events F; let 𝐹1 ⊃ 𝐹2 ⊃ 𝐹3 ⊃ ⋯ ⊃  𝐹𝑚 = 𝐹  be the 

decreasing sequence of failure event, so that 𝐹𝑘 = ⋂ 𝐹𝑖,   𝑘 = 1,… , 𝑚.𝑘
𝑖=1  If the failure 

of a structural system is defined as the exceedance of an uncertain demand 𝐷 over a given 

capacity 𝐶, that is, 𝐹 = {𝐷 > 𝐶}, then a sequence of decreasing failure events can simply 

be defined as 𝐹𝑖 = {𝐷 > 𝐶𝑖}, where 𝐶1 < 𝐶2 < ⋯ < 𝐶𝑚 = 𝐶. The following expressions 

can be derived by considering the definition of conditional probability. 

   𝑃𝐹 = 𝑃(𝐹𝑚) = 𝑃(⋂ 𝐹𝑖
𝑚
𝑖=1 )               (6.3) 

   = 𝑃(𝐹𝑚| ⋂ 𝐹𝑖
𝑚−1
𝑖=1 )𝑃(⋂ 𝐹𝑖

𝑚−1
𝑖=1 )              (6.4) 
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   = 𝑃(𝐹𝑚|𝐹𝑚−1)𝑃(⋂ 𝐹𝑖
𝑚−1
𝑖=1 )               (6.5) 

   = 𝑃(𝐹𝑖)∏ 𝑃(𝐹𝑖+1|𝐹𝑖)
𝑚−1
𝑖=1                (6.6) 

Eq. (6.6) expresses the failure probability of a structure as a product of a sequence of 

conditional probabilities. The conditional probabilities can be made very large, so that the 

simulation approach could be employed to evaluate the failure probability (Au & Beck, 

2001). To evaluate the probability of failure based on the conditional failure probability, 

there is a need to calculate the probabilities of 𝑃(𝐹𝑖) and {𝑃(𝐹𝑖+1|𝐹𝑖): 𝑖 = 1,… ,𝑚 − 1}. 

The 𝑃(𝐹𝑖) can be estimated using the expression in Eq. (6.7) 

   𝑃(𝐹𝑖) ≈ �̅�1 =
1

𝑁
∑ 𝐼𝐹1(𝜃𝑘)
𝑁
𝑘=1                (6.7) 

Where the set of values {𝜃𝑘: 𝑘 = 1,… ,𝑁} are independent and identically distributed 

(i.i.d.) samples simulated according to their corresponding PDF  𝑞 . Similarly, the 

conditional probability 𝑃(𝐹𝑖+1|𝐹𝑖)  can also be evaluated based on the estimated 

probability of failure in Eq. (6.7). It is not efficient to use the same approach because it 

takes 1 𝑃(𝐹𝑖)
⁄  samples before one of another sample occurs. However, this can be by-

passed by the use of MCMC simulation, which is explained in Section 6.3.3. The 

reliability of the structure can be expressed as shown in Eq. (6.8). 

   𝑃𝑅 = 1 − 𝑃𝐹                (6.8) 

The following steps summarise the subset simulation approach as described in (Au & 

Beck, 2001; Au & Wang, 2014) 

a) Initialise the parameters and generate samples 𝑁 from the original PDF. At this 

stage, the subscript ‘0’ represents the samples which correspond to the conditional 

level 0 and set 𝑖 = 0. 

b) Compute the corresponding response values {�̃�𝑘
0 = ℎ(𝑿𝑘

0): 𝑘 = 1,… ,𝑁} from the 

structure. 

c) Sort the response values {�̃�𝑘
0: 𝑘 = 1,… ,𝑁} in ascending order to give the 

list {�̃�𝑘
0: 𝑘 = 1, … , 𝑁}. The values from the list �̃�𝑘

0 would give the estimate of the 

exceedance fuzzy probability 𝑃 𝑘
0 = 𝑃(𝑌 > 𝑏) where  𝑃 𝑘

0 = 
𝑁−𝑘

𝑁
; 𝐾 = 1,… ,𝑁 
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d) The value of �̃�𝑘+1 is chosen as the (1 − 𝑝0)𝑁𝑡ℎ value in the ascending order of 

{�̃�𝑘
0: 𝑘 = 1,… ,𝑁} . This would allow the sample estimate of �̃�(𝐹𝑖+1) = 𝑃(�̃� >

�̃�𝑘+1) to be always equal to 𝑝0. 𝑝0 and 𝑁 are chosen so that the product 𝑝0𝑁 is 

always an integer. 

e) If �̃�𝑘+1 ≥ 𝑏𝑚 , proceed to step g. Otherwise, if �̃�𝑘+1 ≤ 𝑏𝑚  identify the 𝑝0𝑁 

samples whose response �̃� lies in the (𝐹𝑖+1 = 𝑃(�̃� > �̃�𝑘+1). These samples are at 

conditional level 𝑘 + 1 and distributed as 𝑞(. |𝐹𝑘+1). 

f) Use one of the samples 𝜃𝑘
𝑢(𝑢 = 1, 2, … , 𝑝0𝑁) as the starting point and generate 

(1 − 𝑝0)𝑁 additional conditional samples distributed as 𝑞(. |𝐹𝑘+1) using MCMC 

simulation. So, there would be a total of 𝑁 conditional samples at conditional 

level 𝑘 + 1. Details of the MCMC is given in Section 3.3. 

g) Stop the algorithm. 

6.3.3 Markov Chain Monte Carlo (MCMC) 

The use of MCMC simulation is on the increase, especially the Metropolis approach 

which is a robust technique for simulating samples according to their PDFs (Hastings, 

1970; Metropolis et al., 1953). In assessing the probability of failure of interest, MCMC 

simulation provides an efficient way of generating samples from the multidimensional 

conditional PDF 𝜃𝑘(𝑘). To demonstrate the algorithm of MCMC simulation method with 

reference to a generic failure region  𝐹𝑖 , let 𝜃−𝑢 = {𝜃1
−𝑢, 𝜃2

−𝑢, … , 𝜃𝑗
−𝑢, … , 𝜃𝑛

−𝑢} be the 

Markov chain sample drawn. Also let 𝑃𝑗
∗(𝜉𝑗|𝜃𝑗

𝑢), 𝑗 = 1,2, … , 𝑛, become a 1-dimensional 

“proposal PDF” for 𝜉𝑗, which is centred at the value 𝜃𝑗
𝑢 and satisfy the symmetry property 

in Eq. (6.9) (Au & Beck, 2001). 

    𝑃𝑗
∗(𝜉𝑗 𝜃𝑗

𝑢) =   𝑃𝑗
∗(𝜃𝑗

𝑢|𝜉𝑗)             (6.9) 

The following steps can be used to generate parameter samples from the Markov chain. 

1. Generate a candidate from the parameter sample �̅�𝑢+1 =

 {�̅�1
𝑢+1, �̅�2

𝑢+1, … , �̅�𝑗
𝑢+1, … , �̅�𝑛

𝑢+1} for each parameter 𝜃𝑗 , 𝑗 = 1,2,3, … , 𝑛, followed 

by: 
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 Sample a pre-candidate value 𝜉𝑗
𝑢+1  from the proposed distribution 

 𝑃𝑗
∗(.  𝜃𝑗

𝑢) 

 Compute the acceptance ratio using Eq. (10) below. 

𝑟𝑗
𝑢+1 =

𝑞𝑗(𝜉𝑗
𝑢+1)

𝑞𝑗(𝜃𝑗
𝑢)

             (6.10) 

 Then set the new value �̅�𝑗
𝑢+1 of the 𝑗𝑡ℎ element �̅�𝑢+1 as follows: 

�̅�𝑗
𝑢+1 = {

𝜉𝑗
𝑢+1      𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦   min (1, 𝑟𝑗

𝑢+1) 

𝜃𝑗
𝑢    𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦   1 − min(1, 𝑟𝑗

𝑢+1)
        (6.11) 

2. Then the candidate samples would be accepted/rejected if: 

 �̅�𝑗
𝑢+1 = 𝜃𝑢  (There are no pre-candidate values accepted), therefore set 

�̅�𝑗
𝑢+1 = 𝜃𝑢. Check if the sample �̅�𝑗

𝑢+1 belongs to the failure sample space, 

i.e. �̅�𝑗
𝑢+1 ∈ 𝐹𝑖: if the generated sample belongs to the sample space, then 

accept the candidate �̅�𝑗
𝑢+1  sample as the next state, i.e. 𝜃𝑗

𝑢+1 = �̅�𝑗
𝑢+1 ; 

otherwise, reject the sample candidate and take the current sample as the 

next one, i.e. 𝜃𝑗
𝑢+1 = 𝜃𝑢. 

The candidate sample �̅�𝑢+1  is generated from the current sample  𝜃𝑢 . However, the 

candidate sample �̅�𝑢+1 or the current sample  𝜃𝑢 is used as the next sample, but depends 

on whether the candidate sample �̅�𝑢+1 lies in the failure domain or not. 

6.3.4 Proposed Method  

For an optimisation problem, finding the maximum or minimum optimum of a function 

using MCS is not efficient and involves substantial computational cost (Robert & Casella, 

2004). This inefficiency could be attributed to the evaluation of the functions that are 

performed in regions which are not close to the maximum. The notion behind the use of 

interval optimisation based subset simulation approach of the membership function is to 

estimate the corresponding membership interval of the fuzzy variable for structural 

reliability assessment. In the value space of fuzzy variable, the lower and upper values of 

the reliability problem would be gradually searched by employing the concept of GA and 

the highly efficient subset simulation in the reduced domain of the random variables. 
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Figure 6.2 shows the computational steps, and the procedure for computing the 

membership function for the failure probability of a structural system based on the 

proposed method can be summarised as follows: 

Steps 

1. Initialise the design variables for deterministic parameters, random and fuzzy 

variables and use it to solve the membership function of the structural system. To 

achieve this, the fuzzy variable will be developed into a membership function and 

then discretise into ten 𝛼 − level cut. The vector of the fuzzy variables 𝛉  could be 

expressed as:  

𝛉 = [�̃�1, �̃�2, … , �̃�𝑛𝑓  ] = [�̃�1
1, �̃�1

2, … , �̃�1
𝑁;  �̃�2

1, �̃�2
2, … , �̃�2

𝑁; … , �̃�𝑛𝑓
1 , �̃�𝑛

2, … , �̃�𝑛𝑓
𝑁 ]  (6.12) 

Where 𝑛𝑓  denotes the number of fuzzy variables for the vector 𝛉  and 𝑁 is the 

number of samples for every �̃�𝑖  used in the computation. The membership 

interval 𝜽 𝐹(𝛼) ∈ (𝜽 𝐹
𝐿(𝛼), 𝜽 𝐹

𝑈(𝛼)), which corresponds to a particular membership 

level of a fuzzy variable and can be solved using an inverse function of the fuzzy 

variable.  

2. Compute the boundaries of performance function at every 𝛼 − level for the lower 

and upper bounds of the structural reliability using GA based SS simulation in 

each case for 𝜽 𝐹(𝛼) ∈ (𝜽 𝐹
𝐿(𝛼), 𝜽 𝐹

𝑈(𝛼)). This will lead to the formulation of the 

limit state function  𝑌(𝛼) = 𝑔𝑖(𝜽 𝐹
𝐿(𝛼))  and 𝑌(𝛼) = 𝑔𝑖(𝜽 𝐹

𝑈(𝛼)) for every 𝛼 −

level cut. The outcome from the limit state function 𝑌(𝛼) is an interval variable 

because 𝜽 𝐹(𝛼) is an interval variable.  

3. Compute the fuzzy probability bounds and the corresponding structural reliability 

from the real-valued probabilities associated with the originals 𝛉 𝑗(𝛼). Now, at 

every alpha-level  𝜽𝐹(𝛼) ∈ (𝜽𝐹
𝐿 (𝛼), 𝜽𝐹

𝑈(𝛼)) , the equivalent reliability would 

satisfy   𝑃𝑅
𝐿(𝛼) ≤ 𝑃𝑅(𝛼) ≤ 𝑃𝑅

𝑈(𝛼) , which is described in this study as two 

optimisation problems as expressed in Eq. (6.1) and Eq. (6.2). The minimum 

𝑃𝑅
𝐿(𝛼) of 𝑃𝑅(𝛼) can be determined using GA and taking (𝜽𝐹

𝐿(𝛼), 𝜽𝐹
𝑢(𝛼)) as the 

solution domain for every alpha-level. Therefore, during the optimisation, the SS 

simulation is called to estimate the reliability whenever the objective function is 
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required in the computational process. However, for the GA, the initial solutions 

would be generated uniformly in the solution domain (𝜽𝐹
𝐿(𝛼), 𝜽(𝛼)) and these 

would be used to form a new set of solutions for the next generation. This process 

will continue until the global minimum value of the reliability is converged. 

Similarly, to estimate the maximum reliability, that is, 𝑃𝑅
𝑢(𝛼)  of  𝑃𝑅(𝛼) , the 

objective function expressed in Eq. (6.2) is transformed into a minimum 

using −𝑃𝑅(𝛼). Then, the minimisation process of GA is applied to search for the 

minimum value of  −𝑃𝑅(𝛼) , which eventually produce the maximum 𝑃𝑅
𝑢(𝛼) 

of 𝑃𝑅(𝛼). 

 

    

Initialise the input parameters

Sample fuzzy variables

Discretised the fuzzy sample 

Formulation the limit state 

function 𝑌(𝛼) = 𝑔𝑖(𝜽 𝐹
𝐿 (𝛼)) and 

𝑌(𝛼) = 𝑔𝑖(𝜽 𝐹
𝑈(𝛼)) for every 

𝛼 − level cut 

Compute the boundaries of 

performance function at 

every 𝛼 − level for the lower 

and upper bounds 

Compute the fuzzy probability 

and the corresponding structural 

reliability 
 

Figure 6.2: Flow diagram for the optimisation based fuzzy subset simulation 

approach 
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6.3.5 Applicability of the Proposed Method 

The proposed method in this study is generally applicable to any engineering structure 

associated with parameters such as fuzzy variables, random variables, and deterministic 

values. The efficiency of this approach does not depend on a large number of samples 

when compared to MC. This feature makes it specially suitable for reliability analysis of 

structures and in particular to solve real engineering problems. For a structure that is 

characterised by a large number of failure modes, the proposed strategy can be used to 

efficiently estimate the fuzzy structural reliability associated with each of the failure 

modes. Therefore, the entire system reliability can be evaluated by integrating the 

individual failure probability to assess the safety of the structure. 

6.4 Numerical Example 

The applicability and computational performance of the proposed approach in Section 

6.3.4 is demonstrated with a structural failure problem of buried pipes. The random 

variable parameters and deterministic values are reported in Table 3.3 and Table 3.4, 

which are based on industry standard. These values are obtained from the literature as 

reported in (Ahammed & Melchers, 1997; Babu & Srivastava, 2010; Tee et al., 2014; 

Sadiq et al., 2004). In this example, corrosion-induced failures for pipe ovality and 

through-wall bending stress are considered and for a design life of 25, 50, 75 and 100 

years. The proposed approach is employed to capture the impact of uncertain variables 

(random and fuzzy variable) on the performance of buried pipelines, where some 

probabilistic information is considered not adequate for standard probabilistic analysis. 

Two different failure modes as stated earlier are used in this Section to investigate and 

demonstrate the performance of the presented approach, which is based on GA, fuzzy set, 

and subset simulation. The outcomes of these investigations are validated and compared 

with that of the MCS method to ascertain the efficiency of the presented model. To 

guarantee and achieve good convergence of the failure probability using the MCS 

approach, a large sample size (106) is used at each realisation of the fuzzy variable. The 

above-mentioned failure modes are further discussed with the result outcomes as 

investigation 1 (Section 6.4.1 for pipe ovality) and investigation 2 (Section 6.4.2 for 

through-wall bending stress).  
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6.4.1 Investigation 1 (Pipe Ovality) 

A buried steel pipe would tend to ovalise under the action of earth and live load as shown 

in Figure 3.5. The modified Iowa equation according to Alliance (2001) and expressed in 

Eq. 3.33 is used to analyse the ovality of the buried pipe under the influence of live and 

earth load.  Table 3.1 shows the PDFs for live load, the elastic modulus of pipe material 𝐸, 

backfill soil modulus 𝐸𝑠, and pipe thickness. Other parameters include the pipe deflection 

lag factor 𝐷𝐿; the pipe deflection coefficient 𝐾𝑏 and the mean diameter 𝐷 and are defined 

as certain deterministic values. The corrosion parameters for final pitting rate constant 𝑎 

(Eq. (6.13)), pitting depth scaling constant 𝑏 (Eq. (6.14)), and corrosion rate inhibition 

factor 𝑐  (Eq. (6.15)) are modelled using triangular fuzzy membership function. The 

reason for treating corrosion as fuzzy variable is to account for the uncertainties in the 

values of the parameters that characterise the environment, variables that affect the time 

to corrosion initiation, and the rate of corrosion propagation (Anoop & Balaji, 2007; 

Marano et al., 2008). The fuzzy variables for the corrosion parameters are combined into 

a joint membership function using transformation technique and interval arithmetic. The 

study is carried out for the design life of 25, 50, 75, and 100 years.   

 𝜇𝑎(𝑎) = {
 (𝑎 − 0.001) 0.008⁄ ;             0.001 ≤ 𝑎 ≤ 0.009

(𝑎 − 0.015) (−0.006)⁄ ;      0.009 ≤ 𝑎 ≤ 0.015
  (6.13) 

 𝜇𝑏(𝑏) = {
  (𝑏 − 2.5) 3.77⁄ ;           2.5 ≤ 𝑏 ≤ 6.27

  (𝑏 − 7.5) (−1.23)⁄ ;   6.25 ≤ 𝑏 ≤ 7.5
    (6.14) 

 𝜇𝑐(𝑐) = {
(𝑐 − 0.01) 0.09⁄           0.01 ≤ 𝑐 ≤ 0.1

  (𝑐 − 0.18) (−0.17)⁄    0.1 ≤ 𝑐 ≤ 0.18
    (6.15) 

For the computation of fuzzy reliability of the membership function of buried pipe, the 

probabilistic and fuzzy alpha-level with GA is applied. Figures 6.3, 6.4, 6.5, and 6.6 

shows the membership function of the fuzzy-based reliability of buried pipe after 25, 50, 

75 and 100 years, respectively. These results are obtained using the procedure as 

explained in Section 6.3.4. It can be deduced from the results (Figures 6.3, 6.4, 6.5 and 

6.6) that the performance of the proposed method, shows a good match with that of the 

MCS. This illustrates and demonstrates the correctness and applicability of the proposed 

method.  
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Figure 6.3: Reliability of buried pipe after 25 years due to pipe ovality 

  

Figure 6.4: Reliability of buried pipe after 50 years due to pipe ovality 
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Figure 6.5: Reliability of buried pipe after 75 years due to pipe ovality 

  

Figure 6.6: Reliability of buried pipe after 100 years due to pipe ovality 
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6.4.2 Investigation 2 (Through-wall Bending Stress of Buried Pipe) 

Figure 3.34 shows the schematic diagram for the through-wall bending stress. The 

through-wall bending stress is developed under the impact of earth and the surface load 

acting on the buried pipe. The properties of soil and pipe required for this failure condition 

are given in Table 3.3 and Table 3.4. Similarly, Figures 6.7, 6.8, 6.9, and 6.10 illustrate 

the performance function of the buried pipe for investigation 2 after 25, 50, 75 and 100 

years, respectively. These results are obtained using the procedure as explained in Section 

6.3.4. The fuzzy reliability of the membership function of the buried pipe is evaluated 

using the proposed method and compared with the MCS method. The outcome based on 

the proposed method shows satisfactory results with the MCS and demonstrates the 

efficiency of the approach in analysing structural engineering problems.  

 

  

Figure 6.7: Pipe reliability after 25 years due to through-wall bending stress 
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Figure 6.8: Pipe reliability after 50 years due to through-wall bending stress 

  

Figure 6.9: Pipe reliability after 75 years due to through-wall bending stress 
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Figure 6.10: Pipe reliability after 100 years due to through-wall bending stress 

   

Figure 6.11: COV versus membership level 
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Figure 6.12: Sensitivity test for pipe performance at 25 years design life (pipe 

ovality) 

  

Figure 6.13: Sensitivity test for pipe performance at 100 years design life (pipe 

ovality) 

Reliability 

(𝑃𝑟)

 𝜇
𝑃
𝑟
(𝑃
𝑟
) 

 

 = 0.0610 

 = 0.0605 

 = 0.0600 

 = 0.0595 

Reliability 

(𝑃𝑟)

 𝜇
𝑃
𝑟
(𝑃
𝑟
) 

 

 = 0.0610 

 = 0.0605 

 = 0.0600 

 = 0.0595 



 

142 

 

6.4.3 Discussions 

As shown in Figures 6.3 - 6.6 and Figures 6.7 – 6.10, the proposed model has been 

compared with the MCS approach and the outcome demonstrates that the proposed 

approach is robust, reliable and efficient for analysis of engineering structures. The 

optimised subset simulation algorithm for the estimation of fuzzy reliability of an 

engineering structure has helped to directly solve the reliability problem by focussing on 

the maximum of the objective function. In the computation, for each realisation of fuzzy 

variables, a total of 106 performance function evaluation counts are required to estimate 

the reliability of the structure at each bound when using the MCS, while a total of 650 

performance function evaluation counts are needed when using the optimised subset 

simulation approach. This clearly demonstrates the computational efficiency of the 

proposed method. Also, the computational time for the two methods is assessed, and in 

both cases, the expressions are defined in analytical form, which makes the computational 

process fast. The two techniques have been measured running on a CPU time using a 1.60 

GHz Pentium 4 computer. The computational times required for MCS approach is 281 

minutes, while the proposed method is 264 minutes. However, a further computational 

assessment based on the COV is reported in Figure 6.11. The COV for MCS is computed 

using the expression in Eq. (6.16) and for subset-GA approach, it is estimated using Eq. 

(6.17) (Au & Beck, 2001).   

   √(1 − 𝑃𝑓) 𝑁𝑃𝑓⁄ ,      (6.16) 

   √(log(𝑃𝑓))
2
(1 − 𝑃0)(1 + 𝛾 ) (log(𝑃0))2𝑁𝑃0⁄   (6.17) 

Where 𝛾 represents the correlation factor. In Figure 6.11, the assessment is performed on 

every membership level, and the result shows that the proposed method can lead to a 

substantial improvement in computational efficiency over MCS when estimating small 

failure probabilities. However, this advantage begins to narrow down as the probability 

of failure approaches unity.  
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Table 6.1: Failure probability of buried pipe after 25-years 

 

  

Subset-GA 

Lower bound Upper bound 
    

0 0.002106 0.445403 0.03688 0.2385 

1 0.002547 0.431663 0.033118 0.246276 

2 0.002987 0.420146 0.029339 0.255033 

3 0.003602 0.406616 0.026285 0.262976 

4 0.004196 0.395584 0.023155 0.27214 

5 0.005029 0.382497 0.020671 0.280341 

6 0.005829 0.371828 0.018137 0.289792 

7 0.006928 0.359345 0.016133 0.298254 

8 0.008018 0.348784 0.014114 0.307917 

9 0.009374 0.337492 0.012431 0.317093 

10 0.010957 0.326215 0.010957 0.326215 

 

It is worth mentioning that the engineering application of the proposed model is vital to 

structural engineering problems, especially where there are fuzzy and random variables.  

Figures 6.12 and 6.13, show the parametric analysis of pipe performance at 25 years and 

100 years design life based on pipe ovality failure mode by critically analysing the level 

of imprecision on the pipe strength. For instance, the maximum allowable value of pipe 

ovality (βovality) is changed using values such as 0.0610, 0.0605, 0.060 and 0.0595. It 

can be deduced that after the first 25 years (Figure 6.12), the impact of the changes in 

imprecision is insignificant compared to the 100 years (Figure 6.13) design life for fuzzy 

reliability assessment. The practical implication of this could mean that the uncertainty 

level is high and therefore minor changes in imprecision could lead to a notable change 

in the reliability of the structure. Similarly, as shown in Table 6.1, a 3% level of increase 

in imprecision leads to upper bound reliability of 0.03688 and lower bound reliability of 

0.002106, which is slightly more than one order of magnitude larger than the standard 

analysis. Also, in Table 2, as the 𝛼 − 𝑙𝑒𝑣𝑒𝑙  increases, the corresponding failure 

probability for the lower and upper bound increases. This feature also demonstrates, how 
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sensitive the interval-based reliability analysis is with respect to the level of imprecision 

of the input variables. However, the 𝛼 − 𝑙𝑒𝑣𝑒𝑙 gains its usefulness by examining the 

reliability of the structure at different level, which can represent a different degree of 

imprecision. Based on this, a better understanding of the impact of uncertainty associated 

with the failure of buried pipe can be evaluated. This feature helps to capture and quantify 

the negative effects of uncertain variables on the performance of an engineering structure 

with regards to estimating the reliability of the structure.  

6.5 Chapter Summary 

This Chapter analysed the reliability of buried pipe based on fuzzy-subset simulation 

approach and considering the effect of uncertain variables. The underlying ideas behind 

the proposed algorithm are explained, and an example problem based on the buried 

pipeline is used to analyse the applicability and efficiency of the proposed model. The 

approach relies on the performance function of the buried pipe, which involves random 

and fuzzy variables for the modelling of the pipe structure. The values of the fuzzy 

variables for every alpha-level are first obtained using the membership function. 

Therefore, the set values of the fuzzy variable bound the reliability of the structure, and 

this is evaluated using optimisation and efficient subset simulation approach. The 

rationale behind the proposed strategy is to locate a failure domain or region where the 

objective function is minimised or maximised and compute the reliability using subset 

simulation. The presented approach illustrates that the fuzzy uncertainty of the input 

variables could be propagated to determine the fuzzy reliability of the membership 

function of a structural system. For the full evaluation of the random variables, the 

approach utilised the efficiency and capability of subset simulation. MCS is used to 

validate the applicability of the proposed method, and the result shows a very good 

agreement. The developed model can accommodate a various degree of uncertainty in the 

computation of the fuzzy reliability and can easily be applied to other engineering 

structures. Because of the deteriorating condition of the buried pipeline, it is essential to 

develop a maintenance strategy in other to keep the risk under control. As a result, 

determining the optimal time for maintenance of the buried pipe becomes an important 

aspect of this study. Therefore, a maintenance strategy is proposed in Chapter 6 and is 
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designed at evaluating the performance of a buried pipeline using fuzzy reliability, risk, 

and cost to predict the optimal time interval for maintenance. 
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7 MAINTENANCE OF DETERIORATING BURIED PIPE 
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7.1 Introduction 

In this Chapter, a maintenance approach is proposed and is aimed at examining the 

performance of a buried pipeline using fuzzy reliability, risk, and total maintenance cost 

to predict the optimal time interval for maintenance. The goal is achieved using a multi-

objective optimisation where the first objective is the minimisation of the total cost of 

maintenance, while the second objective involves the maximisation or minimisation of 

one of the performance indicators (e.g., fuzzy reliability or risk). The maintenance of the 

deteriorating pipe segment is considered so that when replaced, there will be a total 

restoration of the performance of the pipe segment to the original condition. The pipe 

segment with the highest repair priority will be determined using performance indicator, 

considering maximum reliability and minimum risk.  

The performance of underground pipe network influenced by adverse environmental 

effects (e.g., corrosion) and the associated induced failure possibility and risks increases 

as the impact of the effects increases. Corrosion effect has affected the safe operation of 

most engineering structures over the years. For a buried pipeline, corrosion has gradually 

reduced the resistance of the mechanical and the structural properties, which has increased 

the possibility of failure over time. Due to the deteriorating condition of the buried 

pipeline, the assessment and maintenance would require a proper inspection and 

maintenance activities to keep the risk under control. As a result, the evaluation and 

determination of the optimal time for maintenance of the buried pipe become an important 

research area.  

Considering the safe operation of the buried pipe, Hong (1999) stated that the optimal 

maintenance programme should be defined based on a minimum acceptable level of 

failure probability. Similarly, regarding cost Laggoune et al. (2010) suggested that the 

optimal maintenance planning should be defined based on the minimum expected cost. 

The two viewpoints play a vital role in regards to when maintenance should be carried 

out. Also, Barone & Frangopol (2014a) suggested that the increase in the number of 

systems that reached critical conditions, due to deterioration of the structural resistance, 

has directed the attention of researchers to the development of a method that would 

provide cost-effective maintenance approach. However, this Chapter presents the 

development of a cost-effective strategy that would assist the decision-makers with the 
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tool to know the appropriate time interval to carry out maintenance within the design life 

of the buried pipe.  

The rest of this Chapter is organised as follows: Section 7.2 presents the maintenance of 

buried pipe and performance indicators. Section 7.3 explains methods for evaluating 

performance indicators and the procedure for estimating the structural reliability. In 

Section 7.4, the numerical example is presented, and Section 7.5 explains the performance 

indicators and total cost using multi-objective optimisation. Also, the outcome of the 

annual fuzzy reliability and total maintenance cost, and the annual risk and total 

maintenance cost is presented. Section 7.6 presents a parametric study and Section 7.7 

explains Chapter summary.  

7.2 Maintenance of Buried Pipe and Performance Indicators  

The buried, ageing and deteriorating pipeline network is maintained to ensure safe 

operation within the service life. The benchmark for a new service design life of pipeline 

is commonly set as 50 years, although other pipe products and design methods under 

certain conditions may provide a service life of around 100 years (Najafi, 2011). Also, to 

successfully achieve the purpose of pipe maintenance, factors such as the history of the 

pipe, possible causes of failure (corrosion, concentrated load, or nearby blasting), leakage, 

failure modes, and the nature of the transported fluid should be adequately considered. 

Without a proper and detailed understanding of the overall pipeline failure conditions, it 

is difficult to select a maintenance approach that would mitigate the problem 

appropriately. However, in this study, a corrosion-induced failure is considered based on 

the structural failure mode of a buried pipeline. A replacement of a pipe section is deemed 

to based on the optimal time and whenever a maintenance action is required relying on 

the outcome of the pipe reliability and the associated risk. The objective of pipe 

replacement design involves a set of equations that is based on limit state functions and 

considering factors such as pipe material properties, soil, traffic loads, and other loading 

conditions. 

Various techniques considered in assessing the structural performance of buried pipe 

throughout the design life may involve the use of performance indicators such as 
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reliability, and risk or lifetime distribution such as hazard function. However, the use of 

life cycle maintenance is a fundamental requirement for sustaining and ensuring that the 

performance of the engineering structure is above a specific safety level (Barone & 

Frangopol, 2014b; Biondini & Frangopol, 2009). Therefore, it is vital for any 

maintenance approach to take account of the optimal time for maintenance interventions. 

The inspection of the buried pipe during the design life would assist to identify any 

structural defects, evaluate the structural performance and, update the structural models 

established in the design stage while maintenance interventions are required to maintain, 

improve, or restore the structure to the initial state. Barone & Frangopol (2014b), 

suggested that the maintenance interventions aimed at slowing down the structural 

deterioration process or restoring the resistance of one or more component of the structure 

when a specific condition is reached. Slowing down the deterioration process is more of 

the preventive maintenance while the restoring the resistance of the part of a structure is 

called the essential maintenance (Barone & Frangopol, 2014b). The essential 

maintenance is usually performed when one or more of the performance indicators reach 

a predefined level. 

In the literature, essential maintenance of a structure based on a probabilistic approach is 

used for the evaluation of structural reliability as illustrated in Figure 7.1. Herein, the 

essential maintenance approach is analysed based on a non-probabilistic method for the 

assessment of the structural safety as shown in Figure 7.2. Corrosion is evaluated as fuzzy 

variable because of the uncertainty associated with the corrosion parameters. This 

approach has helped to capture the variabilities related to corrosion process, which cannot 

be obtained using the probabilistic method. The essential maintenance approach assumed 

that the reliability of the structure returns to the original condition after repair as 

illustrated in Figure 7.1 and Figure 7.2. The time interval used to perform the maintenance 

is not considered, and for this reason, the reliability of the structure would suddenly 

increase at the time of repair.  
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Figure 7.1: Reliability and maintenance cost over time (probabilistic method) 

 

Figure 7.2: Reliability and maintenance cost over time (non-probabilistic method) 
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Buried pipes are usually affected by corrosion over time, for example, continuous 

reduction of pipe walls can lead to failure. Maintenance carried out through replacement 

of corroded part would return the pipe segment to its original state, which would enhance 

the performance of the pipe network. In some cases, a repair priority can be assigned to 

one or more pipe sections, based on their likelihood and consequences of failure. The 

decision to carry out a maintenance using different repair options and time will depend 

on the performance indicators considered in the analysis.  

Maintenance of buried pipeline system requires continuous upkeep of every segment and 

components to ascertain a suitable functionality. The terms preventive and essential 

maintenance are used to describe different types of maintenance. Preventive maintenance 

ensures that the structure does not deteriorate to a critical state before essential 

maintenance is carried out. Preventive maintenance is usually performed during the life 

cycle before the safety state of the structure is dangerous. Essential maintenance is needed 

when the structure has reached suggested performance thresholds, which could threaten 

the safety of the structure and cause an environmental hazard (Barone & Frangopol, 

2014a). Barone & Frangopol (2014a), suggested that the use of essential maintenance 

actions plan provide rescue of the structural performance of engineering structure. On the 

other hand, the cost-efficiency of maintenance can be maximised by carrying out 

maintenance at an optimal time before failure occurs. Therefore, maintenance of buried 

pipeline structure should be formulated as an optimisation problem. A multi-objective 

optimisation approach, which uses performance indicator and total maintenance cost as 

objective functions are proposed for the maintenance of buried pipe.  

7.3 Annual Fuzzy Reliability and Risk as Performance Indicators 

There are several probabilistic and non-probabilistic methods that have been proposed to 

analyse the performance of deteriorating structures while considering the effect of 

uncertain variables. These proposed methods aimed at the assessment of the structure 

over the life cycle to ensure the reliability of the structure. While considering the effect 

of randomness and fuzziness, a rational way to treat these uncertain variables is to 

consider an approach that can simulate the two types of uncertainty. In this context, the 
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failure probability of a structure can be defined as the probability of violating the limit 

state associated with the failure mode of the structure as explained in Chapter 3.  

For a buried pipe, the deterioration process due to corrosion occurs with time, so the 

performance indicator is analysed at a time 𝑡. In this study, the performance indicator for 

reliability and risk associated with the failure of the buried pipe is performed annually. 

The determination of the failure probability of a structure involving fuzzy and random 

variables using optimisation is usually a challenging task because of the computational 

cost. For this reason, a simplified approach is proposed as shown in Section 7.3.1 

Risk assessment of an engineering structure has been recognised in recent time as a 

crucial part of decision making (Barone & Frangopol, 2014a). As a result of this, several 

performance indicators have been proposed to evaluate a time-dependent structural 

performance of deteriorating buried pipeline (Ahammed & Melchers, 1997; Sadiq et al., 

2004; Tee et al., 2014). Due to the need of taking into account, the consequences 

associated with the failure of buried pipeline, making of decisions based on risk has 

become an essential tool for optimising the time for maintenance. The assessment of risk 

can be either qualitative or quantitative. According to Arunraj & Maiti (2007), qualitative 

risk assessment deals with simple descriptions of the types of hazards, their consequences 

and likelihood, which are reported in an opportunely built risk matrix In this study, a 

quantitative risk assessment is considered, and it is the risk associated with a particular 

failure mode of buried pipe. It is defined as the product of the failure probability and the 

associated consequences. 

Over the years, optimisation algorithms are used while considering maintenance times as 

design variables, which allow the identification of possible opportunity for maintenance 

during the design life cycle. In this Chapter, two different optimisation problems based 

on reliability, risk, and total maintenance cost are utilised for the determination of the 

optimal maintenance time of a buried pipe. The failure modes considered herein for the 

analysis are briefly described in Chapter 3, Section 3.3. The structural failure modes of 

buried pipe have been modelled as a series-series system so that failure will occur when 

either of the failure conditions exceeds the safety threshold.  
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7.3.1 Procedure for Estimating Reliability 

The propagation of the random and fuzzy variables for the maintenance of a buried pipe 

system was performed using fuzzy reliability. Möller et al. (2003) suggested that the 

determination of the fuzzy reliability of a structure requires a fundamental stochastic 

solution, which means in principle any probabilistic algorithm could be used for this 

purpose. In this study, a subset simulation approach is employed and the procedure is 

summarised below: 

1. Initialise the design parameters and sample random variables and develop the 

membership of the fuzzy parameters.  

2. Discretise the membership function into ten 𝛼 − level cut. The vector of the fuzzy 

variables θ̃ could be expressed as: 

 θ̃ =  �̃�1, �̃�2, … , �̃�𝑛  =  �̃�1
1, �̃�1

2, … , �̃�1
𝑁;  �̃�2

1, �̃�2
2, … , �̃�2

𝑁; … , �̃�𝑛
1, �̃�𝑛

2, … , �̃�𝑛
𝑁       (7.1) 

Where n denotes the number of fuzzy variables for the vector θ̃ and 𝑁  is the 

number of samples for every �̃�𝑖 used in the computation. For every 𝛼 − 𝑙𝑒𝑣𝑒𝑙 the 

fuzzy variable can be decomposed into  �̃�𝐹
𝐿(𝛼) and �̃�𝐹

𝑈(𝛼). Where �̃�𝐹
𝐿(𝛼) denotes 

the lower and �̃�𝐹
𝑈(𝛼) is the upper value of every 𝛼 − level cut. The membership 

interval �̃�𝐹(𝛼) ∈ (�̃�𝐹
𝐿(𝛼), �̃�𝐹

𝑈(𝛼)), which corresponds to a particular membership 

level of a fuzzy variable. 

3. Compute the boundaries of performance function at every 𝛼 − level for lower and 

upper bounds of the structural response in each case for  �̃�𝐹(𝛼) ∈

(  �̃�𝐹
𝐿(𝛼), �̃�𝐹

𝑈(𝛼)) . This will lead to the formulation of the limit state 

function 𝑌(𝛼) = 𝑔𝑖(�̃�𝐹
𝐿(𝛼)) and 𝑌(𝛼) = 𝑔𝑖(�̃�𝐹

𝑈(𝛼)) for every 𝛼 − level cut.  

4. Calculate the reliability of the structure for lower 𝑅𝐿and upper 𝑅𝑈 using subset 

simulation (SS) (see Chapter 6, Section 6.3.2). Based on the relationship between 

the outcomes of subset simulation with the effect of corrosion, the reliability of 

the structure considering the lower and upper values for every 𝛼 − level cut can 

be expressed as shown in Eq. (7.2) and Eq. (7.3) 
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   𝑅𝐿(𝛼𝐿; 𝑇) = 1 −  𝑃(�̃�𝐿)∏ 𝑃(�̃�𝑖+1
𝐿 |�̃�𝐿)𝑁−1

𝑖=1  |
𝛼𝐿

   (7.2) 

   𝑅𝑈(𝛼𝑈; 𝑇) = 1 −  𝑃(�̃�𝑈)∏ 𝑃(�̃�𝑖+1
𝑈 |�̃�𝑈)𝑁−1

𝑖=1  |
𝛼𝑈

  (7.3) 

7.4 Case Study 

The investigated problem and the numerical values are obtained from the literature (Khan 

& Tee, 2016; Rahman & Vanier, 2004). The total length of the flexible metal pipe is 

approximately 789 km, and the pipe network comprises of medium size steel and ductile 

iron materials. However, one Section of the medium size steel was used to test the 

applicability and the usefulness of the fuzzy-based optimal maintenance approach. The 

approach utilised fuzzy reliability and GA to evaluate the optimal time interval to carry 

out maintenance of buried pipe network. The pipe material, location, and statistical 

properties for the considered segments are reported in Table 7.1 and Table 7.2, with an 

assumption that the pipe network is constructed above the underground water table. 

Therefore, the effect of subsurface water table was not considered in the analysis. The 

corrosion parameters for final pitting rate constant 𝑎, pitting depth scaling constant 𝑏 and 

corrosion rate inhibition factor 𝑐  are modelled as fuzzy variable and the values are 

expressed in Eq. (7.4), Eq. (7.5), and Eq. (7.6).  

  𝜇𝑎(𝑎) = {
 𝑎 − 0.001 0.008;⁄     0.001 ≤ 𝑎 ≤ 0.009

𝑎 − 0.015 (−0.006);⁄     0.009 ≤ 𝑎 ≤ 0.015
             (7.4) 

  𝜇𝑏(𝑏) = {
 𝑏 − 2.5 3.77;⁄     2.5 ≤ 𝑏 ≤ 6.27

𝑏 − 7.5 (−1.23);⁄     6.25 ≤ 𝑏 ≤ 7.5
              (7.5) 

  𝜇𝑐(𝑐) = {
 𝑐 − 0.01 0.09;⁄     0.01 ≤ 𝑐 ≤ 0.1

𝑐 − 0.18 (−0.17);⁄     0.1 ≤ 𝑐 ≤ 0.18
   (7.6) 

In this example, corrosion-induced failures modes as explained in Chapter 3 with limit 

state functions are used to evaluate the optimal time for maintenance. The effect of a 

continuous reduction of pipe thickness over time due to corrosion is considered over the 

service life. Loads acting on the buried pipe are as a result of live and soil load, and they 

are considered in the analysis. The failure probability of the pipe segment has been 

estimated using fuzzy-subset simulation approach. The approach is employed to capture 
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the impact of corrosion uncertainty on buried pipes, where the probability information is 

considered not adequate for standard probability analysis. The reliability and the failure 

probability results based on 𝛼 − levels 1, 5 and 8 of the membership function of a fuzzy 

variable are reported in Figures 7.3 and Figure 7.7. The various 𝑎 − level sets may 

denotes different opinion of engineering judgement or expert knowledge based on the 

uncertain fuzzy variables in other to gauge the effect of uncertainties. However, 𝑎 −

levels 8 is used herein to plan the maintenance of buried pipe. 

Optimal maintenance plans for the buried pipeline are investigated based on two different 

approaches, and these include reliability and risk associated with pipe failure. The 

maintenance plans involve essential maintenance actions on any of the pipe segment and 

are considered new after repair. The maintenance cost (cost of replacement) is assumed 

to be £25,000, and a discount rate r of 2% is used in the analysis. The cost of injuries and 

fatalities, environmental damages, and cost of deferred supply during the pipe 

maintenance are assumed to be £10,000,000. These costs are obtained based on the case 

study of Rahman & Vanier (2004) and Davis et al. (2008) report. 

Table 7.1: Statistical properties 

Properties Mean value Coefficient of 

variation % 

Distribution 

Elastic modulus of steel 

pipe 𝑬 

210 GPa 1.0 Normal 

Modulus of soil reaction 𝑬′ 2 MPa 5.0 Normal 

Unit weight of soil 𝜸𝒔 18.0 kN/m3 2.5 Normal 

Backfill soil modulus 𝑬𝒔 103kPa 5.0 Normal 

Deflection coefficient 𝑲𝒃 0.11 1.0 Lognormal 

Buoyancy factor, 𝑹𝒘 1.0 - - 

Yield stress, 𝝈𝒚 475MPa 5.0 Normal 

Deflection lag factor, 𝑫𝑳 1 - - 
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Table 7.2: Pipe materials and location properties 

Pipe segment A 

Material Steel 

Location Commercial 

Embedment soil Clay 

Length (km) 150 

Mean diameter (mm) 600 

Thickness (mm) 9 

Soil height above soil invert (m) 2.0 

Wheel load (live load), 𝑷𝒔 100 

 

7.5 Performance Indicators and Total Cost Using Multi-objective 

Optimisation 

The annual performance indicators for buried pipe usually assumes numerical values, 

which represents the performance condition of the buried pipe at a given time during its 

life cycle. Traditionally, this can be computed annually, that is a one-year interval. The 

performance of an underground pipeline over the design life is evaluated with regards to 

a specific limit state. However, this will depend on the design intent of the assessment, 

the function and strategic importance of the structure. The soil and pipe parameters are 

associated with uncertainties that affect the ultimate performance of pipe structure over 

time. Therefore the performance indicators provide a measure of the likelihood of pipe 

failure within the service life. 

Most engineering parameters associated with a significant amount of uncertainties are as 

a result of lack of information or knowledge on how to efficiently estimate the values of 

the parameter. In numerical analysis, uncertainties are usually accounted for through the 

use of the traditional probabilistic model (Baecher & Christian, 2005). The probabilistic 

modelling approach is associated with challenges because of lack of information 

particularly with geotechnical engineering parameters (Beer, Zhang, et al., 2013). Also, 

the data required for the computation of mathematical statistics are often not available in 
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sufficient quantity and quality. With the lack of information concerning the design 

parameters, a non-probabilistic approach, e.g., fuzzy modelling provides the needed 

method to capture the impact of the uncertain parameter on the performance of the 

structure. In this study, a fuzzy-based model as explained in section 7.3.1 is used to 

determine the annual reliability and probability of failure that produces a lower and upper 

bound as illustrated in Figure 7.3 and Figure 7.7. 

In the literature, annual performance indicators have been used to assess the maintenance 

of engineering structure based on reliability index, risk and cost (Dong & Frangopol, 

2015; Khan & Tee, 2016). Herein, a non-probabilistic approach is utilised for the 

determination of the optimal maintenance time of a buried pipeline. The fuzzy method is 

considered in computing the structural reliability so that the effect of the uncertain fuzzy 

variable on the overall performance of buried pipeline can be captured. The annual 

reliability and risk based on the α − level of the membership function associated with 

buried pipe performance are studied. The former is considered due to its direct definition 

regarding estimating the failure probability, and the latter due to its increasing importance 

in decision making and also, research field. 

7.5.1 Annual Fuzzy Reliability and Total Cost of Maintenance 

The first method discussed in this study is based on the use of fuzzy annual reliability for 

the optimal pipe maintenance. In this approach, a multi-objective optimisation procedure 

is used to analyse the optimal maintenance planning of a buried pipeline, and a numerical 

application dealing with a series-series connection of the pipe structural failure mode. The 

aims of this optimisation approach are (a) to maximise and determine the minimum 

annual structural reliability of buried pipe over a 125 years life cycle, and (b) to minimise 

the total cost required to carry out maintenance within the design life. This will help to 

keep the buried pipe in a safe working condition throughout the design life. The fuzzy 

structural reliability-based on lower and upper bounds for the performance of buried 

metal pipe is shown in Figure 7.3 for the condition where there are no maintenance 

actions. The values of the structural response for the annual reliability have been obtained 

using a fuzzy approach that utilised subset simulation for estimating structural reliability.  



 

158 

 

The failure of the buried pipeline will involve a direct economic loss and other financial 

consequences as a result of the incident. However, a maintenance action would be 

required, and this would be carried out on the pipe segment with the lowest reliability at 

the time maintenance is required. The present total cost of maintenance 𝐶𝑇𝑜 for keeping 

the each segment of buried pipe in safe working condition is expressed in Eq. (7.7).   

   𝐶𝑇𝑜 = ∑
𝐶𝐹

(1+𝑟)𝑇
𝑁
𝑖=1       (7.7) 

Where 𝑁 denotes the total number of sections that require replacement during the time 

for maintenance; 𝐶𝐹 represents the future cost of carrying out the replacement of each 

component of the pipe network; and 𝑟 is the annual discount rate. 

The formulation of the multi-objective optimisation is described by using the following 

minimisation problem. 

  Given:   𝑔(𝑇), 𝐶, 𝑟,             (7.8) 

  Find   𝑇𝑜𝑝𝑡 = {𝑇1, … , 𝑇𝑛}    (7.9) 

  To minimise:  {
𝑃𝑟
𝐿(T)
𝐶𝑇𝑜

      0 ≤ T ≤ 125 years  (7.10) 

     And  

     {
𝑃𝑟
𝑈(T)
𝐶𝑇𝑜

     0 ≤ T ≤ 125 years  (7.11) 

  Such that:  {0 years ≤ 𝑇opt ≤ 125 years}  (7.12) 

Where 𝑔(𝑇) represents the limit state functions associated with the structural pipe failure 

modes; 𝐶𝑇𝑜 denotes the cost of carrying out maintenance for each of the pipe segment; 𝑟 

is the annual money discount rate;  𝑛  is the total number of designed years for the 

structure; 𝑇𝑜𝑝𝑡 = {𝑇1, … , 𝑇𝑛}  represents the vector of the repair times; 𝑃𝑟
𝐿(T)  is the 

minimum lower bound value of the reliability of pipe over its life cycle, 𝑃𝑟
𝑈(𝑇) denotes 

the minimum upper bound value of the pipe reliability over its design life and CT is the 

total cost of the maintenance plan, evaluated using Eq. (7.7).  

The goal of Eq. (7.8) and Eq. (7.11), has been defined regarding the fuzzy annual 

reliability for the lower and the upper bound of the buried pipe system, so that a 
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minimisation problem can be achieved with respect to the two objectives. The optimal 

solution of the functions is obtained using a GA, and a single cross-over has been adopted, 

using an initial population of 200 trial solutions. The formulation and cross-over functions 

have been adapted to comply with constraints defined in Eq. (7.12). 

Figure 7.3 shows the fuzzy annual reliability for the lower and upper bound of pipe 

segment A with no maintenance action, while the Pareto front obtained from the 

optimisation is given in Figure 7.4. The first set of the maintenance activities associated 

with Figure 7.4 for the pipe segment is characterised by two renewal actions occurring at 

different times, for the lower and upper bound reliability. The optimal time determined 

based on the optimisation outcome occurred at 60 years and 66 years. However, the 

maintenance plan involves essential maintenance, which requires replacement of the pipe 

segment with the lowest reliability at the time when pipe maintenance is needed. Because 

the failure modes are considered to be connected in series, which means one failure mode 

will affect the other and cause the buried pipeline to fail. Therefore, replacement of pipe 

segments would provide the needed reliability for the pipe network at the time of 

maintenance.  By considering Eq. (7.7), the cost of the maintenance plan at 60 years and 

66 years will be £82,025 and £92,374 respectively. Also, the fuzzy reliability profile 

associated with the optimal time for maintenance of the pipe segment is shown in Figure 

7.5. In this case, two maintenance actions time are provided for the maintenance of the 

buried pipe.  
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Figure 7.3: Pipe reliability with no maintenance action 

 

Figure 7.4: Reliability-based Pareto front of buried pipe 
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Figure 7.5: Pipe reliability with maintenance action 

7.5.2 Annual Risk and Total Cost of Maintenance 

The failure of engineering structures are often associated with consequences, and as a 

result, risk-based assessment becomes necessary, and also, an essential tool for 

optimisation of maintenance. Ang & Tang (1984) defined risk as the product of the 

probability of failure and the associated consequences in monetary terms as a result of the 

failure. Assessment of risk associated with engineering structures can be analysed 

qualitatively or quantitatively. Qualitative risk assessment of structures deals with simple 

descriptions of different types of hazards, the associated consequences and likelihood, 

and reporting all these aspects in a constructive and opportunely built risk matrices 

(Arunraj & Maiti, 2007; Barone & Frangopol, 2014b). However, a quantitative risk 

assessment is considered in this study and Figure 7.6, illustrates a flowchart of the 

computational process used for the risk assessment of buried pipe considering thickness 

reduction due to corrosion. The quantitative risk assessment associated with the failure of 

pipe is defined as the product of the failure probability for each pipe segment at time t 

and the associated consequences due to failure.  
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Compute or estimate the ultimate pipe 

strength (this will depend on the failure 

mode)

Compute pipe response based on the 

structural failure mode

Evaluate the effect of 

thickness reduction by 

considering corrosion effect

Compute the annual reliability based 

on fuzzy subset simulation approach

Determine the time dependent risk associated with 

failure of buried pipe

Evaluate the consequences (i.e., 

direct and indirect cost) associated 

with pipe failure 

 

Figure 7.6: Framework for risk assessment of buried pipe considering thickness 

reduction 

The fuzzy annual failure probability and fuzzy annual reliability do not have or contain 

information concerning the consequences or severity associated with the pipe failure. But 

considering the risk related to the likelihood of failure, more detailed information for 

decision-makers or managers when dealing with issues concerning pipe performance over 

the design life is provided. The most common way of quantifying consequences 

associated with pipe failure risk is to evaluate the losses associated with the failure 

regarding cost. The cost related to structural failure can be a direct cost, e.g., cost of 

replacing the failed part or indirect cost, e.g., environmental contaminations cost. Barone 

& Frangopol (2014a) suggested that the direct consequences of failure are often 
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associated with repair/replacement cost of the structural component while the indirect 

consequence is the estimation cost derived from failure, which may not strictly be related 

to rebuilding the structure. In this case, the indirect effects of pipe failure may contain, 

for example, injuries, fatalities or environmental contaminations as a result of the 

structural failure of the buried pipe. With regards to any segment of the pipe network, the 

risk associated with the possibility of pipe failure is expressed in Eq. (7.13). 

  𝑅(𝑇) = 𝑃𝑓𝐶
𝑑𝑖𝑟(𝑇) + 𝐶𝑖𝑛𝑑𝑖𝑟(𝑇)     (7.13) 

Where 𝑃𝑓  denotes the failure probability of the pipe segment, 𝐶𝑑𝑖𝑟(𝑇) represents the 

direct cost of replacing the pipe segment and 𝐶𝑖𝑛𝑑𝑖𝑟(𝑇) is the indirect cost. 

Indirect consequences for failure of buried pipe network are estimated as the sum of three 

different losses. These include the cost of injuries and fatalities, environmental damages 

and cost of deferred supply during the pipe maintenance. By making allowance for the 

discount rate of money, the direct and indirect present cost of pipe maintenance can be 

obtained using Eq. (7.14) and (7.15).  

   𝐶𝑑𝑖𝑟(𝑇) =
𝐶𝑟

(1+𝑟)𝑇
      (7.14) 

   𝐶𝑖𝑛𝑑𝑖𝑟(𝑇) =
𝐶𝑖+𝐶𝑒+𝐶𝑑

(1+𝑟)𝑇
      (7.15) 

Where 𝐶𝑟 denotes the direct cost of replacing a pipe segment, 𝐶𝑖 represents the cost of 

injuries, 𝐶𝑠 is the cost of environmental damages and 𝐶𝑑 is the cost of deferred supply 

during maintenance.  

The total annual pipe risk (i.e., the sum of direct and indirect risks) for the buried pipeline 

structure when there is no maintenance action is shown in Figure 7.7. As observed in 

Figure 7.7, the risk associated with pipe failure increases as time increases since 

maintenance action is not applied. However, to ensure that the structural performance is 

above the recommended safety level during the service life, it is crucial to reduce the risk 

associated with pipe failure. Similar to what was used for the reliability case in Section 

7.4.1, a multi-objective optimisation procedure is proposed for the determination of 

optimal maintenance plan for buried pipe using the same constraints. However, in this 



 

164 

 

investigation, replacement of pipe segment would be performed on the segment 

associated with the highest risk. Therefore, the optimisation problem is as follows: 

  Given:  𝑔(𝑇), 𝐶, 𝑟,              (7.16) 

  Find  𝑇𝑜𝑝𝑡 = {𝑇1, … , 𝑇𝑛}     (7.17) 

  To minimise: {
𝑅𝑚𝑎𝑥
𝐿 (T)
𝐶𝑇𝑜

      0 ≤ T ≤ 125 years   (7.18) 

    And  

    {
𝑅𝑚𝑎𝑥
𝑈 (T)
𝐶𝑇𝑜

     0 ≤ T ≤ 125 years   (7.19) 

  Such that: {0 years ≤ Topt ≤ 125 years}   (7.20) 

Where 𝑅𝑚𝑎𝑥
𝐿 (T) is the maximum lower bound value of the annual risk and 𝑅𝑚𝑎𝑥

𝑈 (T) is 

the maximum upper bound value of the annual risk over the considered designed life of 

the pipe network.  

For the risk analysis, the design variable changes during the optimisation, and a Pareto 

front, as shown in Figure 7.8, are obtained, containing the dominating solutions for the 

various possible time of repairs. Also, the fuzzy risk profile associated with maintenance 

action as shown in Figure 7.8 is, instead, shown in Figure 7.9. In this case, two repair 

actions are provided for the maintenance of pipe network, which corresponds to the lower 

and upper risk. The optimal time for the lower and upper risk happened at 62 years and 

69 years and the corresponding cost of carrying out the maintenance is approximately 

£85,340 and £98,028 respectively.  



 

165 

 

 

Figure 7.7: Annual risk of buried pipe with no maintenance action 

 

Figure 7.8: Risk-based Pareto front of buried pipe 



 

166 

 

 

 

Figure 7.9: Risk-based assessment of buried pipe with maintenance action 

  

Figure 7.10: Pipe reliability by varying pipe thickness 
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7.6 Parametric Study 

7.6.1 The Effect of Pipe Design Variables on Pipe Reliability and Risk 

In this study, the parameters of pipe are considered as deterministic, random and fuzzy 

variables as defined in Table 7.1, Table 7.2 and Eq. (7.4) to Eq. (7.6). Figure 7.10 and 

Figure 7.11, shows the effect of pipe wall thickness and the yield stress due to pipe 

thickness reduction, and with respect to pipe reliability for the service life of 125 years. 

The result shows that both can affect pipe reliability, the optimal time for maintenance 

and the associated risk. This is demonstrated by varying the mean values of the input 

parameters. The increase in pipe thickness and the yield stress increases pipe reliability 

and the optimal time for maintenance and the associated risk is reduced. The outcome 

also shows that pipe thickness has a significant impact on pipe reliability compared to the 

yield stress. This demonstrates the importance of pipe wall thickness in the safety of the 

buried pipeline. Also, it could be that the outcome of the thickness reduction of pipe wall 

due to corrosion defects that produce the sudden decrease of pipe capacity. Based on this 

result, it is important to note that the pipe reliability, risk and optimal time for 

maintenance can be influenced significantly by a thickness reduction of the pipe wall.  

  

Figure 7.11: Pipe reliability by varying pipe yield stress of pipe material 
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7.6.2 The Effect of Cost Ratio (Direct and Indirect Cost)  

As explained in Section 7.5.2, the direct cost of pipe failure is the cost associated with the 

replacement of structural component or segment and the indirect cost involves the cost of 

injuries, fatalities or environmental contaminations. Since the risk associated with pipe 

failure includes direct and indirect cost, then, their effect including the failure probability 

can be analysed with regards to the time of maintenance. Based on Eq. (7.13) and to keep 

the buried pipeline safe during the design life, Eq. (7.21) is proposed to minimise the risk 

function.   

   𝑅(𝑇𝑜𝑝) = 𝑃𝑓(𝑇𝑜𝑝)𝐶
𝑑𝑖𝑟 +

𝑇𝑑

𝑇𝑜𝑝
𝐶𝑖𝑛𝑑𝑖𝑟     (7.21) 

Where 𝑇𝑜𝑝  represents the optimised time required for the replacement or maintenance to 

be conducted; 𝑇𝑑  denotes the designed life.  

The relationship  
𝑇𝑑

𝑇𝑜𝑝
 represents the frequency of maintenance required during the 

designed life. From Eq. (7.21), an optimal time for maintenance can be found as the 

minimum of the risk function with respect to optimal time 𝑇𝑜𝑝.  

   𝑇𝑜𝑝: 𝑅(𝑇𝑜𝑝) → min
𝑇𝑜𝑝

.      (7.22) 

Therefore, the function 𝑅(𝑇𝑜𝑝) is differentiable at any time 𝑇𝑜𝑝, where the residual pipe 

thickness is less than the pipe wall thickness and this is expressed in Eq. (7.23). 

   𝑅𝑇𝑜𝑝
′ = 𝑃𝑓(𝑇𝑜𝑝)

′ 𝐶𝑑𝑖𝑟 + (−
𝑇𝑑

(𝑇𝑜𝑝)2
) 𝐶𝑖𝑛𝑑𝑖𝑟   (7.23) 

From Eq. (7.23), the optimal time for maintenance or replacement of pipe segment can 

be determined based on the risk function and numerical solution of the equation. Also, 

the expression shows that the optimal time for maintenance will depend on the direct and 

indirect cost, the designed life and probability of failure. However, the maintenance of 

buried pipe by replacing the failed pipe segment is ideal when it is performed before 

failure. This will help to save the indirect cost associated with the failure of the pipe. In 

Figure 7.12, it can be deduced that as the optimal time required for maintenance increases, 

the cost ratio with the probability of failure increases over the designed life. Based on 
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this, it is crucial to quantify efficiently all the aspect of risk that may influence negatively 

on the performance of buried pipe. 

 

Figure 7.12: Optimal pipe maintenance time using cost ratio and the probability of 

failure 

7.7 Chapter Summary 

Structural deterioration of buried pipeline due to adverse corrosion effect is among the 

leading causes of increasing possibility of pipe failure. As a result, maintenance 

intervention becomes a fundamental task for good engineering management programme.  

In this Chapter, a new maintenance technique is developed to determine the optimal time 

for the maintenance of buried pipeline using the fuzzy-based approach as a non-

probabilistic method for computing pipe reliability and risk, based on α − level cut. The 

strategy aimed at assessing the cost-efficiency required for the determination of the 

optimal time for maintenance using multi-objective optimisation based on the fuzzy 

annual reliability, risk, and total maintenance cost. The time for essential maintenance 
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schedules are obtained based on a particular performance indicator (annual fuzzy 

reliability or risk), and the optimisation is performed using a GA.  

 

The applicability is demonstrated with a case study as reported in the literature, and the 

method provides engineering technicians with the needed tools for the determination of 

optimal time interval required to carry out maintenance of buried pipeline. The 

optimisation of the time for maintenance due to corrosion-induced failure has been 

analysed using two different multi-objective approaches. In both investigations, annual 

performance indicators such as annual reliability and risk based on fuzzy approach with 

lower and upper bound are considered. The purpose of the optimisation is aimed to 

minimise the total cost of the maintenance and the associated risk. The outcome of the 

Pareto fronts obtained using the fuzzy-based reliability and fuzzy-based risk assessment 

techniques are marginally different. Although, the same optimisation constraints, 

maintenance (replacement) costs and the optimisation method have been considered in 

the optimisation process. Therefore, this could mean that the incorporation of 

consequences of structural failure plays a vital role in decision making for the 

determination of the optimal time for maintenance. 

The use of risk as a performance indicator can provide comprehensive and better 

understanding of the probability of pipe failure and the associated consequences. 

Therefore, the use of risk in the managing pipe systems is imperative and critical to 

successful management. The optimal time interval can be determined based on the 

proposed optimisation strategy. This would provide the opportunity to have a targeted 

maintenance plan with various trade-offs, which will assist maintenance engineers in 

taking the needed decision at a point when maintenance is required. However, the fuzzy 

risk-based approach requires an initial estimation of the present or future direct and 

indirect consequences of failure cost. This additional task increases slightly the 

computational effort needed to carry out the optimisation, and this will depend on the 

number of the failed pipe segment.  A parametric study was carried out on the design 

parameters, and the outcome shows that thickness reduction can significantly reduce the 

reliability of the buried pipe over the designed life. 
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8.1 Conclusions 

The reliability analysis of buried pipeline is usually performed to evaluate the structural 

response defined using the limit state function based on the failure modes. Based on this, 

there is a need to make informed decisions from the outcome of the buried pipe analysis 

to ensure an optimal time for maintenance. In the literature, reliability analysis of buried 

pipe system has been presented by a number of published works using probabilistic 

methods and considering randomness associated with the input parameters in the 

performance assessment. These input parameters are related to the pipe and soil materials 

and are associated with uncertainties, particularly in the process of estimating or 

determining the values of the parameters. However, the statistical data to determine the 

PDFs of some of the input parameter may not be available to define the parameter. Hence, 

the presences of fuzziness or vagueness associated with pipe or soil parameters are often 

not considered in most computational modelling of buried pipe. Also, the computational 

capabilities of some of the existing models require an enormous computational cost in 

estimating the reliability of the structure. Therefore, the purpose of this research is to 

develop a framework for analysing the reliability and robustness of buried pipe structure 

in order to promote safety in reliability-based design and robust assessment for the buried 

pipeline. 

8.1.1 Reliability of Buried Pipe using a Combination of LS and IS Method 

First, this study presents a time-dependent reliability analysis of buried pipeline using LS, 

IS, MCS and a combination of LS and IS methods while considering aleatory 

uncertainties associated with the input parameters. The structural failure modes of total 

axial stress and through-wall bending stress due to concentrated point load and the 

adverse effect of active corrosion were considered for the analysis. The outcome based 

on the reliability methods demonstrates that the combination of LS and IS shows better 

sampling efficiency compared to the other methods. Also, the effect of groundwater table 

located below and above the buried pipe was investigated, and the results show that 

undermining this effect can affect its performance by increasing the probability of failure. 

Furthermore, a situation where the buried pipe is jacked into an undisturbed soil as an 

alternative to being placed in a trench is analysed, and the result shows a significant 
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reduction in the probability of failure. For the parametric study, the corrosion empirical 

constant shows their variable and dynamic nature. Therefore, a good understanding of the 

corrosion parameters can provide a useful and better analysis of the reliability of a buried 

pipe. 

8.1.2 Fuzzy-based Robustness Assessment of Buried Pipe 

As a result of the variabilities and vagueness associated with the input parameters of the 

buried pipe, a methodological approach for the assessment of robustness behaviour of the 

buried pipe is presented. The robustness of the buried pipe is formulated based on the 

pipe failure modes, which include pipe deflection, wall thrust, buckling pressure, and 

bending strain using the principles of fuzzy set, Shannon’s entropy, and interval 

arithmetic. The entropy-based robustness measure is considered because it provides a 

potential to assess the robustness in the form of a function, which depends on the 

magnitude of uncertainty that exists in the structure. The modelling of the failure modes 

based on fuzzy sets considers the various levels of uncertainties concerning the corrosion 

pit depth and other input variables. The outcome shows that as the number of pipe service 

years increases, the pipe robustness behaviour tends to normalise and shows a similar 

trend, which illustrates the ductility nature of the pipe material. Also, the outcome shows 

that the values evaluated for the pipe robustness measure would continue to decrease as 

the number of pipe service years continues to increase. By evaluating the performance of 

buried steel pipe using the fuzzy-based robustness measure, a wide-ranging 

understanding concerning the adverse effect of corrosion uncertainty to the examined 

pipe failure problems can be determined. This result can lead to optimal decision making 

concerning buried pipe structures and where a degree of accuracy is needed. 

8.1.3 Multi-objective Optimisation of Buried Pipe 

For optimum design of buried pipes involving design variable and fuzzy variables, a new 

approach is presented considering multi-objective optimisation based on the expected 

value of a fuzzy output variable for the pipe failure modes. The concepts and the processes 

of the proposed algorithm are introduced, and a numerical example is used to demonstrate 

its applicability and usefulness. The outcome demonstrates that the uncertainty of the 
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fuzzy variables for the input parameters could be propagated for the optimal design of 

buried pipe by employing a multi-objective optimisation algorithm to find the optimal 

solution set. The fuzzy-based multi-objective design optimisation problem has been 

expressed by considering the expected value of a fuzzy output variable for the pipe failure 

modes. The outcome of the expected value controls the performance of the optimal 

solution and the entropy deals with the variability of the structural problem. The first 

extreme value of the optimal solution set is characterised by less performance, less 

robustness, and more significant variability while the second value characterised with the 

best performance, greater robustness, and lower variability. The investigated pipe failure 

conditions give a small value of the fuzzy output as against the second extreme value, but 

also a substantial value of the fuzzy entropy for buckling pressure. Therefore, comparing 

the results of the fuzzy-based multi-objective design optimisation for different years of 

fuzzy variables and their corresponding impact on the failure conditions, the designer 

would be able to gauge the negative impact on the safety of the structure. Furthermore, a 

multi-objective optimisation is considered because it offers the potential to consider 

several mutually conflicting design requirements that are associated with the failure of 

the buried pipe. Based on this, it is essential to locate the Pareto optimal set which plays 

a vital role for decision-makers concerning the design of buried pipe.  

8.1.4 Reliability of Buried Pipe Considering Random and Fuzzy Variable 

Due to the presences of both epistemic and aleatory type of uncertainties in the design of 

buried pipe, an optimisation based fuzzy-subset simulation approach for estimating the 

reliability of a buried pipe structure is proposed. The purpose is to develop a framework 

that is robust and capable of estimating the reliability of buried pipe having parameters 

that are random and fuzzy. The underlying ideas behind the proposed framework are 

explained, and a numerical example is used to analyse the applicability and efficiency of 

the method. The approach shows that the fuzzy uncertainty of the input variables can be 

propagated to determine the fuzzy reliability of the membership function of a buried pipe 

system. The result shows that as the 𝛼 − 𝑙𝑒𝑣𝑒𝑙  increases, the corresponding failure 

probability for the lower and upper bound increases. This outcome demonstrates how 

sensitive the interval-based reliability analysis is with respect to the level of imprecision 
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of the input variables. The 𝛼 − 𝑙𝑒𝑣𝑒𝑙 gains its effectiveness by scrutinising the reliability 

of the structure at a various level that could represent a different degree of imprecision. 

As a result, a better understanding of the impact of uncertainty associated with the failure 

of buried pipe can be evaluated. This feature aids to capture and quantify the adverse 

effects of uncertain variables on the performance of buried pipeline with regards to 

estimating the reliability. Moreover, for the evaluation of the failure probability, the 

approach utilised the efficiency and capability of subset simulation. The developed model 

can accommodate various types of uncertainty in the computation of fuzzy reliability and 

can easily be applied to other engineering structures.  

8.1.5 Maintenance Optimisation of Deteriorating Buried Pipe 

The reliability of buried pipe based on fuzzy approach has been extended to estimate the 

optimal time interval to carry out maintenance using multi-objective optimisation. The 

purpose of the optimisation is aimed to minimise the total cost of the maintenance and 

the associated risk. The outcome of the Pareto fronts obtained using the fuzzy-based 

reliability and fuzzy risk-based techniques are marginally different. Although, the same 

optimisation constraints, maintenance (replacement) costs and the optimisation method 

have been considered in the optimisation process. Therefore, this could mean that the 

incorporation of consequences of structural failure plays a vital role in decision making 

for the determination of the optimal time for maintenance. The use of risk as a 

performance indicator can provide comprehensive and better understanding of the 

probability of pipe failure and the associated consequences. Therefore, the use of risk in 

the managing pipe systems is imperative and critical to successful management. Also, the 

outcome of a parametric study shows that thickness reduction can significantly reduce the 

reliability of the buried pipe over time. 

8.1.6 Concluding Statement 

In summary, the above-proposed framework can serve as a prudent tool to evaluate and 

analyse the performance of buried pipeline efficiently and also, serves as a managerial 

tool for design engineers in assessing and maintaining the performance of buried pipe.  

Based on the proposed framework, the reliability and robustness behaviour of buried 
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pipeline considering uncertainties that exist in the input parameters can be determined. 

Also, the influence of design parameters can be analysed through sensitivity and 

parametric studies. The proposed framework for the maintenance of a deteriorating buried 

pipe will enable the decision-makers to select appropriate time interval to repair or replace 

a particular pipe segment.   

8.2 Recommendations for Future Work 

The applicability and effectiveness of the presented methods have been exemplified with 

numerical examples, and the outcomes demonstrate that these techniques are effective to 

perform reliability and robustness analysis of buried pipe considering aleatory and 

epistemic uncertainties. However, there are other possible areas for improvement and 

extension of this study and here are some of the exciting areas for potential future 

research. 

The presented framework for the reliability analysis of buried pipe is based on a corrosion 

model proposed by Rajani et al. (2000) and the general power law model. However, the 

corrosion model relies heavily on the corrosion data, which is highly non-linear and can 

be affected by the environmental conditions. Therefore, it is suggested to use an inline 

inspection data to quantify the values of corrosion and develop a specific corrosion model 

that can be used in conjunction with the proposed framework. This will help to model the 

deterioration process of the buried pipe due to corrosion with better precision because of 

the data that is tailored to a particular pipeline problem.  

It is suggested that more advanced structural failure modes of the buried pipeline should 

be investigated using finite element analysis software (e.g., ABAQUS) and experiment. 

Practical experience shows that some of the currently available models involve a 

considerable model uncertainty. This uncertainty affects the outcome of the existing 

structural failure modes, which propagates into the evaluated probability of failure and 

can result in over conservative estimate. 

The characterisation of the uncertainties associated with the input parameters of the 

buried pipeline considering various failure modes is essential because it dictates the 

accuracy of the results generated from the methods used in the analysis. Therefore, the 
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need to carry out an experimental update on the data used to model the PDFs of the 

uncertain parameters are recommended. This is an important area for future research. 

The damage of buried pipe due to the third party is one of the primary causes of pipeline 

failure. It is suggested that the damage of buried pipe due to the third party should be 

investigated and quantified using structural reliability methods. Also, the preventive 

measures used against the damage should be included in the multi-objective optimisation 

based maintenance framework. 
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