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Abstract 14 

Agroforestry systems maintain intermediate levels of biodiversity between natural forests and 15 

purely agricultural land-uses and may therefore increase connectivity or sustain biodiversity in 16 

fragmented forest landscapes. This hypothesis is tested by comparing the species richness and 17 

similarity in species composition between forest fragments and agroforestry systems in two 18 

landscapes in Guatemala. Connectivity indices were calculated based on the similarity of biodiversity 19 

held between forest and agroforestry. Tree and ant species richness was significantly higher for 20 

forest than agroforestry land-uses. Conversely, species richness of leaf hoppers (Cicadellidae) was 21 

lower in forests compared to agroforests. Chao-Sorensen estimates indicated a high proportion of 22 

ant species were shared (0.78-0.99) between different agroforestry land-uses and forest fragments, 23 

but lower proportions of tree (0.39 – 0.55) and leaf hopper species (0.42-0.65). Including the 24 

contribution of agroforestry systems in estimates of forest connectivity, based on their biodiversity 25 

relative to forest, substantially increased the land area rated with high connectivity (by 100-300%) 26 

and forest edge connectivity (by 70-170%), but had negligible impact on land area rated as dense 27 

forest. The major forest fragments in the two landscapes were linked by land rated as medium 28 

connectivity for forest biodiversity. Thus, agroforestry contributes to the capacity of the landscape 29 

to support biodiversity, but only partially increases connectivity between forest fragments in the two 30 

landscapes studied. If these benefits are to be sustained, consideration needs to be given to the 31 

incentives for land-owners to maintain agroforestry systems.  32 
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1. Introduction 38 

Faced with the current threats to biodiversity such as climate change, invasive species, 39 

deforestation, and disruption of migration paths by infrastructure and human settlements, protected 40 

areas are insufficient to preserve biodiversity (DeFries et al. 2005; Millennium Ecosystem Assessment 41 

2005). Therefore, agroecosystems need to play a complementary role to protected areas in the 42 

conservation of biodiversity (Vandermeer and Perfecto 2007; Harvey et al. 2008). The combination of 43 

crops with diverse tree assemblages in agroforestry systems have been found to maintain high levels 44 

of both flora and fauna (Tscharntke et al. 2011).  Agroforestry has the potential to contribute to 45 

biodiversity conservation by creating habitat for species which are tolerant to some level of 46 

disturbance (Harvey and Villalobos, 2007). Agroforestry systems have therefore been proposed for 47 

use in buffer zones or biological corridors, as habitats for such species (Donald 2004; Mas and Dietsch 48 

2004).  49 

 50 

Agroforestry systems sustain higher biodiversity than agricultural systems through having 51 

greater plant diversity (including native species), increased structural complexity, and enhanced 52 

habitat and landscape heterogeneity. Tree species richness has been found to have close correlation 53 

with the diversity of fruit and nectar-feeding birds and fruit-feeding butterflies (Schulze et al. 2004) 54 

and with the diversity of arthropod groups such as ants (Leal et al. 2012). There have been numerous 55 

studies on different taxonomic groups in coffee agroforestry (often called shaded coffee) including 56 

migratory birds (Bakermans et al. 2009), orchids (Solis-Montero et al. 2005), bats (Estrada et al. 2006), 57 

ants (Armbrecht et al. 2005), and amphibians (Santos-Barrera et al. 2011), showing the potential for 58 

this system to conserving these species. The nature of the shade in coffee (and similar crops like cocoa 59 

or cardamom) varies considerably from heavily managed single species shade to highly diverse tree 60 

species assemblages (Moguel and Toledo 1999). In a metanalysis of studies comparing the relative 61 

biodiversity of forest, and coffee and cocoa agroforestry and monocultures, Beenhouwer et al (2013) 62 

found species richness to be 11% lower in agroforestry systems but 46% lower in monocultures 63 
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compared to forests. Nevertheless, the response of particular taxonomic groups can vary. For 64 

example, compared to forest, Chandler et al (2013) found that compared to forest shaded coffee had 65 

higher species richness of Nearctic migrant birds, but lower species richness of forest-dependent 66 

species.  67 

There is conflicting evidence as to whether there is a trade-off between crop productivity of 68 

agroforestry systems and their potential to sustain biodiversity. Clough et al. (2011) observed no 69 

relationship between yield and biodiversity in cocoa agroforestry systems in Indonesia. Haggar et al. 70 

(2013 & 2017) in Guatemala and Nicaragua found that coffee had lower productivity on high shade-71 

tree diversity farms. Jezeer et al. (2017) in a meta-analysis of effects of shade concluded that while 72 

productivity of shaded coffee may be lower, net income for the coffee grower was not significantly 73 

different from unshaded coffee monocultures. Another consideration in the trade-off between 74 

productivity and biodiversity is that to meet a certain global demand for coffee would require a greater 75 

area of shaded coffee than unshaded coffee, and thus potentially spare less land for forest. Chandler 76 

et al. (2013) in Costa Rica observed greater bird diversity on farms that were half unshaded coffee and 77 

half forest, compared to farms that were 100% shaded coffee. 78 

There is a significant overlap between major coffee production areas and biodiversity hot 79 

spots (Myers et al 2000; Hardner and Rice 2002), such as in Mesoamerica, the Andean region and 80 

southern India. A review of coffee shade systems (Jha et al 2014) indicates that at least 80% of 81 

coffee in these regions is shade-grown; 20-40% of this area with at least 10 tree species and over 82 

40% shade cover that would be expected to maintain high biodiversity. Some studies have 83 

documented the replacement of shaded coffee with other land-uses presumed to be less favourable 84 

to biodiversity (Bosselmann et al 2012, Haggar et al 2013). In some countries such as El Salvador 85 

where little natural forest cover exists, 80-92% of “forest” cover is estimated to consist of tree cover 86 

from shade-grown coffee (Rice and Ward 1996). Moguel and Toledo (1999) concluded that coffee 87 

plantations in Mexico could serve as important corridors for flora and fauna.  88 
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Agroforestry systems have been widely considered to maintain biodiversity in former forest 89 

landscapes, provide corridors between forest patches, or act a buffer zones around protected forest 90 

areas (Harvey et al 2008, Bhagwat et al 2008, Tscharntke et al 2011).  Tree plantation systems may 91 

be expected to also have similar benefits, but comparisons with agroforestry are lacking. If 92 

agroforestry or tree-cropping systems are to be promoted buffer zones or corridors around 93 

protected areas, clearer evidence is required regarding their potential to increase the biodiversity of 94 

landscapes and the connectivity between forest fragments. Evidence of the role of agroforestry and 95 

tree-crop production systems in sustaining biodiversity in two fragmented forest landscapes in 96 

Guatemala was sought to answer the following questions: 97 

• What is the species richness hosted by agroforestry systems compared to natural forest? 98 

• What is the degree of similarity in species composition of agroforestry compared to forest 99 

biodiversity? 100 

• What is the contribution of agroforestry systems to estimates of connectivity for forest 101 

biodiversity in the landscape? 102 

 103 

2. Methods 104 

2.1 Country and site description  105 

Guatemala has been recognized as a “Megadiverse” country under the Convention on 106 

Biological Diversity (http://paisesmegadiversos.org/en/). While 34% of the country is forested most 107 

of this is in high montane zones or the lowlands of Petén (CONAP 2009). Little natural forest cover, 108 

and few protected areas are found in the mid-altitude zones (500-1500 m.a.s.l.) where shaded 109 

coffee and other agroforestry systems are common. The current study was conducted in two such 110 

landscapes. One site, on the southern slope of the Pacific volcanic chain, is dominated by coffee 111 

agroforestry and has probably been converted from forest over a century ago. Recent studies show 112 

coffee agroforests have been replaced by other tree crops, such as rubber and macadamia, 113 

generating concern regarding possible environmental impacts (Haggar et al 2013). Within this region 114 
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the Palajunoj landscape of northern Retahuleu, southern Quetzaltenango and eastern Coatepeque 115 

was chosen because previous research with local land owners had been conducted there.  Altitude 116 

ranged from 440–1440 m.a.s.l. with annual rainfall about 3000 mm and a four-month dry season. 117 

This study landscape covers approximately 267km2. The other landscape was in eastern Guatemala, 118 

on the southern slope of the Polochic Valley, part of the buffer zone of the Sierra de las Minas 119 

Biosphere Reserve. This region was largely converted from forest within the past 20-30 years, 120 

dominated by shifting cultivation with some presence of coffee and cardamom agroforestry. The 121 

Biosphere Reserve management aims to understand whether promotion of agroforestry will help 122 

improve the biodiversity status of the buffer zone. Within this greater region the study landscape 123 

focused on the municipalities of La Tinta and Panzos of Alta Verapaz Department because 124 

collaboration between the local indigenous communities and the project partner, the Fundación 125 

Defensores de la Naturaleza, had already been established. Altitude ranged from 723-1377 m.a.s.l. 126 

with annual rainfall about 2500 mm, only a two-month dry season. This study landscape covers an 127 

area of approximately 116 km2.  128 

 129 

2.2 Selection of land-uses  130 

In each landscape the main tree plantation or agroforestry systems that may contribute to 131 

biodiversity connectivity were identified based on past research (Haggar et al 2013), and 132 

reconnaissance with local partners. We followed the established definition of agroforestry (Nair 133 

1993) that includes traditional shifting cultivation where the fallow phase develops woody regrowth 134 

as an agroforestry system. Based on previous research in Palajunoj, we differentiated shaded coffee 135 

into “Agroforest Coffee”, containing a mixture of native timber trees and planted legumes (usually 136 

Inga spp.), and the simpler “Inga-shaded coffee” with only planted legume trees (Haggar et al 2013). 137 

The main tree crops included in this study were rubber below 800 m.a.s.l. and macadamia at higher 138 

altitudes, previous research showing they were the tree crops being planted to replace coffee. The 139 

aim was to sample the different land-uses under similar conditions. Therefore, sampling was done 140 
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on the same estates (Palajunoj) or communities (Sierra de las Minas) in as close proximity as possible 141 

(Table 1).  142 

 143 

2.3 Evaluation of biodiversity in different land-uses  144 

The use of different taxa to describe the biodiversity of an area was studied by Kessler et al. 145 

(2011). They found correlations between bryophyte, pteridophyte, tree, ant, euglossine bee, bird, 146 

spider and beetle species richness and concluded that only four taxa are required to represent at 147 

least 80% of variation in species richness, while trees and ants alone would explain 60% of this 148 

variation. We therefore selected trees and ants as the primary biodiversity indicator groups, 149 

complemented by Cicadellidae (leaf hoppers) that may be expected to respond in a distinct manner 150 

to the other two groups. Measuring the diversity of arthropods in litter is a commonly used method 151 

for assessing the species richness and abundance of arthropods and about 60% of neotropical ants 152 

are found in litter (Longino et al. 2002). 153 

Sample plots were taken in one field of each land-use in each estate or community. Sample 154 

plots measured 25 x 40 m in Palajunoj and 25 x 10 m in Sierra Las Minas. Differences in sample plot 155 

sizes were due to the different tree densities and field dimensions, with much smaller fields in Sierra 156 

Las Minas (<0.5 ha) often aligned across the slope. In other respects, the sampling was the same, 157 

with all trees over 5 cm diameter at breast height measured within the plot.  158 

Ants were sampled from three 1m2 quadrats of leaf litter taken 10 m apart on a transect 159 

across the sample plot. Samples were combined and left in a mini-Winkler sack for 48 hours 160 

following the “Ants of leaf-litter” protocol (Longino, et al. 2002). Cicadellidae were sampled by 161 

sweeping the herbaceous vegetation with 20 sweeps of a net through the top of the vegetation at 162 

each sub-sampling point. The contents of the net were then passed into a flask with ethanol. 163 

Although less effective than fumigating, sweeping still produces reliable relative data and is more 164 

practical and efficient to apply under field conditions (Lowman and Wittman 1996). Trees, ants and 165 

Cicadellidae were identified to species where possible and otherwise morpho-species were 166 
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differentiated. Reference collections of arthropod species were deposited in the collection of the 167 

University of Valle Guatemala. The most common species in each taxonomic group are presented in 168 

the Appendix (Tables B.1, B.2 and B.3).  169 

2.4 Analysis of species richness, diversity and similarity  170 

Sample-level plot data were tested for normality using the Shapiro Wilk test and residuals 171 

plotted. In general, the species richness values were not normally distributed and were therefore 172 

analysed using a generalized linear model with Poisson distribution. The Shannon Diversity Index 173 

values followed a normal distribution and were analysed using ANOVA. In both cases Tukey tests 174 

were applied to compare between different land-uses. Effects of land-use on species composition 175 

were assessed by Non-metric Dimensional Scaling (NMDS) analysis using the Adonis function in the 176 

Vegan package of “R”.  The proportion of forest species shared by the other land-uses and the 177 

similarity in composition were calculated using the EstimateS programme (Colwell 2013, Colwell et al 178 

2012). Three different metrics were calculated: 179 

i. Percentage of species shared between forest and other land-uses. 180 

ii. Chao-Sorensen estimate of proportion of species in common between land-uses, including 181 

estimates for unseen species (i.e. rare species) that were not found in the sampling plus an 182 

estimated SD for this proportion (Chao et al 2006). 183 

iii. Morisita-Horn index of similarity in species composition based on the relative abundance 184 

of species between land-uses.  185 

 186 

2.5 Land-use mapping and connectivity  187 

Land-use maps were obtained from classifications of Rapid Eye satellite images from the 188 

year 2012 ( Appendix Fig. D1 a & b) and total area under each land use was calculated (Appendix A, 189 

table A.1). We used automated methods to differentiate land-use classes from classified field 190 

observations. The resulting land-use maps were then verified by ground truthing a selection of 191 
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points in the field. Unfortunately, it was not possible to differentiate Agroforest coffee from Inga-192 

shaded coffee in the Palajunoj region.  193 

Spatial statistics were used to calculate the degree of forest isolation or connectedness of 194 

each pixel by analysing forest cover of surrounding pixels (Sastre and de Lucio 2002). In Rapid Eye 195 

images each pixel is 5 meters across, the patch for which connectivity was calculated was a 1 x 1 km 196 

square consisting of 200 by 200 pixels. Each pixel was scored as 1 if with forest and as 0 with any 197 

other land-use. The sum of the scores of the surrounding pixels gives the degree of connectedness of 198 

the central pixel to the forest. The spatial statistics analysis conducted using Focal Statistics (ESRI 199 

2011) gives the relative connectivity in a range of 0 (no forest pixels in the 1 km square around the 200 

central pixel) to 40 (all pixels in the 1 km square are forest). Connectivity values were reclassified 201 

into six equal ranges and transformed from the 0-40 scale into a 0-1.0 connectivity index (Appendix 202 

A Table A.2). The sum of the scores of all pixels across the landscape was used to calculate overall 203 

index of connectivity for the landscape (Baskent and Jordan 1995).  These ranges were determined 204 

in accordance with a previous study by the National Institute of Forests of Guatemala “Identification 205 

and Prioritization of Forest Corridors in Guatemala” (Anzueto and Pérez 2005).  206 

As recognized by Fortin et al (2012), connectivity analyses need to consider the quality of the 207 

intervening landscape between habitat patches. In our case these were the agroforestry and tree 208 

plantation systems between the forest fragments. They have been integrated into the estimates of 209 

connectivity based on the similarity of the biodiversity held compared to forest. The Morisita-Horn 210 

index of similarity was used as it combines the similarity of observed species with the relative 211 

abundance of those species between the forest and other land-uses. The Morisita-Horn diversity 212 

index was averaged across the three taxonomic groups (plants, ants, and Cicadellidae) to give an 213 

overall estimate of the similarity of biodiversity between the different land-uses and the forest 214 

(Appendix A, table A.3). In the estimates of connectivity, pixels with agroforestry or tree plantations 215 

were scored according to their average Morisita-Horn index (e.g. fallow = 0.509). Land-uses without 216 

trees was assumed to have zero forest biodiversity. While assuredly this is a simplification, the same 217 
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assumption is made in the original forest connectivity calculation. For each landscape different 218 

connectivity scenarios were generated adding one by one each agroforestry or tree plantation land-219 

use to the analysis. Land-uses were added to the connectivity scenarios and maps in order of 220 

descending Morisita-Horn index. The change in overall connectivity index and area of land with 221 

different degrees of connectivity with forest were calculated for the addition of each land-use.  222 

 223 

3. Results  224 

3.1 Species richness and diversity  225 

3.1.1 Trees 226 

Tree species richness was significantly different between land-uses in Palajunoj (F=19.35 227 

DF=19, p<0.0001). Forest had significantly greater species richness than other land-uses (p<0.001), 228 

while the other land-uses had similar species richness except the Agroforest coffee which had a 229 

significantly greater species richness than the other non-forest land-uses (p<0.05; Fig. 1a & b). 230 

Shannon Diversity Index was significantly affected by land-use (F=21.15, DF=26, p<0.0001). Forest 231 

had a higher Shannon Diversity (p<0.05) compared to other land-uses except the agroforest coffee. 232 

Inga coffee had a greater tree diversity (p<0.05) than rubber plantations. In Sierra de las Minas land-233 

use significantly affected tree species richness (F=28.98, DF=26, p<0.001) and Shannon Diversity 234 

Index (F=15.73, DF=26, p<0.001); both were significantly greater (p<0.001) for the forest compared 235 

with the rest of the land-uses (Fig. 1c & d). Adonis analysis of tree species composition found a 236 

significant effect of land-use in both Palajunoj (F=6.93, DF=35, p<0.001) and Sierra Las Minas 237 

(F=2.17, DF=29, p<0.001; NDMS graphs are shown in appendix C.1). 238 

3.1.2 Cicadellidae 239 

In both landscapes and both seasons Cicadellidae species richness was significantly affected 240 

by land-use (Palajunoj dry season F=3.36, DF=25, p<0.05; wet season F=4.49, DF=25, p<0.05; Sierra 241 

Las Minas dry season F=2.68, DF=26, p=0.54, wet season F=5.88, DF=26, p<0.01), and was always 242 

lowest in the forest. In Palajunoj, compared to forest, species richness was significantly higher in 243 
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macadamia plantations in the dry season (p<0.05; Fig. 2 a). In Sierra Las Minas, compared to forest, 244 

species richness was significantly higher in coffee and fallow in the wet season (p<0.05; Fig. 2 b). 245 

Shannon Diversity Index was significantly lower in forest than most other land-uses in the wet 246 

season in both Palajunoj (forest 0.51 vs 1.09 - 1.44 for other land uses, p<0.05) and Sierra Las Minas 247 

(forest 0.9 vs 2.9 - 6.3 for other land-uses, p<0.05); but there was no significant differences in the dry 248 

season. Adonis analysis revealed no significant effect of land-use on species composition for either 249 

landscapes (NMDS graphs are shown Appendix C.2).  250 

3.1.3 Ants 251 

Overall there was no significant effect of land-use on ant species richness in Palajunoj, 252 

although individual comparisons of means indicated significantly higher (p<0.05) species richness in 253 

the forest than rubber in Palajunoj in the wet season (Fig 3a). In Sierra las Minas land-use 254 

significantly affected species richness both in the wet season (F=4.32, DF=26, p<0.05) and dry season 255 

(F=9.0- DF=24, p<0.001); forest had significantly higher species richness (p<0.05) than fallow in both 256 

seasons and coffee in the dry season (Fig. 3b). Shannon Diversity Indices were not significantly 257 

different between land-uses. Ant species richness was positively correlated with tree species 258 

richness (0.49, p<0.001) in Sierra las Minas but not in Palajunoj. Adonis analysis of species 259 

composition found significant effects of land-use in both Palajunoj (F=1.54, DF=35, p<0.01) and 260 

Sierra Las Minas (F=1.32, DF=35, p=0.079; NDMS graphs are shown in appendix C.3). 261 

 262 

3.2 Species composition compared to forest  263 

3.2.1 Palajunoj 264 

In terms of tree diversity, samples from the two coffee systems shared a third of the forest 265 

species, but when considering inclusion of rare species using the Chao-Sorensen index, 55% of 266 

potential species are estimated to be shared (Table 2). Both indices are lower in rubber and 267 

macadamia when compared to forest. The Morisita-Horn index, that gives more weight to the 268 
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relative abundance of species, indicates that agroforest coffee had the greatest similarity to the 269 

forest, and rubber plantations had the least similarity. 270 

For ants the percentage of species sampled that are shared with the forest ranged from 63% 271 

for macadamia to 70% for Inga coffee. The Chao-Sorensen estimate of potential shared species with 272 

forest was between 85% (macadamia) to nearly 100% (Inga coffee). Rubber plantations were 273 

estimated to share 98% of species with the forest. The Morisita-Horn index of similarity to forest was 274 

lowest for Inga coffee and highest for agroforest coffee and rubber, although the range in values 275 

across systems was small. Overall, this indicated that most ant species were probably shared 276 

between all land-uses and the relative abundance was similar. The effects were similar for 277 

Cicadellidae with the main difference being that the forest had fewer species than the other land-278 

uses; the majority of Cicadellidae species were however shared with the other land-uses. 279 

Nevertheless, the coffee agroforest shares the most species with the forest and had a substantially 280 

higher Morisita-Horn index of similarity in relative abundance.  281 

3.2.2 Sierra de las Minas 282 

In Sierra de las Minas (Table 3) sampled tree species that are shared with the forest varies 283 

from 26% (coffee) to 20% (cardamom). The Chao-Sorensen index, that includes estimates for rare 284 

species, however, estimates shared species with forest to be 39% for fallow and 46% for coffee. In 285 

contrast the fallow had a considerably higher Morisita-Horn similarity to forest compared to coffee. 286 

This may be because the shade trees in the coffee were dominated by planted Inga spp. and 287 

Gliricidia sepium, which did not appear in the forest plots, although a selection of native trees 288 

remained.  289 

The cardamom, coffee and fallow land-uses shared about two-thirds of ant species with the 290 

forest according to the sampling data, while the Chao-Sorensen index estimated over 90% of species 291 

in coffee and fallow were shared with forest. In contrast the Morisita-Horn similarity index, that 292 

takes into account abundance, indicates that cardamom was the most similar to the forest in ant 293 

species composition. 294 
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Forests had an inferior Cicadellidae species richness compared to other land-uses. Coffee 295 

and cardamom share 23-26% of the forest species sampled, while Chao-Sorensen index estimated 296 

65% of species could be shared. Fallow shared only 17% of sampled species with forest, or 42% 297 

according to Chao-Sorensen. The relative species abundance according to the Morisita-Horn index 298 

was more similar between cardamom and forest than with other systems, but differences were 299 

small.  300 

 301 

3.3 Connectivity for forest biodiversity  302 

When just considering forest cover, connectivity for forest biodiversity was restricted to the 303 

bands of riverine forest running North-South along the major rivers in Palajunoj (Appendix Fig. D2). 304 

The addition of the coffee agroforestry systems (scenario 2) substantially reduced the area with no 305 

connectivity (Fig. 4a). This increased the area in medium connectivity (140% increase), high 306 

connectivity (85% increase) and forest edge (65% increase), generating a “medium-level” East-West 307 

connectivity between the riverine forest strips. In terms of overall forest biodiversity connectivity, 308 

the coffee agroforestry system added 41% of the overall forest biodiversity connectivity, almost as 309 

much as the forest itself (Table 4). The inclusion of the macadamia and rubber plantations led to 310 

minimal improvements in connectivity, because macadamia was grown in a small area and rubber 311 

plantations hosted less forest biodiversity. 312 

For the Sierra Las Minas landscape when only forest was taken into account there was no 313 

connection for forest biodiversity between the southern forest (Biosphere reserve core protected 314 

area at lower edge of the map) and the small remnant forest patch in the mid-north (Appendix Fig. 315 

D3). With the addition of fallow, the area with high to edge forest level connectivity increased by 316 

147% and 58% respectively. The addition of the cardamom agroforestry increased the area with 317 

medium level connectivity, but only with the addition of coffee (which has a larger area) was a 318 

medium level of connectivity fully established between the northern forest patch and southern 319 

forest block. The area with “dense forest” connectivity for biodiversity was little changed with 320 
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addition of agroforestry land-uses. The area with no connectivity however declined substantially 321 

while the area with medium and high connectivity for forest biodiversity increased by about three-322 

fold (Fig. 4b). Overall the fallow made a slightly larger contribution to the final connectivity index 323 

than the forest itself due to the greater area under fallow (Table 4). The cardamom and coffee 324 

agroforestry systems made smaller contributions to the connectivity index but were still important 325 

for achieving a medium level of connectivity between the north and south forest patches. 326 

 327 

4. Discussion  328 

4.1 Relative species diversity in agroforest and forest systems  329 

  In the Palajunoj landscape there were significant differences in tree diversity between the 330 

different land-uses, with the coffee systems being most similar to the forest. However, while the ant 331 

species richness indicated a probable difference between rubber plantations and forests, the Chao-332 

Sorensen estimate of total ant species in common between forest and rubber indicated they shared 333 

very similar species assemblages. While ant diversity has been considered a good indicator of overall 334 

species diversity in tropical forest systems (Kessler et al 2011, Longino et al 2002), other studies 335 

indicate that specialist primary forest ant species disappear quickly with any disturbance (Leal et al 336 

2012). The forest patches in the study landscapes were highly fragmented, have been exploited for 337 

timber, and in some cases are old secondary forest. Consequently, they may have already “lost” the 338 

primary forest species and only host species that can survive in a disturbed landscape and are 339 

therefore also adapted to the tree plantation and agroforestry systems. The alternative explanation 340 

was that the actual sampled ant species richness may be a more reliable indicator than the Chao-341 

Sorensen estimate based on an extrapolated estimate of the rare species that might be shared.  342 

 In the Sierra de las Minas landscape there was also reason to believe that the different land-343 

uses largely draw upon the same pool of species. The Chao-Sorensen estimates over 90% ant species 344 

were shared between forest and two of the three non-forest land-uses. The dimensions of the land-345 

use units in this landscape were much smaller than in Palajunoj (generally less than 0.5 ha in Sierra 346 
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Las Minas; as opposed to 10s of ha in Palajunoj). There was also a temporal dynamic between 347 

secondary forest or fallow converted to maize, coffee, or cardamom production and then 348 

abandoned if productivity or prices fall.  Nevertheless, despite being disturbed, the agroforestry 349 

land-uses still maintained species associated with primary forest (e.g. trees Magnolia guatemalensis 350 

and Hedyosmum mexicanum, and ants Thaumatomyrmex ferox and Tatuidris tatusia).  Thus, the 351 

mosaic of different land-uses maintained some forest species (as also indicated by the Chao-352 

Sorensen Index), but at different frequencies (as indicated by the Morisita-Horn index). The question 353 

then remains whether these species were remnant individuals from the original forest (which might 354 

be the case for the trees) or whether they represent viable populations (presumably the case for the 355 

short-lived ant species).  356 

Beenhouwer et al (2013) reported that on average agroforestry systems supported 11% 357 

fewer species than forest.  The current study would suggest the degree to which forest and 358 

agroforestry share species to vary considerably between taxonomic groups. The agroforestry 359 

systems were estimated to share (Chao-Sorensen index) 39-55% of tree species, 42-65% of 360 

Cicadellidae, and 78 - 99% of ant species with the forest. Furthermore, while species may be shared 361 

between agroforestry and forest their relative abundance may be different as indicated by the low 362 

Morisita-Horn similarity index of plant diversity relative to the number of shared species. In 363 

particular, the lower proportion of shared tree species was due to the presence of planted locally 364 

non-native tree species.  This was similar to findings of Häger et al (2014) showing that while 73% of 365 

tree species were naturally regenerated native species, 55% of individuals in coffee agroforestry 366 

were non-native tree species.  367 

 368 

4.2 Role of agroforests for sustaining biodiversity in the landscape  369 

The agroforestry systems (coffee, cardamom and fallow) made significant contributions to 370 

the connectivity for forest biodiversity in the fragmented landscapes. Without these tree-based 371 

systems, forest fragments were clearly isolated from each other (Palajunoj) or from larger forest 372 
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protected areas (Sierra de las Minas). Inclusion of the biodiversity hosting capacity of the 373 

agroforestry systems substantially increased the biodiversity supporting capacity of the landscape 374 

overall (increase in high connectivity and edge forest area by 70-100%) and consolidated or 375 

expanded some forest fragments. Additionally, agroforestry systems also generated connectivity 376 

between those forest fragments albeit only at a “moderate” level. As recognized previously, 377 

agroforestry systems only host a portion of forest biodiversity (Beenhouwer et al 2013) and this 378 

appeared to be reflected in the moderate level of connectivity for forest biodiversity observed in the 379 

maps.  380 

 The effectiveness of agroforestry systems to support forest biodiversity appeared to rest on 381 

the degree to which they incorporate native forest trees. Thus, in Palajunoj the agroforest coffee 382 

generally had the highest number of estimated shared species (Chao-Sorensen index) and similarity 383 

of relative abundance (Morisita-Horn Index) to the forest across the taxonomic groups. 384 

Unfortunately, we were not able to differentiate agroforest and Inga-shaded coffee in the mapping 385 

to evaluate their relative importance.  386 

 Studies, such as the current one, may be used to support conservation management 387 

decisions. In Sierra de las Minas the Fundación Defensores de la Naturaleza who manage the 388 

biosphere reserve were able to justify supporting local communities to apply for forestry subsidies to 389 

establish more coffee agroforestry systems with native trees as these can generate some income 390 

and potentially increase the connectivity for biodiversity in the buffer zone. In the Palajunoj region 391 

several farms were private nature reserves and some conduct eco-tourism.  There was interest from 392 

the Ministry of Environment to develop a coffee biological corridor along the slope of the Pacific 393 

volcanic chain that includes Palajunoj; the evidence of biodiversity connectivity provided by the 394 

coffee agroforestry systems supports the validity of this proposal.  395 

 Nevertheless, as found in earlier studies in this region (e.g. Haggar et al 2013 & 2017) the 396 

productivity and income from coffee agroforestry was lower than from more intensive production 397 

systems. If landowners are expected to conserve agroforestry practices, then they need to receive 398 
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other benefits. Forestry subsidies or eco-tourism may play a role here. Another option is the 399 

sustainable certification of the coffee production under international standards such as Rainforest 400 

Alliance, Organic or Fairtrade. Haggar et al (2017), found that farms under these schemes generally 401 

had better environmental performance, and in some cases (principally organic farmers) higher 402 

shade-tree diversity in the coffee plantations. Farmers of such certified systems also received 403 

significantly higher prices for their coffee, although this does not always translate to increased net 404 

income. 405 

 In summary, we have demonstrated that agroforestry systems improve forest biodiversity 406 

connectivity as has been proposed (Harvey et al 2008). Although, connectivity may only be at a 407 

moderate level across areas with only agroforestry and no forest fragments. If conservation 408 

managers are to promote such approaches, then land owners will need financial support to develop 409 

and maintain agroforestry systems where they may contribute to biodiversity connectivity.  410 
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Table 1. Selected tree plantation or agroforestry land-uses and number of fields sampled for each 528 

landscape 529 

Palajunoj Sierra Las Minas 

Land-use Number of fields 

sampled 

Land-use Number of fields 

sampled 

Forest   9 Forest 10 

Agroforest Coffee 10 Fallow 10 

Inga-shaded Coffee 10 Coffee 10 

Rubber   6 Cardamom  10 

Macadamia   5   

 530 

  531 
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Table 2. Tree, ant and Cicadellidae similarity in species composition between forest and other land 532 

uses in Palajunoj. 533 

Taxa / 

Land use 

Total 

number of 

species in 

land-use 

Number of 

species in 

paired forest 

plots* 

Shared 

species % 

Chao- 

Sorense

n 

Estimated 

S.D. 

 

Morisita- 

Horn 

Trees 

      
Inga coffee 45 89 32.8 0.548 0.11 0.076 

Agroforest 

coffee 53 89 35.2 0.554 0.109 0.183 

Macadamia 32 64 22.9 0.334 0.140 0.068 

Rubber 26 66 21.7 0.141 0.141 0.006 

Ants 

      
Inga coffee  53 55 70.4 0.997 0.022 0.610 

Agroforest 

coffee 45 55 68.0 0.929 0.042 0.704 

Macadamia 44 48 63.0 0.846 0.066 0.672 

Rubber 42 47 67.4 0.979 0.038 0.701 

Cicadellidae 

    
Inga coffee 28 28 46.4 0.753 0.076 0.298 

Agroforest 

coffee 42 28 60.0 0.986 0.044 0.604 

Macadamia 42 25 53.7 0.861 0.073 0.283 

Rubber 29 22 51.0 0.763 0.124 0.258 

*The number of species in forest varies when compared with macadamia and rubber because the 534 

number of paired forest sites is smaller for these land-uses. 535 
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 536 

Table 3. Tree, ant and Cicadellidae similarity in species composition between forest and other land-537 

uses in Sierra de las Minas, Alta Verapaz, Guatemala. 538 

Taxa/ 

Land use 

Total 

number of 

species in 

land-use 

Number of 

species in 

paired forest 

plots 

Shared 

species % 

Chao- 

Sorensen 

Estimated 

S.D. 

Morisita- 

Horn 

Trees 

      
Coffee 31 86 25.6 0.462 0.144 0.222 

Cardamom 22 86 20.4 0.442 0.142 0.322 

Fallow 27 86 21.2 0.39 0.094 0.421 

Ants 

      
Coffee 42 57 66.7 0.922 0.050 0.579 

Cardamom 47 57 65.4 0.782 0.093 0.647 

Fallow 52 57 71.6 0.97 0.021 0.617 

Cicadellidae 

      
Coffee 34 10 22.7 0.657 0.22 0.482 

Cardamom 21 10 25.8 0.656 0.17 0.553 

Fallow 26 10 16.7 0.42 0.17 0.489 

 539 

 540 

 541 

542 
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Table 4. Comparison of increase in % of connectivity by scenario (for explanation see legend Figs. 4 a 543 

& b) 544 

Sierra de las Minas Palajunoj 

 
Average 

connectivity 

index 

Contribution to final 

estimate of connectivity 

Average 

connectivity 

index 

Contribution to 

estimate of final 

connectivity  

Scenario 1 0.17 Forest 35% 0.22 Forest 54% 

Scenario 2 0.35 +Fallow 38% 0.39 +Coffee 41% 

Scenario 3 0.41 +Cardamom 12% 0.39 +Macadamia 0% 

Scenario 4 0.48 +Coffee  15% 0.41 +Rubber 5% 

  545 

  546 
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Figure Legends 547 

 548 



28 
 

Fig. 1 Tree species richness (a. in Palajunoj and c. Sierra Las Minas) and Shannon Diversity Index (b. in Palajunoj and d. in Sierra Las Minas) under different 549 

land-uses in two landscapes in Guatemala. Columns that do not share the same letter are significantly different (p<0.05). 550 
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Fig. 2 Cicadellidae species richness in wet and dry season under different land-uses in the two 552 

landscapes: a) Palajunoj, b) Sierra Las Minas. Columns from the same season that do not share the 553 

same letter are significantly different (p<0.05). 554 
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Fig. 3 Ant species richness in wet and dry season under different land-uses in the two landscapes: a) 559 

Palajunoj, b) Sierra Las Minas. Columns from the same season that do not share the same letter are 560 

significantly different (p<0.05). 561 
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Fig. 4. Area of land with different degrees of connectivity for forest biodiversity under the different 567 

land-use scenarios: a) Palajunoj landscape (scenario 1 = forest, 2 = forest+coffee, 3 = 568 

forest+coffee+macadamia, 4 = forest+coffee+macadamia+rubber; b) Sierra de las Minas landscape 569 

(scenario 1 = forest, 2 = forest+fallow, 3 = forest+fallow+cardamom, 4 = 570 

forest+fallow+cardamom+coffee). 571 
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Appendix A. Supporting metrics for estimation of connectivity  

 

Table A.1. Area of major land-uses in each study landscape  

Palajunoj  Sierra Las Minas  

Land-use Hectares % area Land-use Hectares % area 

Coffee 12,619 47.2 Fallow 5,167 44.6 

Agriculture* 6,683 25.0 Forest 2,614 22.6 

Forest 3,715 13.9 Coffee 1,882 16.2 

Rubber 2,307 8.6 Agriculture* 968 8.4 

Water bodies 679 2.5 Cardamom 890 7.7 

Settlements 494 1.8 Rubber 50 0.4 

Macadamia 235 0.9 Water bodies 19 0.2 

Total 26,732  Total 11,590  

*treeless areas of herbaceous vegetation primarily either pasture or annual crops 
 
 
Table A.2. Classification of connectivity ranges and connectivity index and classes assigned by range 

Ranges Connectivity 
index 

Connectivity 

0 - 6.5 0.0 Null 

6.6 – 13.3 0.2 Low 

13.4 – 20 0.4 Media 

20 – 26.7 0.6 High 

26.8 – 33.3 0.8 Forest edge 

33.4 - 40 1.0 Dense forest 

 

Table A.3. Composite index of similarity in species composition to forest for different land-uses 
based on Morisita-Horn similarity index averaged across the different taxonomic groups used to 
estimate relative contribution of different land-uses to forest biodiversity connectivity. 
 

Sierra Las Minas Palajunoj  
Composite 
Biodiversity 
Index 

 
Composite 
Biodiversity 
Index 

Forest 1 Forest 1 

Fallow 0.509 coffee 0.413 

Cardamom 0.507 macadamia 0.341 

Coffee 0.368 rubber 0.322 

No forest 0 No forest 0 
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Appendix B.  Most common species found in each land-use for each landscape.  

Table B.1 Top five tree species. Total number of trees sampled is given in parenthesis. Where it was not possible to identify the scientific name of the 
species the local Que’chi name is given  

a) Palajunoj – 94 tree species total 

Forest (451) Inga Coffee   (194) Agroforest coffee (228) Rubber (202) Macadamia (159) 

Cecropia obtusifolia (49) Inga micheliana (72) Ocotea effusa (38) Hevea brasiliensis (188) Macadamia integrifolia (88) 

Dendropanax arboreus (32) Inga vera subsp. spuria (48) Terminalia oblonga (37) Dendropanax arboreus (5) Musa paradisiaca (26) 

Urera sp. (29) Inga punctata (22) Inga micheliana (36) Terminalia oblonga (2) Inga vera subsp. spuria (26)  

Terminalia oblonga (27) Musa paradisiaca (14) Dendropanax arboreus (22) Musa paradisiaca (1) Ocotea effusa (5) 

Chamaedorea sp. (24) Ocotea effusa (4) Inga vera subsp. spuria (15) Guarea glabra (1) Terminalia oblonga (5) 

b) Sierra de las Minas – 86 tree species total 

Forest (225) Coffee (65) Cardamom (58) Fallow (56) 

Micona sp. (21) Inga spuria (11) Saurauia villosa (17) Miconia sp. (23) 

Saurauia villosa (17) Gliricidia sepium (10) Aegiphila monstrosa (14) Ch´ut (6) 

Ficus sp. (12) Calophyllum brasiliense (5) Swietenia macrophylla (7) Joow (5) 

Hyeronima oblonga (10) Aegiphila monstrosa (5) Inga edulis (4) Ch´eer (4) 

Calophyllum brasiliense (9) Saurauia villosa (4) Hevea brasiliensis (4) Cercropia peltata (3) 
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Table B.2.  Most common ant species in each land-use in Guatemala. Number of individuals sampled is given after each name  

a) Palajunoj -84 species and morphospecies of ant in total 

Forest Inga-coffee Agroforest Coffee Rubber Macadamia 

Pheidole harrisonfordi 414 W. auropunctata 883 P. harrisonfordi 779 Carebara urichi 635 P. harrisonfordi 585 
Wasmannia 
auropunctata 325 Pheidole harrisonfordi 558 

Wasmannia 
auropunctata 131 

Pheidole 
harrisonfordi 211 Solenopsis geminata 272 

Carebara urichi 320 Solenopsis geminata 311 Carebara urichi 115 
Gnamptogenys 
strigata 67 Brachymyrmex sp.2 215 

Octostruma balzani 272 Carebara urichi 222 Octostruma balzani 115 Octostruma balzani 55 Labidus coecus 187 

Carebara intermedia 270 Acropyga exsanguis 150 
Gnamptogenys 
strigata 96 

Wasmannia 
auropunctata 53 Octostruma balzani 88 

Strumigenys brevicornis 121 Brachymyrmex minutus 142 Hypoponera nitidula 72 Carebara intermedia 52 
Brachymyrmex 
minutus 77 

Strumigenys gundlachi 116 Octostruma balzani 81 
Brachymyrmex 
minutus 49 

Strumigenys 
elongata 48 

Strumigenys 
gundlachi 61 

Stenamma nonotch 98 Strumigenys elongata 57 Carebara intermedia 41 Brachymyrmex sp. 2 37 Strumigenys sp. 6 45 

Hypoponera nitidula 84 Strumigenys gundlachi 57 Solenopsis geminata 40 S. gundlachi 28 Megalomyrmex sp.2 43 

Strumigenys elongata 66 Strumigenys sp. 6 57 Pheidole specularis 34 B. minutus 24 Carebara urichi 39 

b) Sierra de las Minas 90 species and morphospecies of ant total 

Forest Coffee Cardamom Fallow 

Wasmannia auropunctata 1270 Wasmannia auropunctata 2159 Wasmannia auropunctata 1006 Wasmannia auropunctata 402 

Pheidole deceptrix 370 Carebara urichi 476 Octostruma balzani 398 Cyphomyrmex salvini 318 

Pheidole browni 289 Octostruma balzani 331 Labidus coecus 274 Carebara intermedia 257 

Brachymyrmex minutus 242 Carebara intermedia 323 Strumigenys gundlachi 266 Octostruma balzani 177 

Strumigenys timicala 212 Strumigenys gundlachi 180 Carebara intermedia 242 Strumigenys gundlachi 152 

Strumigenys gundlachi 191 Solenopsis geminata 132 Paratrechina longicornis 225 Brachymyrmex minutus 124 

Adelomyrmex paratristani 189 Pheidole harrisonfordi 65 Carebara urichi 163 Strumigenys brevicornis 90 

Cyphomyrmex rimosus 148 Brachymyrmex minutus 61 Pheidole harrisonfordi 162 Brachymyrmex sp. 2 85 

Strumigenys brevicornis 148 Brachymyrmex sp. 2 53 Strumigenys margaritae 156 Pheidole beloceps 70 

Octostruma balzani 135 Hypoponera nitidula 46 Pheidole beloceps 137 Pheidole browni 64 
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Table B.3.  Most common Cicadellidae species in each land-use in Guatemala. Number of individuals sampled is given after each name  

a) Palajunoj - 68 species and morphospecies in total 

Forest Inga-coffee Agroforest Coffee Rubber Macadamia 

Typhlocybella sp4 18 Agallinae sp1 161 Deltocephalinae sp4 65 Agallinae sp1 97 Agallinae sp1 185 

Tylozygus geometricus 17 Tylozygus geometricus 35 Typhlocybella sp2 63 Typhlocybella sp4 22 Typhlocybella sp4 39 

Typhlocybella sp5 10 Typhlocybella sp4 35 Agallinae sp1 48 Tylozygus geometricus 19 Tylozygus geometricus 22 

Aphrodinae sp4 10 Typhlocybella sp5 18 Tylozygus geometricus 46 Agallinae sp2 12 Typhlocybella sp5 17 

Typhlocybinae sp5 8 Polyamia* sp1 16 Typhlocybella sp4 44 Polyamia* sp1 11 Cicadellidae 32 14 

Osbornellus* sp3 8 Deltocephalinae sp4 15 Typhlocybella sp5 27 Macunolla ventralis 8 Macunolla intorta 13 

b) Sierra de las Minas – 64 species and morphospecies total  

Forest Coffee Cardomom Fallow 

Agallinae sp2 7 Tylozygus geometricus 30 Tylozygus geometricus 26 Agallinae sp1 41 

Aphrodinae sp4 5 Typhlocybella sp2 29 Typhlocybella sp2 23 Typhlocybella sp2 39 

Typhlocybella sp2 5 Graphocephala* sp2 24 Agallinae sp1 18 Agallinae sp2 20 

Graphocephala* sp2 3 Agallinae sp1 17 Agallinae sp2 9 Aphrodinae sp3 13 

  Agallinae sp2 11 
Graphocephala 
aurolineata 4 Forcipata sp1 8 

  Stirellus bicolor 6 Graphocephala* sp2 4 Tylozygus geometricus 6 
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Appendix C Non-metric multidimensional scaling graphs comparing species composition across land-uses for each taxonomic group in each 
landscape.  
Figure C.1 Tree species composition similarity between land-uses  

a) Palajunoj  b)Sierra las Minas 

 
  

-2 -1 0 1 2 3

-2
-1

0
1

2

NMDS1

N
M

D
S

2

Agroforest Coffee

Forest

Inga Coffee

Macadamia

Rubber

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

NMDS1
N

M
D

S
2

Cardamom

Coffee

Fallow

Forest



37 
 

Figure C.2 Cicadellidae composition similarity between land-uses 
a) Palajunoj  b) Sierra las Minas  
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Figure C.3 Ant composition similarity between land-uses 
a) Palajunoj  b) Sierra las Minas  
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Appendix D: Maps of land-use and connectivity in two study landscapes  

Figure D1. Land-use map of a) Palajunoj (lowest altitude is at the bottom (South) of the 
map) and b) Sierra de las Minas (lowest altitude is at the top (North) of the map). 
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Figure D2. Forest biodiversity connectivity in Palajunoj under different land-use scenarios; 1 = forest, 2 = forest+coffee, 
3=forest+coffee+macadamia, 4=forest+coffee+macadamia+rubber 
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Figure D3. Forest biodiversity connectivity for Sierra de las Minas landscape under different scenarios; 1 = forest, 2 = forest+fallow, 

3=forest+fallow+cardamom, 4=forest+fallow+cardamom+coffee. 

 
 


