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Abstract 24 

Bee populations have experienced declines in recent years, due in part to increased disease 25 

incidence. Multiple factors influence bee-pathogen interactions, including nectar and pollen 26 

quality and secondary metabolites. However, we lack an understanding of how plant interactions 27 

with their environment shape bee diet quality. We examined how plant interactions with the 28 

belowground environment alter floral rewards and, in turn, bee-pathogen interactions. Soil-29 

dwelling mycorrhizal fungi are considered plant mutualists, although the outcome of the 30 

relationship depends on environmental conditions such as nutrients. In a 2x2 factorial design, we 31 

asked whether mycorrhizal fungi and nutrients affect concentrations of nectar and pollen 32 

alkaloids (anabasine and nicotine) previously shown to reduce infection by the gut pathogen 33 

Crithidia in the native bumblebee Bombus impatiens. To ask how plant interactions affect this 34 

common bee pathogen, we fed pollen and nectar from our treatment plants, and from a 35 

wildflower pollen control with artificial nectar, to bees infected with Crithidia. Mycorrhizal 36 

fungi and fertilizer both influenced flowering phenology and floral chemistry. While we found 37 

no anabasine or nicotine in nectar, high fertilizer increased anabasine and nicotine in pollen. 38 

AMF decreased nicotine concentrations, but the reduction due to AMF was stronger in high than 39 

low-nutrient conditions. AMF and nutrients also had interactive effects on bee pathogens via 40 

changes in nectar and pollen. High fertilizer reduced Crithidia cell counts relative to low 41 

fertilizer in AMF plants, but increased Crithidia in non-AMF plants. These results did not 42 

correspond with effects of fertilizer and AMF on pollen alkaloid concentrations, suggesting that 43 

other components of pollen or nectar were affected by treatments and shaped pathogen counts. 44 

Our results indicate that soil biotic and abiotic environment can alter bee-pathogen interactions 45 
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via changes in floral rewards, and underscore the importance of integrative studies to predict 46 

disease dynamics and ecological outcomes. 47 

Key words: bee decline, bee parasites, Bombus impatiens, Crithidia, mycorrhizae, multi-48 

trophic, trypanosome, soil, alkaloid, floral chemistry 49 

Introduction 50 

Pollinators provide critical ecosystem services important for both natural ecosystem 51 

resilience and crop yield, and bees are major contributors to these services (Klein et al. 2003). 52 

Many bee species are experiencing population declines due to a range of factors, including 53 

increased disease incidence (Cameron et al. 2011, Goulson et al. 2015). Host-pathogen dynamics 54 

do not occur in isolation, and diet quality may act as a buffer against disease stressors. For 55 

instance, protein can enhance bee immunocompetence (Alaux et al. 2010). Furthermore, 56 

environmental factors, including soil conditions and species interactions, shape the quality of 57 

floral resources (Adler et al. 2006). However, we lack a comprehensive understanding of how 58 

biotic and abiotic factors, such as soil microbes and nutrients, shape bee-pathogen outcomes 59 

mediated by diet quality. Due to the importance of pollinators for diversity in natural ecosystems 60 

and yield in crop systems (Ashman et al. 2004, Klein et al. 2007), bottom-up effects of soil 61 

conditions on bees could have widespread ecological and economic applications.  62 

Secondary metabolites in plants can provide resistance against plant antagonists but also 63 

may shape interactions with pollinators. Alkaloids in nectar can deter or attract pollinators 64 

depending on concentration and pollinator taxa (Detzel and Wink 1993, Adler 2000, Kessler et 65 

al. 2008), and nectar compounds could benefit pollinators by reducing bee pathogen load 66 

(Manson et al. 2010, Richardson et al. 2015). In particular, consuming the alkaloids nicotine and 67 

anabasine, found in Solanaceous plants, reduced infection by the gut pathogen Crithidia in the 68 
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bumblebee Bombus impatiens at ecologically-relevant concentrations (Richardson et al. 2015). 69 

However, these effects can be dose-dependent (Anthony et al. 2015), and in some studies, no 70 

effect was detected (Biller et al. 2015, Thorburn et al. 2015). Given that some bee species have 71 

declined in recent years, due in part to pathogens (Potts et al. 2010), and the largely unknown 72 

role of floral traits in pollinator-pathogen dynamics (McArt et al. 2014, Koch et al. 2017), it is 73 

critical to explore factors that influence flower-bee-pathogen interactions. 74 

Fine scale shifts in the diverse sugars, secondary compounds, and other nutrients in 75 

nectar (Bentley and Elias 1983) may alter bee-pathogen interactions, and it is thus important to 76 

study bee-disease dynamics in the context of real nectar. Sugar concentration and composition 77 

can influence Crithidia growth (Conroy et al. 2016, Palmer-Young and Thursfield 2017) directly 78 

or possibly synergistically with secondary metabolites in nectar (Palmer-Young et al. 2017). Few 79 

studies have examined the effects of secondary compounds in real nectar on bee pathogens 80 

(Tiedeken et al. 2016). To address this, we tested the effect of plant growing environment on 81 

bumble bee pathogens via changes in floral chemistry using real nectar and pollen.   82 

While some studies have examined the effect of nectar secondary chemistry on pollinator 83 

pathogens, comparatively few have examined pollen secondary chemistry. Pollen is the male 84 

gamete and is typically more defended than nectar with higher concentrations of secondary 85 

compounds (Cook et al. 2013, Palmer-Young et al. 2019), and therefore may have a stronger 86 

effect on bee pathogen loads. Furthermore, adequate dietary protein from pollen is important for 87 

honeybee and bumblebee immune response, and other dietary constituents, including amino acid 88 

and lipid levels, may also shape bee tolerance to infection (reviewed in Koch et al. 2017). A diet 89 

including both pollen and nectar is ecologically realistic, and because pollen may have higher 90 
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concentrations of secondary compounds, it is crucial to understand the combined role of these 91 

diet constituents on bee pathogens.  92 

Plants interact with a range of organisms that can affect nectar and pollen traits, which 93 

may scale up to alter bee-pathogen interactions. For example, plants widely associate with 94 

arbuscular mycorrhizal fungi (AMF), which can enhance nutrient absorption (Brundrett and 95 

Tedersoo 2018) and induce systemic expression of proteins and genes involved in defense in root 96 

and foliar tissues (Liu et al. 2007, Campos‐Soriano et al. 2010). We therefore hypothesize that 97 

AMF could alter expression of secondary chemistry in floral reward tissues via a systemic 98 

defense response. Moreover, because plant benefit from AMF depends on the relative 99 

availability of soil nitrogen and phosphorus (Johnson 2010), and soil nutrients can shape nectar 100 

secondary chemistry (Adler et al. 2006), AMF and nutrients may interactively influence defense 101 

expression, including in floral tissue. Therefore, AMF have the potential to affect floral traits 102 

including defensive chemistry via both changes in nutrient uptake and other pathways involved 103 

in defense. To date, no study has examined the effect of AMF on floral secondary chemistry, 104 

other than floral volatiles (Becklin et al. 2011), although there is evidence that AMF can increase 105 

or decrease pollinator attraction via changes in floral display (Barber and Soper Gordon 2015).  106 

By examining how plant interactions with AMF and nutrients affect floral chemistry and 107 

bee-pathogen dynamics, our study addresses a novel pathway by which belowground interactions 108 

affect pollinator health. Specifically, we asked whether floral traits (flowering phenology, nectar 109 

volume, and mean value or variation in pollen and nectar alkaloid and sugar concentrations) 110 

change in response to plant nutrient or mycorrhizal status; and whether AMF and nutrient effects 111 

on pollen and nectar affect pathogen levels in bumblebees infected with Crithidia. We 112 

hypothesized that if effects of AMF on secondary metabolism depend on soil nutrients (Getman-113 
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Pickering et al, unpublished data), AMF would increase alkaloids more under low than high 114 

nutrient conditions. Alternatively, if AMF effects on alkaloid levels are due to up-regulation of 115 

defense pathways, rather than nutrient status (Vannette and Hunter 2009),  we would expect 116 

plants grown with AMF to have higher floral alkaloids regardless of fertilizer treatment. We 117 

expected plants grown with high fertilizer to have higher floral alkaloids, consistent with a 118 

previous study of nutrient effects on nectar (Adler et al. 2006). We predicted that diet from 119 

treatment groups with high alkaloid concentrations would reduce Crithidia cell counts. 120 

Furthermore, because variation in diet quality could affect plant-pollinator interactions (Kessler 121 

et al. 2012, Wetzel et al. 2016), we assessed mean value and variation in floral chemical traits.  122 

Methods 123 

Study System 124 

We selected Nicotiana tabacum L. (cultivated tobacco; Solanaceae) as a model system 125 

because it is colonized by AMF (Andrade et al. 2013) and produces plentiful nectar containing 126 

the alkaloids nicotine and anabasine (Detzel and Wink 1993, Adler et al. 2006) that can reduce 127 

Crithidia bombi in Bombus impatiens (Richardson et al. 2015). Rhizophagus irregularis 128 

(previously Glomus intraradices) is a commercially available species of AMF used in agriculture 129 

and restoration. It increases alkaloid concentrations in root and leaf tissues of N. tabacum 130 

(Andrade et al. 2013), but its effect on floral chemistry is unknown. Bombus impatiens (common 131 

eastern bumblebee) is native to the eastern US (Williams et al. 2014). While B. impatiens is not 132 

in decline, it is related to several bee species that are in decline, associated with pathogen 133 

incidence (Cameron et al. 2011). It is therefore a useful model species to study pollinator-134 

pathogen dynamics. Bombus spp. are infected by the hind gut pathogen Crithidia bombi, which 135 

is found in up to 80% of bees at some sites (Gillespie 2010).  Crithidia reduces queen colony 136 
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founding success, size and fitness (Brown et al. 2003), and worker foraging and learning abilities 137 

(Gegear et al. 2006, Otterstatter and Thomson 2006).  138 

  139 

Experimental Design 140 

Starting in November 2016, we grew 200 tobacco plants in the greenhouse in a 2x2 141 

blocked factorial design, manipulating presence and absence of AMF, and high and low levels of 142 

fertilizer. Each block contained four plants, one from each treatment group. We collected pollen 143 

and nectar and analyzed nicotine and anabasine concentrations. We also collected and pooled 144 

pollen and nectar from plants for laboratory bioassays with bees. We fed Crithidia-infected bees 145 

pollen and nectar from plants in each treatment combination, and included a control group with a 146 

diet of wildflower pollen blend and artificial nectar to determine whether tobacco nectar and 147 

pollen in general reduced Crithidia counts relative to a typical laboratory experimental diet.  148 

We broadcast N. tabacum seeds into sterilized potting soil/sand mixture and kept 149 

seedlings fertilized uniformly throughout early development. When seedlings were ready for 150 

transplant in April 2017, we transferred them to 10 cm bleach-sterilized pots with sterilized 151 

potting soil/sand mixture. At this point, plants were randomly assigned AMF treatments (~50 152 

plants/treatment) and inoculated with either 1.71 g of 500 spores/g inoculum Rhizophagus 153 

irregularis (Premier Tech, Quebec, Canada) in perlite carrier, or the same AMF and perlite 154 

mixture that had been autoclaved. In May, we added high (4.02 g ± 0.05 g) or low (1.005 g ± -155 

0.05 g) NPK fertilizer, as in Adler et al. (2006) to plants assigned high and low fertilizer 156 

treatments (for details see Appendix S1, Plant propagation and administering treatments). 157 

In early April, after administering AMF/fertilizer treatments, we noticed an aphid 158 

outbreak in the greenhouse. We quantified (scored 0-3) and manually removed aphids on two 159 

sampling dates in April, and estimated proportion of leaf area that had mold resulting from aphid 160 



  8 

honeydew (see Appendix S1, Aphid and mold quantification). Because aphid incidence and mold 161 

were associated with AMF or fertilizer treatments (Appendix S1, Aphid and mold 162 

quantification), we included these as separate predictors in our models to account for potential 163 

effects of aphids and mold on responses. Collinearity was low in all cases (VIF < 2.0), 164 

suggesting that we could separate effects of aphids and mold from treatment effects.  165 

  166 

Quantifying Mycorrhizal Colonization 167 

We sampled roots after all nectar and pollen collection was complete, between August 168 

25th-31st, 2017.  Samples were taken from the center of the root ball, washed in tap water, then 169 

stained with trypan blue and mounted on microscope slides (Appendix S1, Mycorrhizal 170 

inoculation quantification and validation). Colonization was confirmed using a compound 171 

microscope at 400 magnification and the grid intersect method outlined in McGonigle et al. 172 

(1990). AMF treatment increased the likelihood a plant would have arbuscules by 79% (residual 173 

deviance = 795.12 on 79 df, p < 0.001), and quadrupled mean arbuscular colonization (residual 174 

deviance = 868.16 on 87 df, p < 0.001), indicating treatments were effective. Colonization was 175 

not affected by the fertilizer treatment (p > 0.09), but colonized plants were more likely to have 176 

aphids (Appendix S1, Mycorrhizal inoculation, quantification and validation). 177 

  178 

Measuring Plant Traits 179 

Plant and floral traits. The date of first flowering (first open flower with five dehisced anthers) 180 

was recorded for each plant, ranging from April 27th until the experiment ended on August 31st, 181 

2017.  During the last week of the experiment we measured plant height and leaf number to 182 

estimate treatment effect on size. From the first two flowers, we measured nectar volume using 183 

50 μL glass micro-capillary tubes (Fisher Scientific, Hampton, New Hampshire, USA) and a 184 
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digital caliper and nectar sugar concentration using a refractometer. To determine treatment 185 

effect on nectar and pollen alkaloids, pollen (from the first several flowers a plant produced until 186 

minimum amount for analysis was obtained) and nectar (from the first 2-4 flowers as needed for 187 

a volume of 25 μL) were collected between 0700 and 1300 and stored at -80°C until chemical 188 

analysis.  To collect pollen, we plucked dehiscing anthers from the filament, holding flowers 189 

upside-down to reduce the risk of contaminating nectar.  After we removed pollen, we separated 190 

sepals and ovaries from the floral tube so that nectar remained in the floral tube. By holding the 191 

flower at an angle, we were able to prevent the nectar from contacting the site of phloem 192 

exposure.  Nectar contaminated with pollen or other fluids, or that made contact with the damage 193 

site was discarded. After completing collection of pollen and nectar for chemical analysis, we 194 

collected nectar (using a 200 μL micropipetter) and pollen for the bee bioassay from subsequent 195 

flowers. For 52 plants, we analyzed a separate set of pollen from late-season sampling dates to 196 

test for correlations between early and late-season alkaloids (Appendix S1, Pollen and Nectar 197 

Chemistry). 198 

  199 

Nectar and pollen alkaloids. Because some plants died or never flowered, our analysis of floral 200 

chemistry included 120 plants; 33 AMF-/high fertilizer, 27 AMF-/low fertilizer, 31 AMF+/ high 201 

fertilizer, and 28 AMF+/low fertilizer. We weighed approximately 6 mg pollen samples for 202 

extraction but unfortunately did not record exact weights. After extraction, we confirmed that 203 

pollen weights approximated this target value and did not differ between treatments (Appendix 204 

S1, Pollen and Nectar Chemistry). We therefore used the target value of 6 mg of pollen to 205 

calculate anabasine and nicotine in μg/mg.  We also analyzed our data using post-extraction 206 

weights to calculate alkaloids/mg pollen, but chose to present results using an estimate of 6 mg 207 

due to high variability in post-extraction weights (Appendix S1, Pollen and Nectar Chemistry). 208 
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 209 

Bee-Crithidia Bioassays 210 

Preparing nectar and pollen. We used nectar and pollen from treatment plants to determine how 211 

AMF and fertilizer affected bee interactions with a gut pathogen. During collection, we pooled 212 

nectar and pollen within plants in 1.5 mL micro-centrifuge tubes and stored in a -20°C freezer. 213 

We ultimately pooled pollen and nectar samples within treatment group for use in 214 

bioassays. When we pooled pollen, we separated it from anthers using a modified insect vacuum 215 

(BioQuip Products, Inc. Compton, California, USA) outfitted with a 25-µm filter 216 

(CellMicroSieves, BioDesign Inc. of NY, Carmel, New York, USA) to catch pollen, overlaid 217 

with a piece of mesh to remove anthers. 218 

  219 

Treatment Diets. We conducted week-long bioassays from early January through early February 220 

2018. To assess the effect of diet from plants grown under different soil conditions on Crithidia-221 

infected B. impatiens (BioBest LTD, Leamington, Ontario, Canada), infected bees were provided 222 

with pollen and nectar from one of the four treatment combinations, or a control diet. The control 223 

diet contained a wildflower pollen blend collected by honeybees from an organic farm in North 224 

Dakota, USA and artificial sugar water mimicking the 12:15:10  glucose:fructose:sucrose ratios 225 

in N. tabacum nectar (Tiedge and Lohaus 2017) and the 16% overall sugar concentration 226 

observed in our nectar. We note that the control diet is not intended to be interpreted as non-227 

mycorrhizal, but rather a comparison of tobacco nectar and pollen to a more standardized lab diet 228 

typically used in experiments. Because preliminary trials suggested pure tobacco pollen may be 229 

toxic to bees (data not shown), we mixed tobacco pollen from each treatment group in a 1:1 ratio 230 

with the control wildflower pollen. To prepare pollen for bee consumption, we mixed 1 g of each 231 

pollen treatment with 1 mL of distilled water, adding small amounts of water to reach the 232 
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consistency of moist paste. We stored this in a -20°C freezer until use, adding small amounts of 233 

water as needed when pollen dried out.  For concentrations of anabasine and nicotine in bee 234 

diets, see Table S2. Bees received 330 µL of nectar and 0.013 ± SE 0.006 g of pollen on the first 235 

day of the experiment. Nectar was topped off to 330 µL each day. Bees received fresh pollen 236 

each day, unless they still had adequate amounts that had not dried out. 237 

  238 

Infecting bees. Experimental worker bees were infected using inoculum made from bee colonies 239 

maintained in the laboratory that had been initially infected with Crithidia from wild B. 240 

impatiens (Stone Soup Farm, Hadley, Massachusetts, USA, 42.363911 N, -72.567747 W) in fall 241 

2014, transferring to new colonies as needed. Following methods outlined in Richardson et al. 242 

(2015), we made inoculum from a Crithidia-infected colony (Appendix S1, Inoculating bees), 243 

and infected experimental bees with 15-20 µL of inoculum so that they received 9-12,000 244 

Crithidia cells; all bees on a single day were given only one inoculum volume depending on 245 

availability, such that variation due to quantity of cells provided was part of variation due to 246 

inoculation date. Both concentrations are well within natural variation in feces (Otterstatter and 247 

Thomson 2006). Bees that did not consume inoculum were excluded from the trial. We housed 248 

experimental bees in a deli cup modified for pollen and nectar feeding (Appendix S1, Bee 249 

containers) in a dark incubator at 28°C. We monitored and recorded bee death daily. Surviving 250 

bees were dissected seven days after inoculation and Crithidia cells were assessed with the same 251 

methods used to make inoculum. We measured the marginal cell of the right forewing as an 252 

estimate of body size. Sample sizes were limited by food availability in the low-fertilizer 253 

treatments, which produced far fewer flowers (and therefore less nectar and pollen). Initial and 254 

final sample sizes (due to deaths and escapes) were: AMF+/high fertilizer (55 initial, 33 final 255 
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bees), AMF+/low fertilizer (10 initial, 3 final), AMF-/high fertilizer (60 initial, 41 final), AMF-256 

/low fertilizer plants (14 initial, 9 final), and control diet (58 initial, 30 final).  257 

  258 

Measuring Consumption. To measure pollen and nectar consumption, we weighed pollen and 259 

nectar dispensers with their rations before placing them in deli cups on the fourth day post-260 

inoculation. The next day, we weighed them again and used the difference to estimate 261 

consumption. To account for evaporation, we simultaneously ran control consumption trials 262 

every time we measured consumption (10 replicates of control pollen and nectar, 10 replicates of 263 

tobacco nectar), which mimicked the experimental feeding setup without bees.  264 

  265 

Statistical Analyses 266 

All analyses were performed using R version 3.4.1 (R Core Team, 2019), and plots were made 267 

using ggplot2 (Wickham 2016). For all analyses we fit a set of candidate models and used the 268 

AICcmodavg package to perform model selection (shown in Table S3). We compared top models 269 

to one that excluded each term of interest (e. g., AMF, fertilizer), using ANOVA to test for a 270 

significant effect on the response. To assess pairwise differences between treatments, we used 271 

the emmeans package, adjusting for multiple comparisons using false discovery rate (FDR). To 272 

assess treatment effects on plant size and nectar volume, we fit linear models using AMF, 273 

fertilizer, their interaction, block, aphids and mold (VIF < 2) in the top models. We used number 274 

of leaves/cm to represent plant size (Appendix S1 Plant Size).  275 

We used the coxme package to conduct a Cox Proportional Hazards test of treatment 276 

effect on flowering date. The global model included fertilizer, AMF, their interaction, block, 277 

mold and aphid level. Survival analysis estimates differences in the time to an event (flowering), 278 

while accounting for censored values (plants that failed to flower).  279 
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To assess plant treatment effects on pollen anabasine and nicotine concentrations 280 

(ng/mg), we performed two analyses. Overall, 21% and 14% of plants had no pollen nicotine and 281 

anabasine, respectively, so we analyzed likelihood of having the compound using a binomial 282 

model and the MASS package. We then fit a generalized linear model with a negative binomial 283 

distribution to test treatment effects on concentration of pollen nicotine/anabasine using all 284 

plants, including those with zero values. We added a squared term of sampling date to test for 285 

quadratic effect of sampling date, due to patterns observed in exploratory analyses. We used the 286 

car package to test for collinearity among multiple predictors. There was not strong collinearity 287 

between sampling date and treatment (VIF < 2 in both cases), indicating that the effect of 288 

treatment was not confounded with that of sampling date. The global models included AMF, 289 

fertilizer, their interaction, block, sampling date, squared sampling date, mold and aphid level.  290 

The top model for anabasine included AMF, fertilizer, sampling date and squared sampling date; 291 

it did not include aphids, mold, block, or the AMF by fertilizer interaction. The top model for 292 

nicotine included AMF, fertilizer, their interaction, sampling date and squared sampling date, 293 

and did not include aphids, mold or block. During data exploration, we noticed that variation in 294 

chemical concentration differed between treatments. Because inter-plant variation in pollen 295 

chemistry may be ecologically significant, we used a Levene test to evaluate whether variance 296 

differed by treatment. We evaluated the correlation between anabasine and nicotine 297 

concentrations using a Kendall rank correlation test. 298 

To assess effects of AMF and fertilizer on Crithidia counts, we used two approaches. 299 

First, we analyzed treatments excluding the control diet to compare the effect of AMF, fertilizer 300 

and their interactions on pathogen load. We note that all four treatments incorporated equal ratios 301 

of tobacco to wildflower pollen; we hoped that mixing tobacco and wildflower pollen would 302 
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facilitate bee survival but note that this also means our diets are a conservative evaluation of the 303 

strength of treatment effects. We conducted this analysis using a generalized linear model with 304 

AMF, fertilizer, their interaction, colony, inoculation date, bee size (estimated as wing marginal 305 

cell length), pollen and nectar consumption, and anabasine and nicotine consumption (calculated 306 

as mg pollen consumed * concentration of each compound in diet treatment) in the global model, 307 

with a negative binomial distribution. Our top model included all covariates except inoculation 308 

date, and measures of pollen/nectar and nicotine/anabasine consumption. We used a post hoc 309 

chi-squared test to test residual deviance. Next, we analyzed differences in counts between all 310 

diets, treating diet as a single five-level factor. The goal of this additional analysis was to ask if 311 

tobacco diets differed from the control diet. The global models had diet, colony, inoculation date, 312 

bee size, nicotine consumption, anabasine consumption and either pollen or nectar consumption 313 

as covariates, and a negative binomial distribution. Replication was too low to include both 314 

pollen and nectar consumption as covariates in the same global model. The top model included 315 

diet treatment (5 levels), bee size and colony, but not nectar or pollen consumption. To assess 316 

differences between tobacco and control diets, we performed a post hoc generalized linear 317 

hypothesis test using the multcomp package, adjusting for multiple comparisons using FDR. For 318 

both analyses testing the effect of diet on Crithidia counts, we ran models excluding the diet 319 

treatment with low replication (AMF+, low fertilizer), and found that fertilizer and AMF still 320 

significantly affected Crithidia in similar directions (Appendix S1, Crithidia counts). Separately, 321 

we tested whether diet treatment affected consumption of pollen or nectar using a linear model 322 

(Appendix S1, Consumption). We conducted Cox Proportional Hazards tests to assess diet effect 323 

on bee survival. Because replication was too low to use the five-level factor of diet as a 324 

predictor, we excluded the control diet and tested the effects of fertilizer and AMF separately.  325 
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 326 

Results 327 

Treatment effects on plant size and floral traits 328 

High fertilizer increased plant size by 22% (F9, 96 = 6.6, p < 0.001) and likelihood of 329 

flowering by a factor of 2.1 relative to low fertilizer (Figure S1; log likelihood = -713.33,  = p < 330 

0.001). AMF increased plant size by about 15% (F9, 96 = 6.6, p = 0.002) but reduced the 331 

likelihood of flowering by a factor of -0.7 (Appendix S1, AMF and nutrients influence flowering 332 

phenology, Figure S1; log likelihood = -671.7, p < 0.001). Aphids did not affect flowering time 333 

(log likelihood = -663.75, p  = 0.094) or size (F9, 96 = 6.6, p = 0.094). We concluded that AMF 334 

and fertilizer treatments had no effect on nectar sugar concentration after finding no variation in 335 

the first 40 plants sampled (10 per treatment combination; all plants had 16% sucrose 336 

equivalents). In contrast with previous work on N. tabacum nectar (Adler et al. 2006), we did not 337 

find anabasine or nicotine in any of our nectar samples. While this finding was unexpected, it is 338 

possible that differences in abiotic factors between our study site and that of previous work 339 

account for this result (Appendix S1, Pollen and Nectar Chemistry). 340 

AMF had no effect on the likelihood of anabasine in pollen (c2 = 57.789, N=115, p = 341 

0.092), while plants sampled at later dates were more likely to have anabasine (c2 = 85.839, 342 

N=115, p < 0.001). Fertilizer had no effect on the likelihood of anabasine in pollen and was not 343 

in the top model. However, high fertilizer increased anabasine concentration by 484% compared 344 

to low fertilizer (Figure 1; c2 = 94.949, N = 115, p < 0.001). AMF had a non-significant trend to 345 

increase pollen anabasine concentration by 56% (Figure 1; c2 = 85.888, N=115, p = 0.072). 346 

Sampling date had a positive quadratic effect on pollen anabasine concentration (c2 = 92.165, N 347 

= 115, p < 0.001), such that anabasine concentrations peaked mid-season. AMF and fertilizer did 348 
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not interact, and this term was not in the top model. We found similar results using post-349 

extraction weights, except that the effect of AMF became significant (Appendix S1, Pollen and 350 

Nectar Chemistry). 351 

Neither AMF nor fertilizer affected the likelihood pollen would have nicotine (c2 > 77, p 352 

> 0.21 for both), but plants that flowered later were more likely to have nicotine (c2 = 147.83, p < 353 

0.001).  Plants with high fertilizer had 173% more pollen nicotine than those with low fertilizer 354 

(log likelihood = -614.884 on 111 df, p = 0.003). However, these effects depended on the 355 

interaction between fertilizer and AMF, such that AMF plants had reduced nicotine 356 

concentration under high, but not low fertilizer conditions (Figure 1; log likelihood = -607.242 357 

on 110 df, p = 0.044). Alone, AMF did not significantly affect nicotine concentration (log 358 

likelihood = -608.183, p = 0.082). Sampling date had a positive quadratic effect on nicotine 359 

concentration (log likelihood= -68.624 on 109 df, p = 0.02), such that nicotine concentrations 360 

peaked mid-season. We found similar results using post-extraction weights, except that the 361 

interaction between AMF and fertilizer was no longer significant (Appendix S1 Pollen and 362 

Nectar Chemistry).  363 

High fertilizer increased pollen anabasine (F1,113 = 0.828, p < 0.001) and nicotine (F1,113 = 364 

10.97, p = 0.001) concentration variance compared to low fertilizer. AMF did not affect 365 

anabasine concentration variance (F1,112 = 1.20, p = 0.276), but marginally decreased nicotine 366 

concentration variance (F1,113 = 3.68, p = 0.058).  Anabasine and nicotine concentration were not 367 

correlated (coefficient = 0.154, p = 0.099), and there was no correlation between early and late-368 

season anabasine or nicotine concentrations (Appendix S1, Pollen and Nectar Chemistry). 369 

  370 

Treatment effects on pathogen counts and bee survival via changes in nectar and pollen 371 
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When we excluded the control diet and tested the interaction of AMF and fertilizer on 372 

Crithidia counts, AMF and fertilizer interacted such that diet from plants grown without AMF 373 

and low fertilizer resulted in the lowest Crithidia counts (Figure 2; interaction term log 374 

likelihood= -508.07 on 81 df, p = 0.04). Alone, neither AMF (log likelihood = -509.63 on 82 df, 375 

p = 0.211), nor fertilizer (log likelihood = -510.72 on 82 df, p = 0.104) affected Crithidia. 376 

Colony significantly affected counts (log likelihood = -514.82 on 81 df, p = 0.001), and larger 377 

bees had lower infection (log likelihood = -508.73 on 81 df, p = 0.028). Pairwise comparisons 378 

revealed that for plants grown without AMF, diet from high fertilizer treatments increased 379 

Crithidia counts compared to low fertilizer (p = 0.010). In contrast, for plants grown with AMF, 380 

diet from high fertilizer treatments had no effect on Crithidia counts compared to those grown 381 

with low fertilizer (p = 0.975). For plants grown with high fertilizer, there was a trend for AMF 382 

to result in lower Crithidia counts than those grown without AMF (p = 0.053).  383 

Diet had a significant effect on Crithidia counts when we included the control diet 384 

(wildflower pollen and sugar solution) in the analysis (log likelihood = -711.64 on 118 df, p = 385 

0.040). When we compared the control diet to the four tobacco diets using non-orthogonal 386 

contrasts, the control did not differ from plants grown with AMF regardless of fertilizer 387 

treatment (p > 0.46). Of plants without AMF, diet from plants with high fertilizer did not differ 388 

from the control (p = 0.328), and plants grown with low fertilizer had lower Crithidia counts 389 

than the control (p = 0.035). Colony affected Crithidia counts (log likelihood = - 711.88, p < 390 

0.001), and larger bees had lower infection (log likelihood = - 707.80, p = 0.013). There was no 391 

effect of AMF (Wald test = 1.18, df = 1, p = 0.277) or fertilizer (Wald statistic = 1.36, df = 2, p = 392 

0.2443) on survival. Pollen consumption and nectar consumption did not differ between diet 393 
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treatments, and diet treatment was not included in the top model of nectar consumption 394 

(Appendix 1, Consumption). 395 

  396 

Discussion 397 

AMF and nutrients affect pollen and nectar secondary chemistry 398 

We found that soil nutrients and mycorrhizal fungi affect pollen alkaloid concentrations. 399 

High nutrients increased pollen nicotine and anabasine concentrations (Figure 1). This is 400 

consistent with previous work showing that fertilizer increased nectar secondary compounds 401 

(Adler et al. 2006), but to our knowledge is the first study to examine effects of belowground 402 

environment on pollen secondary chemistry. Secondary metabolite production can be costly 403 

(Züst et al. 2011), and high fertilizer plants may have more resources for defense production. The 404 

effect of AMF on pollen alkaloids was more subtle. No study to our knowledge has researched 405 

the effect of mycorrhizal fungi on nectar or pollen secondary chemistry, although one study 406 

found that  higher AMF colonization was negatively correlated with floral volatile compound 407 

emission rate and diversity (Becklin et al. 2011). In our study, AMF modified effects of fertilizer 408 

on nicotine in pollen (Figure 1). The increased suppressive effect of AMF on nicotine under high 409 

fertilizer could be due to AMF-plant competition for nitrogen, an important ingredient in alkaloid 410 

synthesis (Xi et al. 2008); under high resource conditions, plants and AMF may compete for, 411 

rather than equally share, resources (Walder and van der Heijden 2015). This finding supports 412 

our hypothesis that the effect of AMF on alkaloids is conditional on soil nutrients. On the other 413 

hand, we did not find support for the hypothesis that AMF effect on alkaloids is due to defense 414 

up-regulation alone, because AMF had inconsistent effects on alkaloids across fertilizer 415 

treatments (Figure 1).   416 
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AMF and nutrients affected pollen alkaloid concentrations, but we did not detect any 417 

anabasine or nicotine in nectar. Other work also found higher and more diverse secondary 418 

compounds in pollen than nectar (Cook et al. 2013, Palmer-Young et al. 2019), consistent with 419 

Optimal Defense Theory, which predicts that plants invest more defense in tissues more directly 420 

related to fitness. Since many plants face pollen theft by ineffective pollinators (Solís-Montero et 421 

al. 2015), and floral alkaloids can reduce floral larceny (Barlow et al. 2017), reduced nicotine in 422 

plants with AMF and high fertilizer suggests a potential cost of the AMF-plant mutualism that 423 

depends on nutrient availability. While this hypothesis would need to be tested in the presence of 424 

floral antagonists, it is consistent with other studies showing that AMF exists along a mutualist-425 

parasite continuum (reviewed in Johnson 2010). 426 

In addition to having higher mean anabasine and nicotine concentrations, plants grown 427 

with high fertilizer had more variable anabasine and nicotine concentrations than those grown 428 

with low fertilizer. Unpredictable nectar quality can alter pollinator behavior and increase 429 

outcrossing in wild Nicotiana species (Kessler et al. 2012). If soil conditions increase variability 430 

of floral resources, there could be important implications for plant population dynamics or crop 431 

yields. Future studies should also examine whether soil conditions affect variance of pollen 432 

macronutrients; a recent meta-analysis showed that variation in, rather than the mean, of plant 433 

nutrient traits is an important limiting factor for herbivorous insect pest performance (Wetzel et 434 

al. 2016). If belowground conditions cause variation in nutritive quality of floral rewards, and if 435 

pollinators, which can be thought of as a specialized type of herbivore, respond to nutrient 436 

variation as insect pests do, then increased variation in floral resource nutritive quality could 437 

have a detrimental effect on pollinator growth and survival.  438 

 439 
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AMF and nutrients affect bee pathogens via changes in floral rewards 440 

 We found that plant interactions with the belowground environment can affect pathogen 441 

cell counts in pollinators via changes in nectar and/or pollen. Although other work has shown 442 

that pollen and nectar quality can affect bee resistance to pathogens (Brunner et al. 2014, 443 

Richardson et al. 2015), this is the first study to demonstrate that plant interactions with their 444 

abiotic and biotic environment can shape bee-pathogen interactions. Plants have a well-445 

established ability to structure communities. This can happen directly, such as when plant 446 

diversity drives arthropod diversity (Potts et al. 2003), or indirectly when plants act as 447 

intermediaries of species interactions (Strauss 1997). Our results demonstrate the potential for 448 

multitrophic consequences of plant-environment interactions on pathogens of pollinators.   449 

Treatment effects on Crithidia counts could not be explained by changes in floral 450 

alkaloid concentrations. Because anabasine- and nicotine-containing sucrose solutions reduced 451 

Crithidia pathogen counts in bumblebees previously (Richardson et al. 2015) and fertilizer 452 

increased nectar anabasine concentrations in N. tabacum (Adler et al. 2006), we hypothesized 453 

that high fertilizer would reduce Crithidia counts by increasing nectar or pollen anabasine and 454 

possibly nicotine. However, pollen with low mean anabasine reduced Crithidia most, and pollen 455 

with high anabasine resulted in intermediate Crithidia counts (Figure 1, Figure 2). In one study, 456 

nectar nicotine and anabasine reduced Crithidia independently but not in tandem (Thorburn et al. 457 

2015), which could explain some of our results; nicotine and anabasine could have either neutral, 458 

synergistic or antagonistic interactions at varying concentrations. However, we cannot rule out 459 

the possibility of a mechanism other than alkaloids affecting Crithidia counts. 460 

 Other components of pollen or nectar could act with or independent of alkaloids to reduce 461 

Crithidia counts. For example, excessive soil nutrients can decrease amino acid concentrations in 462 
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pollen, with consequences for bumblebee larval survival (Ceulemans et al. 2017). Bumblebees 463 

consuming a pollen-limited diet have reduced expression of immune genes (Brunner et al. 2014), 464 

which could be due to lack of protein or other pollen constituents. Alternatively, diets rich in 465 

certain constituents could have promoted Crithidia growth by providing the pathogen with a 466 

more beneficial food source. Future studies should examine ecological factors that shape pollen 467 

and nectar constituents other than alkaloids, and manipulate presence and concentrations in bee 468 

diet to identify mechanisms mediating belowground effects on bee-pathogen interactions.  469 

In conclusion, our results demonstrate that abiotic and biotic soil components change 470 

floral defensive chemistry and traits that affect bumblebee pathogens. These results suggest 471 

potential novel costs of the mycorrhizae-plant mutualism via changes in floral reward chemistry, 472 

and pose exciting directions for studying context dependency of mutualisms in communities. 473 
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Figure Legends 625 

 626 

Figure 1. Effects of AMF and fertilizer treatments on pollen anabasine and nicotine 627 

concentrations. Effect of AMF and fertilizer on anabasine and nicotine concentrations. Error 628 

bars represent +/- SE. Results shown are back-transformed model estimates. 629 

 630 

Figure 2. Effects of diet on Crithidia cell counts in bees. Effect of AMF and nutrients on 631 

Crithidia counts. Black bar shows control diet, and error bars show +/- SE. Cell counts are back-632 

transformed estimates from the full model comparing control diet to all four diet types. 633 
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 643 

Figure 1. 644 

fertilizer       p < 0.001 
AMF            p  = 0.072 
fert X AMF  NS 

fertilizer      p < 0.003 
AMF           p  = 0.082 
fert X AMF p = 0.044 
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