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With the development of cloud services, outsourcing computation tasks to a commercial cloud server has drawn attention of
various communities, especially in the Big Data era. Public verifiability offers a flexible functionality in real circumstance where the
cloud service provider (CSP) may be untrusted or some malicious users may slander the CSP on purpose. However, sometimes
the computational result is sensitive and is supposed to remain undisclosed in the public verification phase, while existing
works on publicly verifiable computation (PVC) fail to achieve this requirement. In this paper, we highlight the property of
result confidentiality in publicly verifiable computation and present confidentiality-preserving public verifiable computation (CP-
PVC) schemes for multivariate polynomial evaluation and matrix-vector multiplication, respectively. The proposed schemes work
efficiently under the amortized model and, compared with previous PVC schemes for these computations, achieve confidentiality
of computational results, while maintaining the property of public verifiability.The proposed schemes proved to be secure, efficient,
and result-confidential. In addition, we provide the algorithms and experimental simulation to show the performance of the
proposed schemes, which indicates that our proposal is also acceptable in practice.

1. Introduction

Outsourcing computation has been served as a significant
service with the rapid development of Cloud Computing
Technology. It provides the service purchaser (whom we
call user) with constraint computational power to delegate
the complicated computational tasks to the service provider
(whichwe call cloud server) and enjoy its unlimited computa-
tional resources in a pay-per-use manner. This brings a huge
convenience for resource-constraint devices to reduce their
computational overhead and thus has attracted significant
interests in both industrial and academic communities. A
number of large enterprise groups, such as Amazon, Google,
and Alibaba, have launched their Cloud Computing to
provide computation outsourcing services. What is more, in

Big Data era, the ability to deal with the massive data has
become core competitiveness while outsourcing computation
just fits this demand.

While outsourcing computation paradigm enjoys numer-
ous benefits, it also suffers from rigorous challenges [1].
To begin with, since the cloud server is commercialized,
sometimes it may not perform the computation honestly but
output a computationally indistinguishable result in order to
save its cost formore interests.Therefore, a basic requirement
of outsourcing computation is to assure the correctness of
the computational result. In other words, the user should
have a way to verify the correctness of the output from
the cloud server with an overwhelming probability. Despite
the untrustworthy of cloud server, misbehavior may also
happen from the user side. For example, a malicious user
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may deliberately claim the output from the cloud server
incorrect and slander the cloud service provider by this even
if the cloud server has performed the computation honestly.
This is due to the fact that verification is done in a private
manner. Therefore, it is preferable that the verification can
be done publicly. That is to say, anyone except the user
himself is able to verify the output from the cloud server.
With public verification, not only cannot the cloud server
cheat with an incorrect output, but also the user cannot
claim the output from the cloud server incorrect for no
reason, because now the output is witnessed and verified
by everyone. Secondly, since sometimes the computational
result is something sensitive, it needs to be kept secret to
any party except the user himself. Thus another challenge of
outsourcing computation is to assure confidentiality of the
computational result, especially when the output from the
cloud server can be verified publicly. Last but not least, the
whole workload of the user in certain computation outsourc-
ing procedure must be much less than accomplishing this
computation task all by the user himself. We call this the
requirement of efficiency. This is essential because if not, the
outsourcing will be meaningless.

The evaluation of multivariate polynomials 𝑝(𝑥) is one
of the most fundamental computational tasks in scientific
communities. In practice, there are so many problems that
can be reduced to a model of evaluating certain polyno-
mial with multivariate input value, for example, to evaluate
an employee’s performance in a company and to evaluate
a person’s health condition. Matrix-vector multiplication
is another fundamental computational task that is widely
applied, for example the Discrete Fourier Transform (DFT)
and the Singular Value Decomposition (SVD). And in Big
Data era, with the data we need to deal with getting more and
more enormous, it is very likely that the storage requirement
when evaluating multivariate polynomials or matrix-vector
multiplication exceeds the available memory of the user’s
computational devices, like cell phones or portable laptop.
Thus we need to find another way to fulfill the computational
tasks securely and efficiently. Plenty of works have been
done to seek secure and efficient schemes of outsourcing
computation for polynomials and matrix-vector multiplica-
tion. Fiore and Gennaro [2] proposed schemes to securely
outsource evaluation ofmultivariate polynomials andmatrix-
vector multiplication and verify the corresponding result in
a public manner. Unfortunately, one disadvantage of their
proposal is the leakage of final result. Anyone is able to
verify the correctness of the output from the cloud server and
then obtain the result of the target evaluation. This brings a
drawback in practice when the result is something sensitive,
for example, the year-end bonus of an employee and the
health condition of a person.

1.1. Related Works

1.1.1. Verifiable Computation. Verifiable computation (VC)
was first proposed by Gennaro et al. [3]. In VC, only two
parties are involved, the client that processes the input data
and the server that evaluates the target function with the
value client sends. The output of the server can be verified

by the client only. Both the input and output value of the
function are private in the whole procedure. Gennaro et
al. proposed a concrete VC scheme for arbitrary circuit
using Yao’s [4] two-party computation scheme and Gentry’s
[5] fully homomorphic encryption (FHE) scheme. After
that, different VC schemes using FHE were proposed [6–
8]. They made use of various techniques to achieve verifia-
bility. However, applying FHE in practice brings expensive
overhead.

To avoid applying FHE and promote efficiency, a lot of
papers [9–15] focused on VC schemes for various kinds of
computation and had achieved outstanding results.

1.1.2. Publicly Verifiable Computation. Different from VC
where the verification is done privately, publicly verifiable
computation (PVC) allows anyone to verify the result output
by the server. PVC brings more flexible application in the
untrusted cloud environment than VC, mainly in two-fold.
One is to release the workloads of verification for the client.
Another is the supervision of users. This is because if the
verification is only done privately, once an incorrect result
is claimed, it is hard to tell whether the server misbehaved
or the user is intentionally slandering. However if the result
can be verified publicly, the user’s slandering is easy to detect.
PVC was first proposed by Parno et al. [16].They constructed
a PVC scheme for Boolean functions using KP-ABE schemes.
After that, many PVC schemes were proposed [2, 17–19]. In
2012, Fiore et al. [2] proposed a PVC scheme for multivariate
polynomial evaluation and matrix multiplication. They took
inspiration from Benabbas et al.’s [9] VC scheme to use
pseudorandom function that enjoys closed form efficiency to
generate the verification key efficiently, and they generalized
the function to multivariate case. Moreover, by leveraging
the technique of bilinear map, they have improved the ver-
ification procedure from private to public manner. With the
similar technique, Sun et al. [17] constructed batch verifiable
computation schemes with public verification for polynomial
andmatrix that achieve simultaneously evaluation ofmultiple
functions in one outsourcing phase. In 2016, Elkhiyaoui et
al. proposed another solution for univariate polynomial eval-
uation and matrix multiplication. They leverage the idea of
Euclidean division of polynomials to construct the structure
of the verifiable computation.And the bilinearmap technique
is utilized tomake the verification able to be public. However,
this idea is only suitable for univariate polynomial scenario.
What is more, all the schemes mentioned above share the
same disadvantage that anyone except for the user that
verifies the result will surely obtain its concrete value. This is
insecure in practice when the result of certain computation
is usually something sensitive and the verification process
is supposed to output a judgement to the correctness of the
result rather than disclosing the value itself. To overcome
this, Alderman et al. [20] improved Parno et al.’s [16] scheme
with a secret substitution bit and presented a PVC with
key distribution center (KDC) for Boolean functions. They
also achieved other properties like revocation based on
this PVC with KDC [21, 22], but this way of using secret
substitution bit cannot fit other functions that have large
range.
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1.2. Our Contributions. In this paper, we present a modified
PVCmodel that is considered to bemore practical. It captures
the confidentiality of the computational result, which we
believe is an important property when utilizing in practice.

We present outsourcing schemes for securely and effi-
ciently evaluating high degree multivariate polynomials and
matrix-vector multiplication. Compared with existing out-
sourcing schemes for polynomials [2, 23] and matrix multi-
plication, our proposal simultaneously captures properties of
both public verifiability and result confidentiality. This offers
a more flexible application in practice.

We also provide the algorithm for our outsourcing
scheme and run some simulated experiments to show the
efficiency of the proposed schemes.

This paper is an extension of its corresponding conference
version [24]. In the revised version, we extends the CP-
PVC scheme to the matrix-vector multiplication case. The
resulting scheme proved to achieve not only the properties
of polynomial case (i.e., security, public verifiability, and
result confidentiality) but also the input privacy. We run
corresponding simulated experiments and the result is also
acceptable for practice.

1.3. Paper Organization. The remaining parts of the paper
are organized as follows. Some necessary preliminaries
are provided for the proposed schemes in Section 2. The
framework of the proposed CP-PVC protocol is defined in
Section 3.The concrete constructions of theCP-PVC schemes
for polynomial evaluation and matrix-vector multiplication
are presented, analyzed, and simultaneously experimented
separately in Sections 4 and 5. The conclusion of the paper
is in Section 6.

2. Preliminaries

In this section, we provide some definitions about algebraic
pseudorandom function (PRF) with closed form efficiency,
bilinear Map, and some related notions. We also provide the
computational assumptions that are used for the construction
of our schemes.

2.1. Algebraic PRF with Closed Form Efficiency. One of our
main techniques is the PRF with closed form efficiency. PRF
is a function (denoted by 𝑅) that is generated from a secret
seed 𝐾. It owns the properties of both randomness and
computational efficiency. A closed form efficient PRF consists
of algorithms (KG, 𝑅) that are defined as follows:

(i) KG(1𝜆) → (𝐾, 𝑝𝑝): The randomized key generation
algorithm takes as input the security parameter 1𝜆
and outputs a tuple of parameters (𝐾, 𝑝𝑝), where 𝐾
denotes the secret seed and 𝑝𝑝 denotes the public
parameters that specifies the domain 𝑋 and range 𝑌
of the function, respectively.

(ii) 𝑅(𝐾, 𝑥) → 𝑦: The deterministic functional computa-
tion algorithm takes as input the secret seed𝐾 and the
value 𝑥 ∈ 𝑋 and computes a value 𝑦 ∈ 𝑌. We usually
denote it by 𝑅𝐾(⋅).

An algebraic PRF with closed form efficiency must satisfies
the following properties:

(1) (Algebraic) APRF (KG, 𝑅) is algebraic if the range𝑌 of𝑅𝐾(⋅) forms an abelian group. We use multiplication
notation for group operation.

(2) (Pseudorandom) A PRF (KG, 𝑅) is pseudorandom if
for every PPT adversaryA, there holds

󵄨󵄨󵄨󵄨󵄨Pr [A𝑅𝐾(⋅) (1𝜆, 𝑝𝑝) = 1] − Pr [A𝑟(⋅) (1𝜆, 𝑝𝑝) = 1]󵄨󵄨󵄨󵄨󵄨 ≤ 𝜖 (1)

where (𝐾, 𝑝𝑝) $←󳨀 KG(1𝜆) and 𝑟 : 𝑋 → 𝑌 is a random
function.

(3) (Closed form efficiency) Let Comp represent arbi-
trary computation that takes as input 𝑙 random values𝑟1, . . . , 𝑟𝑙 ∈ 𝑌 and a vector of 𝑚 arbitrary values𝑥 = (𝑥1, . . . , 𝑥𝑚). Assume that the fastest algorithm
to computeComp(𝑟1, . . . , 𝑟𝑙, 𝑥1, . . . , 𝑥𝑚) takes time 𝑡0.
Let 𝑧 = (𝑧1, . . . , 𝑧𝑙) be a tuple of arbitrary values
taken from 𝑋. Then a PRF (KG, 𝑅) is closed form
efficient for (Comp, 𝑧) if there exists an algorithm
CFEkalComp,𝑧 such that

CFEkalComp,𝑧 (𝐾, 𝑥)
= Comp (𝑅𝐾 (𝑧1) , . . . , 𝑅𝐾 (𝑧𝑙) , 𝑥1, . . . , 𝑥𝑚) (2)

and its running time is 𝑜(𝑡0). When 𝑧 = (1, . . . , 𝑙),
we usually omit it from the subscript and write
CFEkalComp(𝐾, 𝑥) instead.

Here we only show the definition of PRF with closed
form efficiency. We will give a concrete algorithm of PRF
with closed form efficiency for multivariate polynomials in
Section 3.

2.2. Bilinear Map. Our constructions also use bilinear maps.
Bilinear pairing is a powerful tool in noninteractive authen-
tication and has been widely applied in both encryption
and signature schemes [9, 25]. To be specific, let G1,G2,
and G𝑇 be finite cyclic multiplicative groups of order 𝑝,
and let 𝑔, ℎ be generators of G1 and G2. A map 𝑒 : G1 ×
G2 → G𝑇 is called a bilinear map if it satisfies the following
properties:

(1) Bilinearity: it holds that
𝑒 (𝑔𝛼, ℎ𝛽) = 𝑒 (𝑔, ℎ)𝛼𝛽 (3)

for all 𝛼, 𝛽 ∈ Z𝑁.(2) Nondegeneracy: there exist 𝑔1 ∈ G1, ℎ1 ∈ G2 such
that 𝑒(𝑔1, ℎ1) ̸= 1.

(3) Computability: there exists an efficient algorithm to
compute 𝑒(𝑔1, ℎ1) for any 𝑔1 ∈ G1, ℎ1 ∈ G2.
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2.3. Computational Assumptions. The computational as-
sumption that is used for the construction of the PRF with
closed form efficiency is decision linear (DL) assumption.We
present the definition below.

Definition 1 (decision linear assumption). Let G be a group
of prime order 𝑝. Given 𝑔0, 𝑔1, 𝑔2 ∈ G and 𝑟0, 𝑟1, 𝑟2 ∈ Z𝑝,
one defines the advantage of an algorithmA in deciding the
decision linear problem in G as

Adk𝑑𝑙A = 󵄨󵄨󵄨󵄨󵄨Pr [A (𝑝, 𝑔0, 𝑔1, 𝑔2, 𝑔𝑟1
1 , 𝑔𝑟2

2 , 𝑔𝑟1+𝑟2
0 ) = 1]

− Pr [A (𝑝, 𝑔0, 𝑔1, 𝑔2, 𝑔𝑟1
1 , 𝑔𝑟2

2 , 𝑔𝑟0
0 ) = 1]󵄨󵄨󵄨󵄨󵄨 .

(4)

One says that the decision linear assumption (𝑡, 𝜖) holds in G

if for every 𝑡-time algorithmA one has Adk𝑑𝑙A ≤ 𝜖.
Note that the decision linear assumption holds in generic

bilinear groups. Relative proof can be found in [26].
Next we present the definition of co-CDH, which is the

base for the security of our proposed schemes. The co-CDH
assumption was first introduced in BLS signature scheme
presented by Boneh et al. [27], as a natural extension of
standard CDH problem in asymmetric bilinear pairing. It is
defined as follows.

Definition 2 (co-CDH assumption). Let (𝑝, 𝑔, ℎ,G1,G2,G𝑇,𝑒) be as above in Section 2.2. Given random 𝑎, 𝑏 ∈ Z𝑝, one
defines the advantage of an algorithm A in solving the co-
CDH problem in G1,G2 as

Adk𝑐𝑜−𝑐𝑑ℎA = 󵄨󵄨󵄨󵄨󵄨Pr [A (𝑝, 𝑔, ℎ, 𝑔𝑎, ℎ𝑏) = 𝑔𝑎𝑏]󵄨󵄨󵄨󵄨󵄨 (5)

and one says that the co-CDH assumption (𝑡, 𝜖) holds in
G1,G2 if for every 𝑡-time algorithmA one hasAdk𝑐𝑜−𝑐𝑑ℎA ≤ 𝜖.

Note that when G1 = G2, the co-CDH problem reduces
to standard CDH.

3. Modelling CP-PVC

We use an amortized model [16] to construct our CP-PVC
scheme. That is, the user (denoted by S𝑈) shall invest a
larger amount of computational work in a preprocessing
phase in order to obtain efficiency during the computation
outsourcing phase.The adversaries in a PVC protocol are two
types, the cloud server (denoted by 𝐶𝑆) and some “curious”
verifiers (denoted by 𝐶𝑉). The former is in lazy-but-honest
model [28] and the latter is in honest-but-curiousmodel.This
is reasonable since, in practice, a rational commercial cloud
service will try to minimize the computation it needs to do to
pass the verification algorithm. And passing the verification
algorithm is its priority because only in this way can it get
the payback. Also since the verification is public, there will
be some curious verifiers that perform the public verification
algorithm and try to discover some secret information about
the final result value.

A difference between the framework of PVC proposed by
Parno et al. [16] and ours is that we address the confidentiality

of the computational result. In the public verification phase, a
bit is output instead of the result value. And the result value is
obtained in the later phase called private retrieval. To realize
confidentiality, the user needs to operate the target function
in the preprocessing phase andobtain a secret key for retrieval
and keep it secret.

Let F be a class of functions and 𝐹 ∈ F. We define
a confidentiality-preserving publicly verifiable computation
(CP-PVC) protocol 𝜋 via the following five algorithms:

(i) KeyGen(1𝜆, 𝐹) → (𝑆𝐾𝐹, 𝐸𝐾𝐹, 𝑃𝑃): The randomized
key generation algorithm takes as input a security
parameter and the function 𝐹 and as outputs a
secret key 𝑆𝐾𝐹 for the input delegation phase, an
evaluation key 𝐸𝐾𝐹 for the cloud server to compute
the outsourcedmessage, and the public parameter𝑃𝑃.
This is done by the client.

(ii) ProbGen(𝑃𝑃, 𝑆𝐾𝐹, 𝑥) → (𝜎𝑥, 𝑉𝐾𝑥, 𝑅𝐾𝑥): Given the
public parameter 𝑃𝑃, the secret key 𝑆𝐾𝐹, and the
input value 𝑥 ∈ Domain(𝐹), the randomized prob-
lem generation algorithm outputs a public value 𝜎𝑥,
which is the encoding of 𝑥, together with a public
verification key 𝑉𝐾𝑥 for nonclient parties to verify
the correctness and a private retrieval key 𝑅𝐾𝑥 for the
client to retrieve final result 𝐹(𝑥). This is done by the
client.

(iii) Compute(𝐸𝐾𝐹, 𝜎𝑥) → 𝜎𝑜𝑢𝑡: On inputting the eval-
uation key 𝐸𝐾𝐹 together with the value 𝜎𝑥, the
randomized computation algorithm outputs a value𝜎𝑜𝑢𝑡. This is done by the worker (cloud server).

(iv) PubVer(𝑃𝑃, 𝑉𝐾𝑥, 𝜎𝑜𝑢𝑡) → {𝑎𝑐𝑐𝑒𝑝𝑡, 𝑟𝑒𝑗𝑒𝑐𝑡}: The deter-
ministic public verification algorithm uses the public
parameter 𝑃𝑃 and public verification key 𝑉𝐾𝑥 to
check whether the final result is correct and returns𝑎𝑐𝑐𝑒𝑝𝑡 or 𝑟𝑒𝑗𝑒𝑐𝑡 accordingly. This is done by the
nonclient verifiers.

(v) PrivRet(𝑃𝑃, 𝑉𝐾𝑥, 𝑅𝐾𝑥, 𝜎𝑜𝑢𝑡) → 𝑦: The determinis-
tic private retrieval algorithm is run on input 𝑃𝑃,𝑉𝐾𝑥,𝑅𝐾𝑥, and𝜎𝑜𝑢𝑡 to compute a string𝑦 ∈ {0, 1}∗∪{⊥}. Here, the special symbol ⊥ indicates that the public
verification algorithm rejects the worker’s answer𝜎𝑜𝑢𝑡. This is done by the client.

A verifiable computation scheme should be both correct
and secure. We give the definition of correctness and security
in the following.

Definition 3 (correctness). A confidentiality-preserving pub-
licly verifiable computation protocol 𝜋 is correct for a class of
functions F if, for any 𝐹 from F, any tuple (𝑆𝐾𝐹, 𝐸𝐾𝐹, 𝑃𝑃)
output by KeyGen(1𝜆, 𝐹), any 𝑥 chosen from Domain(𝐹),
any tuple (𝜎𝑥, 𝑉𝐾𝑥, 𝑅𝐾𝑥) output by ProbGen(𝑃𝑃, 𝑆𝐾𝐹, 𝑥),
and any 𝜎𝑜𝑢𝑡 output by Compute(𝐸𝐾𝐹, 𝜎𝑥), the PubVer

algorithm on input (𝑃𝑃,𝑉𝐾𝑥, 𝜎𝑜𝑢𝑡) outputs 𝑎𝑐𝑐𝑒𝑝𝑡, and
the PrivRet algorithm on input 𝑃𝑃,𝑉𝐾𝑥, 𝑅𝐾𝑥, and 𝜎𝑜𝑢𝑡 out-
puts 𝑦 = 𝐹(𝑥).

The security of a verifiable computation requires that the
worker is not able to output an incorrect value that passes
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the PubVer or the PrivRet algorithm. We give the formal
definition via the following experiment.

Definition 4 (security). Let 𝜋 be a confidentiality-preserving
publicly verifiable computation scheme for a class of func-
tions F, and assume that A is PPT adversaries. Consider
Experiment EXPA[𝜋, 𝐹, 𝜆] for any 𝐹 ∈ F below:

Experiment 𝐸𝑋𝑃A[𝜋, 𝐹, 𝜆]
KeyGen(1𝜆, 𝐹) $󳨀→ (𝑆𝐾𝐹, 𝐸𝐾𝐹, 𝑃𝑃);
For 𝑖 = 1 to 𝑞,
A(𝑃𝑃, 𝐸𝐾𝐹, 𝜎𝑥,1, 𝑉𝐾𝑥,1, . . . , 𝜎𝑥,𝑖−1, 𝑉𝐾𝑥,𝑖−1) → 𝑥𝑖;

ProbGen(𝑃𝑃, 𝑆𝐾𝐹, 𝑥𝑖) $󳨀→ (𝜎𝑥𝑖 , 𝑉𝐾𝑥𝑖
, 𝑅𝐾𝑥𝑖

);
A(𝑃𝑃, 𝐸𝐾𝐹, 𝜎𝑥,1, 𝑉𝐾𝑥,1, . . . , 𝜎𝑥,𝑞, 𝑉𝐾𝑥,𝑞) → 𝑥∗;

ProbGen(𝑃𝑃, 𝑆𝐾𝐹, 𝑥∗) $󳨀→ (𝜎𝑥∗ , 𝑉𝐾𝑥∗ , 𝑅𝐾𝑥∗);
A(𝜎𝑥∗ , 𝑉𝐾𝑥∗) → (𝜎𝑜𝑢𝑡∗);
PubVer(𝑉𝐾𝑥∗ , 𝜎𝑜𝑢𝑡∗) → 𝑘
PrivRet(𝜎𝑜𝑢𝑡∗ , 𝑉𝐾𝑥∗ , 𝑅𝐾𝑥∗) → 𝑦∗;𝐼𝑓 𝑘 = accept and 𝑦∗ ̸= 𝐹(𝑥∗), output 1; else output0.

A confidentiality-preserving publicly verifiable computa-
tion scheme 𝜋 is secure for a class of functionsF, if, for any𝐹 fromF and any PPT adversaryA, it holds that

Pr [EXPA [𝜋, 𝐹, 𝜆] = 1] ≤ 𝑛𝑒𝑔𝑙 (𝜆) . (6)

Here 𝑛𝑒𝑔𝑙( ) represents a negligible function in 𝜆.
Next we give the confidentiality definition of CP-PVC

which is not defined in existing PVC frameworks [2, 16].
In this paper we focus on the confidentiality for final
result, which means that the adversaries cannot learn any
information about the value 𝑦 = 𝐹(𝑥) from the value 𝜎𝑜𝑢𝑡
output by Compute algorithm. Here the adversaries refer to
the cloud server and any nonclient verifier. Since the cloud
server has extra knowledge of the evaluation key compared
with the nonclient verifiers, we only need to define the result
confidentiality to cloud server. And the confidentiality to
cloud server implicitly implies the confidentiality to nonclient
verifiers. Notice that we do not emphasize the input privacy as
a necessity in publicly verifiable computation.This is because,
in some scenarios, input data is obtained from some public
sources that can be accessed by anyone. However, we still
present a loose definition on input privacy for multivariate
function, which we call (𝛿 − 𝜖)-privacy. Intuitively, it means
that, for a function with an input set of multi-independent
variables, the probability that the adversary leans the values of
a 𝛿 fraction of the input sets is 𝜖.The definitions are as follows.

Definition 5 (result confidentiality). A confidentiality-pre-
serving publicly verifiable computation protocol 𝜋 is result-
confidential for a class of functions F if, for any 𝐹 from
F, any tuple (𝑆𝐾𝐹, 𝐸𝐾𝐹, 𝑃𝑃) output by KeyGen(1𝜆, 𝐹),
any 𝑥 chosen from Domain(𝐹), any tuple (𝜎𝑥, 𝑉𝐾𝑥,

𝑅𝐾𝑥) output by ProbGen(𝑃𝑃, 𝑆𝐾𝐹, 𝑥), any 𝜎𝑜𝑢𝑡 output
by Compute(𝐸𝐾𝐹, 𝜎𝑥), and any PPT adversary A, it holds
that

Pr [A (𝑃𝑃, 𝐸𝐾𝐹, 𝑉𝐾𝑥, 𝜎𝑥, 𝜎𝑜𝑢𝑡) = 𝐹 (𝑥)] ≤ 𝑛𝑒𝑔𝑙 (𝜆) . (7)

Definition 6 (𝛿 − 𝜖 input privacy). A confidentiality-pre-
serving publicly verifiable computation protocol 𝜋 for a
class of multivariate functions F achieves 𝛿 − 𝜖 input
privacy if, for any 𝐹 from F, any tuple (𝑆𝐾𝐹, 𝐸𝐾𝐹, 𝑃𝑃)
output by KeyGen(1𝜆, 𝐹), any input set 𝑥 = {𝑥𝑖}1≤𝑖≤𝑚
chosen from Domain(𝐹), any tuple (𝜎𝑥, 𝑉𝐾𝑥, 𝑅𝐾𝑥) output
by ProbGen(𝑃𝑃, 𝑆𝐾𝐹, 𝑥), any 𝜎𝑜𝑢𝑡 output by Compute(𝐸𝐾𝐹,𝜎𝑥), and any PPT adversaryA, it holds that

Pr [A (𝑃𝑃, 𝐸𝐾𝐹, 𝑉𝐾𝑥, 𝜎𝑥, 𝜎𝑜𝑢𝑡) = {𝑥𝑗}1≤𝑗≤𝑚󸀠 | 𝑥𝑗

∈ 𝑥,𝑚󸀠 > 𝛿𝑚] ≤ 𝜖 + 𝑛𝑒𝑔𝑙 (𝜆) . (8)

Finally, we give the definition of efficiency. Informally
speaking, efficiency means that the total computational cost
on the client side by engaging the CP-PVC scheme is less than
that of executing the direct algorithm to compute the target
function. In the amortized model, since the KeyGen is done
once and amortized by multiple function evaluation with
different input value, this part of computational overhead
does not need to be counted in.

Definition 7 (efficiency). A confidentiality-preserving pub-
licly verifiable computation protocol 𝜋 for a class of multi-
variate functions F is efficient if, for any 𝐹 from F and any𝑥 chosen from Domain(𝐹), the total computational cost of
algorithms ProbGen and PrivRet is less than that of directly
evaluating 𝐹 on 𝑥.
4. The CP-PVC Scheme for
Polynomial Evaluation

In this section, we first review the construction of PRF in
[29], showing that it is closed form efficient for polynomials
in 𝑚 variables and degree at most 𝑑 in each variable. Then
we present the corresponding algorithm for evaluating the
PRF and its closed form efficiency. After that, we give the
concrete construction of our CP-PVC scheme for polyno-
mial evaluation together with the analysis and experimental
simulation.

4.1. Algorithm for PRF with Closed Form Efficiency. Let G
be a group generator that takes as input a secure parameter𝜆 and outputs a description of group with prime order.
Consider any polynomial 𝑝(𝑥1, . . . , 𝑥𝑚) that has 𝑚 variables
and degree at most 𝑑 in each variable. Then the polynomial
has totally 𝑙 = (𝑑 + 1)𝑚 monomials. Index them with tuple(𝑖1, . . . , 𝑖𝑚), 0 ≤ 𝑖𝑗 ≤ 𝑑. We say that the construction of
PRFLW(KG, 𝑅𝐾(𝑖1, . . . , 𝑖𝑚)) admits the closed form efficiency
for the following computation:
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𝑃𝑜𝑙𝑦 ({𝑟(𝑖1 ,...,𝑖𝑚)}0≤𝑖1 ,...,𝑖𝑚≤𝑑,𝑥1 ,...,𝑥𝑚) = ∏
0≤𝑖1 ,...,𝑖𝑚≤𝑑

𝑟(𝑥𝑖11 ⋅⋅⋅𝑥𝑖𝑚𝑚 )

(𝑖1 ,...,𝑖𝑚)

= 𝑔𝑝(𝑥1,...,𝑥𝑚)

(9)

where 𝑝(⋅) is the polynomial whose coefficients are the
discrete logs of the 𝑟 values. If we set 𝑟(𝑖1 ,...,𝑖𝑚) = 𝑅𝐾(𝑖1, . . . , 𝑖𝑚),
then there exists an algorithm CFEkalPoly,𝑧(𝐾, 𝑥1, . . . , 𝑥𝑚)
that can compute

𝑔𝑝(𝑥1 ,...,𝑥𝑚) = ∏
0≤𝑖1 ,...,𝑖𝑚≤𝑑

𝑅𝐾 (𝑖1, . . . , 𝑖𝑚)(𝑥𝑖11 ⋅⋅⋅𝑥𝑖𝑚𝑚 )

(10)

in time𝑂(𝑚 log 𝑑), instead of the regular running time𝑂(𝑑𝑚 ⋅𝑚 log 𝑑).
The proof of the above claim can be found in [2]. Here

we show the algorithm for evaluating the PRF as well as the
polynomial 𝑃(𝑥1, . . . , 𝑥𝑚).

Let 𝑠 = ⌊log 𝑑⌋ + 1. The construction of PRF is the
following algorithm:

(i) KG(1𝜆, 𝑚, 𝑠): RunG(1𝜆) to generate a group descrip-
tion (𝑝, 𝑔,G1). Choose 4𝑚𝑠 + 2 random values

𝑦0, 𝑧0, {𝑦𝑎,𝑏, 𝑧𝑎,𝑏, 𝑤𝑎,𝑏, V𝑎,𝑏}1≤𝑎≤𝑚,1≤𝑏≤𝑠

$←󳨀 Zp. (11)

The algorithm outputs

𝐾 = (𝑦0, 𝑧0, {𝑦𝑎,𝑏, 𝑧𝑎,𝑏, 𝑤𝑎,𝑏, V𝑎,𝑏}𝑎,𝑏) . (12)

The domain of the function is {0, . . . , 𝑑}𝑚, and the range
is G1.

(ii) 𝑅𝐾(⋅): Let 𝑖 = (𝑖1, . . . , 𝑖𝑚) be the input of the PRF. First
interpret each 𝑖𝑗 = (𝑖𝑗,1, . . . , 𝑖𝑗,𝑠) as a binary string of 𝑠
bits. Then run Algorithm 1.

Finally, the value of the PRF is 𝑅𝐾(𝑖) = 𝑔𝑅1𝐾(𝑖). Let 𝑥 =(𝑥1, . . . , 𝑥𝑚) be the input; the polynomial 𝑝 can be written as

𝑝 (𝑥1, . . . , 𝑥𝑚) = ∑
0≤𝑖1 ,...,𝑖𝑚≤𝑑

𝑅1
𝐾 (𝑖1, . . . , 𝑖𝑚) 𝑥𝑖1

1 ⋅ ⋅ ⋅ 𝑥𝑖𝑚
𝑚 . (13)

Now we present the algorithm for evaluating the compu-
tation𝑔𝑝(𝑥1,...,𝑥𝑚) inAlgorithm2.Thederivation and proof can
be found in [2].

Finally, the value of 𝑔𝑝(𝑥1,...,𝑥𝑚) = 𝑔𝑝1(𝑥). Note that the
above algorithm makes totally 𝑚𝑠 times recursive operation.
Thus its running time is 𝑂(𝑚𝑠) = 𝑂(𝑚 log𝑑), much faster
than the regular running time 𝑂(𝑑𝑚 ⋅ 𝑚 log 𝑑).

With the use of the above closed form efficient PRF in
Algorithm 2, we can realize public verifiability by letting
the PRF value be a part of the verification key. Then our
remaining goal is to make this public verification process
“blind”. Intuitively, to make the value 𝐹(𝑥) confidential, one
way is to encrypt the input value 𝑥. This is usually done
in verifiable computation schemes. However such opera-
tion requires the homomorphic property of the encryption
scheme, and encryption schemes with better homomorphic

set 𝑅1
𝐾(𝑖) = 𝑦0, 𝑅2

𝐾(𝑖) = 𝑧0
for 𝑗 = 1 to𝑚: do

for 𝑘 = 1 to 𝑠: do
if 𝑖𝑗,𝑘 = 0 then𝑅1

𝐾(𝑖) = 𝑅1
𝐾(𝑖), 𝑅2

𝐾(𝑖) = 𝑅2
𝐾(𝑖)

else𝑅1
𝐾(𝑖) = 𝑅1

𝐾(𝑖) ⋅ 𝑦𝑗,𝑘 + 𝑅2
𝐾(𝑖) ⋅ 𝑧𝑗,𝑘𝑅2

𝐾(𝑖) = 𝑅1
𝐾(𝑖) ⋅ 𝑤𝑗,𝑘 + 𝑅2

𝐾(𝑖) ⋅ V𝑗,𝑘
end if

end for
end for
return 𝑔𝑅1𝐾(𝑖)

Algorithm 1: PRF.

set 𝑝1(𝑥) = 𝑦0, 𝑝2(𝑥) = 𝑧0
for 𝑗 = 1 to𝑚: do

for 𝑘 = 1 to 𝑠: do𝑝1(𝑥) = 𝑝1(𝑥) + 𝑥2𝑘−1

𝑗 (𝑝1(𝑥) ⋅ 𝑦𝑗,𝑘 + 𝑝2(𝑥) ⋅ 𝑧𝑗,𝑘)𝑝2(𝑥) = 𝑝2(𝑥) + 𝑥2𝑘−1

𝑗 (𝑝1(𝑥) ⋅ 𝑤𝑗,𝑘 + 𝑝2(𝑥) ⋅ V𝑗,𝑘)
end for

end for
return 𝑔𝑝1(𝑥)

Algorithm 2: CFEkalPoly(𝐾, 𝑥1, . . . , 𝑥𝑚).

property are usually less efficient.Therefore, here we consider
the way to blind the target polynomial 𝐹. We use two sparse𝑚-variate polynomials 𝐴(𝑥) and 𝐵(𝑥) to randomize the
target polynomial. Here sparse means that the degree of the
polynomial is 1 and there are at most 𝑚 terms of monomials
that are nonzero.Thus the value of𝐹(𝑥) is covered under𝐴(𝑥)
and 𝐵(𝑥), and the computational overhead of 𝐴(𝑥) and 𝐵(𝑥)
is 𝑂(𝑚).
4.2. Construction of CP-PVC for Polynomial Case. Now, we
present our concrete scheme of CP-PVC for multivariate
polynomials 𝐹with𝑚 variables and degree at most 𝑑󸀠 of each
variable. In the case, 𝐹 has totally at most𝑤 = (𝑑󸀠+1)𝑚 terms
ofmonomial. Assume𝑇(𝑥) = 𝐴(𝑥)𝐹(𝑥)+𝐵(𝑥). Let the degree
of each variable be at most 𝑑 and the total terms of monomial
be 𝑙 = (𝑑 + 1)𝑚, and for 1 ≤ 𝑗𝑇 ≤ 𝑙 write 𝑗𝑇 = (𝑖𝑇1 , . . . , 𝑖𝑇𝑚) with0 ≤ 𝑖𝑇𝑘 ≤ 𝑑; then we can represent 𝑇(𝑥) by ∑𝑙

𝑗𝑇=1
𝑡̂𝑗𝑇 ⋅ 𝑡𝑗𝑇(𝑥),

where 𝑡𝑗𝑇(𝑥) represents each monomial and 𝑡̂𝑗𝑇 represents
the coefficient correspondingly. Similarly, represent𝐴(𝑥) and𝐵(𝑥) by ∑2𝑚

𝑗𝐴=1
𝑎𝑗𝐴 ⋅ 𝑎𝑗𝐴(𝑥) and ∑2𝑚

𝑗𝐵=1
𝑏̂𝑗𝐵 ⋅ 𝑏𝑗𝐵(𝑥), respectively.

The CP-PVC scheme works as follows:

KeyGen: For parameter 𝜆, the client runs a bilin-
ear group generator G𝑒(1𝜆) to generate a bilin-
ear tuple (𝑝, 𝑔, ℎ,G1,G2,G𝑇, 𝑒). Choose a tuple
{𝑎𝑗𝐴 , 𝑏̂𝑗𝐵}1≤𝑗𝐴,𝑗𝐵≤2𝑚 $←󳨀 G1.
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The client runs PRF key generation algorithmKG(1𝜆,⌊log 𝑑⌋ + 1,𝑚) to generate a key 𝐾 and the range in
G1. Choose a random 𝛼 ∈ Z𝑝, and compute

𝐸𝑗𝑇
= 𝑔𝛼⋅̂𝑡𝑗𝑇 ⋅ 𝑅𝐾 (𝑗𝑇) , ∀𝑗𝑇 = 1, . . . , 𝑙. (14)

Let 𝐸 = (𝐸1, . . . , 𝐸𝑙) ∈ G𝑙
1. The algorithm outputs

𝑆𝐾𝐹 = (𝐾, {𝑎𝑗𝐴 , 𝑏̂𝑗𝐵}1≤𝑗𝐴,𝑗𝐵≤2𝑚) ,
𝐸𝐾𝐹 = (𝑇, 𝐸) ,
𝑃𝑃 = (𝑒 (𝑔, ℎ)𝛼 , 𝑒) .

(15)

ProbGen: On inputting 𝑆𝐾𝐹 = (𝐾, {𝑎𝑗𝐴 , 𝑏̂𝑗𝐵}1≤𝑗𝐴,𝑗𝐵≤2𝑚),𝑃𝑃 = (𝑒(𝑔, ℎ)𝛼, 𝑒), and owning 𝑥, the client computes𝐴(𝑥),𝐵(𝑥) and CFEkalPoly(𝐾, 𝑥1, . . . , 𝑥𝑚) = 𝑔𝑅(𝑥).
The algorithm outputs

𝜎𝑥 = 𝑥,
𝑉𝐾𝑥 = 𝑒 (𝑔𝑅(𝑥), ℎ) ,
𝑅𝐾𝑥 = (𝐴 (𝑥) , 𝐵 (𝑥)) .

(16)

Compute: On receiving 𝐸𝐾𝐹 = (𝑇, 𝐸) and 𝜎𝑥 = 𝑥, the
cloud server computes 𝑦󸀠 = 𝑇(𝑥) = ∑𝑙

𝑗𝑇=1
𝑡̂𝑗𝑇 ⋅ 𝑡𝑗𝑇(𝑥),𝑉 = ∏𝑙

𝑗𝑇=1
𝐸𝑗𝑇

𝑡𝑗𝑇 (𝑥) and outputs

𝜎𝑜𝑢𝑡 = (𝑦󸀠, 𝑉) . (17)

PubVer: On receiving 𝑉𝐾𝑥 = 𝑒(𝑔𝑅(𝑥), ℎ) and 𝜎𝑜𝑢𝑡 =(𝑦󸀠, 𝑉), the verifier checks the equation
𝑒 (𝑉, ℎ) = (𝑒 (𝑔, ℎ)𝛼)𝑦󸀠 ⋅ 𝑉𝐾𝑥. (18)

The algorithm outputs 𝑎𝑐𝑐𝑒𝑝𝑡 if the above equation
holds; otherwise it outputs 𝑟𝑒𝑗𝑒𝑐𝑡.
PrivRet: On receiving 𝑉𝐾𝑥 = 𝑒(𝑔𝑅(𝑥), ℎ), 𝜎𝑜𝑢𝑡 = (𝑦,𝑉), and owning 𝑅𝐾𝑥 = (𝐴(𝑥), 𝐵(𝑥)), the algorithm
first runs the PubVer algorithm with𝑉𝐾𝑥 and 𝜎𝑜𝑢𝑡. If
the PubVer outputs 𝑎𝑐𝑐𝑒𝑝𝑡, then compute 𝑦 = (𝑦󸀠 −𝐵(𝑥))/𝐴(𝑥) and return 𝑦 as the output.

4.3. Security Analysis. Now we analyze the correctness, secu-
rity, and confidentiality of the proposed CP-PVC scheme.

4.3.1. Correctness. Correctness is easy to prove. Let 𝜎𝑜𝑢𝑡, 𝑉𝐾𝑥,𝑅𝐾𝑥 be as above; then

𝑒 (𝑉, ℎ) = 𝑒( 𝑙∏
𝑗𝑇=1

𝐸𝑗𝑇

𝑡𝑗𝑇 (𝑥), ℎ)

= 𝑒( 𝑙∏
𝑗𝑇=1

(𝑔𝛼⋅̂𝑡𝑗𝑇 ⋅ 𝑅𝐾 (𝑗𝑇))𝑡𝑗𝑇 (𝑥) , ℎ)
= 𝑒 (𝑔𝛼𝑇(𝑥), ℎ) ⋅ 𝑒 (𝑔𝑅(𝑥), ℎ)
= (𝑒 (𝑔, ℎ)𝛼)𝑦󸀠 ⋅ 𝑉𝐾𝑥.

(19)

The above proves the correctness for evaluating 𝑦󸀠 =𝑇(𝑥), and this implies the correctness of 𝑦 = (𝑦󸀠 − 𝐵(𝑥))/𝐴(𝑥) = 𝐹(𝑥).
4.3.2. Confidentiality. We show that, for an adversarial cloud
server with the information of (𝑃𝑃, 𝐸𝐾𝐹, 𝑉𝐾𝑥, 𝜎𝑥, 𝜎𝑜𝑢𝑡), the
probability that it can extract the value of the result 𝑦
is negligible; i.e., the result confidentiality holds for cloud
server. This implies that the confidentiality also holds for any
third party verifier since they have less information (𝐸𝐾𝐹)
than the cloud server does. To extract 𝑦 = 𝐹(𝑥), one way
is directly from 𝑇(𝑥). However, this requires the knowledge
of (𝐴(𝑥), 𝐵(𝑥)) which are parts of the retrieval key and kept
secret. The other way is to discover the coefficients of the
function 𝐹(⋅) and evaluate 𝐹 on 𝑥 since the input value 𝑥
is a plain text stored in 𝜎𝑥. We will show that under this
circumstance the adversary cannot discover the coefficients
of𝐹with a nonnegligible probability. Let𝐴, 𝐵, 𝐹 be as follows:

𝐴 (𝑥) = 2𝑚∑
𝑗𝐴=1

𝑎𝑗𝐴 ⋅ 𝑎𝑗𝐴 (𝑥)

𝐵 (𝑥) = 2𝑚∑
𝑗𝐵=1

𝑏̂𝑗𝐵 ⋅ 𝑏𝑗𝐵 (𝑥)

𝐹 (𝑥) = (𝑑󸀠+1)𝑚∑
𝑗𝐹=1

𝑓𝑗𝐹 ⋅ 𝑓𝑗𝐹 (𝑥)

(20)

and then we have that

𝑇 (𝑥) = 𝐴 (𝑥) 𝐹 (𝑥) + 𝐵 (𝑥)
= 2𝑚∑

𝑗𝑇=1

( ∑
𝑗𝑇=𝑗𝐴+𝑗𝐹

𝑎𝑗𝐴𝑓𝑗𝐹 + 𝑏̂𝑗𝐵)𝑡𝑗𝑇 (𝑥)

+ 𝑙∑
𝑗𝑇=2
𝑚+1

( ∑
𝑗𝑇=𝑗𝐴+𝑗𝐹

𝑎𝑗𝐴𝑓𝑗𝐹)𝑡𝑗𝑇 (𝑥)

= 𝑙∑
𝑗𝑇=1

𝑡̂𝑗𝑇𝑡𝑗𝑇 (𝑥) .

(21)

Comparing the coefficients and setting 2𝑚 = 𝑠 of the
above equation, we get a system
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∑
𝑗𝐴+𝑗𝐹=1

𝑎𝑗𝐴𝑓𝑗𝐹 + 𝑏̂1 = 𝑡̂1
...

∑
𝑗𝐴+𝑗𝐹=𝑠

𝑎𝑗𝐴𝑓𝑗𝐹 + 𝑏̂𝑠 = 𝑡̂𝑠
∑

𝑗𝐴+𝑗𝐹=𝑠+1

𝑎𝑗𝐴𝑓𝑗𝐹 = 𝑡̂𝑠 + 1
...

∑
𝑗𝐴+𝑗𝐹=𝑙

𝑎𝑗𝐴𝑓𝑗𝐹 = 𝑡̂𝑙.

(22)

Note that the above system does not have a unique
solution in G1, and the coefficients of 𝐴(⋅) and 𝐵(⋅) are
chosen uniformly at random from G1. This means that the
probability to choose the correct coefficients is negligible, and
thus the privacy of coefficients of 𝐹(⋅) is guaranteed, which
makes the confidentiality of the final result hold.

4.3.3. Security. The security of the scheme is based on co-
CDH assumption and the corresponding proof follows from
that in [2]. We take it as an inspiration and define the
following four games.

Game 0. It is the same as Experiment EXPA[𝜋, 𝐹, 𝜆].
Game 1. It is similar to Game 0, with the difference that 𝐸𝐾𝐹

contains coefficients randomly chosen from G1 instead of 𝑇.
Game 2. It is similar to Game 1, with the difference
that the ProbGen phase uses an inefficient algorithm∏𝑙

𝑗𝑇=1
𝑅𝐾(𝑗𝑇)𝑡𝑗𝑇 (𝑥) instead of the CFEkalPoly(𝐾, 𝑥1, . . . , 𝑥𝑚)

to evaluate 𝑉𝐾𝑥.

Game 3. It is similar to Game 2, with the difference that each
value 𝑅𝐾(𝑗𝑇) is replaced by a random element 𝑅𝑗𝑇

∈ G1.

We use a hybrid way to perform the proof, with the
following claims.

Corollary 4. Pr[𝐺0(A) = 1] = Pr[𝐺1(A) = 1].
Proof. This claim holds in an obvious way, since the change of
algorithm for evaluating 𝑉𝐾𝑋 does not change the distribu-
tion of its values.Thus the probability that the adversary wins
is the same in both Games 0 and 1.

Corollary 5. |Pr[𝐺1(A) = 1] = Pr[𝐺2(A) = 1]|.
Proof. The difference between Games 2 and 1 is the coeffi-
cients of the target function. According to the confidentiality
proof, these coefficients are indistinguishable since 𝐴 and𝐵 are chosen uniformly at random, thus sharing the same
distribution in the view of the adversary.

Corollary 6. |Pr[𝐺2(A) = 1] = Pr[𝐺3(A) = 1]| ≤ 𝜖𝑝𝑟𝑓,
where 𝜖𝑝𝑟𝑓 represents the probability in the pseudorandomness
definition of PRF.

Proof. The difference between Games 3 and 2 is that the out-
put of PRF 𝑅𝐾(𝑥) is replaced by uniformly random elements
inG1. According to the pseudorandomness property of PRF,
the probability that an adversary A distinguishes the two
values is no better than 𝜖𝑝𝑟𝑓.
Corollary 7. |Pr[𝐺3(A) = 1]| ≤ 𝜖𝑐𝑑ℎ, where 𝜖𝑐𝑑ℎ represents
the probability that an adversary solves co-CDH problem.

Proof. To prove this claim we need to show that if there exists
a PPT algorithm that wins in Game 3 with a probability
larger than 𝜖𝑐𝑑ℎ, then one can build an efficient algorithmB
with oracle access to A to solve the co-CDH problem with
some nonnegligible probability. Assume that the group in co-
CDH problem is described as (𝑝, 𝑔, ℎ,G1,G2,G𝑇, 𝑒) and the
adversary is given a co-CDH tuple (𝑔𝑎, ℎ𝑏)with the exponents𝑎, 𝑏 chosen randomly from Z𝑝; the algorithm B works as
follows.

First,B needs to simulate public parameter 𝑃𝑃 and eval-
uation key 𝐸𝐾𝐹. It computes the bilinear map 𝑒(𝑔𝑎, ℎ𝑏) and
chooses 2𝑙 random elements {𝑡̂𝑗𝑇 , 𝐸𝑗𝑇

}1≤𝑗𝑇≤𝑙. The simulated
public key 𝑃𝑃 = (𝑒(𝑔𝑎, ℎ𝑏), 𝑒), and the simulated evaluation
key 𝐸𝐾𝐹 = (𝑇, 𝐸) = {𝑡̂𝑗𝑇 ,𝑊𝑗𝑇

}1≤𝑗𝑇≤𝑙. Since the 𝑊 generated
in Game 3 contains a PRF as a factor and the PRF enjoys
pseudorandomness, it is clear that the 𝑃𝑃 and 𝐸𝐾𝐹 generated
above enjoy a perfect distribution as that in Game 3.

Second, B gives the simulated 𝑃𝑃 and 𝐸𝐾𝐹 to A and
prepares to simulate the answers to the queries from A.
A difference here is that B does not need to generate the
retrieval key 𝑅𝐾 in querying phase as that in Game 3 because
A does not have access to𝑅𝐾, neither doesBneed this𝑅𝐾 to
solve the co-CDHproblem. Let 𝑥𝑖 (1 ≤ 𝑖 ≤ 𝑞) be the querying
value.B first computes 𝑈𝑗𝑇

= 𝑒(𝐸𝑗𝑇
, ℎ)/𝑒(𝑔𝑎, ℎ𝑏)𝑡̂𝑗𝑇 and then

computes 𝑉𝐾𝑥𝑖
= ∏𝑙

𝑗𝑇=1
𝑈𝑗𝑇

𝑡𝑗𝑇 (𝑥𝑖). Since in Game 3,

𝑒 (𝐸𝑗𝑇
, ℎ)

𝑒 (𝑔𝛼, ℎ)𝑡̂𝑗𝑇 = 𝑅𝐾 (𝑗𝑇) , (23)

combining the bilinear property of map 𝑒, it is clear that the
simulated 𝑉𝐾𝑥𝑖

also enjoys a perfect distribution as that in
Game 3. A is then given the corresponding verification key𝑉𝐾𝑥𝑖

. Let 𝑥∗ be the challenge value chosen by A. The above
process is repeated andA obtains 𝑉𝐾𝑥∗ .

Finally,A will output a tuple 𝜎̂𝑜𝑢𝑡∗ = (𝑦, 𝑉̂) such that

PubVer (𝑉𝐾𝑥∗ , 𝜎𝑜𝑢𝑡∗) 󳨀→ 𝑘,
PrivRet (𝜎𝑜𝑢𝑡∗ , 𝑉𝐾𝑥∗ , 𝑅𝐾𝑥∗) 󳨀→ 𝑦∗, (24)

where 𝑘 = 𝑎𝑐𝑐𝑒𝑝t and 𝑦∗ ̸= 𝐹(𝑥∗). Due to the correctness
property, this 𝑦∗ ̸= 𝐹(𝑥∗) also implies that 𝑦 ̸= 𝑇(𝑥∗). By𝑘 = 𝑎𝑐𝑐𝑒𝑝𝑡 we obtain that

𝑒 (𝑉̂, ℎ) = 𝑒 (𝑔𝑎, ℎ𝑏)𝑦 ⋅ 𝑉𝐾𝑥∗ . (25)
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Let 𝑦 = 𝐹(𝑥∗) be the correct output of the PrivRet algorithm.
Then by correctness we know 𝑦󸀠 = 𝑇(𝑥∗) is also correct.Thus
the following equation also holds:

𝑒 (𝑉, ℎ) = 𝑒 (𝑔𝑎, ℎ𝑏)𝑦󸀠 ⋅ 𝑉𝐾𝑥∗ , (26)

where 𝑉 = ∏𝑙
𝑗𝑇=1

𝐸𝑗𝑇
𝑡𝑗𝑇 (𝑥
∗).

Dividing (25) and (26) and combining bilinear property,
we can obtain that

𝑒 (𝑉̂𝑉, ℎ) = 𝑒 (𝑔𝑎𝑏, ℎ)𝑦−𝑦󸀠 . (27)

Then B can compute 𝑔𝑎𝑏 = (𝑉̂/𝑉)1/(𝑦−𝑦󸀠). Thus, if A wins
Game 3 with probability 𝜖𝑐𝑑ℎ,B solves the co-CDH problem
with the same probability. This proves Claim 4.

Combining the four claims together, we obtain that

Pr [EXPA [𝜋, 𝐹, 𝜆] = 1] ≤ 𝜖𝑝𝑟𝑓 + 𝜖𝑐𝑑ℎ. (28)

4.4. Performance Analysis. In this subsection, we analyze the
computational complexity of the proposed scheme and com-
pare it with some existing works [2, 19]. Our scheme is effi-
cient in the amortized model. That is, the expensive KeyGen

algorithm is executed once and its computational overhead
is amortized by the following evaluation of the polynomial
function with different input value. Here the structure of
the function cannot be changed unless another KeyGen

algorithm for a different function is performed. Now we
give detailed analysis on the computational costs of each
algorithm. Let each letter denote the same item as that
in the proposed scheme above. In the KeyGen phase, to
compute the term 𝐸𝑗𝑇

, the client needs to execute 2(𝑑󸀠 +2)𝑚 + 1 times of exponential modulo and (𝑑󸀠 + 1)𝑚 times
of multiplication arithmetic in group G1. To compute the
structure of function𝑇(⋅), (2(𝑑󸀠+1))𝑚 times ofmultiplication
and 2𝑚 times of addition arithmetic in N are executed. To
generate the public key, one time of pairing arithmetic is
executed. In the ProbGen phase, no execution needs to be
done to generate 𝜎𝑥 since 𝜎𝑥 remains the same as input𝑥. To generate the public verification key 𝑉𝐾𝑥, algorithm
CFEkalPoly(⋅) is executed together with one time pairing
arithmetic. And to generate the private retrieval key, the client
needs to execute two times of (𝑚-variate, 1-degree) sparse
polynomial evaluation arithmetic. In the Computephase, the
cloud server needs to execute one time of (𝑚-variate,𝑑󸀠 +1-degree) polynomial evaluation arithmetic to compute 𝑦󸀠

and (𝑑󸀠 + 2)𝑚 times of exponential modulo in group G1

to compute term 𝑉. In the PubVer phase, to compute the
corresponding terms in the checking equation, the third party
verifier needs to execute one time of pairing arithmetic, one
time of exponential modulo arithmetic in G𝑇, and one time
of multiplication arithmetic in G𝑇, respectively. Finally, in
the PrivRet phase, the client firstly needs to execute what is
done in PubVer phase and then execute, respectively, one
time of subtraction and division arithmetic in N to compute
the result 𝑦.

Wepresent a complexity comparison between our scheme
and existing works of PVC schemes for polynomial evalua-
tion [2, 19]. After analyzing the specific arithmetic of each
algorithm, We would like to use the notation 𝑂 to compare
computational complexity. Since the arithmetic operations in
different groups are the same, we use three types of notation,𝑂𝐼,𝑂𝑁, and 𝑂𝐸, to classify different types of complexity.𝑂𝐼 denotes the time complexity of operations in ring Z𝑝

including integer addition and multiplication modulo prime𝑝. 𝑂𝑁 denotes the time complexity of operations in ring N

including addition and multiplication. 𝑂𝐸 denotes the time
complexity of operations in group G1, G2, G𝑇 including
multiplication, exponentiation, and bilinear map. The com-
parison result is shown in Table 1. From the table we can see
that, compared with the scheme in [2], ours has a complexity
increase of 𝑂𝑁(𝑑󸀠𝑚) in KeyGen, 𝑂𝑁(𝑚) in ProbGen, and𝑂𝑁(1) in PrivRet performed by the client. However, since
the most expensive arithmetic in each of the three phases
is 𝑂𝐸(𝑑󸀠𝑚), 𝑂𝐼(𝑚 log𝑑󸀠), and 𝑂𝐸(1), respectively, the impact
of the increasing complexity will not be obvious in the real
performance. Compared with the scheme in [19], we first
notice that the scheme in [19] only works for univariate
case, while ours works for multivariate case. If we set “𝑚 =1”, the complexity of the two schemes is nearly the same,
with a small increase of 𝑂𝑁(1) in ProbGen and PrivRet

respectively, which is not the most expensive part in the two
phases. By doing so, our scheme achieves a security property-
result confidentiality that is considered to be important for
user privacy.

We also provide some experimental simulation of CP-
PVC for polynomial to show the efficiency. Intuitively, effi-
ciency means that the total computational overhead on the
client side by engaging an outsourcing computation protocol
is less than that by directly executing the target function
algorithm. Since our scheme is constructed in an amortized
model, i.e., the computations in KeyGen need to be done
only once, we will not count that part of computation in
the efficiency performance. Then for the client side, all
the computation costs that are counted contain ProbGen

and PrivRet phase. We implement the corresponding algo-
rithms on the client side using MATLAB 2015 on a computer
with Intel(R) Core(TM) i7-4790 CPU processor running at
3.60 GHz and 8 GB RAM.We show the time cost for different
sizes of problems in Table 2, where 𝑚 represents variable
number and 𝑠 represents bit length of the highest degree 𝑑󸀠.
This part of work is done in the previous conference version
of this paper [24].

For comparison of efficiency, we also do some evaluation
using the direct algorithm 𝐹(𝑥) = ∑𝑤

𝑗𝐹=1
𝑓𝑗𝐹 ⋅ 𝑓𝑗𝐹(𝑥), where𝑓𝑗𝐹(𝑥) represents each monomial for polynomial 𝐹 and 𝑤 =(2𝑠 + 1)𝑚. The corresponding result is shown in Table 3,

which is also done in the previous conference version [24].
We see that the cost time is already infinite when the case
goes to 𝑠 = 50. This is reasonable because theoretically the
complexity of the direct algorithm is 𝑂(𝑚 ⋅ 2𝑠). Recalling
that the complexity of the way using closed form efficient
PRF is 𝑂(𝑚𝑠), thus the scheme achieves a log time efficiency
promoted for the evaluation of multivariate polynomials. We
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Table 1: Comparison of the three PVC schemes for polynomial evaluation.

FG12 [2] EOA16 [19] Ours
Problem size 𝑚-variate, 𝑑󸀠-degree univariate, 𝑑󸀠-degree 𝑚-variate, 𝑑󸀠-degree
KeyGen 𝑂𝐸(𝑑󸀠𝑚) 𝑂𝐸(𝑑󸀠) + 𝑂𝑁(𝑑󸀠) 𝑂𝐸(𝑑󸀠𝑚) + 𝑂𝑁(𝑑󸀠𝑚)
ProbGen 𝑂𝐸(1) + 𝑂𝐼(𝑚 log 𝑑󸀠) 𝑂𝐸(1) + 𝑂𝐼(1) 𝑂𝐸(1) + 𝑂𝐼(𝑚 log𝑑󸀠) + 𝑂𝑁(𝑚)
Compute 𝑂𝐸(𝑑󸀠𝑚) + 𝑂𝑁(𝑑󸀠𝑚) 𝑂𝐸(𝑑󸀠) + 𝑂𝑁(𝑑󸀠) 𝑂𝐸(𝑑󸀠𝑚) + 𝑂𝑁(𝑑󸀠𝑚)
PubVer 𝑂𝐸(1) 𝑂𝐸(1) 𝑂𝐸(1)
PrivRet ⊥ ⊥ 𝑂𝐸(1) + 𝑂𝑁(1)
Result confidentiality No No Yes

Table 2: Times cost of the client [24].

𝑚 𝑠 = 10 𝑠 = 50 𝑠 = 200 𝑠 = 1000
1000 0.0312s 0.0936s 0.1248s 0.4836s
5000 0.0624s 0.1716s 0.4836s 2.1372s
20000 0.1872s 0.5304s 1.7628s 8.3304s
100000 0.5460s 2.3712s 8.5956s 41.7614s

Table 3: Times cost of direct algorithm [24].

𝑚 𝑠 = 10 𝑠 = 50 𝑠 = 200 𝑠 = 1000
1000 3.28s ∞ ∞ ∞
5000 6.55s ∞ ∞ ∞
20000 19.65s ∞ ∞ ∞
100000 59.24s ∞ ∞ ∞

show in Figure 1 a time cost comparison between direct
algorithm and outsourcing algorithm, in which case 𝑠 = 10;
i.e., the degree of each variate is 210. This is also done in the
previous conference version [24].

5. The CP-PVC Scheme for
Matrix-Vector Multiplication

In this section, we first review the PRF that is used for
matrix-vector case and give the algorithm for its closed form
efficiency. Then we give the concrete construction of our CP-
PVC scheme for matrix-vector multiplication together with
the analysis and experimental simulation.

5.1. Algorithm for PRF with Closed Form Efficiency. The PRF
is defined in another domain, namely, the set [1, . . . , 𝑚] ×[1, . . . , 𝑛].

Let G be a group generator that takes as input a secure
parameter 𝜆 and outputs a description of group with prime
order. The PRF is defined as follows:

(i) KG(1𝜆, 𝑚, 𝑛): RunG(1𝜆) to generate a group descrip-
tion (𝑝, 𝑔,G1). Choose 2(𝑛 + 𝑚) random values

{𝐴 𝑖, 𝐵𝑖}1≤𝑖≤𝑚 $←󳨀 G1,
{𝛼𝑗, 𝛽𝑗}1≤𝑗≤𝑛 $←󳨀 Z𝑝.

(29)

Figure 1: Time cost of different problem sizes [24].

The algorithm outputs

𝐾 = {𝐴 𝑖, 𝐵𝑖, 𝛼𝑗, 𝛽𝑗}𝑖,𝑗 . (30)

(ii) 𝑅𝐾(⋅): Let (𝑖, 𝑗) be the input of the PRF.The algorithm
outputs

𝑅𝐾 (𝑖, 𝑗) = 𝐴𝑗
𝛼𝑖𝐵𝑗

𝛽𝑖 . (31)

The pseudorandomness holds under Decisional Linear
assumption, and the corresponding proof is shown in [29].
We omit it here.

Now we consider the 𝑛-dimensional vector 󳨀→𝑡 =(𝑡1, . . . , 𝑡𝑛) ∈ G, where 𝑡𝑖 = ∏𝑗𝑟𝑖,𝑗𝑥𝑗 and (𝑟𝑖,𝑗) forms an 𝑛 × 𝑚
matrix.We show that the construction of PRFM(KG, 𝑅𝐾(𝑖, 𝑗))
admits the closed form efficiency for the computation of
vector 󳨀→𝑡 . If we set 𝑟𝑖,𝑗 = 𝑅𝐾(𝑖, 𝑗), then there exists
an algorithm CFEkalMatrix(𝐾, 𝑥1, . . . , 𝑥𝑚) that can compute󳨀→𝑡 = (𝑡1, . . . , 𝑡𝑚) in time 𝑂(𝑚 + 𝑛), instead of the regular
running time 𝑂(𝑛𝑚). The corresponding algorithm is shown
in Algorithm 3.

With the use of the above closed form efficient PRF in
Algorithm 3, we can realize public verifiability by letting
the PRF value be a part of the verification key. Then our
remaining goal is to make this public verification process
“blind”. Inspired by the blinding technique in Chen et al.’s
work [15], we can use a vector 󳨀→𝑟 to blind the real input 󳨀→𝑟
and a matrix 𝑁 ∈ Z𝑛×𝑚

𝑝 to blind the target matrix 𝑀 and
ask the cloud server to compute (𝑀 + 𝑁)(󳨀→𝑥 + 󳨀→𝑟 ). Thus the
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set 󳨀→𝑡 = Φ𝐴 = ∏𝑚
𝑗=1 𝐴𝑗

𝑥𝑗

𝐵 = ∏𝑚
𝑗=1 𝐵𝑗

𝑥𝑗

for 𝑖 = 1 to 𝑛: do𝑡𝑖 = 𝐴𝛼𝑖𝐵𝛽𝑖

end for
return󳨀→𝑡 = (𝑡1, . . . , 𝑡𝑛)

Algorithm 3: CFEkalMatx(𝐾, 𝑥1, . . . , 𝑥𝑚).

result is confidential and the public verification phase can
be processed as usual. However, to retrieve the real result𝑀󳨀→𝑥 , the user needs to compute the value 𝑀󳨀→𝑟𝑁󳨀→𝑥 and𝑁󳨀→𝑟 . This will cost three times the original computational
task 𝑀󳨀→𝑥 does (𝑂(𝑛𝑚)). To reduce the overhead of this
computation, we can make the blinding vector and matrix
sparse. The sparse matrix is like that in [15]. To make the
result confidentiality solid, we usually set at least one nonzero
element in each row of matrix 𝑁. For the sparse vector, we
set randomly ⌈(1 − 𝛿)𝑚⌉ (0 < 𝛿 < 1) positions 0. Then the
computational overhead of 𝑀󳨀→𝑟 , 𝑁󳨀→𝑥 , and 𝑁󳨀→𝑟 is reduced to𝑂(𝛿𝑛𝑚), 𝑂(𝑛), and 𝑂(𝛿𝑛). What is more, the blinding vector
also preserves the privacy of input data to some extent.

5.2. Construction of CP-PVC for Matrix-Vector Case. Now,
we present our concrete scheme of CP-PVC for matrix
multiplication. Let 𝑝 be a prime. Recall that our goal is to
compute the 𝑛-dimensional vector 󳨀→𝑦 = 𝑀󳨀→𝑥 , where 𝑀 is
an 𝑛 × 𝑚 matrix denoted by (𝑀𝑖,𝑗) with entries from Z𝑝.
Such matrix-vector multiplication can be naturally extended
tomatrix-matrixmultiplication by regarding the lattermatrix
as a row vector of column vectors and repeating the above
matrix-vectormultiplication several times. Formatrix-vector
multiplication𝑀󳨀→𝑥 , the CP-PVC scheme works as follows:

(i) KeyGen: Let𝑀 = (𝑀𝑖,𝑗). For parameter 𝜆, the client
runs a bilinear group generator G𝑒(1𝜆) to generate
a bilinear tuple (𝑝, 𝑔, ℎ,G1,G2,G𝑇, 𝑒). Choose a ran-
dom sparse matrix 𝑁 ∈ Z𝑛×𝑚

𝑝 and set 𝑀󸀠 = 𝑀 + 𝑁.
The client then runs PRF key generation algorithm
KG(1𝜆, 𝑚, 𝑛) to generate a key𝐾 and the range in G1.
Choose a random 𝛼 ∈ Z𝑝, and compute

𝐸𝑖,𝑗 = 𝑔𝛼⋅𝑀󸀠𝑖,𝑗 ⋅ 𝑅𝐾 (𝑖, 𝑗) , ∀𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑚. (32)

Let 𝐸 = (𝐸𝑖,𝑗) ∈ G𝑛×𝑚
1 . The algorithm outputs

𝑆𝐾𝐹 = (𝐾,𝑁) ,
𝐸𝐾𝐹 = (𝐸,𝑀󸀠) ,
𝑃𝑃 = (𝑒, 𝑒 (𝑔, ℎ)𝛼) .

(33)

(ii) ProbGen: On inputting 𝑆𝐾𝐹 = (𝐾,𝑁), 𝑃𝑃 =(𝑒, 𝑒(𝑔, ℎ)𝛼), and owning 󳨀→𝑥 = (𝑥1, . . . , 𝑥𝑚) ∈ Z𝑚
𝑝 ,

the client randomly chooses a 𝛿 ∈ (0, 1) and a
sparse 𝑚-dimensional vector 󳨀→𝑟 = (𝑟1, . . . , 𝑟𝑚) ∈
Z𝑚

𝑝 , where ⌈(1 − 𝛿)𝑚⌉ coordinates of 󳨀→𝑟 are 0. Let󳨀→𝑥 󸀠 = 󳨀→𝑥 + 󳨀→𝑟 . Compute 𝑀󳨀→𝑟 , 𝑁󳨀→𝑥 , 𝑁󳨀→𝑟 in 𝑂(𝛿𝑛𝑚),𝑂(𝑛), 𝑂(𝛿𝑛) time, respectively, and compute 𝑡𝑖 =
CFEkalMatx(𝐾, 𝑥󸀠

1, . . . , 𝑥󸀠
𝑚) in 𝑂(𝑛 + 𝑚) time using

the closed form efficiency. Define V𝑖 = 𝑒(𝑡𝑖, ℎ) for𝑖 = 1, . . . , 𝑛.
The algorithm outputs

𝜎𝑥 = 󳨀→𝑥 󸀠,
𝑉𝐾𝑥 = (V𝑖, . . . , V𝑛) ,
𝑅𝐾𝑥 = (𝑀󳨀→𝑟 ,𝑁󳨀→𝑥,𝑁󳨀→𝑟 ) .

(34)

(iii) Compute: On receiving𝐸𝐾𝐹 = (𝐸,𝑀󸀠) and 𝜎𝑥 = 󳨀→𝑥 󸀠
,

the cloud server computes 󳨀→𝑦 󸀠 = 𝑀󸀠󳨀→𝑥 󸀠
,𝑤𝑖 = ∏𝑚

𝑗=1𝐸𝑥󸀠𝑗
𝑖,𝑗

(for 𝑖 = 1, . . . , 𝑛) and outputs

𝜎𝑜𝑢𝑡 = (󳨀→𝑦 󸀠,𝑊) = ((𝑦󸀠
1, . . . , 𝑦󸀠

𝑛) , (𝑤𝑖, . . . , 𝑤𝑛)) . (35)

(iv) PubVer: On receiving 𝑉𝐾𝑥 = (V𝑖, . . . , V𝑛) and 𝜎𝑜𝑢𝑡 =(󳨀→𝑦 󸀠,𝑊), the verifier checks the following equation:
𝑒 (𝑤𝑖, ℎ) = 𝑒 (𝑔, ℎ)𝛼𝑦󸀠𝑖 ⋅ V𝑖, ∀𝑖 = 1, . . . , 𝑛. (36)

The algorithm outputs 𝑎𝑐𝑐𝑒𝑝𝑡 if the above equation
holds; otherwise, it outputs 𝑟𝑒𝑗𝑒𝑐𝑡.

(v) PrivRet: On receiving 𝑉𝐾𝑥 = (V𝑖, . . . , V𝑛), 𝜎𝑜𝑢𝑡 =(󳨀→𝑦 󸀠,𝑊), and owning 𝑅𝐾𝑥 = (𝑀󳨀→𝑟 ,𝑁󳨀→𝑥,𝑁󳨀→𝑟 ), the
client first runs the PubVer algorithm with 𝑉𝐾𝑥 and𝜎𝑜𝑢𝑡. If the PubVer outputs 𝑎𝑐𝑐𝑒𝑝𝑡, then compute󳨀→𝑦 =󳨀→𝑦 󸀠 − 𝑀󳨀→𝑟 − 𝑁󳨀→𝑥 − 𝑁󳨀→𝑟 and return 󳨀→𝑦 as the output.

Remark 8. In order to be uniform, we assume that each entry
of thematrix𝑀 and vector󳨀→𝑥 is from ringZ𝑝. However, when
performing the arithmetic computation between matrix-
matrix, vector-vector, and matrix-vector, the execution is
actually done in the ring N. That is, the results are not in
the form modulo prime 𝑝. This is to keep correctness of the
computational result.

5.3. Security Analysis. Now we analyze the correctness, secu-
rity, and privacy and confidentiality of the proposed CP-PVC
scheme.

5.3.1. Correctness. Correctness is easy to prove. Let 𝜎𝑜𝑢𝑡, 𝑉𝐾𝑥,𝑅𝐾𝑥 be as above. For 𝑖 = 1, . . . , 𝑛,
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𝑒 (𝑤𝑖, ℎ) = 𝑒( 𝑚∏
𝑗=1

𝐸𝑥󸀠𝑗
𝑖,𝑗, ℎ)

= 𝑒( 𝑚∏
𝑗=1

(𝑔𝛼⋅𝑀󸀠𝑖,𝑗 ⋅ 𝑅𝐾 (𝑖, 𝑗))𝑥󸀠𝑗 , ℎ)

= 𝑒( 𝑚∏
𝑗=1

𝑔𝛼𝑀󸀠𝑖,𝑗𝑥
󸀠
𝑗 , ℎ)

⋅ 𝑒( 𝑚∏
𝑗=1

(𝑅𝐾 (𝑖, 𝑗))𝑥󸀠𝑗 , ℎ)
= 𝑒 (𝑔𝛼𝑦󸀠𝑖 , ℎ) ⋅ 𝑒 (𝑡𝑖, ℎ) = 𝑒 (𝑔, ℎ)𝛼𝑦󸀠𝑖 ⋅ V𝑖.

(37)

The above proves the correctness for evaluating 󳨀→𝑦 󸀠 =𝑀󳨀→𝑥 󸀠
, and this implies the correctness of 󳨀→𝑦 = 󳨀→𝑦 󸀠 − 𝑀󳨀→𝑟 −𝑁󳨀→𝑥 − 𝑁󳨀→𝑟 .

5.3.2. Result Confidentiality and Input Privacy. The result
confidentiality is similar to the polynomial case. We prove
that, given the tuple (𝑃𝑃, 𝐸𝐾𝐹, 𝑉𝐾, 𝜎𝑥, 𝜎𝑜𝑢𝑡), the adversary
cannot extract the result vector 𝑦 = 𝑀𝑥.

Let𝑀,𝑁,󳨀→𝑥, 󳨀→𝑟 , 󳨀→𝑦, 󳨀→𝑦 󸀠
be as above; then we have that

𝑦𝑖 = 𝑚∑
𝑗=1

𝑀𝑖,𝑗 ⋅ 𝑥𝑗 (38)

and

𝑦󸀠
𝑖 = 𝑚∑

𝑗=1

(𝑀𝑖,𝑗 + 𝑁𝑖,𝑗) ⋅ (𝑥𝑗 + 𝑟𝑗)
= 𝑚∑

𝑗=1

𝑀𝑖,𝑗 ⋅ 𝑟𝑗 + 𝑚∑
𝑗=1

𝑁𝑖,𝑗 ⋅ 𝑥𝑗 + 𝑚∑
𝑗=1

𝑁𝑖,𝑗 ⋅ 𝑟𝑗 + 𝑚∑
𝑗=1

𝑀𝑖,𝑗

⋅ 𝑥𝑗.
(39)

Notice that the blinding matrix has at least one nonzero
element in each row, and the nonzero elements are all chosen
uniformly at random.Thus the 𝑦𝑖 are all blinded by a random
nonzero element, which makes the confidentiality of 󳨀→𝑦 hold.

As an additional bonus, the random sparse vector 󳨀→𝑟
that is added to the input 󳨀→𝑥 provides some preservation to
the privacy of input value. Since the vector is sparse, with⌈(1 − 𝛿)𝑚⌉ coordinates being 0, such blinding operation
may preserve the input privacy at a degree of 1 − 𝛿; namely,
the adversary may successfully guess one entry of the input
vector with this probability. However since the position of 0
elements is chosen at random, the probability of the adversary
to recover 1 − 𝛿 fraction of the input data is 1/ ( 𝑚

𝛿𝑚 ).
5.3.3. Security. The proof of the security follows that in [2].
We take it as an inspiration and define the following four
games.

Game 0. It is the same as Experiment EXPA[𝜋, 𝐹, 𝜆].
Game 1. It is similar to Game 0, with the difference that 𝐸𝐾𝐹

contains an 𝑛 × 𝑚 random matrix from Z𝑛×𝑚
𝑝 instead of𝑁.

Game 2. It is similar to Game 1, with the difference
that the ProbGen phase uses an inefficient algorithm∏𝑚

𝑗=1𝑅𝐾(𝑖, 𝑗)𝑥𝑗 instead of the CFEkalPoly(𝐾, 𝑥1, . . . , 𝑥𝑚) to
evaluate 𝑉𝐾𝑥.

Game 3. It is similar to Game 2, with the difference that each
value 𝑅𝐾(𝑖, 𝑗) is replaced by a random element 𝑅𝑖,𝑗 ∈ G1.

We use a hybrid way to perform the proof, with the
following claims.

Corollary 4. Pr[𝐺0(A) = 1] = Pr[𝐺1(A) = 1].
Proof. This claim holds in an obvious way, since the change of
algorithm for evaluating 𝑉𝐾𝑋 does not change the distribu-
tion of its values.Thus the probability that the adversary wins
is the same in both Games 0 and 1.

Corollary 5. |Pr[𝐺1(A) = 1] = Pr[𝐺2(A) = 1]|.
Proof. The difference between Games 2 and 1 is the coeffi-
cients of the target matrix. According to the confidentiality
proof, these coefficients are indistinguishable since each𝑁𝑖,𝑗 is chosen uniformly at random, thus sharing the same
distribution in the view of the adversary.

Corollary 6. |𝑃𝑟[𝐺2(A) = 1] = 𝑃𝑟[𝐺3(A) = 1]| ≤ 𝜖𝑝𝑟𝑓,
where 𝜖𝑝𝑟𝑓 represents the probability in the pseudorandomness
definition of PRF.

Proof. The difference between Games 3 and 2 is that the out-
put of PRF 𝑅𝐾(𝑥) is replaced by uniformly random elements
in G1. According to the pseudorandomness property of PRF,
the probability that an adversary A distinguishes the two
values is no better than 𝜖𝑝𝑟𝑓.
Corollary 7. |𝑃𝑟[𝐺3(A) = 1]| ≤ 𝜖𝑐𝑑ℎ, where 𝜖𝑐𝑑ℎ represents
the probability that an adversary solves co-CDH problem.

The proof of this corollary is the same as that in [2]; we
omit it here.

Combining the four claims together, we obtain that

Pr [EXPA [𝜋, 𝐹, 𝜆] = 1] ≤ 𝜖𝑝𝑟𝑓 + 𝜖𝑐𝑑ℎ. (40)

5.4. Performance Analysis. We also analyze the computa-
tional complexity of the proposed CP-PVC scheme for
matrix-vector multiplication and compare it with existing
works [2, 19]. Analogous to polynomial case, we first give
detailed analysis on the computational costs of each algo-
rithm in matrix-vector multiplication case. Let each letter
denote the same itemas that in the proposed scheme above. In
the KeyGen phase, to compute the term 𝐸𝑗𝑇

, the client needs
to execute 3𝑛𝑚 + 1 times of exponential modulo and 2𝑛𝑚
times of multiplication arithmetic in group G1. To compute
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Table 4: Comparison of the three PVC schemes for matrix vector multiplication.

FG12 [2] EOA16 [19] Ours
KeyGen 𝑂𝐸(𝑛𝑚) 𝑂𝐸(𝑛𝑚) + 𝑂𝑁(𝑛𝑚) 𝑂𝐸(𝑛𝑚) + 𝑂𝑁(𝑛)
ProbGen 𝑂𝐸(𝑛 + 𝑚) 𝑂𝐸(𝑚) 𝑂𝐸(𝑛 + 𝑚) + 𝑂𝑁(𝛿𝑛𝑚)
Compute 𝑂𝐸(𝑛𝑚) + 𝑂𝑁(𝑛𝑚) 𝑂𝐸(𝑛𝑚) + 𝑂𝑁(𝑛𝑚) 𝑂𝐸(𝑛𝑚) + 𝑂𝑁(𝑛𝑚)
PubVer 𝑂𝐸(𝑛) 𝑂𝐸(𝑛) 𝑂𝐸(𝑛)
PrivRet ⊥ ⊥ 𝑂𝐸(𝑛) + 𝑂𝑁(𝑛)
Result confidentiality No No Yes
Input Privacy No No Partial

Table 5: Time cost under different 𝛿 values [24].

𝑛 × 𝑚 Original cost VK Gen RK Gen (𝛿 = 0.5) RK Gen (𝛿 = 0.2)1000 × 50000 1.4508s 0.0077s 0.6864s 0.2652s1000 × 100000 3.3228s 0.0156s 1.2728s 0.5460s1000 × 200000 7.9092s 0.0312s 2.9484s 1.0764s1000 × 400000 14.1683s 0.0624s 6.4428s 2.1840s

the matrix 𝑀󸀠, since 𝑁 is sparse, only 𝑛 times of addition
arithmetic in N are executed. To generate the public key,
one time of pairing arithmetic is executed. In the ProbGen

phase, the client first needs to execute 𝛿𝑚 times of addition
arithmetic in N to get 𝜎𝑥. To generate the public verification
key 𝑉𝐾𝑥, algorithm CFEkalMatx(⋅) is executed together with𝑛 times of pairing arithmetic. And to generate the private
retrieval key, the client needs to execute three times of
matrix-vector multiplication arithmetic with computation
complexity being 𝑂(𝛿𝑛𝑚), 𝑂(𝑛), and 𝑂(𝛿𝑛), respectively.
In the Compute phase, the cloud server needs to execute
one time of dense matrix-vector multiplication arithmetic to
compute𝑦󸀠 and 𝑛𝑚 times of exponentialmodulo and 𝑛(𝑚−1)
times of multiplication in group G1 to compute term 𝑊.
In the PubVer phase, to compute the corresponding terms
in the checking equation, the third party verifier needs to
execute 𝑛 times of pairing arithmetic, 𝑛 times of exponential
modulo arithmetic in G𝑇, and 𝑛 times of multiplication
arithmetic in G𝑇, respectively. Finally, in the PrivRet phase,
the client firstly needs to execute what is done in PubVer

phase and then execute, respectively, three times of vector
subtraction arithmetic in N to compute the result 𝑦.

Next we present a complexity comparison between our
scheme and existing works of PVC schemes formatrix-vector
multiplication [2, 19]. Similar to the polynomial case,We also
use the notation 𝑂 to compare computational complexity.
According to the specific analysis of each algorithm, the
arithmetic computations take place in ring N and group G1,
G2, G𝑇. Thus we only use two types of notation, 𝑂𝑁 and 𝑂𝐸,
where 𝑂𝑁 denotes the time complexity of operations in ring
N including addition and multiplication and 𝑂𝐸 denotes the
time complexity of operations in group G1, G2, G𝑇 including
multiplication, exponentiation, and bilinear map. Let 𝑛 × 𝑚
be the problem size; then the comparison result is shown in
Table 4. From the table we can see that, compared with the
scheme in [2], ours has a complexity increase of 𝑂𝑁(𝛿𝑛𝑚)
in ProbGen and 𝑂𝑁(𝑛) in PrivRet performed by the client.
However, when the value of 𝛿 is small, the part𝑂𝑁(𝛿𝑛𝑚)will

be much less expensive than 𝑂𝐸(𝑛 + 𝑚). And 𝑂𝑁(𝑛) is surely
less expensive than𝑂𝐸(𝑛). Therefore, by choosing a proper 𝛿,
the impact of the increasing complexity will not be obvious in
the real performance. Comparedwith the scheme in [19], ours
has a complexity increase of 𝑂𝐸(𝑛) + 𝑂𝑁(𝛿𝑛𝑚) in ProbGen

and𝑂𝑁(𝑛) in PrivRetperformedby the client. If 𝑛 ≤ 𝑚, or the
difference between 𝑛 and𝑚 is small, the complexity of𝑂𝐸(𝑚)
and 𝑂𝐸(𝑛 + 𝑚) is nearly the same. Under this circumstance,
our scheme can achieve a comparative performance with a
small 𝛿 chosen. What is more, our scheme achieves result
confidentiality and partial input privacy that are considered
to be important for user privacy.

We also provide an experimental evaluation on the client
side to show the efficiency compared with direct algorithm
for matrix-vector multiplication. Different from that in poly-
nomial case, we have a sparse coefficient 𝛿 in matrix-vector
case. We choose different 𝛿 values and show the time cost
for different sizes of problems in Table 5, which is done in
the previous conference version of this paper [24]. Note that
in the ProbGen phase, the time cost of 𝑉𝐾 generation is
related only to 𝑛,𝑚 but not to 𝛿. However, the time cost of𝑅𝐾 generation is related to not only 𝑛,𝑚 but also 𝛿. With a
smaller 𝛿, one can get a more efficient CP-PVC scheme, but
this inevitably brings more risks to input privacy. This seems
inherently a trade-off. Also, note that the computations in
the PubVer and PrivRet phase are 𝑛 times of bilinear map
operation and three times of vector subtraction, respectively.
This part of cost is too small to be counted in, so we omit it
from the table.

From the table we can see that, no matter what the choice
of 𝛿 is, the total cost of 𝑉𝐾 generation and 𝑅𝐾 generation
is much less than the original cost of matrix multiplication.
Things can be more visualized in the column diagram of
Figures 2 and 3 [24], where the volume of 𝑉𝐾 generation
(blue) and 𝑅𝐾 generation (green) together is less than that
of the original cost (red). Even when counting in the omitted
time cost of PubVer and PrivRet phase, the CP-PVC scheme
achieves an acceptable efficiency performance in practice.
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Figure 2: Time cost of different problem sizes (×1000) when 𝛿 = 0.5
[24].

Figure 3: Time cost of different problem sizes (×1000) when 𝛿 = 0.2
[24].

6. Conclusion

We have proposed confidentiality-preserving publicly ver-
ifiable computation schemes for multivariate polynomial
evaluation and matrix-vector multiplication. The proposed
schemes achieve both public verifiability and result confiden-
tiality, while the latter one also achieves partial input privacy.
These security properties are considered to be important in
practical application of publicly verifiable computation.With
the experimental evaluation we have done, the scheme is also
acceptable in practice.
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