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Abstract
The automatic verification of time properties of models extracted from programs is chal-
lenging, mainly because modern programming languages, such as Java, represent time
without a proper semantics. Current approaches to extract time models from source code
either represent time only as a tree-like sequence of events or require developers to manually
provide a formal model of the time behavior. This makes it difficult for software develop-
ers to verify various aspects of their systems, such as timeouts, delays and periodicity of the
execution. In this paper, we introduce a formal definition of the time semantics for the Java
programming language. Based on the semantics, we present an approach to automatically
extract timed automata and their time constraints from Java programs at method level. First,
our approach detects the Java statements that involve time, from which it then extracts the
timed automata. Our extracted automata are directly amenable to the verification of time
properties of the corresponding Java methods. We evaluated the accuracy of our approach
on twenty open source Java projects that implement time behavior in their source code.
The results show that our approach achieves 100% precision and recall in identifying time
related information. They also show that 95% of the timed automata extracted from source
code correctly model the time behavior of the method. Finally, we show the applicability of
our timed automata to identify eight real errors in four open source Apache systems.
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1 Introduction

The quality of software is mainly determined by automatically testing or manually review-
ing the software. These activities consume between 40% and 67% of the total project cost
depending on the maturity level of the company (Laporte et al. 2012). Moreover, while
these activities help developers to detect the presence of errors they fail to assure the absence
of errors in software as said by Dijkstra (1972). A more rigorous way to establish software
quality is to formally assure that the software is free of critical errors using formal meth-
ods. Formal methods require an abstract model of the source code that captures the specific
semantics of the implemented functionalities. A particular domain of such a functionality is
the time domain. For instance, developers use time to implement time frames when exter-
nal events are expected to occur, to set execution timeouts, or to schedule events that occur
periodically. A common technique to specify and model the time behavior of programs is
the timed automata formalism.

The formal verification of time properties of programs, modeled as timed automata, has
been intensively studied over the last 20 years. Timed automata have been introduced by
Alur (1999) and allow software engineers to model and analyze the timing behavior of
programs.

For instance, Jayaraman et al. (2015) used the timed automata modeled by the developers
to monitor the subject system and to verify whether its execution conforms to its speci-
fication. Hakimipour et al. (2010) present an approach to derive real-time Java programs
from the timed automata constructed by the users. Following the same idea, Georgiou et al.
(2013) presents a technique to translate timed input/output automata into executable Java
code. All these research efforts propose techniques that require the developers to provide
the formal models and, typically, they are constructed manually.

Some recent approaches, such as presented in Lo et al. (2009) and Walkinshaw and
Bogdanov (2008), automatically extract such models from Java source code. However, these
approaches do not consider the specific semantics of the programming language and fail
to correctly model the time domain in programs. For instance, they only retain time as a
sequence of events represented in a tree-like structure but fail to model other time aspects
of the program, such as timing delays.

In this paper, we address two shortcomings of the aforementioned approaches: (i) they
are based on an informal semantics of time and (ii) the timed automata are manually con-
structed and thus, they are error prone. We propose a technique to automatically extract
timed automata from source code by introducing a formal time semantics for the Java pro-
gramming language. The extracted timed automata are directly amenable to verification
aiding developers to verify the correctness of their implementation.

Figure 1 shows an overview of our approach to extract the timed automata. Based on our
defined semantics of time, first we parse the source code of a Java method and extract its
time related information. Next, we use the extracted time information to build the states and
transitions that defines the timed automaton.

Our approach works at method level therefore we need a way to model side effects caused
by using non-local time variables, such as class attributes. Our approach tackles this problem
with dynamic analysis monitoring the values of these statements and expressions during
the execution of the test suite. For each run of a test case, our approach generates a set of
instances of the timed automaton that can be used for verification.
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Fig. 1 Overview of our approach to extract a timed automaton of a Java method

We have implemented our approach in a prototype tool1 used to show and study its
applicability. We evaluated our approach on 20 open source Java projects. Our experiments
demonstrate that the produced timed automata have a precision and recall of 100% in cov-
ering time related information. Furthermore, 95% of the timed automata extracted from
source code correctly model the time behavior of a method. In addition, the results show
that our semantics of time for the Java APIs is sufficient since, in our 20 subject systems,
we found that the developers only use the methods provided by the Java APIs to imple-
ment time-related behavior. The maximum time for generating a timed automaton took
less than 0.5 seconds and had a low memory footprint. Finally, the results show that our
timed automata could effectively be used to identify 8 real errors in four open source Java
projects.

In summary, this paper makes the following contributions:

– a formal definition of the semantics for the Java 8 (and later) time APIs;
– an approach to automatically extract timed automata for Java methods;
– an evaluation of our approach with 20 open source Java projects;
– an open source implementation of our approach in a prototype tool.

This paper extends our SCAM 2017 paper “Extracting Timed Automata from Java
Methods” (Liva et al. 2017). In this new version, we have improved the time semantics,
addressing several limitations of the original approach and we have extended the previous
experiments from 10 to 20 open source Java projects. Moreover, we have added three more
research questions (RQ2, RQ3, and RQ5) to further analyze the limitations of our approach.
Finally, we have added a description of the methodology to proof the soundness of our
translation.

The remainder of the paper is organized as follows: Section 2 presents our time semantics
defined for the Java 8 methods. Section 3 presents the application of our semantics to extract
time information from Java statements. Section 4 introduces our approach to extract the
timed automata from Java methods. Section 5 presents the evaluation. The discussion of the
results and threats to validity are presented in Section 6. Section 7 presents related work and
we conclude the paper in Section 8.

1https://git-isys.aau.at/giliva/java-time-verification

https://git-isys.aau.at/giliva/java-time-verification
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2 Time Semantics

In this section, we first provide background information on the semantics of programming
languages. Next, we present our manual categorization of the Java 8 (and later) time APIs.
Based on the categorization, we then introduce our time semantics for the Java language.

2.1 Programming Languages and Semantics

The idea of using semantics as a tool for modelling program behaviour is rooted in the
work of McCarthy (1993) that was used to model the ALGOL (McCarthy 1964) and LISP
(Steel 1969) programming languages. Based on this work, Plotkin (1977, 1981) developed a
semantics that capture the notion of a computational step. This approach has been success-
fully used for formalizing semantics for various programming languages and computational
models (Abadi and Cardelli 2012; Cardelli and Gordon 1998; Flatt et al. 1998; Hennessy
1988; Milner 1999; Sangiorgi and Walker 2003; Wright and Felleisen 1994). Nowadays,
all the mainstream languages have their formal semantics, e.g., PHP (Filaretti and Maffeis
2014), C (Hathhorn et al. 2015), C# (Börger et al. 2005), Python (Guth 2013), and Javascript
(Park et al. 2015). The definition of a formal semantics permits to address different prob-
lems, such as the detection of inconsistencies in programs (Liva et al. 2018), the detection
of inconsistencies in the implementation of compilers (Tristan 2009), and monitoring the
reliability and security of industrial controllers (Khan et al. 2018).

Regarding the Java programming language, three different semantics were proposed:
ASM-Java (Stärk et al. 2012), JavaFAN (Farzan et al. 2004), and K-Java (Bogdanas and
Roşu 2015). ASM-Java was the first complete semantics of Java. It defines a complete
semantics for both, the Java language and its bytecode interpretation for the version 1.0
of the programming language. JavaFAN defines only the semantics of the most frequently
used features of Java 1.4.

The most recent and richest semantics for Java is provided by K-Java presented by Bog-
danas and Roşu (2015). They proposed a complete definition of semantics for the Java 1.4
language. In this work, we enrich their definition including the semantics of time for the
Java programming language.

All the semantics presented above define the meaning of the structure of a program but
they do not provide a meaning for the domain on which the program statements operate.

With respect to the work presented in this paper, this domain is time. We present a time
semantics for the Java programming language that is a rigorous mathematical study of the
meaning of the time APIs offered by the language. The semantics describes the processes
that the Java Virtual Machine follows when executing the functionality of such APIs. Like
many other programming languages, Java provides developers with APIs to implement time
related behaviour, such as the Java java.time.LocalDate class. But, Java also pro-
vides APIs that allow developers to represent and handle time and timestamps with integer
values.

The integer representation of time can introduce semantic inconsistencies in a program
resulting in failures or preemptive termination. For example, the Java statement long now
= -1, is syntactically correct and it compiles. However, during the execution of the pro-
gram, if the variable now is used in a timed API call, it will result in a runtime exception.
The error is not detected by the Java compiler because it does not understand the seman-
tics of time and that the variable now is a time variable since it is used in a timed API call.
Therefore, the compiler fails to warn the developer that the variable now holds an incorrect
time value, namely -1.
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As a prerequisite for defining a semantics of time for the Java programming language,
we first need to find out which basic methods of Java deal with time, meaning return time
or consume time as a parameter. This is presented in the next subsection.

2.2 Classification of Time Related Java 8Methods

For defining the time semantics, we manually analyzed the API documentation of Java 8
classes and identified all API methods that either return time as an integer value or consume
time as an integer value in one of their parameters. We also performed this analysis with the
API documentation of the Java versions 9 and 10 and we discovered that the time APIs did
not change. Therefore, our semantics support also the most recent versions of Java. Next,
we classified the found methods into the following four categories:

1. Return Time (RT): The first category covers methods that return an integer value
that represents time. For example, the static currentTimeMillis() method of the
System class returns the current time in milliseconds.

2. Explicit Time (ET): The second category covers methods that contain a time parameter
declared as integer. For example, in the connect method of the Socket class, if
called with two parameters, the second parameter specifies the maximum amount of
time for establishing the connection.

3. Explicit Wait (EW): The third category is composed of methods that wait for an exter-
nal event to continue the execution of a thread. Since it is possible that this event might
never occur, these methods can potentially block the execution of a thread forever.
Examples are the wait() method of the Object class or the method get of the
Future class.

4. Set Timeout (ST): The fourth category comprises methods which change their behav-
ior with a time constraint that is set by a preceding method call. For example, the
connection method of the URLConnection class by default has no upper time
limit for establishing the connection. Instead, a timeout can be set by calling the
setConnectTimeout method before calling the connection method.

Table 1 presents an excerpt2 of the analyzed Java 8 APIs methods that involve time. In
this paper, we focus on the first three categories of time related methods and we provide
a semantics for them. For the category ST, it is not always possible, using static analysis,
to correctly detect whether a method call has a specific timeout set by a preceding method
call. Therefore, we skip this category of methods for this work and will address them in our
future work.

2.3 Semantics of Java Time Statements

Based on the classification of time related methods of the Java 8 APIs, we introduce the
semantics of time for the statements in Java programs. We start with introducing the general
concepts for representing time variables and time related methods.

A time variable is a program variable, which stores time values. We model the time
as positive natural number and we define the set of time variables as V t , such that ∀v ∈
V t . value(v) ∈ N

+, where value(·) refers to the value held by the variable v. We define
a set of Java method definitions with the letter M where the superscript t is used to define

2The full list is available at https://git.io/fAbZR

https://git.io/fAbZR
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Table 1 Excerpt of time related methods found in the Java 8 APIs

Class Method signature Class Method signature

Return Time (RT) Explicit Time (ET)

System nanoTime() Socket connect(SocketAddress,int)

System currentTimeMillis() Thread join(long)

Clock millis() Thread join(long,int)

Duration get(TemporalUnit) Thread sleep(long)

Duration getNano() Thread sleep(long,int)

Duration getSeconds() FutureTask get(long,TimeUnit)

... ... ... ...

Explicit Wait (EW) Set Timeout (ST)

Object wait() InputStream read()

Future get() InputStream read(byte[])

FutureTask get() InputStream read(byte[],int,int)

Thread join() HttpURLConnection connect()

Process waitFor() ServerSocket accept()

CountDownLatch await() SSLServerSocket accept()

... ... ... ...

that they are time related and the subscript is used to define the category to which a method
belongs: Mt

rt denotes the set of RT methods that return time; Mt
et denotes the set of ET

methods that have a time parameter in their signature; and Mt
ew denotes the set of EW

methods that can potentially block the execution of a thread forever. Finally, we call the
quadruplet V t , Mt

rt , Mt
et , and Mt

ew an environment and we denote it with the letter E. The
environment keeps track of the time information extracted from the source code.

E = 〈V t ,Mt
rt ,M

t
et , M

t
ew〉

We define the time semantics as a set of operational semantics (Plotkin 1981) rules. A
rule has some premises that constitute the preconditions to apply the rule. The premises
have an environment E and the program statement S. Based on this, we can apply the rules
R1, . . . , Rn that can conclude a new environment E′.

Given the time domain T defined as positive integer numbers and the current point in
time t0 ∈ T, we define the rules T1, T2, and T3 to model the time semantics of the three
categories of methods considered by our approach. These three rules describe how the time
changes given the couple (V t , t0), that represent the list of time variables and the current
point in time, and the API method call. We define val(·) as the function which returns the
value of the input expression that can be either a reference to a variable or a method call.
The rule T1 handles the assignment of time returned by calls to methods of the category RT
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updating the value stored by the time variable x without touching the execution time. It is
defined as:

Rule T2 handles ET method calls containing a time argument represented by the variable
t . At the end of the execution of the method m, the time is increased by value t :

Finally, rule T3 handles calls to EW methods that could potentially block the execution
of a thread forever. It is defined as:

In the next section, we present how our time semantics is used to infer time related Java
methods, statements, and time variables.

3 Extracting Time Information

Based on the time semantics presented in the previous section, we define a set of rules to
analyze the source code of a project. Through the analysis, our approach gathers the methods
and statements that are time related and program variables that are time variables. We group
the rules into three categories:

– time methods analysis,
– branching statements analysis,
– expressions analysis.

Fig. 2 Code example that uses the Java time API
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Note, these three categories of rules are applied to the source code until no more time
methods, statements, or time variables are found. Vice versa, when new time methods, state-
ments, or variables are found, then the additional information is used to perform another
analysis round.

Figure 2 shows an example of using the time API in Java. The class Cache
implements a simple cache that stores the value returned by the invocation of
ExternalClass.readValue(). When the method read() is called, the code ver-
ifies how much time elapsed since the last call to readValue(). If the elapsed time is
greater than a threshold MAX TIME, the cached value is refreshed. We use this example to
show how our semantics is applied to determine time methods, statements, and variables.

3.1 TimeMethods Analysis

Using the definitions given in Section 2.3, we first introduce a set of rules to gather the meth-
ods of the categories RT and ET in the source code of a Java program. Methods that return
time are added to Mt

rt . Methods that contain a time variable as a parameter are added to
Mt

et . Note, since we did not provide a formal semantics for ST methods, our approach does
not consider this category of methods. Furthermore, while our approach supports the Java
APIs EW methods, it does currently not cover EW methods implemented by developers.

For gathering the developer’s defined RT and ET methods, our approach applies the
rules Rrt and Ret detailed in the following.

Rule Rrt This rule matches the project’s RT methods that return time and adds them to the
set Mt

rt . It is defined as:

Given a method called name with the list of parameters pars and the method body S,
our approach applies the time semantics recursively to the body S. If S contains a return
statement that references a time variable or a call to an RT method, the method name is
added to the set Mt

rt . The function isV ar(·) returns true if the expression is a reference to
a variable. Similarly, isCall(·) returns true if the expression is a method call. The function
return(·) obtains the return statements of the given method body S.

Example Considering the method now defined at Line 17 of Fig. 2, the rule Rrt is matched
as follows:

The premise of the rule Rrt matches the variable name with the method name now, the
list of parameter pars with an empty list, and the body S with the return statement of the
method. For readability, we have shortened the method call to System.currentTime-
Millis() in the return statement. The rule analyzes the body of the method marking
the method call in the return statement as an RT method call. When the rule retrieves the
expression of the return statement in the variable r , it validates the second branch of the or
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clause satisfying all the judgments of the rule. Therefore, the fully qualified name of method
now is added to the list of RT methods.

Rule Ret This rule identifies the project’s ET methods that accept a time parameter and
adds them to the set Mt

et .
It is defined as:

Given a method called name with the list of parameters pars and the method body S,
our approach adds it to Mt

et if the set of time variables V t ′ of the environment, resulting
from the application of our time semantics to the body S, contains a parameter declared by
method name.

Both rules, Rrt and Ret , require the application of our time semantics to the statements S

of the method body to determine whether a method is of category RT or ET. Our approach
applies the time semantics to the statements following the order of the method’s control
flow.

Java provides different types of statements, such as conditional and loop statements,
lambda expressions, ternary operator, assignment and mathematical expressions. In the next
subsections, we provide the rules to handle the relevant Java statements. The other types
of statements are handled by our approach in a similar way therefore we omit the rules for
them.

3.2 Branching Statements Analysis

In this subsection, we present the relevant rules for the two branching statements if and
while. The other branching statements of Java, such as try-catch and do-while, follow the
same approach.

Rules Rif and Rloop The idea of the rules Rif and Rloop is to first apply the time seman-
tics to the guard B and then to the body S, collecting the time information. Our approach
applies these rules until a fix point is reached and no more time information is collected in
the environment. For the if branching statement, the time information collected from both
branches is unified.

Example Considering the if statement in Lines 11–14 of Fig. 2, the rule Rif matches as
follows:

The guard B matches the expression now - lastRefresh > MAX TIME, the then-
body S′ matches the list of statements in Lines 12–13, and the else-body S′′ matches an
empty list of statements. For readability, we omit the statements in the then-body.
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The rule first analyzes the guard expression recursively using the rules presented in the
next subsection. The result is an environment E′ with the time variables referenced in the
guard expression. Then, the rule uses the environment E as input to analyze the then- and
else-body recursively. Since the else-body is empty, the resulting environment does not
change.

3.3 Expressions Analysis

The following presents the set of rules to analyze Java expressions to identify time related
variables. First, we present how to process boolean expressions and then how to process
assignment and mathematical expressions.

In a boolean expression, there are two different cases in which our approach marks a
program variable as time variable: (i) the variable is compared with a time variable or (ii)
the variable is compared with the result of an RT method call. If an expression consists of
multiple boolean expressions, we process each expression separately. Considering the if
statement at Line 11 of Fig. 2, given that variable now defined in Line 10 is a time variable,
our semantics analyzes first the boolean guard and then the then-branch. In the guard, the
variable now is compared with the constant MAX TIME and thus, our semantics marks the
constant MAX TIME as time related variable.

Regarding assignment and mathematical expressions, there are three different cases in
which a programming variable is used as time variable:

– The variable is assigned the result of an RT method. This case is handled by the rule
R1.

– The variable is used as timeout parameter in an ET method call. This case is handled
by the rule R2.

– The variable is used in a mathematical expression with other time variables or time
methods. This case is handled by the rule R3.

Rule R1 The rule R1 verifies that the return value of method m is assigned to the variable x

and m is a method of the RT category. If this condition holds, x is added to the set of time
variables V t .

Example Line 10 in Fig. 2 shows a statement on which this rule applies. Variable now is
assigned the result of the call to the RT method System.currentTimeMillis() and
therefore, our semantics adds now as time variable.

Rule R2 For the second case, we define two auxiliary functions to simplify the readability of
our semantics. Function pos(·) returns the position of the input parameter in the method call
and function t imeoutpars(·) returns the set of indices of the time parameters of the input
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method. The rule marks as time variable every variable that is passed as a time parameter in
a method call of the category ET.

Rule R3 The last case requires to consider different types of operands of mathematical
expressions:

1. Both operands are time variables.
2. One operand is a time variable and the other is a normal variable.
3. One operand is a time variable and the other is a scalar value.
4. One operand is a normal variable and the other is an RT method call.
5. Both operands are RT method calls.
6. One operand is an RT method call and the other is a scalar value.

Each case is encoded in one of the following rules, where opi is an operand of the
mathematical expression:

e1 = op1 ∈ V t ∧ op2 ∈ V t

e2 = (op1 ∈ V t ∨ op2 ∈ V t ) ∧ (isV ar(op1) ∨ isV ar(op2))

e3 = (op1 ∈ V t ∧ op2 ∈ N
+) ∨ (op1 ∈ N

+ ∧ op2 ∈ V t )

e4 = (isV ar(op1) ∧ op2 ∈ Mt
rt ) ∨ (op1 ∈ Mt

rt ∧ isV ar(op2))

e5 = op1 ∈ Mt
rt ∧ op2 ∈ Mt

rt

e6 = (op1 ∈ Mt
rt ∧ op2 ∈ N

+) ∨ (op1 ∈ N
+ ∧ op2 ∈ Mt

rt )

If any of the previous rules holds, then the variable used in the assignment statement is
added to the set of time variables. Moreover, the rule R3 checks that the return type of the
expression is numeric because Java allows using the “+” operator with other data types, e.g.,
it can be used to concatenate strings. This control is necessary to avoid adding variables that
do not hold time values.

Example The guard expression in Line 11 of Fig. 2 shows an instance where this rule
applies. The left-hand-side of the condition contains the mathematical expression now -
lastRefresh. Using rule R1 in Line 10, the variable now is added to the set of time
variables V t . When the guard expression is processed with the rule R3, expression e2 is sat-
isfied and the return value is numeric. Therefore, the rule adds the variable lastRefresh
to the set of time variables.
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4 Constructing Timed Automata

With the time semantics presented in the previous section, our approach is able to extract the
time information necessary to generate a timed automaton for a Java method. There are mul-
tiple temporal logics available that can be used to describe properties to be verified on the
extracted timed automaton. We have decided to use Timed Computation Tree Logic (TCTL)
(Baier et al. 2008; Behrmann et al. 2004) because it provides means to describe properties
related to time and the execution state and path. Currently, there exist two model checkers
for timed automata that support TCTL: Kronos (Yovine 1997) and UPPAAL (Larsen et al.
1997). We decided to use UPPAAL because it has more then 15 years of development and
runs on Java 8, while the last release of Kronos dates back to 2002 and we were not able
to execute it on our machines. Furthermore, UPPAAL has been successfully used in sev-
eral case studies, for instance to prove the reliability of gearbox controllers (Lindahl et al.
1998), to correctly synthesize control programs for batch production (Hune et al. 2001), and
to verify the correctness of audio protocols (Larsen et al. 1995; Bengtsson et al. 1996).

UPPAAL extends the classical timed automaton theory defined by Alur and Dill (1994)
with syntactic sugar, e.g., committed location, and additional features, e.g., integer variables
and channels. UPPAAL uses a transition system in which a transition can have three proper-
ties: (i) a time constraint, (ii) a reset of time variables, and (iii) an update of variables. Time
variables in the context of timed automata are called clock variables. A time constraint spec-
ifies an extra condition involving clock variables. A transition is enabled only if the time
constraint is satisfied.

The reset option specifies the list of clock variables to reset their values to zero. The
update option assigns values to variables. The reset and update actions are performed only
when the transition is fired. Moreover, a timed automaton has a set of clock variables that
model the flow of time. In our approach, we use a single clock variable t0 that keeps track
of the execution time.

Our approach to extract UPPAAL timed automata consists of the following three steps:

1. construct the initial timed automaton with states and transitions
2. refine the automaton with additional time constraints; and
3. finalize the automaton.

In the following subsections, we describe each step of our approach in detail.

4.1 Construct the Initial Timed Automaton

The construction of the initial timed automaton starts with generating states and transitions
following a standard procedure based on the control-flow graph (CFG) of the method’s
source code.

For each statement node in the CFG, our approach creates a respective committed state
in the timed automaton. A committed state freezes the time simulating that the execution of
the code is instantaneous. This prevents the interleaving of actions that require atomicity.
However, if the CFG node contains a statement with an ET/EW method call, the state
created in the timed automaton is a normal state. This models the fact that in this state
the time is important and it can elapse. Using committed states helps the model checker
to perform internal optimizations and it reduces significantly the state space that it has to
explore. Furthermore, we mark the root node of the control-flow graph as initial state of the
automaton.
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Similarly, for each connection between two nodes in the CFG, our approach creates a
transition that connects the respective states in the automaton. All the transitions extracted
in this step are ε-transitions without any constraints. The decision of using ε-transitions
can introduce a problem with branching instructions and resulting in a non-deterministic
automaton. Since we are interested only in time properties of the code, which path is taken
in an automaton run is not important. However, as presented in detail later, if a branching
instruction in the code is guarded by a time expression, our approach adds the time expres-
sion as constraint to the transition of the then-branch. Moreover, for each transition from
state s to s′, our approach verifies if state s contains an expression that assigns a value to a
time variable as defined by rules R1 and R3. If this is the case, the assignment is added to
the transition as update property.

4.2 Refine the Automaton with Time Constraints

After constructing an initial timed automaton for a Java method, our approach analyzes the
time statements in the CFG to infer time constraints that are used to refine the transitions
of the initial automaton. Currently, our approach infers the following three types of time
constraints:

– Timeout Constraint: covers calls to ET methods that contain an argument defining the
maximum waiting time, such as Thread.sleep(2000).

– Indefinite Wait Constraint: covers calls to EW methods that can stop the execution of
a method forever, such as Thread.join().

– Time Expired Constraint: covers conditional statements that trigger the execution of a
specific piece of code, such as if (ticks < MAX TICKS) { ... }.

Based on the inferred time constraints, the approach updates the corresponding transition
in the initial automaton from state s to state s′ accordingly.

Timeout Constraint Method calls to ET methods contain an argument that specifies the
maximal waiting time for the termination of the method call. This represents a Timeout
Constraint that sets the maximum execution time for that method call. For each statement
in the CFG that calls a method of the category ET our semantics is used to first extract the
timeout parameters. Next, for each timeout parameter t imeout our approach adds a time
constraint t0 <= t imeout to all the transitions exiting from state s that represents that
method call in the automaton. Moreover, all the transitions that are entering in that state s are
modified inserting the reset of variable t0. With this model, when the automaton run enters
state s, the clock variable that keeps track of the execution time will block the execution of
the automaton for a maximum of t imeout time.

Indefinite Wait Constraint Method calls to EW methods could possibly block the execu-
tion of a method forever. If our approach identifies an EW method call in the CFG, it adds
an ε-transition from state s to s that represents that method call in the automaton. The self
loop models the fact that the automaton can either proceed to the next state or stay forever
in the same state.

Time Expired Constraint The condition of a branching instruction can contain a time con-
straint to decide which branch to execute. An example of such a time constraint is given by
the if-condition at Line 11 of Fig. 2. If enough time has passed, it executes the code in the
then-branch. Our approach models this using the following algorithm: First, it parses the
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condition and constructs the Abstract Syntax Tree (AST) of the time expression as depicted
by the first tree on the left hand-side of Fig. 3. Next, it applies our time semantics to iden-
tify expressions that are time related (i.e., contain a time variable or a call to an RT method
that returns time). In this example, the expressions e1 and e3 are time related. All the
nodes that do not contain a time expression are removed from the tree. In our example, the
node e2 is removed. Next, the algorithm removes the nodes representing the boolean oper-
ators from which one or both child nodes have been removed in the previous step pushing
up the remaining child, if present. In the example shown on the right-hand side of Fig. 3,
the node “||” is removed because its expression e2 has been removed and e3 has been
pushed up. Finally, the resulting tree is pretty-printed as a string that it is added as a time
constraint to the transition representing the then-branch. Furthermore, the negated ver-
sion of it is added as a time constraint to the transition representing the else-branch. This
way our approach creates a deterministic automaton for branching instructions that are time
related.

Finally, we translate the refined timed automaton into the corresponding UPPAAL
model. However, the translated model may not be amenable to the verification because it
may include some expressions which are not directly supported by UPPAAL. We address
this issue in the next sub-section.

4.3 Finalize the Timed Automaton

The final step of our approach is to rewrite the expressions that have been copied from
the source code as correct UPPAAL expressions. Our approach finalizes the previously
constructed UPPAAL timed automaton by formalizing those time expressions, which are
not supported by UPPAAL, i.e., (i) time variables and (ii) RT method calls. They need to
be replaced by concrete values or UPPAAL expressions.

Fig. 3 Example of extracting the time related expression from the if-condition in which e1 and e3 are time
related and e2 is not
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Fig. 4 The graph on the left depicts the timed automaton extracted from the source code of the read()
method presented in Fig. 2. State names represent the source code line numbers. Expressions that are rewrit-
ten or replaced are contained between curly brackets. The graph on the right depicts an instance of this
automaton after rewriting/replacing the marked expressions

The graph on the left hand side of Fig. 4 shows an example of this problem with the
automaton extracted from the source code of the method read() displayed in Fig. 2.
The calls to System.currentTimeMillis() and now() are surrounded by curly
brackets to easily identify and later replace them. UPPAAL has no definition of these two
Java methods and the three variables now, lastRefresh, and MAX TIME. Therefore, we
need to translate them into expressions that are processable by UPPAAL, whose details are
discussed in the following subsections.

Time Variables In our approach, we model time variables defining them as UPPAAL vari-
ables using its integer theory. For time variables that are declared and initialized in the
Java source code, our approach copies the Java initialization expression as initialization
for the UPPAAL variables. Otherwise the UPPAAL variables are initialized with the value
0. This however does not block our approach to correctly model the behavior of program
variables that can be modified outside of the scope of the method. For instance, the vari-
able lastRefresh is an instance variable that can be changed by other methods. We
refer to these time variables as non-local time variables. They are handled by our approach
separately, as we describe below.

RT Method Calls This category of method calls cannot be directly translated because
UPPAAL does not come with a definition for those methods. For instance, it does not have
a definition for the method System.currentTimeMillis(). In our manual analysis
of Java 8 APIs, we identified which of Java’s RT methods return a monotonic time value.

For these methods, we provide the UPPAAL defined function time that simulates the
same behavior – every time it is called it returns a monotonically increasing natural number.
Using this definition, our approach traverses the automaton and replaces all calls to such
RT methods within curly brackets with a call to the time function.

Non-Local Time Variables and Unresolved Method Calls For the other method calls and
non-local time variables contained in our automaton, our approach currently does not pro-
vide any formal model in UPPAAL. It addresses this limitation with dynamic analysis
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to monitor the program during its execution and to obtain representative values for these
expressions. Then, our approach replaces these method calls and the initialization values of
non-local time variables with the monitored values creating an automaton that can be model
checked with UPPAAL.

Our approach performs the following steps: First, during the extraction of the automaton,
our approach records the expressions that it could not translate into UPPAAL expressions.
For each expression, our approach records the line number in the source file, the fully qual-
ified names of the class and method containing that expression, and the expression itself.
We implemented this method as an agent that is added to the Java Virtual Machine.

At the initialization phase of the Java Virtual Machine, the agent loads the list of recorded
expressions and rewrites the bytecode of the classes that contain these expressions insert-
ing logging statements. For the non-local time variables, a logging statement is inserted at
the beginning of the method recording the value of each non-local time variable when the
method is called. For each unresolved method call, it inserts the logging statement at the
line where the method is called.

Each logging statement outputs the thread id, fully qualified names of the class and
method, line number in the source code, the expression monitored, and the time value of the
non-local time variable or method call to a log file. For each execution of a program such a
log file is created.

Finally, for each thread and for each method execution, it creates an instance of the
respective timed automaton replacing the non-local time variables and method calls with
their recorded values.

The graph on the right hand side of Fig. 4 depicts an instance of a timed automa-
ton created for the read() method in Fig. 2 with the correct syntax and semantic for
the variables now and lastRefresh, and the System.currentTimeMillis() and
now() method calls. This automaton can be used with UPPAAL to formally verify the time
properties of this method, such as termination.

5 Evaluation

In this section, we present the experiments we have performed to evaluate our approach to
extract timed automata from the source code of Java methods. With the results we aim to
answer the following five research questions:

– RQ1: What is the precision and recall of our approach to extract time information from
source code?

– RQ2: What is the ratio of methods whose time behaviour depends on non-local time
variables?

– RQ3: What is the number of method calls to time methods in external libraries?
– RQ4: Are the extracted models adequate to detect real errors in open source projects?
– RQ5: How much time and memory is required by our approach to extract the timed

automata?

The first research question is used to evaluate the precision and recall of our approach
to extract time information from source code. With respect to our time semantic defined
for the Java 8 API, we expect our approach to extract this information with high precision
and recall. The second and third research questions are used to evaluate the impact of two
limitations of our approach, namely the usages of non-local time variables and external time
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libraries to implement time related functionality. The fourth research question investigates
the capability of our approach to detect “real” errors in Java methods. Finally, the last
research question studies how different metrics impact the time and memory needed by
our approach to extract a timed automaton from a Java method. In the following, we first
describe the dataset used in our experiments and then present the specific set-up for each
research question and the results.

5.1 Project Selection

For our experiments, we used a set of 20 open source popular Java projects that have been
also used in other time related studies (Liva et al. 2018).

ActiveMQ is a message broker and Activiti is a light-weight workflow and business
process management platform. Airavata is a software suite to compose, manage, execute,
and monitor large scale applications and workflows on computational resources. Alluxio
enables any application to interact with any data from any storage system at memory
speed. Atmosphere is a framework to develop client and server side components for build-
ing Asynchronous Web Applications and AWS-SDK-Java provides APIs to interact with
many Amazon web services. Beam is a unified model for defining data-parallel processing
pipelines and Camel is a framework to implement routing and mediation rules in Java- or
Scala-based domain specific language. Elastic-Job is a project for running distributed sched-
uled jobs. Flume is a distributed service for collecting and aggregating log data. Hadoop is
a map-reduce implementation and on top of its distributed file system, HBase builds a dis-
tributed database. Hazelcast is a clustering and highly scalable data distribution platform.
Jetty is a web server provided by the Eclipse Foundation. Kafka provides a unified layer
for handling real-time data feeds and, similarly, Lens provides a unified analytics interface
from different data sources. Nanohttpd is a light-weight HTTP server designed for embed-
ding in other applications and Neo4j is a graph database. Sling is a web framework that uses
a Java Content Repository to store and manage content. Finally, Twitter4j is a Twitter API
binding library for the Java language.

These projects use the Java time APIs for scheduling the communication between differ-
ent components of a system, synchronize activities among different instances of a program,
wait for an event to arrive, and handling communication failures over the network.

As can be seen by the descriptive statistics presented in Table 2, the size of the projects
varies from 124 to 27,208 classes (column NC), whereas AWS-SDK-Java is the largest
project. Only a small fraction of the methods implemented in each project contain a call to
a Java 8 time method as indicated by the numbers in column NMT. In total, our semantics
identified 11,772 time methods which yields a ratio of 1.24%. The project with the largest
number of methods that contain a call to a Java 8 time method is Hadoop with 2,686 meth-
ods. The project with the largest percentage of such methods is Flume with roughly 5% of
the methods or 338 out of 6,705 methods. The set of 11,772 methods represent the basic
input to our experiments.

5.2 RQ1 - What is the Precision and Recall of Our Approach to Extract Time
Information from Source Code?

With this research question, we seek to evaluate the precision and recall of our approach
in extracting time information from Java source code. The time information that can be
extracted from source code are time constraints and time assignments that are then added to
the timed automaton.
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Table 2 Open source Java projects used in our evaluation with number of Java files, number of classes (NC),
number of methods (NM), and number of methods containing a call to a Java 8 SDK method implementing
time (NMT)

Project Version Files NC NM NMT

ActiveMQ 5.16.0-SNAPSHOT 4,434 5,071 43,520 1,480

Activiti 7.0.0-SNAPSHOT 2,002 2,103 15,373 66

Airavata 0.17-SNAPSHOT 1,621 9,320 70,862 154

Alluxio 1.6.0-SNAPSHOT 1,319 3,364 24,972 230

Atmosphere 3.0.0-SNAPSHOT 348 500 4,100 54

AWS-SDK-Java 1.11.165-SNAPSHOT 26,416 27,208 205,413 157

Beam 2.2.0-SNAPSHOT 1,696 3,844 21,401 85

Camel 2.20.0-SNAPSHOT 17,205 20,024 116,032 1,277

Elastic-Job 2.1.5 571 611 2,497 24

Flume 1.8.0-SNAPSHOT 642 995 6,705 338

Hadoop 3.0.0-beta1-SNAPSHOT 8,061 12,597 100,589 2,686

Hazelcast 3.9-SNAPSHOT 5,696 7,663 59,260 995

HBase 3.0.0-SNAPSHOT 3,638 9,535 128,914 1,500

Jetty 9.4.7-SNAPSHOT 2,567 3,781 25,548 980

Kafka 0.11.1.0-SNAPSHOT 1,315 1,896 14,006 326

Lens 2.8.0-SNAPSHOT 845 1,036 8,110 177

NanoHTTPD 2.3.2-SNAPSHOT 87 124 716 17

Neo4j 3.3.0-SNAPSHOT 6,681 9,158 61,393 655

Sling 9-SNAPSHOT 5,336 5,964 37,415 530

Twitter4j 4.0.6 426 418 4,641 41

Total 90,906 125,212 951,467 11,772

To evaluate the precision and recall of the generated timed automata, we follow the
evaluation methodology presented by Le et al. (2015). First, the authors of the paper
and an independent developer, who has several year of academic and professional expe-
rience in developing Java applications, create a reference set of timed automata. The
reference set was created with a manual control- and data-flow analysis of 400 meth-
ods randomly selected from the 11,772 time methods. The manual data- and control-flow
analysis has been performed independently by each researcher and the developer. The
results and in particular the discrepancies were discussed in a follow-up meeting. For
each discrepancy, the participants together analyzed the corresponding source code again
until a consensus was reached. The resulting timed automata represent our ground truth
models.

Precision and recall then were computed by comparing each timed automaton extracted
by our approach with the respective ground truth model. Precision refers to the portion of
time constraints and time assignments that were present in the extracted timed automaton
that were also present in the ground truth model. Recall refers to the portion of time con-
straints and time assignments that were present in the ground truth model that were also
present in the extracted timed automaton.

The result of this analysis shows a perfect precision and recall of 100%.
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5.3 RQ2 - What is the Ratio of MethodsWhose Time Behaviour Depends
on Non-Local Time Variables?

Our approach extracts timed automata at method level but it does not consider time infor-
mation stored in non-local time variables except for time constants. Based on our manual
observations of the various methods in the 20 Java projects, we conjecture that developers
tend to use time variables locally, except for time constants. The goal of this experiment
is to verify our assumption by investigating to which extent developers use time vari-
ables locally, i.e., within methods, and to which extent non-local time variables are used
and changed. An example of such a non-local time variable is given by the class attribute
lastRefresh of class Cache in Fig. 2. In other words, we seek to investigate the ratio
of pure methods w.r.t. time variables. Pure methods are methods that have the following two
characteristics:

1. The result of a method only depends on the values of its parameters.
2. The execution of the method will not alter the value of any variable defined outside the

scope of the method.

A pure method w.r.t. time variables has multiple benefits: they are secure, idempotent, easier
to reason about, and easier to test, i.e., it is not necessary to set the system in a specific state
since the result depends only on the input parameters.

For this experiment, we employ Ernst et al. (2007), an invariant detection tool. Daikon
has been used in many previous research efforts, such as in (Beschastnikh et al. 2011,
2012, 2014, 2016; Abrahamson et al. 2014; Lemieux et al. 2015; Schiller and Ernst 2012;
Baliga et al. 2011), to extract likely program invariants. It runs a program and observes
the values that the program computes. During the observation, it applies some logic the-
ories to infer which properties, i.e., invariants, are true over the observed execution. One
of the many invariants extracted by Daikon concerns the values of variables. It detects if
a variable never changes its value in a method during its execution. We can exploit this
invariant to detect which non-local time variables are not modified in the execution of a
method.

We randomly selected 400 methods from 11,242 time methods of the projects presented
in Table 2. We excluded the 530 methods of Apache Sling because this project requires
an external library that is also used by Daikon. Unfortunately, Apache Sling and Daikon
depend on different versions of this library causing the tests of Sling to be not executable.
Furthermore note, the list of 400 methods used for this research question is different from
the list used in Section 5.2.

For each of the 400 methods, we ran the test suite of the respective project with Daikon
and stored the invariants that it extracted. Next, we parsed the extracted invariants to check
whether the method under study does alter the value of any non-local time variable. The
results of this study show that only 19 out of 400 (4.75%) methods alter the value of a
non-local time variable while 95.25% (381/400) of the methods alter the value of a local
time variable. This answers our research question RQ2: only 4.75% of the time methods
alter the value of a non-local time variable during its execution. This low ratio confirms our
hypothesis and we can conclude that developers mainly use local variables to implement
time-related functionality.
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5.4 RQ3 - What is the Number of Method Calls to TimeMethods in External
Libraries?

Our approach relies on a time semantic that we defined for the Java 8 time APIs. How-
ever, developers might also use time APIs provided by other libraries, such as Joda-Time.3

Furthermore, they might use library methods which wrap the Java 8 time APIs. This might
impact the precision, recall, and finally also the applicability of our approach since it does
not support these libraries and the extracted models would miss this time information. With
JSR-310,4 Java 8 improved the date and time APIs and we conjecture that developers rely
only on them for handling time in their applications. With this research question, we want
to verify our conjecture.

For each of the 20 projects in our data set, we performed the following steps: First, we
collected the libraries used by the project using its build configuration. We erased the local
repository used by Maven5 or Gradle6 and then executed the build process to download the
libraries (i.e., jar files) used to build the project. They are stored by the build system into
the local Maven or Gradle repository. Since the build system also copies the jar files created
during the build into the local repository, we manually removed them to keep only the jar
files of the libraries.

Next, we used the Fernflower7 Java decompiler to reconstruct the source code of each
retrieved library of the project. Then, we applied our approach to the decompiled source
code to detect public methods of the categories RT and ET. To collect the list of a library’s
time methods that encapsulate and export time functionalities, we have used the rules Rrt

and Ret of our approach, presented in Section 3.1.
With the two lists of Java 8 time methods and libraries’ time methods, we next ran our

prototype tool on the source code of the project to detect calls to the Java 8 time methods
and calls to the libraries’ time methods. To find out which concrete method of which class
is called, we resolved the method bindings using the Eclipse JDT8 tools. The methods then
were matched by their fully qualified name.

Table 3 presents descriptive statistics of the decompiled libraries. The number of libraries
used by the 20 projects varies from 42 for Kafka to 2,611 for Camel, resulting in a total
of 9,357 libraries to analyze. Decompiling the jar files of these libraries resulted in total
in 1,308,284 Java source files implementing 1,870,583 classes and 18,329,808 methods.
As expected, the source code decompiled from the libraries used by Camel contained the
largest number of classes and methods, namely 612,571 classes and 6,540,417 methods.

Applying our prototype tool to analyze the 1,870,583 Java classes and 18,329,808 meth-
ods required more than 86 hours of computation. More than half of it (45.42 hours) was
spent on analyzing the methods contained by libraries used by Camel. The analysis pro-
duced in total a list of 8,542 public time methods which is 0.047% of the methods. Camel
alone contains half of the public time methods.

The last two columns of the Table 3 report the results of analyzing the calls to the Java
8 timed methods (JC) and libraries time methods (LC). The values in the column LC are

3http://www.joda.org/joda-time/index.html
4https://jcp.org/en/jsr/detail?id=310
5https://maven.apache.org/
6https://gradle.org/
7https://github.com/JetBrains/intellij-community/tree/master/plugins/java-decompiler/engine
8https://www.eclipse.org/jdt/

http://www.joda.org/joda-time/index.html
https://jcp.org/en/jsr/detail?id=310
https://maven.apache.org/
https://gradle.org/
https://github.com/JetBrains/intellij-community/tree/master/plugins/java-decompiler/engine
https://www.eclipse.org/jdt/
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Table 3 Statistics of the libraries used by the selected projects with number of libraries (# Lib.), number of
classes (# Classes), number of methods (# Methods), number of public time related method (# PTM), hours
of computation (Time), number of method calls to a Java time API (JC), and number of method calls to a
library time method (LC)

Project # Lib. # Classes # Methods # PTM Time (h) JC LC

ActiveMQ 546 76,142 674,692 154 4.685 1,099 0

Activiti 269 44,231 373,118 158 0.351 156 0

Airavata 168 19,871 182,982 117 0.125 274 0

Alluxio 298 45,254 426,670 179 0.307 338 0

Atmosphere 128 8,525 68,434 53 0.064 56 0

AWS-SDK-Java 161 18,803 173,239 126 0.172 234 0

Beam 782 299,928 2,903,163 29 20.161 123 0

Camel 2,611 612,571 6,540,417 4,474 45.420 585 0

Elastic-Job 145 20,888 205,733 100 0.196 53 0

Flume 522 113,117 1,086,062 414 1.258 293 0

Hadoop 431 66,282 571,628 319 0.624 2,798 0

Hazelcast 223 36,149 291,106 100 0.287 1,055 0

Hbase 429 80,956 765,446 188 5.316 1,642 0

Jetty 562 60,443 547,066 42 3.799 527 0

Kafka 37 7,401 68,511 34 0.139 417 0

Lens 452 119,486 1,270,709 593 0.972 152 0

NanoHTTPD 118 7,188 54,121 41 0.054 7 0

Neo4j 292 52,602 470,541 236 0.374 850 0

Sling 1,091 165,453 1,469,600 1,080 1.789 902 0

Twitter4j 92 15,293 186,570 105 0.126 66 0

Total 9,357 1,870,583 18,329,808 8,542 86.218 11,627 0

all 0, meaning that none of the 20 projects calls a method contained by a library that has
been marked as time method by our semantics. This result clearly supports our conjecture
and answers our research question RQ3: developers do not depend on methods in libraries
to implement time-related functionality. They rely only on the Java time APIs.

5.5 RQ4 - Are the ExtractedModels Adequate to Detect Real Errors in Open Source
Projects?

In addition to the quantitative evaluation, we also performed an initial assessment of the
effectiveness of our approach to detect time related bugs. For this, we manually investigated
the Jira issue tracker of the Apache Software Foundation seeking for bugs that involve time.

We searched for the keyword timeout and applied filters to return bugs only for Java
projects reported between January 1st, 2016 and January 1st, 2018. We manually filtered the
results removing the bug reports that were not dealing with timing issues in the source code.
The filtering was necessary because the majority of the bug reports returned by the query
concern the adjustment of the timeout parameters for the integration test suite. Through this
filtering, we obtained 8 reports, two from Flume, one from HBase, three from Kafka, and
two from Lens. Note, 7 of the 8 bug reports come with an accepted patch that is attached to
the report. At the moment of writing, one issue, namely FLUME-3044, was still open with
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Table 4 List of time-related bugs taken from the Apache issue tracker

Issue ID Version Description

FLUME-1401 1.3.0 Asynchbase sink should be configurable to support timeout.

FLUME-3044 1.7.0 There are several method call in
kafka sink with no timeout params,
in some cases, kafka sink will await
forever if no interruption.

HBASE-17341 2.0.0 In ReplicationSource.terminate(), a
Future is obtained from Replica-
tionEndpoint.stop(). Future.get() is
then called, but can potentially
hang there if something went wrong
in the endpoint stop().

KAFKA-3540 0.10.1.0 Close the consumer, waiting indef-
initely for any needed cleanup.
That is not acceptable as it cre-
ates an artificial deadlock which
directly affects systems that rely
on Kafka A/I essentially rendering
them unavailable.

KAFKA-4194 0.10.1.0 The loop below doesn’t break when
the timeout is reached, right? It
will still block indefinitely until the
metadata has been refreshed.

KAKFA-4306 0.10.1.0 If brokers are not available and we
try to shut down connect workers,
sink connectors will be stuck in
a loop retrying to commit offsets
forever.

LENS-1032 2.5.0-beta We should provide option to kill the
query upon timeout for users who
are not interested in result beyond
timeout.

LENS-1157 2.6 Execute with timeout fails to
read metadata when user requests
streamed results.

We present id, version affected, and a small summary of the issue description

a proposed patch attached to it. Table 4 presents the list of bugs and their short descriptions
taken from their issue tracker summaries or github review comments.

Based on the bug descriptions, we divided the issues into two different types of errors:

– No Time-Bound: The method contains a loop that misses a time condition that sets
a limit for its maximal execution time. The issues FLUME-3044, KAFKA-3540,
KAFKA-4194, LENS-1032, and LENS-1157 belong to this category.

– Indefinite Wait: The method performs a call to an EW method, presented in
Section 2.2, that potentially blocks the execution of a thread forever. The issues
FLUME-1401, HBASE-17341, and KAFKA-4306 belong to this category.

We applied our approach to both, the original and patched versions of the code, and
we ran our prototype tool to extract the timed automaton for each method that has been
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modified to fix the bug. Then, we used UPPAAL to first formally verify the existence of the
reported bug and then its elimination in the patched version.

For the category NoTime-Bound, we followed the methodology presented in Section 5.2
and created a set of ground truth transitions. For each method affected by this type of error,
each researcher and the developer identified independently the transition that models the exit
of the loop statement that causes the error. Then, we verified that the ground truth transition
in the extracted automaton contains a time constraint that enforces a maximal execution
time.

Concerning the category Indefinite Wait, we used UPPAAL to verify that each automa-
ton can always terminate by executing the formula A <> si where si is the state that
identifies an ending state in the CFG of the method. The formula checks whether the state
si can be eventually reached from the starting state. Our findings confirm the presence of
all issues and furthermore the correctness of the proposed patches.

5.6 RQ5 - HowMuch Time andMemory is Required by Our Approach to Extract
the Timed Automata?

In this research question, we want to study how much time does our approach require
to process the full source code of a project and how much time and memory it requires to
extract the automaton for a single time method.

From a theoretical standpoint, the algorithm presented in Section 3 performs a greedy
iteration over the statements of a method. The only exception is for statements that repre-
sent branching instructions, for which the algorithm iterates over the body of the branching
instruction until a fix point is reached. Thus, the worst case scenario for this algorithm is a
method in which every statement is a nested branching instruction. We denote n as the num-
ber of statements of the method and k as the length of the time information extracted, i.e., the
number of elements stored in the environment E. We can conclude that, in the worst case,
the time complexity to extract the time information for a method is O(n!). The algorithm
constructs the output, i.e., list of the time information extracted, directly and no local mem-
ory is needed except for the fix point computation. Here, the algorithm needs to keep a copy
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of the environment computed in the previous iteration. Therefore, the space complexity to
extract the time information from a method is O(k).

The algorithm to construct a timed automaton presented in Section 4 is divided into three
different phases:

1. Construct an initial timed automaton.
2. Refine the automaton with time constraints.
3. Finalize the automaton with the runtime data.

In the first phase, the creation of the initial automaton is a one to one copy of the
CFG representation into the UPPAAL automaton representation. Therefore, the creation
of the automaton can be performed linearly in accordance with the size of the CFG.
CFGs are a sparse type of graph since only maximum two transitions can depart from a
node. We can conclude that the size of these graphs is bounded by O(n). This yields a
time complexity of O(n) and a space complexity of O(1) for building the initial timed
automaton.

We present the pseudo code of the second phase in Algorithm 1. The refine(A, T ) func-
tion takes as input the automaton A created in the previous phase and the extracted time
information T . The function attaches to every state of the automaton A its time constraint,
if it exists. The retrieval of the time information for each state is performed at line 3. This is
achieved with a linear search on the list, yielding a time complexity of O(k). Then, for each
time information of the state, the algorithm checks the type of time information and builds
the correct time constraint for it, as presented in Section 4.2. Every statement between lines
6 and 11 is executed in O(1). In particular, if the time information t is needed to generate
the Time Expired constraint, we save it in the set C. Once all the time information for the
Time Expired constraint are collected, they are processed by the function in line 12. The
function addT EConstraint adds the Time Expired constrains for the state s to the automa-
ton A. This is performed linearly in the size of C. Since each time information belongs to
only one state, we can conclude that the worst case scenario is when all the time constraints
are of type Time Expired. Thus, the time complexity for the function refine(A, T ) is the
following:

For what it concerns the space complexity, the worst case scenario is when C contains all
the time information for every state, i.e., |C| = |Ts | = O(k).

The last phase consists of replacing missing information with the data collected through
the runtime monitoring. This is performed with a greedy pass over the automaton tran-
sitions. Depending on the type of the expression in the transition, a different strategy
is used, as presented in Section 4.3. Both Time Variables and RT Method calls are per-
formed with a space and time complexity of O(1). The last category of expression,
non-local time variables and unresolved method calls, requires to process the list of
time information recorded with the runtime monitoring. This step requires a scan of
the list to identify those values that belong to the current considered transition. The
worst case scenario is when every single time information extracted needs to be mon-
itored at runtime, yielding a time complexity of O(nk) and a space complexity of
O(k).
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In summary, the time and space complexity to extract a timed automaton from a method
with n statements and k time information are

From the theoretical study of the space and time complexity, the time and memory
required by our approach to produce a timed automaton heavily depends on the size and
complexity of the source code implementing a method. Therefore, to empirically study
the space and time complexity we consider the following three code metrics: (i) number of
statements, (ii) McCabe cyclomatic complexity (CC), and (iii) number of variables used in
the method. The number of statements indicates the size of a method. The cyclomatic com-
plexity is a measure of the number of linearly independent paths through a program. We
included it because the implementation of our approach iterates over branching instructions.
Finally, we selected the number of variables as metric because our implementation keeps
track of all variables in the environment and adds a special flag to the time related ones.
Furthermore, when our implementation analyzes a branching statement, it creates a copy
of the environment which is a time and memory consuming operation. We have computed
these metrics based on the abstract syntax tree representation of the source code and they
are available in our prototype tool.

Table 5 shows the minimum, median, and maximum values for the three code met-
rics measured for the 11,772 time methods per project. Statistics on the overall size of the
projects are presented in Table 2. Over all projects, the time methods have a median size of
14 statements and a maximum size of 520 statements. The median cyclomatic complexity
is 3 and the maximum complexity is 113. The longest and most complex time method is
found in the Jetty project. The time method using the highest number of variables is found
in the Camel project. Overall, the number of variables ranges from 1 to 316 with a median
value of 19 variables used per method.

We have performed our experiment to measure the time and memory consumption of our
approach on a MacBook Pro with a 2.5GHz Intel i7 CPU, 16GB of main memory, running
macOS 10.13.6.

The two columns on the left hand-side of Table 6 with the heading Full Project show the
total time to process all methods of each project. Since our approach consists of two phases,
we first computed the time required (using Eclipse JDT) to parse the source code into an
Abstract Syntax Tree. Depending on the project size, our approach required from 3 seconds
for parsing the source code of NanoHTTPD to more than 5.73 hours for parsing the source
code of AWS-SKD-Java. Not surprisingly, the projects with the highest number of methods
(see Table 2) also took the longest time to parse. For most of the projects, namely 16, the
parsing took less than 13 minutes.

Regarding the second phase, the extraction of the timed automata, the results are pre-
sented in the column TA. For 16 projects, our approach extracted the timed automata in less
than 17 minutes. Also for this phase NanoHTTPD took the least amount of time, namely 10
seconds, while AWS-SKD-Java took 1.9 hours.

Furthermore, since our approach computes the time constraints for only time methods,
we also computed the time and memory used to produce the timed automata for these
methods. We report the minimum, median, and maximum amount of time and memory per
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Table 5 Minimum, median, and maximum values of the source code metrics computed for the 11, 772 time
methods of the 20 open source Java projects with number of statements (# Statements), McCabe Cyclomatic
Complexity (CC), and number of variables (# Variables)

# Statements CC # Variables

Project Min Median Max Min Median Max Min Median Max

ActiveMQ 1 19 182 1 3 61 1 18 136

Activiti 1 17 282 1 4.5 86 2 13.5 72

Airavata 1 19.5 390 1 6 46 4 19 73

Alluxio 1 8 111 1 2 46 1 19 62

Atmosphere 1 17 60 1 3 19 8 18.5 67

AWS-SDK-Java 1 9 90 1 2 15 2 11 57

Beam 1 13 61 1 4 21 2 22.5 57

Camel 1 11 113 1 2 43 1 11 316

Elastic-Job 3 6 26 1 3 6 5 10 22

Flume 1 19 108 1 3 58 5 20 109

Hadoop 1 16 437 1 3 81 2 23 131

Hazelcast 1 10 58 1 2 18 1 16 294

Hbase 1 18 192 1 4 81 2 26 220

Jetty 1 19 520 1 2 113 4 18 103

Kafka 1 12 110 1 3 42 1 26.5 312

Lens 1 16 105 1 3 27 5 18 96

NanoHTTPD 1 8 57 1 1 18 5 8 41

Neo4j 1 9 77 1 2 24 2 14 102

Sling 1 14 162 1 3 47 2 17.5 74

Twitter4j 1 9.5 109 1 2 42 5 16 65

Overall 1 14 520 1 3 113 1 19 316

project in the columns on the right hand side of Table 6. In addition, we also show the
distributions of the time and memory consumption with violin plots in Fig. 5.

Note, these results comprise both, the parsing and the extraction of the timed automaton
for a given time method. Looking at the table and the violin plots, we can see that the time
required to process a method varies from 98ms to 2857ms with a median value of 192ms
using between 3 and 89MB of memory with a median value of 9.5MB. With respect to the
median time, the time methods in the Hadoop project took the longest to process, namely
233ms, while the time methods in the Elastic-Job project took the least amount of time,
namely 115ms. The maximum amount of time to process a time method was in the Hadoop
project, namely 2857ms. The violin plot for Time in Fig. 5 shows that for 93.25% of the
time methods, our tool required less than 381ms.

With respect to the median memory consumption, the processing of the time methods
in Airavata consumed the highest amount of memory, namely 12MB. Instead, the time
methods in Hadoop required the minimum but also the maximum amount of memory with
3MB and 89MB, respectively. Looking at the memory violin plot in Fig. 5, 95.37% of time
methods required less than 18MB of memory to be processed by our prototype tool.

In addition to the distribution of time and memory, we also investigated the correlation
between the three code metrics and time and memory consumption. Since none of our five
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Table 6 Time required to parse (Parsing) and extracting the timed automata (TA), along with the minimum,
median, and maximum amount of Time and Memory required by our prototype tool to generate a timed
automaton

Full project (s) Time (ms) Memory (KB)

Project Parsing TA Min Median Max Min Median Max

ActiveMQ 158 381 133 229 816 6,715 9,066 54,540

Activiti 434 962 106 139 319 6,518 7,085 54,170

Airavata 645 687 112 211 447 5,422 12,090 31,720

Alluxio 154 291 122 171 401 6,035 8,523 40,070

Atmosphere 23 81 136 182 392 7,225 9,056 22,910

AWS-SDK-Java 20,635 6,846 107 151 352 5,353 7,125 28,540

Beam 165 207 116 166 345 6,967 7,760 18,410

Camel 4,071 1,918 105 145 471 3,791 10,160 31,350

Elastic-Job 16 37 107 115 147 7,223 7,657 10,160

Flume 36 79 125 211 376 7,306 9,300 18,920

Hadoop 1,379 1,657 113 233 2,857 3,041 10,220 89,060

Hazelcast 524 1,068 102 185 442 5,231 9,740 26,030

Hbase 1,394 924 114 212 808 5,122 9,359 51,850

Jetty 228 423 111 185 466 6,869 10,110 32,160

Kafka 90 328 107 176 336 6,339 10,020 34,510

Lens 56 193 106 165 503 6,707 9,876 31,280

NanoHTTPD 3 10 112 123 247 7,567 7,763 25,110

Neo4j 589 981 98 144 453 5,393 7,264 34,010

Sling 751 762 109 157 1,410 5,975 8,749 28,370

Twitter4j 24 91 121 170 302 7,389 9,233 15,190

Overall 31,374 17,926 98 192 2,857 3,041 9,549 89,060

metrics have a normal distribution, we used the Spearman’s rank method to compute the
correlation. A Spearman ρ value of +1 and -1 indicates high positive or high negative cor-
relation, whereas 0 indicates that the variables under analysis do not correlate at all. Values
greater than +0.3 and lower than -0.3 indicate a moderate correlation; values greater than
+0.5 and lower than -0.5 are considered to be large/strong correlations (Hopkins 2014).

The strongest correlation is shown between the cyclomatic complexity and the time,
with a ρ of 0.54. This means an increase in the complexity of a method most likely leads
to an increase in the time needed to extract the timed automaton for that method. Instead,
the cyclomatic complexity shows only a weak correlation with the memory consumption,
namely 0.26. The number of variables moderately correlates with both, time and memory,
with a Spearman’s ρ of 0.48. Finally, also the number of statements moderately correlates
with the time and the memory consumption with a ρ of 0.38 and 0.36, respectively. All the
correlation coefficients are significant with a p-value lower than 0.01.

We can conclude that our approach can extract the timed automata for the majority of
projects in less than half an hour. Furthermore, if a developer narrows down the scope to
a specific method, our approach performs the extraction in less than 381ms using roughly
18MB of memory in 95% of the cases. The cyclomatic complexity of the method impacts
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Fig. 5 Violin plots with the distribution and the quartiles of time and memory consumption

the processing time the most, followed by the number of variables. The latter is also the
factor that most likely impacts the memory consumption.

6 Discussion

This section discusses the results and their implications on research and practice. Further-
more, we discuss the limitations of our current approach and the potential threats to validity
of our empirical findings.

6.1 Summary of Results

In Section 3, we proposed a time semantics for Java that we used to develop an approach to
automatically extract timed automata from the source code of a Java method. We presented
this approach in Section 4 and its evaluation in Section 5.

A key property of an automated approach is that it should be sound and complete. We
investigated this property with our research questions RQ1, RQ2, and RQ3. The results of
research question RQ1 show a precision and recall for our time semantics of 100%.

The results of research question RQ2 show that, for 95% of the time methods, our
approach could extract timed automata that model the entire time behavior of those meth-
ods. Only for 5% of the methods a dynamic analysis step was needed to add the missing time
information that could not be extracted or modeled through our static analysis approach.
But, also this step is automated by our approach and does not need any human interven-
tion. The shortcoming, however, is that the created instances of the timed automata for these
methods do not cover all possible values for the time variables used in a method but only
the values created through running the test cases. Consequently, while only affecting 5% of
the methods, our translation from Java source code to UPPAAL is not complete.
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Fig. 6 Sketch of the proof of soundness of our translation from Java source code to UPPAAL

Concerning the soundness, RQ1 shows a perfect precision and recall that supports a
sound translation. The diagram in Fig. 6 presents a sketch of the proof of soundness of our
translation. In fact, the formal proof assures that any time-transition (j to j ′) of a given Java
program has the equivalent time semantics applied by UPPAAL in processing the transition
from the respective state u to state u′. In other words, we assure that our UPPAAL correctly
simulates any valid transition of its Java counterpart w.r.t. time. In principle, the proof of
soundness is a structural induction proof based on the Java statement that involve time,
whose further details are beyond the scope of this paper.

The results of research question RQ3 clearly show that developers exclusively use the
Java 8 time APIs to implement time-related functionality. They do not use methods provided
in third party libraries that are not covered by our time semantics.

Summing up the results of RQ1, RQ2, and RQ3, we view our approach to be sound and
complete, at least with respect to our time semantics for the version 8 (and later versions)
of the Java time APIs.

The results of research question RQ4 show that our extracted timed automata can be
effectively used to detect time related errors and to confirm the correctness of the proposed
patches. Finally, from the results of research question RQ5 we can conclude that the runtime
complexity of our approach scales with the size and complexity of the project, requiring 30
minutes to process most of the projects.

6.2 Implications of Results

Concerning the implications on the research in this area, our approach improves existing
approaches that model time as a sequence of events represented in a tree-like structure, such
as presented by Walkinshaw and Bogdanov (2008). These approaches fail to model time
aspects of a program, such as timing delays. Furthermore, our approach does not require
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developers to manually craft a timed automaton to formally verify the time behavior of a
method, such as presented by Jayaraman et al. (2015). This prevents the introduction of
human errors.

The formal definition of a semantics for the time domain can be used by other formal
verification tools, such as Java Path Finder (Havelund and Pressburger 2000), to verify a
richer spectrum of properties, such as concurrency defects like deadlocks, and unhandled
exceptions like NullPointerExceptions and AssertionErrors. In addition, our
semantics can be used to investigate techniques that can help developers to find time related
problems in early phases of the development. We recently presented an approach (Liva et al.
2018) that uses our time semantics encoded in the Z3 SMT solver (Deharbe et al. 2011;
Barrett et al. 2010) to identify values for time variables that cause a program to fail.

Our results also have several implications on practitioners. Software developers and
testers can use our approach to automatically extract timed automata to verify the imple-
mentation of time-related functionality in Java programs. Developers can specify time
properties that must hold during the development of the system and through that discover
errors in the implementation of time-related functionality of modified Java methods. Cur-
rently, our implementation does not exploit multi-processors capabilities and the total time
to process a project can be further reduced parallelizing the analysis. However, on our lap-
top machine the process of a project required half an hour with low memory footprint.
Therefore, developers could integrate our approach into the pipeline of their continuous
integration systems to analyze each new version of a program committed to the source code
repository.

Furthermore, the extracted timed automata can be used during code reviews to help the
reviewers analyze the correctness of the implementation. For instance, reviewers can run
queries with the UPPAAL model checker to verify that the implementation satisfies the
specification.

6.3 Limitations

In our manual analysis of the Java 8 APIs presented in Section 2.2, we discovered four dif-
ferent categories of time methods. Currently, we do not provide any abstraction that can
model methods of the category ST where a method call has a time behavior if and only
if a timeout is set by a preceding method call. For instance, the connection method
of the URLConnection class by default has no upper time limit for establishing the
connection. Instead, a timeout can be set by calling the setConnectTimeout method
before calling the connection method. We plan to address this limitation in our future
work.

While we consider EW methods of the Java 8 time APIs, we do not gather the project’s
EW methods. Although they are time related methods, they do not reference any time vari-
able and currently, we do not provide any rule that infers them from the statical analysis
of the source code. Future work will be devoted to infer this kind of time related methods
through abstract interpretation or dynamic analysis to discover patterns that identify meth-
ods which can possibly block the execution of a program forever. Furthermore, we model
EW method calls with a self-loop without considering its synchronization with external
events. This limitation could be overcome by considering a network of timed automata. Due
to the inheritance and polymorphism offered by Java, multiple automata can send a mes-
sage to the EW state. Considering all possibilities is not a valid option since it may not
be representative of the implementation. We plan to address this limitation complementing
our current approach with a dynamic analysis that monitors the program and identifies the
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sender and receiver instructions. Then, we could simulate this behavior in the network of
timed automata forcing the corresponding states to communicate via channels.

Currently, our approach requires a developer to manually specify which property must
hold in the extracted automata. Once she/he has defined them, our approach can automat-
ically verify those. We plan to address this limitation in our future work by automatically
inferring the properties to verify from the test suite of a project.

6.4 Threats to Validity

In the following, we discuss threats to the internal and external validity of our evaluation,
and how we addressed them in our experiments.

Internal Validity One threat to internal validity concerns the reliability of our prototype
implementation. We mitigated this threat by testing the prototype tool manually and with
unit tests. For each analysis in RQ1 and RQ2, we randomly selected 400 methods that
were used to evaluate our approach. The size of our sample set is larger than the minimum
number (372) required to obtain results at a 95% confidence level with a 5% margin of error.
Moreover, we showed the applicability of our approach on 8 bugs taken from Apache open
source projects (RQ4). Our approach confirmed the existence of the bugs and also validated
the correctness of the proposed patches.

Another threat concerns the possibility that our approach might miss to model the behav-
ior stemming from time methods that are provided or wrapped by third party libraries. With
the research question RQ3 we evaluated the impact of this threat. We set up an empiri-
cal study with 20 open source Java projects where we investigated the number of public
methods of the projects’ libraries that implement time-related functionality and are called
by methods in the 20 Java projects. The results of our study show that only 0.047% of the
methods in the libraries export time functionalities. Moreover, none of them is used in the
source code of the 20 projects. We therefore can conclude that developers do not depend on
methods in libraries to implement time-related functionality but they rely only on the Java
time APIs that our approach extracts with 100% precision and recall.

The manual analysis to create the ground truth for answering RQ1 and RQ4 poses another
threat to internal validity. We mitigated it by asking also an independent developer to per-
form the manual analysis. Each discrepancy then has been discussed with all participants
until a consensus was reached.

Java does not permit to directly allocate or free memory. This could introduce a threat to
the validity of the results of RQ5. We mitigated this threat by calling the Garbage Collector
(GC) before applying our approach to remove the extra memory allocated by the JVM.
Since the call to the GC is async, we poll the method call until it is eventually invoked by
the JVM. We have used the APIs offered by the ManagementFactory class to monitor
when the release of the spurious memory is indeed executed.

External Validity Threats to external validity concern the generalization of the results to
other software projects. We mitigated this threat by choosing 20 open source Java projects
that differ in size and domains to improve the generalization of our results. We also imple-
mented our approach in a prototype tool that is publicly available online and can be applied
to other Java projects to extend our studies. Furthermore, our formal time semantics can be
adapted to other programming languages, such as C#, that use a semantics of time simil ar
to Java.
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Furthermore, in RQ2 we relied on Daikon to extract invariants that identify pure methods
w.r.t. time. We configured Daikon to monitor the execution of the tests provided with the
projects. Its results heavily depend on the characteristics of the test suite and, therefore, they
might not be representative for every possible input value of the tested methods. However,
tests cover how a specific piece of code should be executed and the results extracted by
Daikon can be considered representative use cases for the method under analysis. Further
studies are required to additionally verify this generalization, complementing Daikon with
static approaches and with automatic unit test generators, e.g., Randoop (Pacheco and Ernst
2005), to execute the method with additional input.

7 RelatedWork

One of the main contributions of this paper is our time semantics that we have used to
determine which Java statements are time related. In the domain of semantics for the Java
programming language, Bogdanas and Roşu (2015) present a formal semantics for Java
version 1.4 based on their K-Framework (Roşu and Serbȧnutȧ 2010). They formalize the
language syntax and how the Java Virtual Machine (JVM) interprets the bytecode. Similarly,
the Real-Time for Java Expert Group (Bollella and Gosling 2000) provide a specification,
called RTSJ, that enforces a specific semantics for the Java Virtual Machine and introduces
a new set of APIs. They specify how the JVM should interpret specific classes to enable
the creation, verification, analysis, execution, and management of Java threads for real time
programs. However, their focus is on the scheduling of threads for reaching a real-time
execution and not on verifying the time-related functionality implemented in a program.

The second contribution of this paper is an approach to extract timed automata from
source code. There are existing works that translate source code to timed automata. Cicirelli
et al. (2013) present a library for UPPAAL that is able to reproduce the semantics of major
Java concurrent and synchronization mechanisms.

Yang et al. (2016) present a tool that translates Simulink Stateflow models into
UPPAAL timed automata for verification. With the verification power of UPPAAL, their
approach manages to find design defects that were missed by the Simulink Design Ver-
ifier. Timed automata are also used as basic design specification to verify properties in
a program. The approach presented by Jayaraman et al. (2015) takes as input a net-
work of timed automata provided by developers. The network is used as base knowledge
of the specific real-time system. They monitor the execution of a program verifying
that its behavior conforms to the network of timed automata provided. In an analogous
way, Hakimipour et al. (2010) propose a technique to automatically generate a program
from timed automata. They use a timed automaton to produce an RTSJ program that
is executable on single- and multi-processor platforms. Georgiou et al. (2013) present a
technique to translate timed input/output automata into distributed executable Java pro-
grams. These approaches require developers to manually construct such time models which
could introduce errors. Furthermore, these approaches do not guarantee that the mod-
els are an exact representation of the implementation. Our approach, on the contrary,
automatically extracts models from the implementation that are directly amenable to the
verification.

In the domain of verifying properties of source code, NASA developed Java Path Finder
(Havelund and Pressburger 2000), a framework for verification and debugging of Java pro-
grams. The tool is used to verify properties of Java programs with a focus on race conditions.
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It converts the bytecode of a program into the Promela model checking language. Simi-
larly, Henzinger et al. (2002), present a framework for verifying properties of C programs
for the mutex API. Hatcliff and Dwyer (2001) automatically extracts a state machine from
Java source code amenable to verification. In all the previous approaches, the models repre-
sent the control and data flow of a program without taking into account the specifics of the
domain of time. The work of Walkinshaw and Bogdanov (2008) describes an extension of
an existing state machine inference technique in which it accounts for temporal properties
of the subjected system. However, it does not consider time explicitly but only represents it
as a sequence of events as they happened in the execution of a program. On the contrary, our
approach considers the specific time semantics of the programming language that models
more time properties, such as timing delays.

8 Conclusions

In this paper, we presented an approach to automatically extract timed automata from the
source code of a Java program. We first introduced a definition of the semantics for time in
the Java programming language. The time semantics is then used by our approach to extract
the timed automata.

Our approach first identifies Java statements related to time, second, it infers time
constraints, and lastly, it uses this information to create the timed automata.

We have implemented our approach in a prototype tool that was used to answer five
research questions. First, we empirically studied the soundness and completeness of our
time semantics manually analyzing 400 Java methods randomly selected from 20 open
source Java projects. The results of the manual evaluation show that our time semantics can
detect time statements and time variables with 100% precision and recall (see Section 5.2).

In the second research question we studied the ratio of methods for which our approach
could extract a timed automaton that entirely models the time behavior. The results show
that this worked for 95% of the methods. For the remaining 5% of methods our approach
performed an additional dynamic analysis step to create an instance of the timed automaton
for each test case that then can be used for verification (see Section 5.3).

With the third research question we found that our time semantics is adequate to describe
all the time APIs that are used by developers and it does not need to consider time methods
defined in external libraries (see Section 5.4).

Furthermore, with the fourth research question, we presented 8 examples of real bug
reports of four Apache projects. We used our approach to verify the existence of the bugs as
well as the correctness of their patches (see Section 5.5). With the last research questions,
we showed that the median time for extracting a timed automaton is 0.192 seconds and the
total time to process most of the projects is 30 minutes (see Section 5.6).

Our results benefit researchers and practitioners. In addition to automating the extraction
of timed automata, our time semantics can be used by other formal verification tools to ver-
ify a richer spectrum of properties. Furthermore, developers can benefit from our research,
for instance by integrating our approach into their continuous integration system to verify
that the time specification is correctly implemented.

Future work will be dedicated to improve our approach to provide a model also for
methods of the category ST. Moreover, we plan to extend our prototype tool to support
annotations that allow developers to manually mark the time category of their methods.
Currently, developers have to encode their requirements in UPPAAL. Future work will be
devoted to remove this manual step and infer them automatically from the test suite of their
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projects. Furthermore, we plan to extend our approach to other programming languages,
such as C#. And finally, we will extend our studies to cover a larger set of open source
projects and also industrial projects. Concerning industrial projects, we also plan to evaluate
the usefulness of our approach with software developers and testers, and apply our approach
to real-time systems.
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