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1 Abstract

Human activities and agricultural practices are having huge impacts on the development

of fishery and land resources through different ways. In order to model such systems

that involve harvesting, an impulsive model of natural resources with a stochastic noise

perturbation element is formulated to study the relationship between (a) the maximal

expectation of biomass after harvesting or fishing events and (b) the minimal expectation

of pest biomass and the number of times pesticide is applied. Using a detailed analytical

treatment, time estimation and numerical demonstrations, we establish that the proposed

mechanism is capable of maximizing fish populations at the end of a fishing season and

minimizing pest numbers after a crop harvesting season once the intensity of the noise is

relative small. Investigations of the effects of different parameters reveal that theoretical

predictions from the new stochastic model accord with those from the deterministic case

2 Recommendations for Resource Managers

• Various measures can be implemented to manage natural resources, such as adjusting

fishing quantity and intensity to maximize fish population.

• In the natural environment, population growth is inevitably affected by the environ-

ment noise. So it is important to understand noise effect to maintain sustainability

of resources.

• Investigated methods are useful to converse resources and can be widely applied to

control pests.

Keywords: Pulse perturbation; Stochastic logistic equation; Optimal threshold density;

Fishing time; Maximal biomass expectation.
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1 Introduction

Sustainable exploitation of renewable resources and pest management have become im-

portant topics in theoretical biology (Clark, 1976; Szuwalski et al., 2016; Punt and Hilborn,

1997; Anderson, 2004). Many mathematical models have been established to investigate

how to keep a balance between economic development and protection of renewable re-

sources. The use of impulsive differential equations makes it possible to characterise the

dynamic behaviour of both exploited fish populations and pest populations subject to con-

trol measures (Xiao et al., 2006; Zhang et al., 2003; Tang and Chen, 2004; Nundloll et al.,

2010; Terry and Gourley, 2010). In reality, however, the existence of noise is inevitable and

the introduction of environmental noise into models has attracted much interest (Bandy-

opadhyay et al., 2008; Liu and Mao, 1998; Schaffer et al., 1986; Hassani et al., 2010; Cao

and Tang, 2016; Arnold et al., 1979; Castro-santis et al., 2016; Kloeden and Pearson, 1992;

Wang et al., 2017; Cai et al., 2017). The crucial feature of the introduction of noise is

to accurately reflect environmental effects and describe the internal cycles of the growth

and decay of populations. An understanding and analysis of the dynamic relationships in-

volved is required to develop suitable management methods to utilize renewable resources

optimally.

Here we explore a feasible method to maximize stochastically fluctuating natural re-

sources such as fish or pest populations. Although a fish population under exploitation

by a fishery could be influenced by many factors, man’s action is considered to be the

main controlling agent. An important management objective is to obtain the maximum

average fish population density at the end of a given harvesting season [0, T ]. To do so, we

propose a general control mechanism of stochastically fluctuating fish populations, which

consists of two parts. One is to search for optimal threshold densities of a fish population

for initiating fishing activities, the other is to estimate the time when the fish population

density will attain these thresholds.

Time estimation in a Malthusian case is relatively easy to obtain and has been addressed

in (Castro-santis et al., 2016). However to obtain a suitable estimation of fishing times

in a logistic model with noise requires some more detailed analyses. Our investigations

involve established methods for multi-impulsive harvesting and non-constant harvesting

models. We have also tested our conclusions by numerical simulation, the predictions of

which are in good agreement with numerical experiments.

Our method is a tentative study of fishery resources which can be extended to other

renewable resources such as agricultural systems with pests controlled according to the

principles of integrated pest management (IPM). This pest control strategy has been

discussed for several years, and many researchers have tried to supplement or amend the

IPM concept (Tang et al., 2013; Tang and Cheke, 2008; Tang et al., 2005). Multiple-species

resource management model has been investigated in reference (Zhao et al., 2003), and the

optimal impulse control problems for periodic Gompertz system and theta logistic growth

equation have been addressed in literatures (Dong et al., 2007; Zhao and Tang, 2011). It

has been argued that decisions about pest prevention and control measures should take into

account economic, social and ecological benefits. The purpose of IPM is to minimize the

number of pests by keeping them under a certain economic threshold instead of eradicating
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them, by the combination of multiple protection measures, in particular by chemical and

biological controls. In this investigation we will use our models determine the optimal

time within a planting season of crops that minimizes a pest’s density at the end of the

season.

The paper is organized as follows. We present main results of deterministic model

and derive the stochastic model in section 2. In section 3, a theoretical analysis of solving

optimal thresholds is carried out. At first, a one-pulse impulsive constant harvesting model

is investigated and then this is expanded into a two-pulse impulsive constant harvesting

model, followed by a more general case of a multi-pulse impulsive harvesting system. Then,

an analytical demonstration of the time estimation will be given in section 4 and all of the

theoretical predictions will be verified by numerical simulations. In the final section, the

conclusions are summarized.

2 The model

In fishery resources management, one of the practical issues that researchers and man-

agers care about most is how to maximize fish populations at the end of a harvesting

season. If fish populations live in a constant environment with a limited food supply

and under constant impulsive harvesting, they can be modeled by the following impulsive

differential equation
dN(t)

dt
= rN(t)

(
1− N(t)

K

)
, t 6= τi, i = 1, · · · , n,

N(τ+i ) = N(τi)−Q, t = τi, i = 1, · · · , n,
(1)

where N(t) is the number or density of fish in the population at time t, r represents the

intrinsic rate of increase of the fish population not subject to environmental constraints, K

refers to the environmental carrying capacity, Q is the fixed quota harvested and N(τi) >

Q, τi for i = 1, · · · , n are the time series of when fishing occurs and N(τ+i ), i = 1, · · · , n
represents the number of fish after harvesting at time τi for i = 1, · · · , n.

Given a time, T , representing a season or period during which the control tactics can

be implemented at times τi in a multi-impulsive harvesting model, the problem of how

to obtain maximal fish populations at the end of time T has been studied in (Xue et al.,

2012). We summarize the main results in (Xue et al., 2012) below. The solution of Eq.(1)

on (τi, t] and the optimal harvesting times τMi are given by

N(t) =
N(τ+i )er(t−τi)

1 +N(τ+i )(er(t−τi) − 1)/K
, i = 1, · · · , n,

τMi =
1

r
ln

(
K −N0

N0

(
K +Q

K −Q

)2i−1
)
< T, i = 1, · · · , n,

(2)

where N0 is the initial value of the fish population and τMi is the timing or timings that

give the maximum yield of the fish. Note that model (1) can be also employed to study

the optimal pest control measures (i.e. minimize the pest population) if N(t) represents
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the pest population and Q is the number of killed pests at time τi.

In fact, the problem of solving optimal fishing times to get maximal fish populations

is equivalent to the problem of finding optimal thresholds Ni, which will be reached at τi
for i = 1, · · · , n such that when the fish population increases to Ni, impulsive harvesting

activities are carried out. So we propose a state-dependent feedback control model:dN(t) = rN(t)

(
1− N(t)

K

)
dt, N(t) < Ni, i = 1, · · · , n,

N+
i = Ni −Q, N(t) = Ni, i = 1, · · · , n,

(3)

which allows us to investigate similar questions as those posed for model (1) when we

introduce stochasticity into the growth of the fish population.

Noise impacted models are widely used in almost all disciplines of natural science such

as biology, physics, chemistry, etc. (Sakthivel and Luo, 2009; Caraballo, 1990; Imhof and

Walcher, 2005; Campillo and Lobry, 2012; Campillo et al., 2011) and are of interest here

as we handle a logistic model driven by random noise. We wish to investigate whether

there exist optimal fishing times analogous to those derived from the deterministic version

model (1). We illustrate the effect of additive Gaussian white noise B(t), with zero mean

and the correlation function 〈B(t), B(s)〉 = σδ(t− s), where σ is the variance or intensity

of the noise, and δ(t) is a Dirac function. Then the modified system becomes (Zou et al.,

2013; Lu and Ding, 2014; Liu and Wang, 2012)dN(t) = rN(t)

(
1− N(t)

K

)
dt+ σN(t)dB(t), N(t) < Ni, i = 1, · · · , n,

N+
i = Ni −Q, N(t) = Ni, i = 1, · · · , n.

(4)

Here, it is reasonable to define successive harvest times τi := inf {t > 0 : N(t) = Ni}. The

existence and uniqueness of the solution of Eq.(4) can be similarly discussed according

to the basic methods shown in (Castro-santis et al., 2016; Ji et al., 2007; Mao, 2007).

Moreover, if r > σ2/2 then system (4) is persistent provided that the fixed quota harvested

satisfies Ni > Q and Ni < N(T ) for all i = 1, · · · , n (Castro-santis et al., 2016), and the

latter inequality is equivalent to assuming that τi < T in deterministic case (Xue et al.,

2012).

In this paper, our main aim is to obtain optimal fishing thresholds for fish populations

with noise perturbation and investigate how the frequency of fishing times affects how the

fish populations can be maximized. After investigating optimal thresholds to maximize

the level of biomass, a theory of estimating the time when fish stocks will reach these

optimal thresholds is put forward to gain a deeper understanding of the similarities and

differences between a time-dependent model and a state-dependent model.
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3 Maximal biomass

3.1 Single-pulse constant harvesting in a given interval [0, T ]

During a harvesting season [0, T ], the population size varies as impulsive harvesting is

conducted at different times in the interval [0, T ]. In this subsection, we pay attention to

a less general case. Suppose that the harvesting quota is constant and that fish are only

caught once during [0, T ], the model can then be reduced todN(t) = rN(t)

(
1− N(t)

K

)
dt+ σN(t)dB(t), N(t) < N1,

N+
1 = N1 −Q, N(t) = N1.

(5)

For any initial value N(0) = N0, it is interesting to determine whether there exists

an optimal fishing threshold N1 which will be reached at random time τ1 to get the

largest population or maximal biomass at T in the presence of additive white noise when

N1 < N(T ). The introduction of the random noise will make modeling the growth of the

fish population more complicated. Since it is difficult to obtain explicit solutions of the

stochastic model, we cannot obtain the exact optimal fishing threshold and so we switch

targets to maximize the expectation of the population and the optimal threshold N1 can

be solved in expectation.

Theorem 3.1. Suppose that σ21 , r
(
K +Q− 2

√
KQ

)
/K and 0 6 σ2 < σ21 < 2r, then

the expectation of fish population will reach its maximum in one-pulse harvesting model

(5) when fishing activity is implemented at N1 =
−σ2K +Kr + 3Qr +

√
A1

4r
.

Proof. The solutions of Eq.(5) are piecewise continuous and we study them stepwise. We

first investigate the following initial value problem on the time interval [0, t]:

dN(t) = rN(t)

(
1− N(t)

K

)
dt+ σN(t)dB(t), N(0) = N0 (6)

with t < τ1. Using the Itô formula (Mao, 2007; Mao et al., 2003) for f(x) = ln |x−Q|,
we obtain

(7)
d ln |N(t)−Q| =

rN(t)

(
1− N(t)

K

)
|N(t)−Q|

dt− σ2N(t)2

2(N(t)−Q)2
dt+

σN(t)

|N(t)−Q|
dB(t).

Integrating the above equation from 0 to τ1, yields

(8)ln (N1 −Q) = ln |N0 −Q|+
∫ τ1

0

rN(t)

(
1− N(t)

K

)
|N(t)−Q|

dt

−
∫ τ1

0

σ2N(t)2

2(N(t)−Q)2
dt+

∫ τ1

0

σN(t)

|N(t)−Q|
dB(t).
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By taking expectation, the last term

∫ τ1

0
σN(t)/ |N(t)−Q| dB(t) can be regarded as a

noise term and vanishes to zero because the Gauss property of stochastic integral

E
[∫ τ1

0
σN(t)/ |N(t)−Q| dB(t)

]
∼ N

(
0,

∫ τ1

0
(σN(t)/ |N(t)−Q|)2 dt

)
, (9)

the expectation of this term is zero (Yeh, 1995), i.e. E
[∫ τ1

0
σN(t)/ |N(t)−Q| dB(t)

]
= 0.

Therefore, the expectation of Eq.(8) is

E [ln (N1 −Q)] = ln |N0 −Q|+E

∫ τ1

0

rN(t)

(
1− N(t)

K

)
|N(t)−Q|

dt

−E [∫ τ1

0

σ2N(t)2

2(N(t)−Q)2
dt

]
.

(10)

Then we investigate the equation defined in the time interval (τ1, t], i.e.

dN(t) = rN(t)

(
1− N(t)

K

)
dt+ σN(t)dB(t) (11)

with t ≤ T and initial value is N+
1 . Similarly, we use the Itô formula for g(x) = lnx and

obtain

(12)d lnN(t) = r

(
1− N(t)

K

)
dt− 1

2
σ2dt+ σdB(t).

Taking the integral from τ1 to T , the solution of Eq.(11) yields the expression

(13)lnN(T ) = lnN+
1 +

(
r − 1

2
σ2
)

(T − τ1)−
r

K

∫ T

τ1

N(t) dt+

∫ T

τ1

σdB(t).

We can also ignore the last noise term by taking expectation and obtain

(14)E [lnN(T )] = E
[
lnN+

1 +

(
r − 1

2
σ2
)

(T − τ1)]−
r

K

∫ T

τ1

N(t) dt

]
.

Substituting Eq.(10) into Eq.(14), yields

(15)

E [lnN(T )] = ln |N0 −Q|+ E

∫ τ1

0

rN(t)

(
1− N(t)

K

)
|N(t)−Q|

− σ2N(t)2

2(N(t)−Q)2

 dt

+

(
r − 1

2
σ2
)

(T − E [τ1])− E
[
r

K

∫ T

τ1

N(t) dt

]
.
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In order to use the methods of solving the extreme value to maximize the stock level at

T , we seek the derivative of E [lnN(T )] with respect to τ1,

(16)
dE [lnN(T )]

dτ1
= E

rN1

(
1− N1

K

)
N1 −Q

− σ2N2
1

2(N1 −Q)2

− (r − 1

2
σ2
)

+ E
[ r
K
N+

1

]
.

Note that N1 is given as a predetermined value and its expectation is constant. Thus, it

follows from dE[lnN(T )]
dτ1

= 0 that we can consider the following quadratic equation:

−4rN2
1 +

(
6Qr + 2Kr − 2σ2K

)
N1 + σ2KQ− 2KQr − 2Q2r = 0. (17)

In order for the discriminant A1 , σ4K2 − 2σ2K2r − 2σ2KQr + K2r2 − 2KQr2 +

Q2r2 to be positive, we have either 0 6 σ2 < r
(
K +Q− 2

√
KQ

)
/K , σ21, or σ2 >

r
(
K +Q+ 2

√
KQ

)
/K , σ22. Thus, the two roots of Eq.(17) can be written as

NM
1 =

−σ2K +Kr + 3Qr +
√
A1

4r
,

Nm
1 =

−σ2K +Kr + 3Qr −
√
A1

4r
.

(18)

Note that if NM
1 Nm

1 = (2KQr + 2Q2r − σ2KQ)/4r 6 0, then we have σ2 > (2Kr +

2Qr)/K > σ22. However, it follows from σ2 < 2r and 2r < (2Kr + 2Qr)/K that it is

impossible that Eq.(17) has a positive and a negative root. Therefore, in order to ensure

that Eq.(17) exists two positive roots, we must have
NM

1 Nm
1 =

2KQr + 2Q2r − σ2KQ
4r

> 0,

NM
1 +Nm

1 =
6Qr + 2Kr − 2σ2K

4r
> 0,

(19)

which need σ2 < (Kr + 3Qr)/K. Thus, it follows from σ21 < (Kr + 3Qr)/K < σ22 that

Eq.(17) has two positive roots provided that 0 6 σ2 < σ21 < 2r.

Hence, it is easy to know that the expectation of the population N(T ) will reach its

maximum at

N1 = NM
1 =

−σ2K +Kr + 3Qr +
√
A1

4r
(20)

provided that 0 6 σ2 < σ21 < 2r and NM
1 < N(T ). All these results confirm that we

should perform fishing activity once the fish population reaches thresholds such as NM
1 so

that in the subsequent growth, the expectation of the population will reach its maximum

at time T . Note that the optimal threshold NM
1 could only exist for a relatively small

random perturbation.

To verify the validity of our theoretical calculations obtained in this subsection, we fix

all parameters including r, K, Q and N0. Fig(1)(a) shows comparisons of fishing strategies

between harvesting at the calculated optimal thresholds N1 and at two other arbitrary
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setting values. Each of the trajectories is affected by noise and are simulated 40 times

and then the averages are shown in Fig(1)(a). Trajectories of stochastically fluctuating

fish populations without average are shown in Fig(1)(b) and Fig(1)(c). It is observed

that only if we implement fishing activity at the calculated optimal thresholds N1 can the

expectation of the fish population be maximized at the end of the fishing season.

Remark 3.1. The solution of Eq.(3) for i = 1 can be expressed as

(21 )N(T ) = N0 +

∫ τ1

0
rN(t)

(
1− N(t)

K

)
dt−Q+

∫ T

τ1

rN(t)

(
1− N(t)

K

)
dt.

Taking the derivative of N(T ) with respect to τ1 yields

dN(T )

dτ1
= rN1

(
1− N1

K

)
− rN+

1

(
1− N+

1

K

)
= Qr +

rQ2

K
− 2Qr

K
N1.

(22)

Letting dN(T )/dτ1 = 0 and solving it with respect to N1, we have NM
1 = (K +Q)/2.

On the other hand, it follows from Eq.(2) with i = 1 that the optimal fishing times

τM1 =
1

r
ln

(
K −N0

N0

K +Q

K −Q

)
, (23)

which indicates that

NM
1 =

N0e
rτM1

1 +N0(e
rτM1 − 1)/K

=

(K −N0)
K +Q

K −Q

1 +N0

(
K −N0

N0

K +Q

K −Q
− 1

)
/K

=
K +Q

2
.

(24)

Furthermore, if we let σ = 0 in Eq.(20), the optimal threshold in the deterministic model

can again be obtained which is also (K +Q)/2.

This result provides strong support for our conclusion that the stochastic model is e-

quivalent to the deterministic model as the noise intensity σ = 0, i.e. in the absence of

noise.

Remark 3.2. The derivative of NM
1 with respect to σ yields

dNM
1

dσ
=
−σK

(
−σ2K +Kr +Qr +

√
A1

)
2r
√
A1

. (25)

It follows from σ2 < r
(
K +Q− 2

√
KQ

)
/K that we have

−Kσ2 + rK + rQ > 2r
√
KQ. (26)
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It can be seen that NM
1 is a monotonically decreasing function of σ. Let dNM

1 /dσ = 0,

we have σ = 0 is the maximum point of NM
1 , which indicates that the optimal threshold of

the stochastic model is always smaller than its corresponding deterministic model in the

single-pulse impulsive harvesting model.

Remark 3.3. Note that if 0 6 σ2 < σ21 < 2r and N1 < N(T ), then there exists another

extreme point Nm
1 , at which the expectation of the population will reach its minimum at

time T , and this can be used for pest management. If so, Q represents the number of

pests killed by a single pesticide application at τ1. In particular, if the noise intensity σ

vanishes, then the extreme point Nm
1 is reduced to Q. This indicates that the pesticides

should be applied at the beginning of the season if N0 > Q, while the control measures

should be implemented once the pest population reaches Q provided that N0 < Q (Xue

et al., 2012). In the rest of this paper, we only focus on the fishery resources management

as the pest management problems can be discussed in the same ways.

3.2 Two-pulse constant harvesting in a given interval

In this subsection, we choose the same constant harvest quota Q, for fisheries manage-

ment again, but this time consider catching fish twice during the given interval [0, T ]. In

this case, our primary task is to find the two thresholds N1 < N(T ) and N2 < N(T ),

at which impulsive harvesting should be implemented to maximize the fish population

E [lnN(T )]. As with the model discussed before, the two-pulse impulsive model can be

described as follows:dN(t) = rN(t)

(
1− N(t)

K

)
dt+ σN(t)dB(t), N(t) < Ni, i = 1, 2,

N+
i = Ni −Q, N(t) = Ni, i = 1, 2.

(27)

The solutions of Eq.(27) can be expressed by the Itô formula for three different functions

in different time domains, i.e.f(x) = ln |x− 2Q|, g(x) = ln |x−Q| and h(x) = ln (x), i.e.

we have

ln |N1 − 2Q| = ln |N0 − 2Q|+
∫ τ1

0

rN(t)

(
1− N(t)

K

)
|N(t)− 2Q|

dt

−
∫ τ1

0

σ2N(t)2

2(N(t)− 2Q)2
dt+

∫ τ1

0

σN(t)

|N(t)− 2Q|
dB(t),

ln (N2 −Q) = ln
∣∣N+

1 −Q
∣∣+

∫ τ2

τ1

rN(t)

(
1− N(t)

K

)
|N(t)−Q|

dt

−
∫ τ2

τ1

σ2N(t)2

2(N(t)−Q)2
dt+

∫ τ2

τ1

σN(t)

|N(t)−Q|
dB(t),

lnN(T ) = lnN+
2 +

(
r − 1

2
σ2
)

(T − τ2)−
r

K

∫ T

τ2

N(t) dt+

∫ T

τ2

σ dB(t),

(28)
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where N1 6= 2Q, ln
∣∣N+

1 −Q
∣∣ = ln |N1 − 2Q| and lnN+

2 = ln (N2 −Q).

Substituting the first two equations into the third one, we have the expressions of

lnN(T ). After taking expectations of lnN(T ) and ignoring the noise term, the objective

function can be written as

(29)

E [lnN(T )] = ln |N0 − 2Q|+ E

∫ τ1

0

rN(t)

(
1− N(t)

K

)
|N(t)− 2Q|

dt

−
∫ τ1

0

σ2N(t)2

2(N(t)− 2Q)2
dt

+ E

∫ τ2

τ1

rN(t)

(
1− N(t)

K

)
|N(t)−Q|

dt

−
∫ τ2

τ1

σ2N(t)2

2(N(t)−Q)2
dt

+

(
r− 1

2
σ2
)

(T −E [τ2])−E
[
r

K

∫ T

τ2

N(t) dt

]
.

The first derivatives of E [lnN(T )] with respect to τ1 and τ2 are

∂E [lnN(T )]

∂τ1
= E

rN1

(
1− N1

K

)
|N1 − 2Q|

− σ2N2
1

2(N1 − 2Q)2



− E


rN+

1

(
1− N+

1

K

)
∣∣N+

1 −Q
∣∣ − σ2(N+

1 )2

2
(
N+

1 −Q
)2
 ,

∂E [lnN(T )]

∂τ2
= E

rN2

(
1− N2

K

)
N2 −Q

− σ2N2
2

2(N2 −Q)2


− E

[(
r − 1

2
σ2
)
− r

K
N+

2

]
.

(30)

Letting ∂E [lnN(T )] /∂τ1 = 0 and ∂E [lnN(T )] /∂τ2 = 0, by employing the methods

shown in the above we consider the following two cases. If N1 > 2Q, then it follows from

∂E [lnN(T )] /∂τ1 = 0 that we obtain

−4rN2
1 +

(
10Qr + 2Kr − 2σ2K

)
N1 + σ2KQ− 4KQr − 4Q2r = 0. (31)

Denote its discriminant B1 , σ4K2−2σ2K2r−6σ2KQr+K2r2−6KQr2+9Q2r2, and we

conclude that if 0 6 σ2 < r
(
K + 3Q− 2

√
3KQ

)
/K < 2r, then Eq.(31) has two positive

roots, denoted by NM
1 and Nm

1 . In combination with the equation ∂E [lnN(T )] /∂τ2 =

0 whose roots can be written as NM
2 and Nm

2 , we obtain a pair of points (NM
1 , NM

2 )
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maximized by the expectation of N(T ), i.e. we have
N1 = NM

1 =
−σ2K +Kr + 5Qr +

√
B1

4r
,

N2 = NM
2 =

−σ2K +Kr + 3Qr +
√
A1

4r

(32)

for 0 6 σ2 < r
(
K + 3Q− 2

√
3KQ

)
/K < 2r.

Meanwhile, a pair of points (Nm
1 , N

m
2 ) minimized by the expectation of N(T ) is given

as follows: 
N1 = Nm

1 =
−σ2K +Kr + 5Qr −

√
B1

4r
,

N2 = Nm
2 =

−σ2K +Kr + 3Qr −
√
A1

4r

(33)

for 0 6 σ2 < r
(
K + 3Q− 2

√
3KQ

)
/K < 2r.

If N1 < 2Q, we denote B′1 , σ4K2 + 2σ2K2r + 6σ2KQr +K2r2 − 6KQr2 + 9Q2r2. A

pair of points (NM
1 , NM

2 ) maximized by the expectation of N(T ) is given as follows:
N1 = NM

1 =
σ2K +Kr + 5Qr −

√
B′1

4r
,

N2 = NM
2 =

−σ2K +Kr + 3Qr +
√
A1

4r

(34)

for 0 6 σ2 < r
(
K +Q− 2

√
KQ

)
/K < 2r, and a pair of points (Nm

1 , N
m
2 ) minimized by

the expectation of N(T ) is given as follows:
N1 = Nm

1 =
σ2K +Kr + 5Qr +

√
B′1

4r
,

N2 = Nm
2 =

−σ2K +Kr + 3Qr −
√
A1

4r

(35)

for 0 6 σ2 < r
(
K +Q− 2

√
KQ

)
/K < 2r.

For further verification in this subsection, as depicted in Fig(2)(a) we present the average

of stochastically fluctuating fish populations when impulsive harvesting is carried out if

the fish population reaches NM
1 and NM

2 in the two-pulse model for N1 < 2Q. The other

trajectories of the fish populations are of the control group when impulsive harvesting takes

place at (N ′1, N
′
2) and (N ′′1 , N

′′
2 ). Trajectories of stochastically fluctuating fish populations

without average are shown in Fig(2)(b) and Fig(2)(c). It is observed that only if we

implement fishing activity at the calculated optimal thresholds NM
1 and NM

2 can the

expectation of the fish population be maximized at the end of the fishing season.

Remark 3.4. In the deterministic model, if we let i = 2 in Eq.(2), then the optimal fishing

times are given as 
τM1 =

1

r
ln

(
K −N0

N0

K +Q

K −Q

)
,

τM2 =
1

r
ln

(
K −N0

N0

(
K +Q

K −Q

)3
)
,

(36)
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substituting them into the solution of N(t) yields
NM

1 =
N0e

rτM1

1 +N0(e
rτM1 − 1)/K

=
K +Q

2
,

NM
2 =

N(τ+1 )er(τ
M
2 −τM1 )

1 +N(τ+1 )(er(τ
M
2 −τM1 ) − 1)/K

=
K +Q

2
.

(37)

Note that only if K = 3Q then the optimal solution N1 is 2Q, so we can ignore the special

case N1 = 2Q in Eq.(28).

On the other hand, if N1 > 2Q and letting σ = 0 in Eq.(32), we haveN
M
1 =

Kr + 5Qr + |K − 3Q|r
4r

,

NM
2 =

K +Q

2
.

(38)

Note that if the inequality 2Q < N1 < K < 3Q holds, then NM
1 = 2Q which is impossible

due to N1 > 2Q. Hence, we have NM
1 = NM

2 = (K + Q)/2 for 2Q < N1 < 3Q 6 K and

2Q < 3Q 6 N1 < K.

If N1 < 2Q and letting σ = 0 in Eq.(34), the optimal thresholds in the deterministic

model are N1 =
Kr + 5Qr − |K − 3Q|r

4r
,

N2 =
K +Q

2
.

(39)

Again, for N1 < 2Q < 3Q < K the optimal threshold NM
1 cannot be well defined due

to N1 < 2Q. Thus, we have NM
1 = NM

2 = (K + Q)/2 for N1 < 2Q < K 6 3Q and

N1 < K < 2Q < 3Q. Again, our main results confirm that the optimal thresholds of the

stochastic model are equivalent to those of the deterministic model as the noise intensity

σ = 0 (Xue et al., 2012).

Remark 3.5. The derivative of NM
1 in Eq.(32) in two-pulse harvesting model with respect

to σ yields
dNM

1

dσ
=
−σK

(
−σ2K +Kr + 3Qr +

√
B1

)
2r
√
B1

. (40)

It follows from σ2 < r
(
K + 3Q− 2

√
3KQ

)
/K that we have −Kσ2 + rK + 3rQ >

2r
√

3KQ, which indicates that NM
1 in this case is a monotonically decreasing function

of σ.

Meanwhile, taking the derivative of NM
1 in Eq.(34) with respect to σ yields

dNM
1

dσ
=
−σK

(
σ2K +Kr + 3Qr −

√
B′1

)
2r
√
B′1

< 0. (41)

In combination with dNM
2 /dσ < 0 we can conclude that the optimal thresholds of the

stochastic model are always smaller than those of the corresponding deterministic model.
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3.3 Multi-impulse constant harvesting

In this subsection, we extend our conclusions to the multi-pulse constant harvesting

case. Supposing that the fixed fishing quota is Q, our main task is to determine whether

the fishing thresholds Ni < N(T ), for i = 1,· · ·, n exist to maximize the expectation of

the fish population at the end of a given harvest season [0, T ]. Solutions of multi-impulse

Eq.(4) can be given piecewise as follows:

ln |Ni − (n− i+ 1)Q| = ln
∣∣N+

i−1 − (n− i+ 1)Q
∣∣

+

∫ τi

τi−1

rN(t)

(
1− N(t)

K

)
|N(t)− (n− i+ 1)Q|

dt

−
∫ τi

τi−1

σ2N(t)2

2(N(t)− (n− i+ 1)Q)2
dt

+

∫ τi

τi−1

σN(t)

|N(t)− (n− i+ 1)Q|
dB(t), i = 1, · · · , n,

lnN(T ) = lnN+
n +

(
r − 1

2
σ2
)

(T − τn)− r

K

∫ T

τn

N(t) dt+

∫ T

τn

σ dB(t),

(42)

where Ni 6= (n−i+1)Q (i = 1, · · · , n−1) with N+
0 = N0, τ0 = 0 and ln

(
N+
i − (n− i)Q

)
=

ln (Ni − (n− i+ 1)Q).

Substituting the first n equations one by one into the last equation and taking the

expectations, we obtain the expressions of the fish population E [lnN(T )]:

E [lnN(T )] = ln |N0 − nQ|+ E

 n∑
i=1

∫ τi

τi−1

rN(t)

(
1− N(t)

K

)
|N(t)− (n− i+ 1)Q|

dt




−E

[
n∑
i=1

(∫ τi

τi−1

σ2N(t)2

2(N(t)− (n− i+ 1)Q)2
dt

)]
+

(
r − 1

2
σ2
)

(T − E [τn])− E
[
r

K

∫ T

τn

N(t) dt

]
.

(43)
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Furthermore, we seek the derivatives of E[lnN(T )] with respect to τ1, τ2, · · ·, τn

∂E [lnN(T )]

∂τi
= E

 rNi

(
1− Ni

K

)
|Ni − (n− i+ 1)Q|

− σ2N2
i

2(Ni − (n− i+ 1)Q)2



− E


rN+

i

(
1−

N+
i

K

)
∣∣N+

i − (n− i)Q
∣∣ − σ2(N+

i )2

2(N+
i − (n− i)Q)2

 , i = 1, · · · , n− 1,

∂E [lnN(T )]

∂τn
= E

rNn

(
1− Nn

K

)
Nn −Q

− σ2N2
n

2(Nn −Q)2

− (r − 1

2
σ2) + E

[ r
K
N+
n

]
.

(44)

Letting ∂E [lnN(T )] /∂τi = 0 and denoting

Ci ,− 2 (2n− 2i+ 1)σ2KQr +K2r2 − 2(2n− 2i+ 1)KQr2

+ (2n− 2i+ 1)2Q2r2 + σ4K2 − 2σ2K2r,
(45)

then we only focus on the following two cases. If Ni − (n − i + 1)Q > 0 for i = 1, · · · , n,

then the discriminants Ci are positive. Therefore, the optimal thresholds which maximize

the expectation of N(T ) can be solved as

Ni = NM
i =

−σ2K +Kr + (2(n− i+ 1) + 1)Qr +
√
Ci

4r
(46)

and the optimal thresholds which minimize the expectation of N(T ) are given as

Ni = Nm
i =

−σ2K +Kr + (2(n− i+ 1) + 1)Qr −
√
Ci

4r
(47)

for 0 6 σ2 < r
(
K + (2n− 2i+ 1)Q− 2

√
(2n− 2i+ 1)KQ

)
/K < 2r.

If Ni − (n− i+ 1)Q < 0, we denote the discriminants

C ′i ,2 (2n− 2i+ 1)σ2KQr +K2r2 − 2(2n− 2i+ 1)KQr2

+ (2n− 2i+ 1)2Q2r2 + σ4K2 + 2σ2K2r, i 6= n.
(48)

Thus, the optimal thresholds which maximize the expectation of N(T ) can be solved asNi = NM
i =

σ2K +Kr + (2(n− i+ 1) + 1)Qr −
√
C ′i

4r
, i 6= n,

Nn = NM
n =

−σ2K +Kr + 3Qr +
√
Cn

4r

(49)
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and the optimal thresholds which minimize the expectation of N(T ) are given asNi = Nm
i =

σ2K +Kr + (2(n− i+ 1) + 1)Qr +
√
C ′i

4r
, i 6= n,

Nn = Nm
n =

−σ2K +Kr + 3Qr −
√
Cn

4r

(50)

for 0 6 σ2 < r
(
K +Q− 2

√
KQ

)
/K < 2r.

Note that there are many cases for the sign of Ni− (n− i+ 1)Q, which can be similarly

discussed, so we omitted them here. If we employ the analytic strategies in three- and four-

pulse harvesting model for Ni < (n− i+ 1)Q, numerical results are shown in Fig(3) and

Fig(4). According to the average and non-average curves, the conclusions are verified that

the expectation of the stock levels will be maximized if harvesting activities are carried

out at calculated thresholds.

Remark 3.6. In the same way that we analyzed the one- and two-pulse harvesting models,

we find that the level of biomass in these optimal times are all (K + Q)/2. Moreover, if

σ = 0 in Eq.(46), we obtain optimal thresholds
NM
i =

K +Q

2
, i 6= n,

NM
n =

K +Q

2

(51)

for (n− i+ 1)Q < Ni < (2n− 2i+ 1)Q 6 K and (n− i+ 1)Q < (2n− 2i+ 1)Q 6 Ni < K,

i 6= n.

If σ = 0 in Eq.(49), we have 
NM
i =

K +Q

2
, i 6= n,

NM
n =

K +Q

2

(52)

for Ni < (n− i+ 1)Q < K 6 (2n− 2i+ 1)Q and Ni < K < (n− i+ 1)Q < (2n− 2i+ 1)Q,

i 6= n.

Comparing the results of the multi-impulsive stochastic model by letting σ = 0 we verify

that our results are consistent with the deterministic model.

Remark 3.7. Taking the derivative of NM
i (i = 1, · · · , n) in Eq.(46) with respect to σ

yields
dNM

i

dσ
=
−σK

(
−σ2K +Kr + (2n− 2i+ 1)Qr +

√
Ci
)

2r
√
Ci

. (53)

It follows from σ2 < r
(
K + (2n− 2i+ 1)Q− 2

√
(2n− 2i+ 1)KQ

)
/K that

−Kσ2 + rK + (2n− 2i+ 1)rQ > 2r
√

(2n− 2i+ 1)KQ, (54)

which means that NM
i in this case is a monotonically decreasing function of σ.
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Meanwhile, taking the derivative of NM
i in Eq.(49) with respect to σ yields

dNM
i

dσ
=
−σK

(
σ2K +Kr + (2n− 2i+ 1)Qr −

√
C ′i
)

2r
√
C ′i

< 0, i 6= n. (55)

All those results further confirm that the optimal thresholds of the stochastic model are

always smaller than the corresponding deterministic model.

3.4 Multi-pulse impulsive harvesting with different fishing quotas

In reality, it is unlikely that the numbers of fish harvest quotas are always equal, which

requires further investigation. A multi-pulse non-constant harvesting model can be written

as follows:dN(t) = rN(t)

(
1− N(t)

K

)
dt+ σN(t)dB(t), N(t) < Ni, i = 1, · · · , n,

N+
i = Ni −Qi, N(t) = Ni, i = 1, · · · , n,

(56)

where Qi(< Ni) for i = 1, · · · , n are different catches. In this section, we try to demonstrate

that there are fishing thresholds Ni(< N(T )) for i = 1, · · · , n to get a maximal expectation

of the fish population at T . Solutions of Eq.(56) can be expressed piecewise by the Itô

formula

ln

∣∣∣∣∣Ni −
n∑
k=i

Qk

∣∣∣∣∣ = ln

∣∣∣∣∣N+
i−1 −

n∑
k=i

Qk

∣∣∣∣∣
+

∫ τi

τi−1

rN(t)

(
1− N(t)

K

)
∣∣∣∣∣N(t)−

n∑
k=i

Qk

∣∣∣∣∣
dt−

∫ τi

τi−1

σ2N(t)2

2

(
N(t)−

n∑
k=i

Qk

)2 dt

+

∫ τi

τi−1

σN(t)∣∣∣∣∣N(t)−
n∑
k=i

Qk

∣∣∣∣∣
dB(t), i = 1, · · · , n,

lnN(T ) = lnN+
n +

(
r − 1

2
σ2
)

(T − τn)− r

K

∫ T

τn

N(t) dt+

∫ T

τn

σ dB(t),

(57)

where Ni 6=
n∑
k=i

Qk, N
+
0 = N0, τ0 = 0, ln

∣∣∣∣∣N+
i −

n∑
k=i+1

Qk

∣∣∣∣∣ = ln

∣∣∣∣∣Ni −
n∑
k=i

Qk

∣∣∣∣∣, for i =

1, · · · , n− 1 and lnN+
n = ln (Nn −Qn).
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The expectation of the fish population is

E [lnN(T )] = ln

∣∣∣∣∣N0 −
n∑
i=1

Qi

∣∣∣∣∣+ E


n∑
i=1


∫ τi

τi−1

rN(t)

(
1− N(t)

K

)
∣∣∣∣∣N(t)−

n∑
k=i

Qk

∣∣∣∣∣
dt


− E


n∑
i=1


∫ τi

τi−1

σ2N(t)2

2

(
N(t)−

n∑
k=i

Qk

)2 dt



+

(
r − 1

2
σ2
)

(T − E [τn])− E
[
r

K

∫ T

τn

N(t) dt

]
.

(58)

The first derivatives of E [lnN(T )] with respect to τi for i = 1, · · · , n yield

∂E [N(T )]

∂τi
= E


rNi

(
1− Ni

K

)
∣∣∣∣∣Ni −

n∑
k=i

Qk

∣∣∣∣∣
− σ2N2

i

2

(
Ni −

n∑
k=i

Qk

)2



− E


rN+

i

(
1−

N+
i

K

)
∣∣∣∣∣N+

i −
n∑

k=i+1

Qk

∣∣∣∣∣
−

σ2(N+
i )2

2

(
N+
i −

n∑
k=i+1

Qk

)2

 , i = 1 · · · , n− 1,

∂E [N(T )]

∂τn
= E

rNn

(
1− Nn

K

)
Nn −Qn

− σ2N2
n

2(Nn −Qn)2

− (r − 1

2
σ2
)

+ E
[ r
K
N+
n

]
.

(59)

Let ∂E [lnN(T )] /∂τi = 0 for i = 1, · · · , n to solve the optimal threshold points Ni for

i = 1, · · · , n. The process is the same as for the previous proof used for the constant

harvesting model in Sec.3.3, so we leave out the complicated expressions. We only present

the conclusions that the expectation of fish populations will be maximized at T if we

harvest Qi(i = 1, · · · , n) fish when their population grows to NM
i (i = 1, · · · , n) which are

maximum points of the expectation of the fish population E [lnN(T )] or minimum points

of the expectation of the pest population.

To confirm analytical solutions in this subsection, as shown in Fig (5), we simulated a

fish population 50 times and took the average. Fig (5)(a) shows that the expectation of

the fish population reaches its maximal level when we conduct harvesting activities at the

optimal thresholds NM
1 and NM

2 with different catch quotas Q1 and Q2. Fig (5)(b-d) shows

the case of three-, four- and five-pulse impulsive non-constant harvesting, respectively.

In Fig (6)(a) and Fig(7)(a), the curve of a fish population with non-constant harvesting

is simulated 30 times, 15 of which are the results of harvesting at optimal thresholds
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NM
1 and NM

2 , and the rest are the results of harvesting at N ′1(> NM
1 ) and N ′2(> NM

2 )

in Fig(6)(a), while in Fig(7)(a) the remaining 15 curves are the results of harvesting at

N ′′1 (< NM
1 ) and N ′′2 (< NM

2 ). Fig (6)(b-d) and Fig (7)(b-d) show the case of three-, four-

and five-pulse impulsive non-constant harvesting, respectively.

4 Estimation of fishing times

In reality, what we want to know is when the density of the fish population reaches the

optimal threshold Ni at which the expectation of the fish population at the end of the

season could be maximal, and this is more convenient for fishery resources management.

However, it is challenging to find the exact time τi for a stochastic differential equation.

Therefore, to address this we turn to estimate the range of the optimal time τi in this

section.

4.1 Estimation of fishing times

For the one impulsive model, we have the following main results for the estimation of

the optimal time τi.

Theorem 4.1. Suppose τ := inf {t > 0 : N(t) = N1} is a random time, and r > σ2/2,

then the estimation of E [τ ] satisfies the inequality

1

r − 1

2
σ2

ln
N1

N0
< E [τ ] <

1

r − 1

2
σ2

(
ln
N1

N0
+
N1 −N0

K
+

(l − 1)Q

K

)
, (60)

where l is a given positive integer.

Proof. Integrating the following equation

dN(t) = rN(t)

(
1− N(t)

K

)
dt+ σN(t)dB(t), N(0) = N0

yields

N(t) = N0e
(r − 1

2
σ2)t− r

K

∫ t

0
N(s) ds+ σB(t)

,

which indicates that we have the following inequality

N(t) < N0e
(r − 1

2
σ2)t+ σB(t)

, X(t). (61)

Note that X(t) can be regarded as the solution of the following stochastic Malthusian

model:

dX(t) = rX(t)dt+ σX(t)dB(t), X(0) = N0. (62)
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It follows from (61) that we have

N(t) > N0e
(r − 1

2
σ2)t− r

K

∫ t

0
X(s) ds+ σB(t)

, Y (t). (63)

Similarly, Y (t) is the solution of the following stochastic model:

dY (t) = r

(
1− X(t)

K

)
Y (t)dt+ σY (t)dB(t), Y (0) = N0. (64)

According to the estimation Y (t) < N(t) < X(t), the random times τm := inf {t > 0 : X(t) = N1}
and τM := inf {t > 0 : Y (t) = N1} must satisfy τm < τ < τM .

(1) Using the Itô formula and taking the expectations in Eq.(62), we obtain

E [lnX(τm)] = E [lnN0] +

(
r − 1

2
σ2
)
E [τm] = lnN1, (65)

which indicates that the lower boundary satisfies E [τm] = 1/(r − 0.5σ2) ln (N1/N0).

(2) Now we estimate the upper boundary of the optimal time τM . Integrating Eq.(62)

on [0, τm] gives

X(τm) = N0 +

∫ τm

0
rX(t) dt+

∫ τm

0
σX(t) dB(t). (66)

Taking expectations, we have

E [X(τm)] = N0 + E
[∫ τm

0
rX(t) dt

]
= N1. (67)

On the other hand, the expectations of lnY (τM ) can be written as

E [lnY (τM )] = lnN0 +

(
r − 1

2
σ2
)
E[τM ]− E

[
r

K

∫ τM

0
X(t) dt

]
= lnN1. (68)

Substituting Eq.(67) into Eq.(68) ,we have

(69)E [τM ] =
1

r − 1

2
σ2

(
ln
N1

N0
+
N1 −N0

K
+ E

[
r

K

∫ τM

τm

X(t) dt

])
.

Note that there must exist a positive integer l such that the random times τ
(2)
m :=

inf {t > τm : X(t) = N1} and τ
(j)
m := inf

{
t > τ

(j−1)
m : X(t) = N1

}
for j = 3, · · · , l, as

shown in Fig(8). Moreover, we have

(70)E
[∫ τM

τm

rX(t)dt

]
6 E

∫ τ
(2)
m

τm

rX(t) dt+

l∑
j=3

∫ τ
(j)
m

τ
(j−1)
m

rX(t) dt

 = (l − 1)Q.

All these results confirm that

E [τM ] 6
1

r − 1

2
σ2

(
ln
N1

N0
+
N1 −N0

K
+

(l − 1)Q

K

)
. (71)
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Hence, the random time τ satisfies the following inequality E [τm] < E [τ ] < E [τM ] < T .

This completes the proof.

As an example, if we fixed all parameter values as those shown in Fig(8), from which

we can see that the existence of the positive integer l ensures that the optimal time τM
lies in the estimation of the lower and upper boundaries. By employing similar methods,

we can prove the following two results:

Corollary 4.1. In the multi-impulsive model, the optimal fishing times τi for i = 1, · · · , n
can also be estimated as follows:

1

r − 1

2
σ2

ln

(
i∏

k=1

Nk

N+
k−1

)
< E [τi]

<
1

r − 1

2
σ2

(
ln

(
i∏

k=1

Nk

N+
k−1

)
+
Ni −N0 + (i− 1)Q

K
+

(l − 1)Qi

K

)
< T,

(72)

here N+
0 = N0.

Corollary 4.2. In the multi-impulsive model with different fishing quotas, the optimal

fishing times τi for i = 1, · · · , n can also be estimated as follows:

1

r − 1

2
σ2

ln

(
i∏

k=1

Nk

Nk−1 −Qk−1

)
< E [τi]

<
1

r − 1

2
σ2

ln

(
i∏

k=1

Nk

Nk−1 −Qk−1

)
+

Ni −N0 +

i−1∑
k=1

Qk

K
+

(l − 1)

i∑
k=1

Qk

K

 < T,

(73)

where Q0 = 0.

4.2 Numerical realization and implication

We take the two-pulse constant fishing model as an example to examine the impact of

parameter Q with fixed r = 2, K = 200 and noise intensity σ = 0.4. It is observed that if

the harvest yield Q is greater than or equal to 35, the discriminant of quadratic Eq.(31)

is negative and there exists a pair of virtual roots which means that we cannot find an

optimal fishing threshold N1 to maximize fish populations when N1 > 2Q. On the other

hand, a small decrease of Q to 34 enables us to solve the optimal threshold which is 92.

Besides, for another occasion with N1 < 2Q, optimal thresholds always exist. It is worth

determining which of these two optimal thresholds is better when Q is less than or equal

to 34 as shown in Fig(9). The conclusion is that we can get higher between season fish

populations if harvesting activities take place at N1 = 97.85(> 2Q) when Q is equal to 20.
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Table 1: E[N1] and E[τ ] varied as the noise intensity is changed. Parameter values are
N0 = 10, K = 200, r = 2, Q = 40, l = 6.

σ E[N1] E[τ ]

0.7 84.49 [1.2160,1.6419]
0.5 103.57 [1.2468,1.6963]
0.37 111.23 [1.2472,1.7034]
0.2 117.48 [1.2443,1.7051]
0.09 119.49 [1.2428,1.7050]
0.006 119.998 [1.2425,1.7050]
0.0006 119.99998 [1.2425,1.7050]

Table 2: Optimal harvesting time in the deterministic and stochastic models. τM1 and
E[τ ], respectively, represent the optimal harvesting time in the deterministic model and
in the corresponding stochastic model. Parameter values are N0 = 10, K = 200, r = 2,
σ = 0.4.

Q l K
Q

K
τM1 E[τ ]

15 6 200 0.075 1.5474 [1.1929,1.6194]
20 5 200 0.1 1.5726 [1.2045,1.6498]
30 4 200 0.15 1.6234 [1.2267,1.7095]
40 3 200 0.2 1.6750 [1.2475,1.7155]
45 3 200 0.225 1.7011 [1,2574,1.7569]

In order to check how changing the noise intensity σ affects the fish populations achieving

a maximum, we consider the single-pulse constant harvesting model as an example. As

shown in Tab.(1), the decrease in the noise intensity is found to reduce the threshold

N1, while the estimated optimal time varies a little. Moreover, it is interesting that a

further decrease in σ gets it to correspond with the conclusion of the deterministic model.

Influences of single-pulse constant harvesting system parameters for different values of σ

are shown in Fig(10).

Optimal fishing time in the single-pulse constant harvesting deterministic model and

the stochastic model for different Q and l with fixed K are shown in Tab.(2). It is obvious

that estimation of the optimal fishing time when the fish population reaches the optimal

threshold is influenced by the factor Q/K. The optimal fishing time of the deterministic

model is close to the right-hand end of the estimated interval for each l. For further

clarification, we present the 20 curves of fish population when impulsive harvesting takes

place at N1 which is 109.7 as shown in Fig(11). All of the times when the simulated

trajectories reach 109.7 are included in the estimated interval.
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5 Conclusion

In this paper we have considered a simple logistic impulsive model for the growth of

a fish population under the influence of Gaussian white noise. An analytical technique

was developed to investigate whether there exists an optimal harvesting time (or times)

to maximize the fish population at the end of a harvest season. At first, the method of

solving an extreme point was used to obtain the optimal thresholds in a single-impulse

harvesting model, followed by a multi-impulse constant harvesting quota model as well as a

multi-impulse non-constant quota model. Then we put forward a theory of estimating the

time (or times) that will be useful in practice. Finally, theoretical predictions are verified

by numerical calculations. The numerical results not only demonstrate the effectiveness

of the proposed approach but also show the effects of noise intensity. Remarkably, the ex-

perimental results from the stochastic model are consistent with those of the deterministic

model.

This proposed procedure can also be applied to deal with integrated pest management,

when we focus on whether a pest population will reach a minimum at the end of a planting

season. Based on the previous approach, we should work out the minimal value and then

take advantage of the theorem of time estimation to find optimal times to apply pesticides.

We emphasize that the modeling methods and analytical techniques could be applied in

more sophistication cases including integrated pest management strategies, which have

been extensively studied (Tang et al., 2012, 2015b,a).

Our results can be significant for understanding the exploitation of other renewable

resources and for the design of management strategies. Due to the involvement of noise in

a wide variety of fields we hope that our study will be applicable to solving some problems

in many different disciplines.
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Figure Legends
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Figure 1: Each curve in (a) is the average of 40 simulations of a stochastically fluctuating
fish population with constant harvesting. The solid blue line denotes the fish population
arriving at its maximal level at the end of the harvesting season if we harvest fish at the
optimal threshold level N1 = NM

1 . The dotted black line and the dashed-dotted red line
are set as control groups. Corresponding non-average curves are shown in (b) and (c).
Parameter values are N0 = 10, K = 200, r = 2, σ = 0.4, Q = 45.
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Figure 2: Each curve in (a) is the average of 40 simulations of a stochastically fluctuating
fish population with constant harvesting. The solid blue line denotes the fish population
arriving at its maximal level at the end of the harvesting season if we harvest fish at the
optimal threshold (N1, N2) = (NM

1 , NM
2 ). The dotted black line and the dashed-dotted

red line are set as control groups. Corresponding non-average curves are shown in (b) and
(c). Parameter values are N0 = 10, K = 200, r = 2, σ = 0.4, Q = 45.
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Figure 3: Each curve in (a) is the average of 40 simulations of a stochastically fluctuating
fish population with constant harvesting. The solid blue line denotes the fish population
arriving at its maximal level at the end of the harvesting season if we harvest fish at the
optimal thresholds Ni = NM

i for i = 1, 2, 3. The dotted black line and the dashed-dotted
red line are set as control groups. Corresponding non-average curves are shown in (b) and
(c). Parameter values are N0 = 10, K = 200, r = 2, σ = 0.4, Q = 45.
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Figure 4: Each curve in (a) is the average of 40 simulations of a stochastically fluctuating
fish population with constant harvesting. The solid blue line denotes the fish population
arriving at its maximal level at the end of the harvesting season if we harvest fish at the
optimal thresholds Ni = NM

i for i = 1, · · · , 4. The dotted black line and the dashed-dotted
red line are set as control groups. Corresponding non-average curves are shown in (b) and
(c). Parameter values are N0 = 10, K = 200, r = 2, σ = 0.4, Q = 45.
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Figure 5: Each curve is the average of 50 simulations of a stochastically fluctuating fish
population with non-constant harvesting. The blue line denotes the fish population’s
arrival at its maximal level at the end of the harvesting season if we harvest fish at the
optimal thresholds Ni = NM

i . The black line and the red line are set as control groups.
Parameter values are N0 = 10, K = 200, r = 2, σ = 0.4, Q1 = 5, Q2 = 7, Q3 = 9,
Q4 = 11, Q5 = 13.
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Figure 6: Simulated trajectories showing the comparisons between harvesting at optimal
times and at other times in the multi-pulse non-constant harvesting model. The solid
line represents optimal harvesting taking place and the dashed line denotes non-optimal
impulsive harvesting. Parameter values are the same as those in Fig.(5)(a) Single-pulse
harvesting; (b) Two-pulse harvesting; (c) Three-pulse harvesting; (d) Four-pulse harvest-
ing.
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Figure 7: Simulated trajectories showing the comparisons between harvesting at optimal
times and at other times in the multi-pulse non-constant harvesting model. The solid
line represents optimal harvesting taking place and the dashed line denotes non-optimal
impulsive harvesting. Parameter values are the same as those in Fig.(5)(a) Single-pulse
harvesting; (b) Two-pulse harvesting; (c) Three-pulse harvesting; (d) Four-pulse harvest-
ing.
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and each curve is the average of 40 simulations of stochastically fluctuating fish population
with constant harvesting Q. Parameter values are N0 = 10, K = 200, r = 2, σ = 0.4, (a)
Q = 15, N1 = 98.78; (b) Q = 20, N1 = 101.01; (c) Q = 30, N1 = 105.41; (d) Q = 45,
N1 = 111.81. The time step is dt = 0.01.
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Figure 9: Trajectories with and without the average of the fish population if we harvest fish
at the optimal thresholds. The solid blue lines are the cases of optimal impulsive harvesting
taken place atN1 > 2Q. The dashed-dotted red lines denote impulsive harvesting activities
implemented at N1 < 2Q. Parameter values are N0 = 10, K = 200, r = 2, Q = 20 and
σ = 0.4.
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Figure 10: Trajectories of the single-pulse constant harvesting model for different noise
intensities. The solid line denotes the fish population’s arrival at its maximal level at the
end of the harvesting season if we harvest fish at the optimal times; The dotted line and
the dashed-dotted line are set as control groups. Parameter values are N0 = 10, K = 200,
r = 2, Q = 40, (a) σ = 0.7; (b) σ = 0.5; (c) σ = 0.2.
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Figure 11: Trajectories of the single-pulse constant harvesting model. Twenty curves in
(a) denote the fish population’s arrival at its maximal level at the end of the harvesting
season if we harvest fish at the optimal times. The average is shown in (b).Parameter
values are N0 = 10, K = 200, r = 2, Q = 40 and σ = 0.4.
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