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Abstract Learning Bayesian network (BN) structures
from data is a NP-hard problem due to the vastness

of the solution space. To address this issue, hybrid ap-
proaches that integrate the constraint-based (CB) met-
hod and the score-and-search (SS) method have been

developed in the literature, but when the constrained
search space is fixed and inaccurate, it is very likely to
lose the optimal solution, leading to low learning accu-
racy. Besides, due to the randomness and uncertainty

of the search, it is difficult to preserve the superiori-
ty of the structures, resulting in low learning efficiency.
Therefore, we propose a novel hybrid algorithm based

on an improved evolutionary approach to explore BN
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structure with highest matching degree of data set in
dynamic constrained search space. The proposed algo-
rithm involves two phases, namely, the CB phase and
the SS phase. In the CB phase, the mutual information
(MI) is utilized as the restriction to limit the search
space, and a binding parameter is introduced to the
novel encoding scheme so that the search space can be
dynamically changed in the evolutionary process. In the
SS phase, a new operator is developed to pass on the
excellent genes from generation to generation, and an
update principle for the binding parameter is exploited
for the dynamic selection of the search space. We con-
duct the comparative experiments on the benchmark
network data sets and provide performance and appli-
cability analysis of our proposed method. The experi-
mental results show that the new algorithm is effective
in learning the BN structures.

Keywords Bayesian networks · Structure learning ·
Mutual information · Genetic algorithm

1 Introduction

A Bayesian network (BN) is a probabilistic graphical
model that depicts the uncertain relationships among
random variables in the domain. This model is com-
posed of two elements: a directed acyclic graph (DAG)
and conditional probability tables (CPTs). The struc-
ture of a BN is defined as a DAG, where each node
represents a variable and directed edges denote the con-
ditional dependence relationships among nodes. And a
CPT quantifies the degree of dependence between t-
wo connected variables. Because of the powerful rea-
soning ability and the visualized knowledge acquisition
and representation, BNs have been widely applied in
the fields of data mining and artificial intelligence [1,2].
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Before using a BN to perform the inference for solv-
ing the real-world problems, the construction of the
model structure needs to be completed first so that
the probabilistic relationships among variables can be
found. Hence, structure learning lays the groundwork
for BN studies. In recent years, learning the structure
of a BN automatically from collected data has gradual-
ly displaced the way of constructing a BN manually by
domain experts, because the latter is time consuming
and subjective [3]. However, finding the BN structure
that best describes the dependencies among variables
from data is proved to be NP-hard [4]. In the literature,
many methods have been proposed to tackle with this
structure learning problem, which are usually classified
into three schemes with the varying model types.

The constraint-based (CB) method is one of the BN
structure learning approaches, which usually makes use
of the conditional independence (CI) tests [5,6] to esti-
mate a set of conditional independence relations among

variables. The PC-algorithm [7] is a typical example of
this approach. The score-and-search (SS) method is an-
other scheme of the BN structure learning approaches,
which attempts to search for the optimal network that

best fits the given data set in the space of all possi-
ble structures [8–10]. There are two important com-
ponents in the SS method, including a scoring metric

which is used to evaluate the quality of every candidate
BN structure in terms of the given data set and a search
strategy that is adopted to find the solution which has

the best score by traversing the search space. Besides,
according to the different demands for the structure
learning problem, the solution space where the search
can be conducted is divided into three categories. Most

of the SS algorithms explore the DAG space, which con-
tains the feasible DAGs [11–13]. And some other meth-
ods perform the search in the equivalence class space
including only partially DAGs (PDAGs), where some
edges are not directed [5,14]. Two DAGs belong to the
same equivalence class if they define the identical con-
ditional independence relations. Another kind of search
space is the variable ordering space, which contains al-
l possible permutations of the variables [15–18]. Since
it is much smaller than the DAG space, researchers al-
ways consider the search of an optimal variable ordering
as an effective way to turn the BN structure learning
problem affordable based on the observation that the

structure learning of BNs is not NP-hard if given the
ordering [15].

However, both two types of the BN structure learn-
ing approaches mentioned above have drawbacks. In the
CB method, an exponential number of the dependency
analysis computations are required, especially for the

large-scale networks. And the results of CI tests are

unreliable when the sample is small, leading to the in-
accurate structures [6]. For the SS method, researchers
always adopt heuristic techniques. But since the search
space grows exponentially with the increasing number
of variables, the convergence speed of the SS approach-
es tends to be slow. Thus, hybrid methods combining
the above two approaches have emerged to overcome
these limitations [19–22]. In this type of methods, some
CB approach is first used to reduce the search space,
which always imposes the restrictions on the feasible so-
lutions, such as the CI tests or the mutual information
(MI), and in the subsequent SS stage, the final solu-
tion is found in the reduced space based on the defined
scoring function.

In this paper, a hybrid algorithm based on an im-
proved evolutionary approach is proposed for the task of
BN structure estimation in dynamic constrained search
space. In the first stage of the hybrid approach, to
restrict the search space, we conduct the dependen-
cy analysis by employing the MI, and a new encoding
scheme composed of three parts is designed, including
a variable ordering, the corresponding upper triangular
connectivity matrix, and a binding parameter which is
used to complete the dynamic selection of the search
space. In the second stage, considering the poor per-
formance of conventional genetic operators, we present
a new recombination procedure to inherit the excellen-
t genes from the parental population. And a princi-
ple of updating the binding parameter is developed to
modify the search space adaptively. A number of ex-
periments on the various data sets of benchmark BNs
have been conducted compared against different learn-
ing approaches. The empirical results demonstrate that
the approach proposed in our paper works well in the
BN structure learning problem, having remarkable per-
formance in the convergence speed and the quality of
the solution.

The rest of this paper is organized as follows. In
Sect. 2, we give a brief introduction of BNs and present
related structure learning problems of various methods
utilizing evolutionary computation in the previous s-
tudies. Sect. 3 describes our new algorithm in detail.
In Sect. 4, a comparison among the proposed algorith-
m and other structure learning methods is presented
and the experimental results on the performance and
applicability analysis of our new algorithm are report-
ed. Finally, we draw the conclusions and discuss the
potential extension for future work in Sect. 5.
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2 Preliminaries

2.1 Bayesian networks

A BN is a multivariate statistical model based on prob-

ability and graph theory to capture the dependence re-

lationships among a group of random variables X =

{Xi}i=1,2,...,n. The model of a BN consists of a graph

structure G and a set of distribution parameters θ =

{θi}i=1,2,...,n. G = (X,A) is a DAG with n nodes that

denotes random variables X. A directed edge aij ∈ A in

G directed from Xi to Xj describes the conditional de-

pendence between these two variables, and Xi is called

a parent of Xj . All parents of Xj compose its parent set

which is denoted by pa(Xj). The parameter θi defines

the conditional probability distribution p(Xi | pa(Xi))

for the variable Xi specifying the probability of each

possible state of Xi given each possible configuration of

pa(Xi), displayed in a CPT. A BN satisfies the Markov

condition [6], that is, every variable Xi is independent

of its nondescendants given its parents pa(Xi). There-

fore, the joint probability distribution of the domain

variables can be factored as:

p(X) =

n∏
i=1

p(Xi|pa(Xi)). (1)

When we construct a BN for the real-life applica-

tions, two tasks need to be accomplished, including

structure learning, which focuses on the identification

of the topology of a BN, and parameter learning, which

is the calculation of conditional probability based on a

given BN structure. Thus, structure learning becomes

the first issue before the estimation of the numerical

parameters. However, due to the vast search space with

respect to the increasing number of variables in a BN,

it is knotty for the researchers to use exhaustive search

through all possible structures. Besides, the computa-

tional complexity remains exponential with currently

available exact algorithms, and such methods are tick-

lish for BNs with more than around 30 vertices giv-

en our actual computational capacity [23]. Hence many

greedy local search techniques and heuristic methods

have received much attention in the literature [24–26].

Moreover, in order to improve the search efficiency of

the heuristic methods for BN structure learning, struc-

tural restrictions codifying the information about the

observed data are defined, leading to the emergence of

hybrid approaches.

2.2 Bayesian network structure learning

When a hybrid algorithm is applied to the task of the

BN structure estimation, the modeling process can be

separated into two phases: the CB phase and the SS

phase.

2.2.1 The CB phase

It is a challenging problem to find a BN structure ac-

commodating the given data set, which best represents

the causal dependencies between variables. In fact, Rob-

inson has proved that the number of all possible BN

structures with respect to n nodes in the DAG space

can be calculated by the following equation [27]:

f(n) =

 1, n = 0;
n∑

i=1

(−1)i+1
(
n
i

)
2i(n−i)f(n− i), n > 0.

(2)

We can see that the number of possible BN struc-

tures has exponential growth with the increasing num-

ber of variables, making it intractable to learn the mod-

el directly and precisely in such enormous search s-

pace. Hence, when using the hybrid algorithms, many

researchers impose some structural restrictions on the

candidate BNs, including existence restrictions, absence

restrictions and ordering restrictions [28], at the begin-

ning of the exploration in order to narrow down the

search space.

Existence and absence restrictions take into accoun-

t the association relationships between variables, which

respectively consider the existence and absence of arc-

s and/or edges. The CI test is treated as a typical

way to make absence restrictions. Since the computa-

tion results of high-order CI tests may not be reliable

[20], many methods in the literature only use order-0

and order-1 CI tests to identify the possible conditional

independence relations [6,20]. Nevertheless, when per-

forming CI tests, all possible separation sets may need

to be examined to decide whether two variables are in-

dependent. It is obviously a difficult task for large-scale

networks, even using low-order tests.

In other research works, researchers use the MI to

establish existence restrictions [14,19]. The MI value

between two variables X and Y can be defined as fol-

lows:

I(X;Y ) =

r∑
i=1

s∑
j=1

p(ai, bj) log
p(ai, bj)

p(ai)p(bj)
(3)

where r and s are the number of possible states of X

and Y , respectively. ai is the ith possible value of X, bj
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is the jth possible value of Y . The MI between two vari-

ables is symmetric in nature, i.e., I(X;Y ) = I(Y ;X).

It can be seen that if X is completely unrelated to Y ,

I(X;Y ) = 0, and the higher value of the MI indicates

the stronger relationship between two variables. How-

ever, it is difficult to determine whether there is an edge

between two nodes by simply using Eq. 3 to evaluate

the MI. Thus Li et al. [14] and Chen et al. [19] both

introduced the constraint given by Eq. 4 to identify the

relationship between a pair of variables more explicitly,

which is composed of two conditions. If any of the con-

ditions is satisfied, it is assumed that there is a strong

dependence between the two variables, so an edge con-

necting these two nodes should be established.

I(X;Y ) ≥ αMI ·MMI(X) or I(Y ;X) ≥ αMI ·MMI(Y )

(4)

where MMI(X) and MMI(Y ) denote the maximum

MI (MMI) for node X and Y respectively, 0 ≤ αMI ≤ 1

is a binding parameter. We can see from the above ex-

pression that to limit the search space, αMI plays an

important role in obtaining the number of connections

which must be included in the candidate structures for

the subsequent search phase. In the previous works, the

value of the binding parameter was predefined, for ex-

ample, it was set at 0.9 in [19]. It is noteworthy that if

improper value of αMI is adopted, there exists a great

possibility that the reduced search space cannot contain

the optimal structure due to the permanent residence

of some wrong edges or the permanent loss of crucial

connections in the fixed search space depending on the

predefined value of αMI .

Besides the previous two types of restrictions, an-

other possibility is to use ordering restrictions. When

given a node ordering, the feasible networks in the sear-

ch space must satisfy the constraint that the possible

parents of each node Xi(i = 1, 2, . . . , n) in G should be

chosen from those nodes preceding Xi. It is easy to

see that the predefined variable ordering can narrow

down the size of the search space. In fact, taking the

encoding scheme of a genetic algorithm (GA) as an ex-

ample, the cardinality of the search space equals 2(n
2)

under the ordering assumption, while in the general

case, it is 2n
2

using an adjacent matrix. K2 algorith-

m [29] is a well-known heuristic method of learning BN

structures using a node ordering as input. However, ob-

taining an appropriate permutation of nodes requires a

large amount of priori information that may be hard

to acquire in many practical applications. So some con-

cerns have been raised regarding the searches in the

ordering space [15,30]. And the experimental results in

Table 1 Proportion of randomly generated adjacent matrices
without any cycles

n ff(n) f(n) F (n) p(n)

1 1 1 2 50.000%
2 2 3 16 18.750%
3 8 25 512 4.883%
4 64 543 65536 0.829%

[15] showed that the ordering-based search could find

a better scoring network, compared with the structure-

based search, when there were a large number of vari-

ables.

2.2.2 The SS phase

In this paper, considering that a GA, which is one type

of the evolutionary approaches, has been regarded as an

important heuristic technique due to the reliable global

search capability [31,32], we exploit an improved GA

so as to search for an appropriate BN structure that

accommodates the given data set in the DAG space.

In the existing GA-based BN structure learning al-

gorithms, to encode every candidate structure with n

nodes in the search space, researchers often resort to an

adjacent matrix A = (aij)n×n, where

aij =

{
1, if Xi is a parent of Xj ;

0, otherwise.
(5)

We can see that the adjacent matrix A is an n-

dimensional Boolean matrix. Larrañaga et al. [24] re-

wrote the above matrix in the Eq. 6 as an individual:

a11a12 . . . a1na21a22 . . . a2n . . . an1an2 . . . ann (6)

And in the algorithm proposed by Lee et al. [13], a chro-

mosome was defined using upper and lower triangular

matrices:

a12a13 . . . a1na23 . . . a2n . . . a(n−1)na21a31a32 . . . an(n−1)

(7)

However, the possibility of obtaining a DAG is not high

when an arbitrary adjacent matrix is employed to act as

an individual, as shown in Table 1, where F (n) = 2n×n

is the number of all possible n-dimensional Boolean ma-

trices, f(n) is defined in Eq. 2, and p(n) = f(n)/F (n)

denotes the proportion of randomly generated adjacent

matrices without any cycles.

It can be seen from Table 1 that the proportion

of randomly generated adjacent matrices which satis-

fy the acyclicity feature decreases significantly with the
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growth of the number of nodes. Thus a repair operator

which makes the illegal graph acyclic has to be carried

out, leading to high time complexity. Then many re-

searchers tend to avoid generating illegal networks with

the help of the node ordering [8,12,15]. The second col-

umn in Table 1 presents the number of structures ff(n)

with different number of nodes given the predefined n-

ode ordering. Compared against f(n), it is obvious that

the search space with the given ordering is much smaller

than the DAG space.

As for the genetic operators that are utilized during

the evolutionary process to produce the offspring, San-

tos et al. developed the random multi-point crossover

operator (RMX) [16] and the distance-based mutation

operator (DMO) [17] to explore the influence of a sin-

gle operator on the search for suitable node orderings

of BNs. Nevertheless, when a GA searches for the opti-

mal BN structure during the evolutionary process, the

crossover operator acting a significant part in the con-

vergence speed is probably ineffective. In other words,

since the newly generated BN structure may be marked-

ly different from its parents after implementing the cro-

ssover, it is likely that the offspring cannot inherit the

positive qualities from the parental population. Thus,

in the hybrid evolutionary algorithm (HEA) proposed

by Wong et al. [11], a novel operator called merge was

introduced. It attempted to modify the structure with

the parts of another one to increase the scores of the

offspring, replacing the conventional crossover. Lee et

al. [13] also designed new recombination operator to

increase the possibility that the merits of the parental

population can be passed on to the offspring.

When the search process is carried out, it is essen-

tial for such an optimization problem to define a scoring

function that estimates the goodness of each candidate

structure in regard to the given data set. In the light

of different theoretical foundations, there are varying

metrics used in the literature [11,14,15]. And consid-

ering that the Bayesian information criterion (BIC) is

based on the penalized maximum likelihood approach

[3], we employ this type of scoring metric derived from

information theory in our work. The formula for the

BIC metric is given by the following expression:

scoreBIC =

n∑
i=1

qi∑
j=1

ri∑
k=1

mijk log
mijk

mij∗

−
n∑

i=1

qi(ri − 1)

2
logm.

(8)

where n is the number of nodes, qi defines the count of

the possible configurations for pa(Xi), ri is the number

of the states for Xi, and mijk corresponds to the sample

count of the kth possible value of Xi given the jth pos-

sible configuration of pa(Xi). Besides, mij∗ =
ri∑

k=1

mijk,

m is the total sample count.

The BIC score consists of two parts: the log-likeliho-

od calculating the matching degree of the candidate

model with the samples and a penalty relevant to the

dimension of the model itself as well as the size of the

data set. Note that the BIC metric makes a tradeoff

between the accuracy and the complexity of the model,

thus it searches for a simple BN structure that best fits

the observed data. Moreover, as a feature common to

other metrics, the BIC score is node-decomposable [3]

and can be rewritten as follows:

scoreBIC =

n∑
i=1

scoreBIC(i). (9)

where

scoreBIC(i) =

qi∑
j=1

ri∑
k=1

mijk log
mijk

mij∗
− qi(ri − 1)

2
logm

(10)

In Eq. 10, scoreBIC(i) is defined as the family BIC

score of Xi. Besides, a union of one node Xi and its

parent set pa(Xi) forms a substructure of a BN, a net-

work can accordingly be viewed as an aggregation of

pa(Xi)(i = 1, 2, . . . , n). Therefore, we only need to com-

pute the combination of the scores for smaller factors

like a single node whose parent set has a variance when

the new individuals have been generated. On the other

hand, the BIC metric as well as its first part encod-

ing the log-likelihood is score equivalent [33], i.e., the

structures in the same equivalence class are assigned

the same score. It can cause the structure identification

problem. And the merge operator designed in [11] was

able to avoid the search spending much time on the BN

structures in the same equivalence class.

The main focus of our algorithm is to obtain a BN

structure that fits the given data set by using the ef-

fective genetic operators in dynamic constrained search

space. More precisely, on the one hand, to restrict the

search space, we exploit the MI to design a flexible con-

straint which is able to dynamically change during the

evolutionary process by using an innovative updating

principle. On the other hand, allowing for the risk of

the disruption of the excellent substructures when the

offspring are produced and the interference from the

BN structures in the same equivalence class, we take

advantage of the decomposability of the BIC metric to

substitute a novel recombination operator for the con-

ventional crossover.



6 Jingguo Dai et al.

3 Method

In this section, a hybrid approach using an improved

GA is presented to deal with the BN structure learning

problem. The learning ability of the proposed method

can be enhanced with the help of several strategies.

First, a novel encoding scheme is designed which can

support the effective representation of candidate BN

structures. Second, the knowledge of dependencies am-

ong the variables from the calculations of the MI is in-

troduced during the evolutionary process to adaptively

modify the search space. Third, a new recombination

operator based on the BIC metric is provided so that

the superior genes are able to be inherited to the off-

spring. Since the MI is employed in an improved GA

for structure learning of BNs, the proposed approach

in our paper is called MIIGA.

3.1 Representation and notation

To represent candidate BN structures, the following t-

wo elements have been taken into account in MIIGA.

On the one hand, the conventional coding scheme where

the BN structure is codified by an adjacent matrix has

the limitation that newly generated networks may not

satisfy the acyclic property, and considering that the n-

ode ordering assumes that parent nodes should appear

before the children, thus the new representation of BN

structures encodes the node ordering in the individuals

to guarantee the valid networks. On the other hand, in

order to limit the search space, the information provid-

ed by Eq. 4 is used in MIIGA, and recalling that an

improper value of αMI in Eq. 4 tends to obtain an un-

satisfactory structure in the search phase, we attempt

to change the binding parameter αMI adaptively in the

evolutionary process, instead of predefining its value.

Therefore, we propose a new encoding scheme in which

each chromosome consists of three parts, including: (1)

the permutation of variables ≺, where if Xi ∈ pa(Xj)

then node Xi ≺ node Xj , (2) a string generated by

flattening the upper triangular adjacent matrix which

described the connections among the nodes consistent

with the given ordering, and (3) the binding parame-

ter αMI which is supposed to be evolved as well during

the evolutionary process. The detailed design is given

as follows:

i1i2 . . . ina12a13a23a14a24a34 . . . a1na2n . . . a(n−1)nαMI

(11)

where there are n nodes in the network, ik denotes the

kth node in the ordering, ajk describes whether there

Fig. 1 An example of the new encoding scheme

is an edge directed from jth node to kth node based

on the ordering which is defined in the first part of

the chromosome, when it is true, ajk = 1; otherwise

ajk = 0, and αMI is the binding parameter raised in

Eq. 4. An illustration is given in Fig. 1.

Since the node ordering is used to interpret the can-

didate structures, the genetic operators in the proposed

method are closed operators [24]. Besides, unlike the

fixed value of αMI in other related works, the last lo-

cus in the chromosome treated as a identifier for αMI

is constantly changed in the closed interval [0, 1], lead-

ing to the variation of the number of connections that

should be involved in the candidate networks. Note that

as the evolutionary search proceeds, individuals owning

an improper value of αMI will ultimately be eliminated.

In fact, according to the previous analysis of the impor-

tance of αMI , when its value is too large or too small,

the BIC score of the BN structure will be low due to the

absence of some crucial edges or the presence of many

wrong connections. Then there is a greater chance that

this individual will be eliminated because of its infe-

rior fitness. Consequently, the individuals having more

appropriate value of αMI are able to survive for the

further evolution.

3.2 The algorithm

3.2.1 The initialization

At the beginning of the proposed algorithm, an initial

population needs to be defined. Note that if the ini-

tial population gains good performance to get closer to

the optimal solution, it is very likely to take less time

to find an appropriate network that accommodates the

given data set. So in the initialization procedure, we

adopt MI to recover useful information from the data

set. More specifically, starting with an empty graph,

as for each individual in the initial population, the n-

ode ordering is determined by the MMI. Recalling that

the MI is symmetric, when there is the MMI between n-

ode Xi(i = 1, 2, . . . , n) and another node, an undirected

edge connecting these two nodes is added to the current
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graph, and the directions of these edges are given ran-

domly. After obtaining the ordering, the search space

is preliminarily reduced. Then the value of the bind-

ing parameter αMI is stochastically initialized. Based

on the matrix Info which stores the MI values among

variables, some connections are established in the ex-

isting network if they satisfy the constraint in Eq. 4, so

the search space is further narrowed down correspond-

ing to the value of αMI . The initial individual is chosen

from this reduced search space.

To select individuals for the reproduction of the off-

spring in the evolutionary process, the relative mer-

its for different network structures are evaluated by

means of the BIC metric in MIIGA. Besides the node-

decomposable property, in this paper, we further de-

compose the BIC family score of each node into two

parts. One is the log-likelihood function estimating how

well the substructure of node Xi fits the given data set.

Another part is the penalization function that encodes

the complexity of the substructure. These two item-

s of node Xi are stored respectively in the matrices

(llSi)m×n and (dpSi)m×n during the evolutionary pro-

cess, where m is the size of the population and n is the

number of variables. The decomposition form of Eq. 10

is defined as follows:

scoreBIC(i) = llSi − dpSi (12)

where

llSi =

qi∑
j=1

ri∑
k=1

mijk log
mijk

mij∗
(13)

dpSi =
qi(ri − 1)

2
logm (14)

In Eq. 13, llSi is a minus, and dpSi in Eq. 14 is

non-negative. According to the features of the above

two items, we adopt different part of the BIC family

score in the following subsections to find the highest

scoring network by traversing the varying search space.

3.2.2 Priority-recombination operator

In view of the poor performance of the conventional

crossover in exchanging information among the popu-

lation members, we introduce a novel operator called

priority-recombination (PR) in our proposed algorith-

m, in order to make the offspring successfully inherit the

positive features from the parental population without

the disruption of the superior substructures obtained

so far in the evolutionary process. And considering that

the log-likelihood function which is the first part of the

BIC metric measures the degree of matching between

BN structure and the data set, (llSi)m×n is adopted

in the PR operator. According to Eq. 13, the greater

llSi means the higher match degree between the sub-

structure of Xi and the data. Hence, we make use of

this feature to find better offspring. Moreover, though

the log-likelihood function is score equivalent, leading

to a difficult identification problem for BN structures in

the same equivalence class, the PR operator can han-

dle it well by producing the offspring having different

log-likelihood function values from those of the parental

structures.

In the PR operator, two individuals are taken as in-

put, i.e., a parental network old indiv and a BN struc-

ture randomly selected from the previous generation,

which is denoted as former indiv. Recalling that the

BIC metric is node-decomposable and the BN structure

is a combination of pa(Xi)(i = 1, 2, . . . , n), we attemp-

t to create a better network which contains good sub-

structures of both two inputs. That is, a new individual

new indiv can be generated by selecting the parent set

new pa(Xi) from old pa(Xi) which denotes the parent

set of the node Xi in the old indiv and former pa(Xi)

which is defined as the parent set of the node Xi in

the former indiv, so that the sum of the llSi for the

new indiv (
n∑

i=1

new llS(Xi)) is greater than the sum of

the llSi for the former indiv (
n∑

i=1

former llS(Xi)) as

well as the sum of the llSi for the old indiv (
n∑

i=1

old llS

(Xi)). The pseudocode for the PR operator is displayed

in Algorithm 1.

At the beginning of the operator, the computations

of Eq. 15 are executed:

diff llS(Xi) = former llS(Xi)− old llS(Xi),

(i = 1, 2, . . . , n)
(15)

And a node set D = {Xj}, j ∈ {1, 2, . . . , n} is pro-

duced by sorting diff llS(Xi) in descending order. S-

ince the positive value of diff llS(Xi) supposes that

former pa(Xi) is better than old pa(Xi), the replace-

ment of old pa(Xi) with former pa(Xi) is taken into

consideration when diff llS(Xi) > 0. Starting from

the first node Xj in the set D, the PR operator invokes

the subprogram getpaset to obtain a subset of nodes

mid paset and a modified node ordering node order.

Thus, old pa (Xj) is replaced by former pa(Xj) for ev-

ery node Xj ∈ mid paset, and node order is updated to

guarantee the validity of the ordering, i.e., each node in

former pa(Xj) should precede the node Xj after sub-

stituting former pa(Xj) for old pa(Xj) in old indiv.

The pseudocode for the procedure getpaset is presented

in Algorithm 2.
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Algorithm 1 Priority-recombination (PR) operator

1: Calculate diff llS(Xi)=former llS(Xi)-old llS(Xi), i =
1, 2, . . . , n;

2: Sort diff llS(Xi) in descending order and store the cor-
responding node set in D = {Xj}, j ∈ {1, 2, . . . , n};

3: Set mark set = ∅, change paset = ∅, llS = old llS and
indiv = old indiv;

4: while size(mark set) < n do

5: Get a node Xj ∈ D, which has not been considered yet;
6: Set mid paset = ∅ and node order = indiv(1, 1 : n);
7: Invoke the procedure getpaset to obtain mid paset and

node order;
8: paset = mid paset− change paset;
9: Compute sum=sum(diff llS(Xj

′)), Xj
′ ∈ paset;

10: if sum > 0 then
11: Replace llS(Xj

′) with former llS(Xj
′), Xj

′ ∈ paset;
12: Update indiv according to node order;
13: change paset = change paset ∪ paset;
14: mark set = mark set ∪ paset;
15: else

16: mark set = mark set ∪Xj ;
17: end if

18: end while
19: if llS > old llS then

20: new indiv = indiv;
21: else
22: new indiv = old indiv;
23: end if

Algorithm 2 Procedure getpaset

1: if Xj ∈ mid paset then
2: Return immediately;
3: end if

4: mid paset = mid paset ∪Xj ;
5: for Xj

′′ ∈ former pa(Xj) do

6: if Xj
′′ lies behind Xj in node order then

7: Update node order by inserting Xj
′′ in front of Xj ;

8: Invoke getpaset;
9: end if

10: end for

The subprogram getpaset is a recursive procedure.

The input mid paset begins with an empty set and

node order is initialized by the ordering of old indiv.

The node Xj is at first added to the set mid paset.

Then, every node Xj
′′ ∈ former pa(Xj) is checked

whether it is positioned behind Xj in node order. If

it is true, the procedure has to modify node order by

shifting Xj
′′ in front of Xj and recursively invoke it-

self for the node Xj
′′. Consequently, the elements in

mid paset are the nodes whose parent set needs to be

displaced.

In our implementation, we randomly select half of

the population to conduct the PR operator. When a

better network structure is produced, it is regarded as

the offspring. Otherwise, the parental network old indiv

which fails to give a better network is put back in the

current population and performs the following opera-

tions.

3.2.3 Updating principle of the binding parameter

Allowing for the new encoding scheme proposed in Sect.

3.1, there is a significant locus in the chromosome, i.e.,

the binding parameter αMI , which needs to be adap-

tively changed during the evolutionary process to im-

plement the dynamic selection of the search space. In

our algorithm, for the unselected individuals and the

selected ones which are unable to produce the better

networks in the PR operator, the value of αMI should

be updated. We store the edges that satisfy the Eq. 4 in

the matrix Infomat. It can be seen that if the value of

αMI is high, the size of Infomat is small. While if that

value is too low, the worst case is that Infomat contain-

s all possible connections. In MIIGA, we use (dpSi)m×n
to renovate αMI . Recalling that the more complex sub-

structure of Xi gains the higher dpSi, we provide an

updating principle based on best dpS which is the sum

of dpSi of the best individual obtained so far in the

evolutionary process, presented as follows:


new αMI = old αMI −∆α,

n∑
i=1

dpSi < best dpS;

new αMI = old αMI ,
n∑

i=1

dpSi = best dpS;

new αMI = old αMI +∆α,
n∑

i=1

dpSi > best dpS.

(16)

Eq. 16 describes the strategy used to adjust αMI

of an individual by comparing against the current op-

timal network. Specifically, if the sum
n∑

i=1

dpSi for one

network is less than best dpS, we consider that the com-

plexity of this structure is lower than that of the best

network, so in order to increase the number of connec-

tions, the value of αMI is supposed to be smaller, then

we give αMI a decrement by ∆α. Otherwise, it is as-

sumed that the sum
n∑

i=1

dpSi for the candidate individ-

ual is bigger than best dpS, αMI should be assigned an

increment by ∆α because the number of connections

in the structure has to be reduced. But if
n∑

i=1

dpSi e-

quals best dpS, there is no need to change the value of

αMI . Therefore, the search space has been refined by

altering the binding parameter αMI . The next step is to

complete the mutation for the networks in the modified

search space.

3.2.4 Information-driven mutation operator

In our algorithm, considering the randomness of the

conventional mutation, we provide an operator called

information-driven mutation (IDM) to produce the off-

spring. There are two steps in the operator. In the be-
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ginning, one of the mutation types, including the ad-
dition, deletion and reverse of a directed edge, is ran-
domly chosen, and then the BIC score and the MI which
have been stored before are used to implement the mu-
tation. Briefly, when the IDM decides to execute the
deletion or reverse in the network, an existing direct-
ed edge will be selected with larger probability if its
deletion or reverse leads to a higher scoring structure.
And when the IDM decides to add an edge to the net-
work, the connection with larger MI value will be first
considered.

3.2.5 Structure learning phases of MIIGA

The algorithm of MIIGA is shown in Algorithm 3. It
consists of 2 phases, including 7 steps:

1) The CB phase:

Step 1 Calculation of the MI and preprocessing the

results;

2) The SS phase:

Step 2 Initialization;

Step 3 Evaluation of the fitness;

Step 4 Tournament selection;

Step 5 Implementation of the PR operator;

Step 6 Binding parameter αMI update;

Step 7 Information-driven mutation.

3.2.6 Time complexity analysis

In this section, we analyze our algorithm in a worst-case

scenario for time complexity. As the proposed method
contains 7 steps, we discuss the time complexity for
each phase. Assume that the population size is m, the
maximum number of generations is g. Let N and n be
the number of data samples and number of variables,
respectively. Let r be the maximum number of possi-
ble states for any variable. In Step 1, we need to com-
pute the MI values for each pair of variables. Owing
to the symmetry of the MI, we need to only calculate
n(n− 1)/2 MIs. The complexity of computing each MI

value is O(4r2 + N) or simply O(N), since r is gener-
ally much smaller than N . Thus, the time complexity
of estimating all the MIs is O(Nn2). To sort MI values
for each variable, we adopt quicksort algorithm, and
the time complexity for that in the worst case is O(n2).
Because there are n variables, the complexity of sorting
MI values for all nodes is O(n3). Therefore, the overall
complexity for Step 1 is O(Nn2) + O(n3). For Step 2,
creating an individual based on the node ordering by us-
ing the MMI requires O(n2) time, so the complexity for

the initial population is O(mn2). Additionally, the in-
ner loop of the proposed algorithm, from Step 3 to Step

7, includes fitness evaluation, tournament selection, re-
combination, binding parameter update and mutation.
In Step 3, we calculate the fitness values according to
the BIC metric, and the time required for computing
BIC scores is O(Nn2), so the complexity for fitness e-
valuation is O(mNn2). For Step 4, suppose there are s
competitors in the tournament, we need to first select
s individuals from the cu nt population, that is, the)(rre

mnumber of alternatives is and then sort the fitness
s

values of the selected individuals, thus the complexity 
for tournament selection is O(m3s2) or simply O(m3) 
as s is normally much smaller than m. In Step 5, in view 
of the pseudocode for the PR operator displayed in Al-

gorithm 1, we use O(n2 + nq), where q is the maximum 
number of parents for any variable, to implement the 
recombination for each pair of individuals. Note that 
there are only half of the population that participate 
the recombination, so the time complexity for Step 5 
is O(mn2/2 + nqm/2). Besides, in Step 6, we update 
the binding parameter according to Eq. 16, and then 
modify the second part of the chromosome for the cor-
responding individual based on Eq. 4. Note that the 
worst case to select individuals which execute binding 
parameter update requires there is none of the selected 
networks which successfully produce the better struc-
ture in Step 5, thus the time complexity for Step 6 is 
O(mn2). For Step 7, we need O(m) to implement the 
mutation operation. Therefore, the complexity of the 
inner loop is O(mNn2 +m3 +mn2/2 + nqm/2 +mn2 + 
m). Moreover, the outer loop is related to the number 
of iterations g, consequently, the time complexity of the 
proposed algorithm is O(Nn2)+O(n3)+O(mn2)+O(g · 
(mNn2 + m3 + mn2/2 + nqm/2 + mn2 + m)).

4 Experimental results and discussion

In this section, to study the performance of the pro-
posed algorithm, we select four benchmarks of BNs 
including the ASIA, CAR DIAGNOSIS2, Alarm and 
Child5 networks to conduct the experimental evalua-
tion. Comparative studies are also performed with the 
following existing methods: conventional genetic algo-
rithm (CGA) [24], dual genetic algorithm (DGA) [12], 
Bayesian Network PowerConstructor (BNPC) [34], K2 
greedy algorithm [29], BN Construction algorithm us-
ing Particle Swarm Optimization (BNC-PSO) [10], Im-
proved K2 algorithm via Markov Blanket (IK2vMB)
[18] and Max-Min Hill Climbing (MMHC) [22]. Besides, 
the performance analysis is also presented through com-
puter simulations to demonstrate the validity of the 
proposed method. Finally, we design a set of experi-
ments aimed at testing the applicability of the algo-
rithms presented in this paper.
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Algorithm 3 MIIGA Algorithm

1: Calculate the MI for each node and store the results in a matrix Info;
2: Sort Info in a descending order;
3: store the descending MI values and the corresponding index matrix in two matrices IV , IO respectively, and store the

MMI in a vector MMI;
4: for each individual in the initial population pop(0) do

5: Obtain a node ordering using MMI;
6: Get the value of αMI randomly to restrict the search space;
7: Store the edges that satisfy Eq. 4 in the matrix Infomat by checking IV , IO;
8: Create an individual based on Infomat in a reduced solution space;
9: end for

10: Evaluate the BIC score for each individual in pop(0) and store two parts of BIC score, i.e., the log-likelihood and the
penalization function value for every node in each individual in the matrices (llSi)m×n and (dpSi)m×n, respectively;

11: Find the current optimal individual and store its penalization function value in best dpS;
12: Produce the population pop(1) for the first generation using the tournament selection;
13: for G=1:generation size do

14: Randomly pick pop size/2 individuals in the pop(G), the rest are marked as np;
15: for each picked individual old indiv do

16: Randomly select an individual former indiv from pop(G− 1);
17: Invoke the procedure priority-recombination;
18: if a better individual is successfully produced then

19: Regard the new individual as the offspring;
20: else

21: Put back old indiv, and mark it as np;
22: end if
23: end for

24: for each individual marked as np do

25: Update αMI by an increment or decrement of ∆α, compared with best dpS;
26: Renovate the search space according to the value of αMI ;
27: Perform the information-driven mutation operator to alter the structure in the new search space;
28: Regard the new individual as the offspring;
29: end for

30: Evaluate the BIC scores for the new offspring;
31: Sort the BIC scores of individuals, including all new offspring and pop(G), in a descending order;
32: Store the pop size individuals with top pop size highest BIC scores in a intermediate population pop′;
33: Select the population pop(G+ 1) from pop′ using the tournament selection and update best dpS;
34: end for

35: Return the individual with highest BIC score in any generation as output;

4.1 Experimental setup

To assess the performance of the methodology, we carry

out the experiments on six different synthetic data set-

s, which are generated from four well-known BNs. The

ASIA network [35] is a small BN that consists of eight

nodes and eight edges. The network represents a ficti-

tious medical example of whether a patient has tuber-

culosis, lung cancer, or bronchitis, related to the chest

clinic. All random variables are discrete and each can

take two discrete states, as shown in Fig. 2. A database

of 1000 cases is utilized to train the BN. CAR DIAGN-

OSIS2 (Brent Boerlage, http://www.norsys.com) is a

network of moderate size used for diagnosing why a car

does not move based on spark plugs, headlights, main

fuse, among others. It contains 18 discrete nodes and

20 edges. The random variables can take two or three s-

tates. Fig. 3 shows the structure of the CAR DIAGNO-

SIS2 network depicted by Netica from which three data

sets of different sizes are collected, including 500, 1000

and 2000 sample cases respectively. The Alarm network

[22] presented in Fig. 4 is a medical diagnostic system

for patient monitoring, which contains 37 nodes and 46

edges. The maximum number of possible states for any

variable in Alarm is four. Another BN is Child5 [22].

It is a relatively large network containing 100 nodes

and 126 edges. The variables in Child5 take a varying

number of states from 2 to 6. Data sets sampled from

the latter two BNs were released by the authors in [22],

and we select 5000 cases to perform the task of struc-

ture recovery for both two BNs. Table 2 provides the

general information about the data sets used in our ex-

periments.

The experimental platform used in our paper is a

personal computer with Intel Core i5-5300U, 2.30 GHz,

32 bits architecture, 4 GB RAM memory and under

Windows 7. The programs are all compiled using the

Matlab software release R2014a. In order to prevent the

exponential growth in the number of possible configu-

rations of the parent sets with the number of parents,
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Fig. 4 The Alarm network

Table 2 General information about data sets

Data set Original network Size No.nodes No.edges Domain
Max In/Out

-degree
BIC score

ASIA-1000 ASIA 1000 8 8 2 2/2 -2.3105e+03
CAR DIAGNOSIS2-500 CAR DIAGNOSIS2 500 18 20 2-3 5/3 -3.3253e+03
CAR DIAGNOSIS2-1000 CAR DIAGNOSIS2 1000 18 20 2-3 5/3 -6.2745e+03
CAR DIAGNOSIS2-2000 CAR DIAGNOSIS2 2000 18 20 2-3 5/3 -1.2093e+04
Alarm-5000 Alarm 5000 37 46 2-4 4/5 -4.8724e+04
Child5-5000 Child5 5000 100 126 2-6 2/7 -3.1752e+05

Fig. 2 The ASIA network

Fig. 3 The CAR DIAGNOSIS2 network

the maximum number of parents of each node is limited

to five for simplicity. Additionally, the same BIC metric

is employed in CGA, DGA and BNC-PSO to evaluate

the fitness of the candidate BN structures, so that it is

convenient to compare their performance with that of

MIIGA.

Allowing for the stochastic nature of GA, PSO and

MMHC, it is necessary to execute more than one run

to verify the final solution in the simulations. Thus, for

MIIGA, CGA, DGA, BNC-PSO and MMHC, we run

30 times for each testing instance and average the re-

sults. While BNPC is a deterministic algorithm using

dependency analysis approach, we only execute once

for each data set. And since the relevant program pro-

vided by Causal Explorer (http://www.dsl-lab.org)

can only obtain a PDAG as structure-learning result,

we give a random direction for those undirected edges.

Meanwhile, K2 algorithm obtains the same output even

for repeated runs due to the deterministic property

with the same node ordering. Therefore, in all exper-

iments, to ensure a fair comparison, the node order-

ing used as input in K2 algorithm is given stochas-

tically without the prior information, and we execute

this approach 30 times with different orderings. Fur-

thermore, since IK2vMB employs a maximum weight

spanning tree (MWST) to establish the initial search
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graph, which needs to assign the root node first, we still

conduct the related experiments 30 times with different

root node.

4.2 Comparison among MIIGA and other algorithms

In the following, we compare the proposed algorithm

MIIGA with the other seven different existing meth-

ods, i.e., CGA, DGA, BNPC, K2, BNC-PSO, IK2vMB

and MMHC, based on all of the data sets. The final

experimental parameters are confirmed by large num-

bers of experiments. Both GA-based algorithms and

PSO-based approach, including MIIGA, CGA, DGA

and BNC-PSO, use the same population size and the

same maximum number of generations, which are 100

and 500 respectively. For MIIGA, the tournament size

is 2 in a tournament selection. In particular, we set ∆α

to be 0.02 in the Eq. 16 for updating the value of the

binding parameter αMI . For CGA, the crossover rate

is 0.5, and the mutation rate is 0.1. And for DGA, the

crossover rate is 0.65, the mutation rate is 0.05. Be-

sides, the parameter values of BNC-PSO are the same

as those used in [10].

To examine the effectiveness and efficiency of these

eight algorithms, we adopt the following four measures:

1) ABB. The average BIC score of the final individ-

uals.

2) ART. The average running time in seconds.

3) AGB. The average generation that the best-so-far

individual is obtained.

4) AHD. The average structural Hamming distance

(SHD) between the best individual and the original BN
structure, including the number of mistakenly added,

deleted and reversed directed edges.

In Table 3 and Table 4, there are the experimental

results of the comparison among the proposed method

and the other seven different algorithms in four mea-

sures. Notice that structure estimation of BNs from

data using exact algorithms is a computational hard

task with more than around 30 variables, Table 4 pro-

vides the summary of the structure-learning results car-

ried out on the Alarm and Child5 networks, which are

much larger than the two benchmarks of BNs used in

Table 3, to further evaluate the validity of the proposed

algorithm. It is noteworthy that except BNPC which

only obtains the SHD, the other seven approaches have

been executed 30 times for each data set, so the figures

in the table are the averages of 30 trials, but for K2,

IK2vMB and MMHC, only the average of the BIC s-

cores and the SHD have been recorded because these

three methods deal with BN structure learning problem

without using population-based approach, thus AGB is

not available and ART is neither comparable. Moreover,

numbers in parentheses below the name of data sets are

the BIC scores of the original networks used as refer-

ence and the standard deviations over 30 executions are

the numbers in parentheses presented under the figures

in Table 3 and Table 4. Comparing with BNPC, K2

and IK2vMB, MIIGA shows almost better results in

learning BN structures according to the AHD statistic-

s. However, when reconstructing the Child5 network,

IK2vMB performs better than the proposed algorithm

in terms of both BIC score and structural difference. As

for MMHC, we can clearly observe from the AHD that

its simulation results come closest to those of MIIGA

for all data sets, and MIIGA performs slightly better

than MMHC in structure recovery.

In Fig. 5, considering that the figures of the exper-

imental results for the Child5 network are much larger

than those of other BNs, which are reported in Table 4,

so to make the comparison easily, three figures are plot-

ted for clarity to show the comparison of three of the

measures defined above, i.e., AHD, AGB and ART, a-

mong four algorithms including MIIGA, CGA, DGA

and BNC-PSO for five different data sets except for the

Child5-5000, using the error bars where the confidence

level is set to be 95%. In the figures, CAR DIAGNOSIS

is abbreviated to CAR for the convenience.

Note that the smaller value of AHD implies that

the estimated BN structure is more similar to the orig-

inal network, it can be seen from Fig. 5a and Fig. 5b

that for all experimental data sets, MIIGA spends fewer

generations to find better structures which are closer to

the original networks in terms of the number of genera-

tions that are taken to find best-so-far solution (AGB)

and structural difference (AHD), compared with other

three methods. Besides, we observe in Fig. 5c that MI-

IGA takes the least time to finish the execution among

all comparative methods on first four data sets except

for the Alarm-5000 under the same termination condi-

tion (ART) even though the proposed algorithm needs

to use part of the running time to initialize the pop-

ulation by employing the MI, rather than the random

initialization like other methods. Therefore, in view of

the AHD and AGB statistics, we can draw the conclu-

sion that MIIGA has better performance in learning the

BN structures over its competitors.

Different from CGA and BNC-PSO which both use

an adjacent matrix to represent an individual, MIIGA

adopts a node ordering and the corresponding upper

triangular matrix in the encoding scheme. Thus, during

the evolutionary process, there is no need to implement

the repairing operator since the genetic operators are

closed, while CGA and BNC-PSO have to spend a sig-

nificant part of the total execution time in transforming
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Table 3 Comparison of the proposed and other existing methods on the Asia and CAR DIAGNOSIS2 networks

Data set Method ABB ART AGB AHD

ASIA-1000
(-2.3105e+03)

MIIGA
-2.3130e+03

(4.0081)
74.7182

(47.6697)
49.6667

(31.2535)
1.2000

(0.6103)

CGA
-2.3174e+03

(4.6447)
91.1733
(6.8727)

61.6333
(17.7151)

6.0333
(1.4259)

DGA
-2.3180e+03

(7.3747)
102.4410
(9.7233)

76.9333
(21.9135)

4.1333
(1.4794)

BNC-PSO
-2.3144e+03

(4.2952)
56.2261
(3.0005)

25.7333
(15.9740)

5.4000
(1.6938)

MMHC
-2.3191e+03

(6.1148)
/ /

2.0667
(0.2582)

K2
-2.3319e+03

(14.2652)
/ /

7.9333
(2.6514)

IK2vMB
-2.3278e+03

(10.9498)
/ /

5.2000
(1.5844)

BNPC / / / 2

CAR DIAGNOSIS2-500
(-3.3253e+03)

MIIGA
-3.1228e+03

(14.1615)
140.0882
(34.4109)

145.5333
(121.1231)

8.5667
(0.7739)

CGA
-3.1762e+03

(49.1105)
179.7834
(4.8787)

363.1667
(65.8573)

19.9000
(2.1391)

DGA
-3.1111e+03

(28.0405)
217.1188
(4.3239)

427.4667
(50.9339)

13.3000
(1.5790)

BNC-PSO
-3.1202e+03

(31.6380)
141.0358
(1.4320)

69.3333
(13.0736)

15.9333
(1.3374)

MMHC
-3.1933e+03

(46.2161)
/ /

12.2000
(1.4736)

K2
-3.2571e+03

(73.3665)
/ /

20.9000
(3.9071)

IK2vMB
-3.1584e+03

(24.9771)
/ /

18.4667
(2.7258)

BNPC / / / 11

CAR DIAGNOSIS2-1000
(-6.2745e+03)

MIIGA
-6.0417e+03

(12.9550)
162.7560
(54.0104)

33.0000
(17.1464)

7.5000
(0.9738)

CGA
-6.1357e+03

(52.5363)
199.7532
(5.6645)

376.8667
(55.3937)

18.8000
(2.1399)

DGA
-6.0937e+03

(50.1974)
220.4229
(11.6764)

416.5667
(48.2220)

14.3667
(1.8286)

BNC-PSO
-6.0957e+03

(47.5138)
143.3565
(1.2525)

77.5333
(27.1506)

16.8000
(1.3995)

MMHC
-6.1477e+03

(89.8395)
/ /

9.6000
(1.1212)

K2
-6.2950e+03
(107.9888)

/ /
23.5333
(3.9105)

IK2vMB
-6.1977e+03

(90.2832)
/ /

18.3333
(3.4773)

BNPC / / / 8

CAR DIAGNOSIS2-2000
(-1.2093e+04)

MIIGA
-1.1859e+04

(3.6043)
111.8929
(45.9301)

75.9000
(46.6087)

5.0667
(0.6915)

CGA
-1.1978e+04

(53.4192)
129.7303
(1.6758)

399.2333
(65.9460)

18.3000
(1.8223)

DGA
-1.1932e+04

(58.6156)
222.7345
(6.3109)

430.0333
(51.6503)

13.4000
(2.1592)

BNC-PSO
-1.1964e+04

(49.6195)
148.3080
(1.8731)

78.7667
(20.9378)

18.1000
(2.0736)

MMHC
-1.1989e+04
(213.2586)

/ /
6.5333

(1.2459)

K2
-1.2215e+04
(209.4246)

/ /
23.8333
(5.0452)

IK2vMB
-1.1991e+04

(58.1766)
/ /

20.6333
(2.4703)

BNPC / / / 7
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Table 4 Comparison of the proposed and other existing methods on the Alarm and Child5 networks

Data set Method ABB ART AGB AHD

Alarm-5000
(-4.8724e+04)

MIIGA
-4.9995e+04
(211.1703)

1.0397e+03
(394.1418)

65.9000
(74.8347)

9.0667
(5.7950)

CGA
-5.4279e+04
(104.0603)

1.2157e+03
(114.1812)

488.3333
(15.1483)

33.6000
(5.5746)

DGA
-5.6796e+04
(856.2856)

790.9612
(19.6425)

496.2333
(3.0477)

28.8667
(3.3501)

BNC-PSO
-4.9487e+04
(392.8225)

865.0046
(45.8914)

385.1667
(61.0438)

14.2333
(4.2725)

MMHC
-4.9329e+04
(431.5650)

/ /
10.2667
(3.7123)

K2
-5.8978e+04
(3.4295e+03)

/ /
60.7000
(6.5292)

IK2vMB
-5.0676e+04
(1.1062e+03)

/ /
20.2000
(4.6713)

BNPC / / / 10

Child5-5000
(-3.1752e+05)

MIIGA
-3.2240e+05
(2.5277e+03)

1.0299e+04
(2.4004e+03)

42.4667
(51.3452)

36.8000
(11.9146)

CGA
-3.2323e+05
(5.7673e+03)

5.6261e+03
(1.1545e+03)

489.8400
(15.1676)

81.1600
(13.3157)

DGA
-3.2448e+05
(3.4676e+03)

6.0752e+03
(77.9467)

498.3333
(2.4398)

60.5333
(9.3034)

BNC-PSO
-3.2440e+05
(2.8613e+03)

9.3081e+03
(1.5113e+03)

496.6667
(4.0478)

54.4074
(12.2608)

MMHC
-3.2085e+05
(109.8116)

/ /
39.3333
(1.5430)

K2
-3.3089e+05
(2.0785e+03)

/ /
115.4000
(13.8330)

IK2vMB
-3.1974e+05
(902.3164)

/ /
26.2000
(6.2555)

BNPC / / / 55

(a) (b) (c)

Fig. 5 Three measures for the four algorithms tested with five different data sets. (a) The AHD statistics. (b) The AGB
statistics. (c) The ART statistics

the illegal offspring into DAGs. Besides, the PR opera-

tor takes two existing individuals as input to generate a

better network that inherits the superior substructures

from the parental individuals, so we can directly reuse

the previous computational results of the BIC scores

to save time. Therefore, in terms of the ART statistic-

s, MIIGA performs better than CGA and BNC-PSO

with relatively small networks. But when we compare

the larger BNs like the Alarm and Childs networks in

Table 4, taking into account that MIIGA needs to al-

ter the value of the binding parameter based on the

update principle provided in Sect. 3.2.3 to refine the

search space as the evolutionary search proceeds, it is

time-consuming with the increasing number of nodes.

So MIIGA costs more time than other methods to finish

the simulation using the Alarm-5000 and Child5-5000

data sets.
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Fig. 7 The BIC score of the best-so-far structure averaged
over 30 executions on the Alarm-5000 data set for four algo-
rithms

Both DGA and MIIGA use the node ordering as

the restriction which is a strong constraint to reduce

the search space. When an inappropriate permutation

of variables is given, it is very likely that some fun-

damental edges will be deleted. But MIIGA is able to

dynamically change the search space by updating the

binding parameter αMI in the evolutionary process.

Moreover, recalling that the log-likelihood function is

score equivalent, it is inefficient for a GA to consume

much time in searching for the networks that belong

to the same equivalence class. Unlike DGA, MIIGA in-

troduces the PR operator to replace the convention-

al crossover, which can produce the offspring having
different log-likelihood function values from those of

the parental population. According to the above two

virtues, the PR operator is able to explore more BN

structures in different equivalence classes and in vary-

ing search space, making MIIGA more likely to find bet-

ter solutions. Consequently, comparing the count of the

structural difference (AHD) and the BIC scores (ABB),

we observe that MIIGA shows better performance than

DGA.

As shown in Fig. 6 and Fig. 7, we compare four al-

gorithms including MIIGA, CGA, DGA and BNC-PSO

more intuitively for the three different data sets of the

CAR DIAGNOSIS2 network and the Alarm-5000 da-

ta set, respectively. For each method, we evaluate the

BIC score of the best-so-far structure averaged over 30

executions as the generations proceed. In all figures,

the solid lines present the results of MIIGA, the short-

dashed lines record the learning results of CGA, the

long-dashed lines represent the results of DGA and the

dash-and-dot lines show the results of BNC-PSO. It

can be seen that apart from the CAR DIAGNOSIS2-

500 data set, MIIGA initially outperforms the other

three methods and continues to find the network hav-

ing the highest BIC score among all four approaches for

the same number of generations until the termination.

Moreover, we can see that MIIGA has an obvious ad-

vantage in the convergence speed and simultaneously

always converges to a better structure in terms of the

higher BIC score with the larger data sets.

Comparing these four algorithms, we believe that

the excellent performance of the proposed method could

be attributed both to the dynamic selection of the re-

duced search space and to the introduction of the PR

operator. For CGA, DGA and BNC-PSO, randomly s-

elected initial population is used at the beginning of

the evolution. Because the random synthetic networks

cannot reflect the knowledge of the given data set, it

is hard to ensure the rapid convergence to the optimal

solution. While for MIIGA, it takes advantage of the

MI to filter the useless structures when implementing

the initialization, making the initial population closer

to the optimal structure. In the evolutionary process,

the search space is adaptively changed by updating the

binding parameter, thus the proposed method is less

likely to get trapped in a local optimum. Furthermore,

instead of stochastically exchanging some part of the

parental individuals like the other three methods, the

PR operator in MIIGA identifies the excellent substruc-

tures and passes on them to the offspring, resulting in

the better quality of the individuals for the subsequent

generation.

4.3 Performance analysis of MIIGA

To further study the performance of MIIGA, we con-

duct the following experiments focusing on the factors

that affect the efficiency and the effectiveness of the

proposed algorithm. On one hand, we want to investi-

gate the contributions of the MI and the PR operator.

On the other hand, we desire to validate the effect of

the binding parameter αMI . All experiments are car-

ried out on the CAR DIAGNOSIS2-2000 data set and

the results are the averages of 30 trials. The default

settings we assume in the simulations are the popula-

tion size is 100, the maximum number of generations

is 500, and the tournament size is 2 in a tournament

selection. Besides, the Mann-Whitney test [36] at the

0.05 significance level is applied to the estimation of

the difference between MIIGA and other methods in

the diverse measures.
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(a) (b) (c)

Fig. 6 The BIC score of the best-so-far structure averaged over 30 executions on three different data sets for four algorithms
(a) CAR DIAGNOSIS2-500 data set. (b) CAR DIAGNOSIS2-1000 data set. (c) CAR DIAGNOSIS2-2000 data set

4.3.1 Influence of the MI

In order to limit the search space for the subsequent

SS phase, before starting the evolutionary iteration, it

is necessary to impose the restriction on the candidate

networks to filter some invalid BN structures. Consid-

ering that the MI implies the degree of the dependence

between two random variables, we use the MI to selec-

t the networks that satisfy the constraint presented in

Eq. 4 as the initial population. In this subsection, we

modify MIIGA by initializing the population random-

ly without the help of the MI. This implementation is

called “MIIGA-InitMI”. Table 5 provides a summary of

the comparative results of these two approaches. Note

that apart from the four measures mentioned above to

evaluate the performance of the methods, there is a

new item recorded in the table, which is denoted as

ABI that represents the average BIC score of the best

network obtained in the first generation.

From Table 5, we observe that the ART, AGB and

AHD of MIIGA are significantly lower than those of

MIIGA-InitMI ( p- values are 0.0019, 9.8892e-11, and

4.5357e-10 respectively). Thus, MIIGA does outperfor-

m the modified method MIIGA-InitMI in terms of the

efficiency and the effectiveness. According to the ABI

statistics, it is obvious that the initial population in

MIIGA has much better quality (p-value is 3.0199e-11),

compared against MIIGA-InitMI, and it evidently af-

fects the accuracy performance of the final solution,

as the ABB statistics suggest (p-value is 1.5543e-6).

Hence, we believe that the initialization by means of

the MI is able to effectively enhance the search efficien-

cy for the best structure (AGB) and meanwhile make

the final solution much closer to the original network. In

fact, because the MI is a brilliant way to interpret the

dependence between variables, we utilize it to initially

produce the population. Each individual in the initial

population has to satisfy the constraint which contains

a large amount of information about the original net-

work based on the given data set. Therefore, MIIGA

can avoid the necessity of selecting the individual from

the entire search space of possible BN structures and

simultaneously keep the performance of the individuals

at the high level in the SS phase.

4.3.2 Influence of the PR operator

When the conventional crossover is applied to the pop-

ulation, since it always tends to recombine two individ-

uals arbitrarily, the newly generated offspring may not

inherit the superior features from the parents. Thus,

we present the PR operator based on the log-likelihood

function to produce better offspring without the split

of the existing best-so-far substructures. In this experi-

ment, we concentrate on the influence of the PR opera-

tor on the performance of MIIGA. Hence, we compare

the proposed algorithm with another method called “

MIIGA-PR”, and the only difference between two ap-

proaches is that we perform the conventional crossover,

instead of the PR operator in MIIGA-PR. The compar-

ison results are provided in Table 6.

From the table, it can be observed that MIIGA

needs less iteration to find better solutions according to

the AGB and AHD statistics. Apart from the average

values, the results of the Mann-Whitney test indicate

that the difference between MIIGA and MIIGA-PR is

significant (p-values are 2.4238e-09 and 9.7213e-04, re-

spectively). Since the PR operator can preserve the ex-

cellent genes when exchanging information among the

population members, it is easier for MIIGA to obtain

higher scoring structures. While in view of the random-

ness of the conventional crossover, it is very likely that

MIIGA-PR has to repeatedly recover the information

that has been lost because of the arbitrary recombi-
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Table 5 Performance of modified MIIGA with the random initialization

ABB ART AGB AHD ABI

MIIGA
-1.1859e+04

(3.6043)
111.8929
(45.9301)

75.9000
(46.6087)

5.0667
(0.6915)

-1.2830e+04
(584.4365)

MIIGA-InitMI
-1.1904e+04

(69.8365)
151.5861
(51.0457)

267.6000
(89.7935)

8.6667
(2.4821)

-1.6015e+04
(299.6605)

Table 6 Performance of modified MIIGA without the PR operator

ABB ART AGB AHD ABI

MIIGA
-1.1859e+04

(3.6043)
111.8929
(45.9301)

75.9000
(46.6087)

5.0667
(0.6915)

-1.2830e+04
(584.4365)

MIIGA-PR
-1.1871e+04

(18.2177)
250.3739
(44.8972)

241.3667
(101.3612)

6.4333
(1.7943)

-1.2955e+04
(519.6785)

nation. Therefore, the best-so-far individual obtained

by MIIGA-PR always appears later than MIIGA. Be-

sides, the PR operator produces the offspring by select-

ing parent sets from the parental population, thus there

is no need to invoke the fitness computation procedure.

Consequently, MIIGA takes significantly less time to

finish than MIIGA-PR in terms of the ART (p-value is

1.3289e-10).

4.3.3 Effect of the binding parameter αMI

According to the encoding scheme described in Sec-

t. 3.1, different value of the binding parameter αMI

is placed on the last locus of every chromosome. As the

evolutionary search proceeds, the value of αMI is going

to be adaptively changed based on Eq. 16. It is obvious

that due to the varying value of αMI , each individual

in the population attempts to launch the search in the

different search space. In this experiment, we assess the

effect of αMI from two aspects. On one hand, compared

against the method called “MIIGA+FixA” which uses

the fixed value of αMI to restrict the search space, we

have a better understanding of the importance of dy-

namic update capability of αMI in the proposed algo-

rithm. In MIIGA+FixA, we set the value of αMI to be

0.9 as [14] and [19] did. On the other hand, we need to

figure out the necessity of the construction of Eq. 16 by

comparing another approach named “MIIGA+RdA” in

which the value of αMI is altered stochastically during

the evolutionary process. We present our results in Ta-

ble 7.

From the table, we notice that the differences be-

tween MIIGA and MIIGA+FixA in all the measures,

including the ABB (p-value is 1.5212e-12), the ART (p-

value is 4.5043e-11), the AGB (p-value is 2.8954e-11),

the AHD (p-value is 1.6579e-11) and the ABI (p-value

is 2.7818e-07), are statistically significant. Despite that

MIIGA+FixA takes less time to finish the execution

under the same termination condition due to the lack

of the update operation for αMI , the structural differ-

ence between the final solution and the original net-

work is much greater, compared with MIIGA. Hence,

we can conclude that using varying value of αMI pro-

vides the actual improvement on the effectiveness of

BN structure learning. In fact, when the value of αMI

is predefined, the search space is also settled. It is very

likely that some crucial edges are deleted permanent-

ly and many false connections are included in the final

solution. Besides, because the search space stays the

same during the evolutionary process, MIIGA+FixA

has higher chance of being trapped in a local optimum,

thus the best-so-far solution obtained by MIIGA+FixA

appears much earlier than MIIGA in terms of the AGB

value. While for MIIGA, it becomes evident that the

search space can be modified dynamically by changing

the value of αMI . Thus, the individuals in the new gen-

eration are able to explore more possible structures in

different search space to get higher chance of obtaining

the global optimal solution.

When comparing MIIGA and MIIGA+RdA in Ta-

ble 7, we find that the difference in the ABI statistics

(p-value is 0.1223) is not statistically significant, which

indicates that the best individuals having similar quali-

ty are obtained in the initial population due to the same

initialization routine. While the ABB value of MIIGA

is evidently higher than that of MIIGA+RdA (p-value

is 0.0101) and the AHD value of MIIGA is significantly

smaller than that of MIIGA+RdA (p-value is 1.5396e-

07), which implies that MIIGA is able to find better so-

lution that is closer to the original network, compared

with MIIGA+RdA. Since Eq.16 guides the update op-

eration of the binding parameter αMI , it is more ef-

ficient and more accurate to change the search space

in MIIGA, rather than randomly altering the value of
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Table 7 Performance of modified MIIGA with different uses of αMI

ABB ART AGB AHD ABI

MIIGA
-1.1859e+04

(3.6043)
111.8929
(45.9301)

75.9000
(46.6087)

5.0667
(0.6915)

-1.2830e+04
(584.4365)

MIIGA+FixA
-1.2147e+04

(10.8180)
55.3026
(6.5850)

6.8333
(3.4749)

15.0333
(1.8659)

-1.2255e+04
(142.5399)

MIIGA+RdA
-1.1863e+04

(10.9366)
177.8257
(18.2734)

278.4000
(54.1553)

6.3667
(1.2726)

-1.2854e+04
(224.5912)

αMI in the evolutionary process, making MIIGA+RdA 
more likely to lose the optimal solution.

4.4 Applicability analysis of MIIGA

It can be observed from Table 4 that MIIGA is un-able 
to obtain the best result when reconstructing the Child5 
network which contains 100 nodes, defeated by 
IK2vMB. Therefore, we further conduct comparative 
experiments on several artificial networks in different 
scale to study the applicability of MIIGA.

For this experimental comparison we select 10 net-
works as the original BNs, and consider structure size 
from 37 up to 130 in increments of around 10 nodes, in-
cluding the Alarm, Child3, Child5 networks used in [22] 
and other randomly-generated networks using toolbox 
of FullBNT-1.0.4 in Matlab. For each of these networks, 
we work with data sets sampled from them with 5000 
instances. More detailed information about these net-
works is provided in Table 8.

Since MIIGA possesses an apparent superiority of 
the number of generations that are taken to find best-so-
far solution over other competitors based on the AG-B 
statistics in Table 3 and Table 4, as performance indi-
cator we adopt only one of the measures defined above, 
i.e., AHD, considering that this measure indicates the 
difference between the estimated structure and the o-
riginal BN.

The AHD statistics for all experiments are summa-
rized in Table 9. All results are the average of 30 tri-als 
and the best result is in bold. It can be seen that 
compared against other algorithms, MIIGA can always 
discover the best structures with less structural differ-
ence with respect to the original BNs containing less 
than 100 nodes. However, for the networks in large s-
cale, such as BN110, BN120 and BN130, in terms of the 
accuracy of the learned model, the performance of 
MMHC is better than that of MIIGA, but with relative-
ly small differences. Furthermore, when we consider the 
ratio of true arcs learnt, which is called coverage, we no-
tice that apart from K2, any other algorithm tends to be 
more ineffective as the number of nodes increases.

Fig. 8 Coverage of learning ten artificial networks for MIIGA 
and other existing methods

Fig. 8 shows the ratio of true arcs learnt employing MI-
IGA and other existing methods for ten data sets, and in 
order to clarify the relation between the results of all 
networks in different scale for each algorithm, results 
from the same method are linked up.

According to the AHD statistics in Table 9, MIIGA 
is better at recovering causal relations for networks be-
tween 30 and 90 nodes in virtue of the preprocessing in 
which it tries to identify the connections with highest 
possibility for each node and the dynamic constrained 
search space in case of being stuck in a local optimum. 
Nevertheless, as shown in Fig. 8, the ratio of true arcs 
learnt using MIIGA decreases with the increasing num-
ber of nodes, that is, the accuracy of the estimated 
model becomes lower when we deal with large scale net-
works. This result is justified because as the number of 
nodes increases, even though some invalid structures 
can be eliminated to constrain the search space with the 
help of MI, the scale of the search space is still enormous 
contrary to the fixed size of the population used in the 
evolutionary process. Besides, in view of the available 
memory, 5000 cases are provided to train BNs in 
different scale, so there is a strong possibility that the 
sample size is not big enough to offer sufficient in-
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Table 8 Detailed information about artificial networks

Network Size No.nodes No.edges
Max In/Out

-degree

Alarm 5000 37 46 4/5
BN48 5000 48 68 3/5
Child3 5000 60 79 3/7
BN70 5000 70 96 3/8
BN80 5000 80 104 3/8
BN90 5000 90 125 3/7
Child5 5000 100 126 2/7
BN110 5000 110 150 3/10
BN120 5000 120 161 3/7
BN130 5000 130 202 3/8

Table 9 Comparison of the proposed and other existing methods in terms of AHD

Network MIIGA IK2vMB MMHC CGA DGA BNC-PSO K2 BNPC

Alarm 9.0667 20.2000 10.2667 33.6000 28.8667 14.2333 60.7000 10
BN48 11.9667 38.3667 19.9667 37.6000 30.8000 18.3333 63.1333 20
Child3 13.4667 18.3333 13.5333 39.2800 40.3000 22.5667 72.9667 22
BN70 24.2667 48.6000 26.4000 50.8000 36.0667 34.9333 80.2667 37
BN80 33.8333 53.4000 34.6333 62.7667 43.0588 40.8000 90.7000 42
BN90 36.1000 62.2000 38.8667 68.3000 58.6000 53.1000 111.5000 50
Child5 36.8000 26.2000 39.3333 81.1600 60.5333 54.4074 115.4000 55
BN110 34.1667 89.4333 32.2667 88.8000 68.3333 62.5667 130.6000 57
BN120 65.8667 96.9333 65.6333 126.8000 97.6000 71.9333 146.4333 64
BN130 69.7333 104.0333 63.2333 146.6667 127.2000 107.1000 181.7667 93

formation about the original networks when we tackle 
with large scale BNs.

It may be possible to develop method to further 
increase the applicability of MIIGA, making it scale up 
to BNs with hundreds of nodes. In particular, authors in 
[37] have recently proposed a new BN structure learning 
algorithm called SAR (Separation And Reunion), which 
decomposes the task of constructing a large BN into 
learning some relatively small networks, and the final 
structure can be obtained by recombining these small 
BNs. Motivated by this kind of study, we plan to adopt 
the decomposition as the first step before using MIIGA 
to implement the task of learning large BNs, so as to 
improve the accuracy of structure estimation, which is 
discussed in an uncompleted paper.

5 Conclusion

In this paper, a hybrid algorithm called MIIGA for 
structure learning of BNs is presented based on an im-
proved GA and information theory. We first design a 
new encoding scheme, where an individual consists of 
three parts: a node ordering, an upper triangular ad-
jacent matrix and a binding parameter. The value of 
the parameter is subjected to be adaptively changed 
during the evolutionary process to guarantee that the

search is able to traverse the varying search space, in-
creasing the possibility of obtaining better alternatives.
Besides, thanks to the permutation of variables, there
is no need to prevent or repair any cycles generated in

the child networks as the iteration proceeds, which can
decrease the execution time. Then, the MI is used to
filter the useless networks and improve the quality of
the individuals, thus the convergence performance of
the proposed algorithm is significantly better than the
methods using randomly initial population. Moreover,

we develop the PR operator to obtain better individu-
als as the offspring so that the superior genes are able
to be passed on from generation to generation more
efficiently without the disruption of the excellent sub-
structures, compared with the conventional crossover.
This strategy has two advantages. On one hand, more
different equivalence classes are explored because the

PR operator can produce the offspring that belong to
the different equivalence classes from the parental pop-
ulation. On the other hand, owning to the reuse of the
BIC scores calculated in the previous generations, fewer
BIC metric evaluations are invoked. The proposed algo-
rithm is tested on the four standard BN structures, and
the experimental results demonstrate that our algorith-
m tends to work better in terms of the quality of the
final solutions, the convergence speed and the running
time, compared against other three existing population-
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based methods. Our future work concentrates on apply-

ing our proposed algorithm to the real-life problems, as

well as large-scale BN structure learning problems.
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