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Introduction
Ecosystem	services	are	 the	benefits	provided	by	nature	 to	 society	and	 the	economy.	They	can	be	classified	 into	 four	broad	categories:	 (1)	provisioning	 services,	 such	as	 the	 supply	of	 food	and	other	 raw

materials;	(2)	regulating	services,	such	as	the	mitigation	of	air	pollution	and	the	regulation	of	local	and	global	climate;	(3)	cultural	services,	such	as	social	relations,	health	and	well-being;	and	(4)	supporting	services,

such	as	water	cycling	and	biodiversity	(Millennium	Ecosystem	Assessment,	2005).	Urban	ecosystem	services	are	generated	in	a	diverse	set	of	habitats,	including	street	trees,	parks,	cemeteries,	and	private	gardens.	They

are	also	generated	by	engineered	green	infrastructure,	such	as	sustainable	urban	drainage	systems,	green	roofs,	and	vertical	greening	systems.

Since	the	seminal	article	by	Bolund	and	Hunhammar	(1999),	there	has	been	a	growing	body	of	literature	on	the	biophysical,	economic,	and	sociocultural	dimensions	of	ecosystem	services	in	urban	areas,	and

major	initiatives	such	as	the	Millennium	Ecosystem	Assessment	(2005)	and	The	Economics	of	Ecosystems	and	Biodiversity	(2011)	have	sparked	increasing	attention	in	public	policy	discourse	around	the	world.	The	benefits	of

urban	ecosystem	services	should	be	easily	understood	by	policy	makers	and	planners.	For	example,	street	trees	contribute	toward	urban	cooling,	reducing	air	conditioning	costs,	and	greenhouse	gas	emissions;	they

contribute	to	climate
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change	 mitigation	 by	 sequestering	 and	 storing	 carbon;	 they	 improve	 air	 quality	 by	 filtering	 particulates	 and	 other	 airborne	 pollutants,	 thereby	 lowering	 health	 costs;	 they	 intercept	 stormwater,	 reducing	 the

need	for	flood	infrastructure;	and	they	enhance	the	quality	of	place.	While	some	benefits	are	directly	measurable	and	have	hard	values,	such	as	the	energy	savings	due	to	the	insulation	provided	by	vertical	greening

systems,	others	are	not	so	readily	measurable	and	these	soft	values	are	difficult	to	estimate,	such	as	the	health	benefits	of	a	rooftop	garden.

It	is	important	to	bear	in	mind	that	urban	ecosystems	do	not	only	produce	services,	but	also	disservices,	which	have	been	defined	as	“functions	of	ecosystems	that	are	perceived	as	negative	for	human	well-

being”	(Lyytimäki	and	Sipilä,	2009:	311).	For	example,	some	species	of	trees	and	shrubs	commonly	planted	in	cities	emit	volatile	organic	compounds	that	can	lead	to	secondary	formation	of	ground-level	ozone	and

indirectly	contribute	to	urban	smog,	while	some	wind-pollinated	plants	can	cause	allergic	reactions.	The	costs	of	disservices	such	as	these	can	also	be	measured	and	valued.

Ecosystem	services	and	disservices	are	coproduced	by	people	and	nature,	and	a	social-ecological	approach	to	planning	and	policies	will	become	increasingly	necessary	in	order	to	enhance	human	well-being	in

urban	areas	in	the	face	of	new	and	complex	challenges	such	as	climate	change	and	migration	(Kremer	et	al.,	2015).	Understanding	and	addressing	resilience	through	urban	ecosystem	services	should	enable	urban

planning	to	become	more	adaptive	and	reflexive,	but	in	order	to	improve	resilience	we	need	to	understand	the	complex,	interactive	nature	of	urban	social-ecological	systems	(McPhearson	et	al.,	2015).

Provisioning	Services



Provisioning	services	are	 the	material	or	energy	outputs	 from	ecosystems.	The	high	proportion	of	 impermeable	surfaces	 in	urban	areas	restricts	 the	production	of	goods,	such	as	 food,	raw	materials,	and

medicinal	resources.	Nevertheless,	there	is	some	food	production	by	community	farms,	domestic	gardens	and	allotments	and,	in	recent	years,	a	growing	number	of	urban	farming	projects	have	been	set	up	in	and	on

buildings,	including	open	rooftop	farms,	rooftop	greenhouses,	and	indoor	farms,	largely	driven	by	the	desire	to	reconnect	food	production	and	consumption.	Urban	farming	practices	range	from	community-based	to

commercial	flagship	projects,	and	present	innovative	opportunities	for	recycling	resources,	especially	those	derived	from	synergies	between	agriculture	and	buildings,	such	as	the	reuse	of	residential	or	industrial

wastewater,	waste	heat,	and	organic	waste	(Ackerman	et	al.,	2014;	Buehler	and	Junge,	2016;	Specht	et	al.,	2014;	Thomaier	et	al.,	2014).
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Regulating	Services
In	urban	contexts	regulating	services	include	the	regulation	of	air	quality,	noise,	climate,	and	stormwater.	Air	pollution	caused	by	motor	vehicle	exhaust	emissions,	such	as	nitrogen	dioxide	and	particulate

matter,	is	a	major	health	issue	in	cities	around	the	world.	Urban	transport	infrastructure	often	results	in	the	funnelling	of	pedestrians	along	major	roads,	where	the	concentration	of	air	pollution	is	highest.	Green

corridors	across	cities	can	reduce	pedestrian	exposure	to	pollution	by	providing	alternative	routes.	Vegetation	removes	pollutants	in	several	ways.	Plants	take	up	gaseous	pollutants	through	their	stomata,	intercept

particulate	matter	with	 their	 leaves,	 and	are	 capable	 of	 breaking	down	certain	 organic	 compounds	 such	as	polyaromatic	hydrocarbons	 in	 their	 plant	 tissues	 or	 in	 the	 soil.	 In	 addition,	 they	 indirectly	 reduce	 air

pollutants	by	lowering	surface	temperatures	through	transpirational	cooling	and	by	providing	shade,	which	in	turn	decreases	the	photochemical	reactions	that	form	pollutants	such	as	ozone	in	the	atmosphere	(Rowe,

2011).

There	is	a	growing	corpus	of	studies	from	around	the	world	which	suggest	that	street	trees	can	improve	air	quality	by	trapping	particulates	(Baró	et	al.,	2014;	McPherson	et	al.,	2016;	Pugh	et	al.,	2012;	Russo	et	al.,

2016;	Soares	et	al.,	2011;	Tallis	et	al.,	2011).	Such	studies	tend	to	be	based	on	modeling,	leading	to	claims	that	“the	removal	of	atmospheric	pollutants	by	vegetation	is	one	of	the	most	commonly	cited	ecosystem	services,

yet	it	is	one	of	the	least	supported	empirically”	(Pataki	et	al.,	2011:	32).	However,	recent	empirical	studies	have	shown	that	roadside	vegetation	can	indeed	play	an	important	role	in	the	reduction	of	traffic	induced	air

pollution	(Islam	et	al.,	2012;	Vailshery	et	al.,	2013).	The	potential	of	urban	vegetation	to	remove	airborne	pollutants	is	in	fact	context	dependent	due	to	the	high	spatial	variability	in	and	among	cities,	and	depends	on

multiple	factors	such	as	the	weather,	the	pollution	concentration,	and	the	type	and	quality	of	vegetation	(Setälä	et	al.,	2013).	 In	some	 instances,	however,	roadside	planting	can	 lead	to	 increased	concentrations	of

pollutants	because	the	 trees	and	other	 types	of	vegetation	reduce	the	ventilation	 that	 is	needed	 for	diluting	them	(Vos	et	al.,	2013;	Wania	et	al.,	2012),	while	 landscape	and	 tree	management	practices	can	also	be

polluting	(Escobedo	et	al.,	2011;	Roy	et	al.,	2012).

In	contrast	to	trees,	the	filtration	potential	of	herbaceous	vegetation	is	comparatively	understudied.	Herbaceous	vegetation	that	is	diversely	structured	in	terms	of	plant	height,	branching	pattern,	or	leaf	traits

is	more	effective	at	binding	particulate	matter	than	monotonously	structured	vegetation	(Säumel	et	al.,	2016;	Weber	et	al.,	2014).	Modeling	and	empirical	research	both	suggest	that	green	roofs	and	vertical	greening

systems	can	reduce	air	pollution	both	directly	as	well	as	indirectly	through	reduced	energy	consumption	resulting	from	their	insulating	properties	(Berardi	et	al.,	2014;	Ottelé	et	al.,	2010;	Pérez-Urrestarazu	et	al.,	2016;

Rowe,	2011;	Vijayaraghavan,	2016).
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One	particular	ecosystem	service	that	has	become	a	high-profile	feature	of	climate	change	mitigation	efforts	is	carbon	storage.	The	vast	majority	of	urban	vegetation	carbon	stocks	are	attributable	to	trees,

rather	than	herbaceous	and	woody	material.	Urban	trees	act	as	sinks	of	carbon	dioxide	by	storing	excess	carbon	as	biomass	during	photosynthesis.	Sequestration	rates	vary	locally	based	on	tree	size	and	health,	and

the	growth	rates	associated	with	different	species	and	particular	site	conditions	(Davies	et	al.,	2013;	Nowak	et	al.,	2013;	Strohbach	and	Haase,	2012).	Green	roofs	and	vertical	greening	systems	can	also	play	a	small	part	in

reducing	carbon	dioxide	in	the	atmosphere,	by	sequestering	it	in	the	plant	tissues	and	the	soil	substrate	via	plant	litter	and	root	exudate,	and	by	reducing	energy	consumption	by	insulating	individual	buildings	(Rowe,

2011).



Noise	is	a	major	pollution	problem	in	cities	and	can	affect	human	health	through	physiological	and	psychological	damage.	Urban	soil	and	vegetation	can	attenuate	noise	pollution	through	absorption,	deviation,

reflection,	and	refraction	of	sound	waves	(Gómez-Baggethun	and	Barton,	2013).	Green	roofs	can	reduce	noise	pollution	by	providing	increased	insulation	and	by	absorbing	sound	waves	diffracting	over	roofs	(Rowe,	2011;

Vijayaraghavan,	2016).	The	vegetated	surfaces	of	vertical	greening	systems	can	block	high	 frequency	sounds,	and	when	constructed	with	a	substrate	or	growing	medium,	 they	can	also	block	 low-frequency	noises

(Azkorra	et	al.,	2015;	Pérez	et	al.,	2016).

Urban	 vegetation	 can	 lower	 air	 temperatures	 through	 the	 evaporation	 of	 water	 and	 by	 providing	 shading.	 Urban	 areas	 often	 experience	 elevated	 temperatures	 compared	 with	 the	 surrounding

countryside,	because	of	extensive	heat	absorbing	surfaces,	such	as	concrete	and	tarmac,	concentrated	heat	production,	and	impeded	airflow.	This	is	known	as	the	urban	heat	island	effect	(Taha,	1997).	Heat	waves

during	the	summer	pose	significant	health	risks	to	urban	populations	either	directly	from	the	heat	or	from	increased	air	pollution.	The	problem	of	the	urban	heat	island	effect	is	likely	to	get	worse	with	climate	change,

as	mean	temperatures	are	predicted	to	rise,	as	are	the	frequencies	of	heat	waves.	Street	trees	can	help	to	reduce	the	urban	heat	island	effect.	Their	three	dimensional	nature	means	that	as	well	as	having	a	cool

canopy,	they	also	shade	adjacent	areas,	which	lowers	the	surface	temperature	of	the	shaded	area	and	reduces	the	storage	and	convection	of	heat	(Armson	et	al.,	2012).

Green	roofs	also	have	the	potential	to	reduce	the	urban	heat	island	effect.	Empirical	and	simulation	studies	show	that	green	roofs	increase	the	evapotranspiration	rate	through	the	addition	of	soil	and	plants,

and	reduce	the	proportion	of	infrared	radiation	returned	to	the	air	(Santamouris,	2014;	Speak	et	al.,	2013a;	Susca	et	al.,	2011);	different	types	of	low-growing	plants	have	been	shown	to	vary	in	their	ability	to	cool	air

temperatures	(Blanusa	et	al.,	2013).	While	the	contribution	of	green	roofs	to	mitigating	heat	stress	at	the	pedestrian	level	is	negligible	(Alcazar	et	al.,	2016;	Zölch	et	al.,	2016),
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vertical	 greening	 systems	 intercept	 both	 light	 and	 heat	 radiation	 which	 would	 otherwise	 be	 largely	 absorbed	 and	 converted	 to	 heat	 by	 the	 building	 surfaces	 and	 then	 radiated	 back	 into	 the	 surrounding

streetscape	(Pérez	et	al.,	2014;	Perini	et	al.,	2011).	The	effectiveness	of	this	cooling	effect	is	related	primarily	to	the	total	area	shaded	and	evapotranspiration	effects	of	the	vegetation,	rather	than	the	thickness	of	the

vertical	greening	system.	Other	potential	benefits	of	vertical	greening	systems	include	bioshading—reducing	sunlight	penetration	through	windows.	With	strategic	placement,	the	plants	in	vertical	greening	systems

can	also	create	enough	turbulence	to	break	vertical	airflow,	which	slows	and	cools	down	the	air	(Pérez-Urrestarazu	et	al.,	2016).

Ecosystem	services-based	approaches	can	be	used	both	to	regulate	the	urban	water	cycle	by	reducing	the	amount	of	stormwater	runoff,	and	to	improve	water	quality	by	removing	pollutants	from	runoff;	e.g.,

vegetated	streetscapes	designed	to	absorb	water,	such	as	bioswales	and	rain	gardens,	have	been	shown	to	be	effective	(Pataki	et	al.,	2011).	Street	trees	intercept	rainfall	 in	their	canopies	and	store	water	on	their

leaves	and	stems	until	it	is	subsequently	evaporated.	However,	the	gross	interception	rate	varies	greatly	with	species	and	tree	size.	Trees	planted	in	tree	pits	considerably	increase	the	infiltration	rate	and	thereby

reduce	surface	water	runoff	(Armson	et	al.,	2013).	Green	roofs	may	also	delay	the	timing	of	peak	runoff,	thereby	alleviating	stress	on	storm-sewer	systems,	by	storing	water	in	the	growing	medium	and	to	a	lesser	extent

in	the	vegetation	canopy.	A	roof’s	ability	to	retain	stormwater	depends	on	factors	such	as	the	intensity	and	duration	of	the	rain	event	as	well	as	substrate	depth,	substrate	moisture	content	at	the	start	of	the	rain

event,	and	the	type,	health,	and	density	of	the	vegetation	(Sims	et	al.,	2016;	Speak	et	al.,	2013b;	Whittinghill	et	al.,	2015).	There	is	still	debate	as	to	whether	green	roofs	act	as	a	source	or	sink	of	pollutants	(Berardi	et	al.,

2014).	The	specific	nature	of	runoff	quality	from	green	roofs	is	highly	dependent	on	the	green	roof	components;	and	nutrient	concentrations	in	runoff	decrease	over	time	after	installation	(Vijayaraghavan	et	al.,	2012).

Extensive	green	roofs	would	appear	to	be	better	than	intensive	systems	in	terms	of	pollutant	removal,	which	may	be	related	to	the	reduced	volume	of	soil	that	can	leach	pollutants	(Carpenter	et	al.,	2011;	Razzaghmanesh

et	al.,	2014).

Cultural	Services
The	Millennium	 Ecosystem	 Assessment	 defined	 cultural	 ecosystem	 services	 as	 “the	 nonmaterial	 benefits	 people	 obtain	 from	 ecosystems	 through	 spiritual	 enrichment,	 cognitive	 development,	 reflection,

recreation,	and	aesthetic	experiences”	(Millennium	Ecosystem	Assessment,	2005:	40).	Urban	green	infrastructure	provides	diverse	social,	psychological,	and	aesthetic	benefits.	Green	spaces	can	improve	mental	health

and	the	quality	of	community	life,	and	researchers	have	observed	a	link	between	increasing	urbanization	and
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psychosis	or	depression	 (Annerstedt	et	al.,	2012).	Experimental	evidence	suggests	 that	 simply	having	views	of	nature	can	 improve	mood,	 self-esteem	and	concentration,	 increase	 job	satisfaction,	and	help	 to	 treat

stress	and	mental	health	disorders	(Depledge	et	al.,	2011;	Douglas,	2012;	Peckham	et	al.,	2013).

While	 cultural	 ecosystem	 services	 are	 often	 neglected	 because	 they	 are	 challenging	 to	 assess,	 their	 valuation	 should	 be	 at	 the	 top	 of	 urban	 ecosystem	 services	 research	 priorities.	 Developing	 better

understanding	of	urban	dwellers’	perceptions	and	the	multilayered	benefits	and	values	they	derive	from	urban	cultural	ecosystem	services	can	help	ensure	that	urban	planning	and	decision	making	is	grounded	in	and

suitable	for	the	particular	social-ecological	systems	they	serve	(Kremer	et	al.,	2015).	Andersson	et	al.	(2015)	proposed	that	cultural	ecosystem	services	and	urban	nature	experiences	can	be	used	as	a	gateway	to	more

informed	discussions	about	what	kind	of	urban	green	infrastructure	is	desirable,	and	can	guide	efforts	to	build	support	for	all	urban	ecosystem	services.	Cultural	ecosystem	services	can	be	especially	important	in

cities	since	they	are	intimately	known	and	acknowledged	by	most	urban	residents.	People	often	notice	changes	in	these	services	and	can	be	motivated	to	engage	in	their	protection	or	promotion.	Since	these	are	often

bundled	with	other	ecosystem	services,	engaging	in	their	stewardship	will	implicitly	include	these	as	well	(Ernstson,	2013).

Supporting	Services
Supporting	services	are	those	that	are	necessary	for	the	production	of	all	other	ecosystem	services.	They	differ	from	provisioning,	regulating,	and	cultural	services	in	that	their	impacts	on	people	are	either

indirect	or	occur	over	a	very	long	time,	whereas	changes	in	the	other	categories	can	have	relatively	direct	and	short-term	impacts	(Millennium	Ecosystem	Assessment,	2005).	In	urban	ecosystems,	the	most	important

supporting	service	is	the	provisioning	of	the	habitat.	Towns	and	cities	are	characterized	by	scattered	habitat	patches	that	form	a	network	of	nodes	and	links.	The	spaces	between	green	areas	are	not	completely	blank

but	 contribute	 to	 ecological	 connectivity	 in	 different	ways.	 Theory	 predicts	 thresholds	 in	 several	 parameters	 such	 as	 patch	 size	 and	 connectivity	 below	which	 ecological	 traits	 such	 as	 biodiversity	 or	 ecological

functions	decrease	rapidly	or	even	disappear	completely.	The	planning	and	management	of	urban	green	areas	should	therefore	adopt	a	spatially	explicit	approach	that	considers	landscape	connectivity,	the	scale	of

movement	of	different	organisms,	and	how	they	use	the	many	different	habitats	offered	by	cities.	Indeed,	for	some	species	in	urban	environments,	the	configuration	of	the	local	habitat	within	the	landscape	may	be	as

critical	as	the	composition	of	the	local	habitat	itself	(Andersson	and	Bodin,	2008;	Braaker	et	al.,	2014).
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The	importance	of	biodiversity	 in	underpinning	the	delivery	of	ecosystem	services	and	the	ecosystem	processes	that	underlie	them	is	well	recognized.	For	example,	the	dynamics	of	soil	nutrient	cycles	are

determined	by	the	composition	of	biological	communities	in	the	soil.	Resilience	to	pests	and	environmental	change	is	increased	in	more	diverse	biological	communities	and,	in	many	contexts,	higher	biodiversity	is

associated	with	 increased	ecosystem	 functions	 (Mace	 et	 al.,	 2012).	Urban	biodiversity	 can	be	 very	high,	 indeed	often	much	higher	 than	 in	 the	 surrounding	agricultural	 landscapes,	 because	 of	 the	high	degree	of

heterogeneity	of	urban	ecosystems	which	are	characterized	by	a	mosaic	of	different	habitats	(Andersson	et	al.,	2014).

Increasing	plant	species	diversity	and	increasing	the	range	of	vegetation	types	in	cities	can	significantly	increase	other	forms	of	biodiversity.	Street	trees	enhance	biodiversity	by	providing	food,	habitat,	and

landscape	connectivity	for	urban	fauna	and,	together	with	green	roofs	and	vertical	greening	systems,	should	be	part	of	an	overall	urban	greening	strategy	linking	different	ground-level	habitat	patches.

The	Value	of	Ecosystem	Services
Presenting	 the	 economic	 benefits	 of	 urban	 ecosystem	 services	 in	 monetary	 terms	 allows	 them	 to	 be	 easily	 understood	 by	 policy	 and	 decision	 makers.	 The	 green	 infrastructure	 valuation	 toolkit

(http://www.greeninfrastructurenw.co.uk)	provides	a	flexible	framework	for	identifying	and	assessing	the	potential	economic	and	wider	returns	from	investment	in	landscape	schemes	by	valuing	a	range	of	ecosystem

services	 including	 climate	 change	 adaptation	 and	 mitigation,	 water	 and	 flood	 management,	 quality	 of	 place,	 health,	 and	 well-being,	 and	 biodiversity	 (Milliken,	 2013).	 The	 i-Tree	 software

(http://www.itreetools.org/ (remove	forward	slash))	is	widely	used	to	calculate	the	value	of	urban	trees	in	North	America	and,	increasingly,	in	Europe.	The	tool	quantifies	pollution	removal,	carbon	storage,	and	stormwater

reduction,	in	order	to	calculate	the	economic	value	of	these	ecosystem	services	(Baró	et	al.,	2014;	Elmqvist	et	al.,	2015;	Mullaney	et	al.,	2015;	Soares	et	al.,	2011).	Other	types	of	modeling	have	been	used	to	measure	and



value	ozone	uptake	by	urban	trees	(Manes	et	al.,	2012),	while	the	presence	of	street	trees	has	been	found	to	add	value	to	the	price	of	residential	property	(Donovan	and	Butry,	2010;	Escobedo	et	al.,	2015;	Pandit	et	al.,

2013).

Conclusion
Multiple	benefits	and	both	material	and	nonmaterial	values	can	be	produced	simultaneously	by	 the	same	system	components.	For	example,	community-based	 food	production	on	a	rooftop	 farm	has	added

benefits	such	as	regulating	stormwater,	enhancing	biodiversity,	improving	human	health	and	well-being,	and	fostering	social	cohesion.	Conceiving	of	the	multiple	kinds
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of	 services—provisioning,	 regulating,	 cultural	 and	 supporting—associated	with	 a	 particular	 place	 enables	 a	more	 holistic	 understanding	 of	 the	ways	 that	 humans	 benefit	 from	 ecosystem	 services	 and	 how	 they

can	be	synergistically	managed	(Andersson	et	al.,	2015).

Urban	morphology	is	an	important	factor	influencing	the	provision	of	multiple	ecosystem	services.	Connectivity	adds	complexity	to	ecological	systems,	and	even	small	patches	in	a	fragmented	urban	landscape

can	be	of	disproportionally	high	importance	in	terms	of	the	generation	of	ecosystem	services.	The	widespread	trend	to	reduce	urban	sprawl	by	developing	dense,	compact	cities	is	likely	to	lead	to	a	deterioration	in

ecosystem	 service	provision	with	 consequent	declines	 in	both	urban	biodiversity	 and	 the	quality	 of	 life	 of	 the	human	population	 (Holt	 et	 al.,	 2015).	 Engineered	 green	 infrastructure,	 such	 as	 green	 roofs,	 vertical

greening	systems,	and	rain	gardens,	present	opportunities	for	providing	that	all	important	connectivity,	even	in	the	densest	of	cities.	Urban	planners	need	to	use	them	in	order	to	create	networks	of	green	space	based

on	key	ecological	processes,	such	as	the	movement	patterns	of	pollinators	or	seed	dispersers,	in	order	to	realize	the	potential	of	those	benefits	which	are	dependent	on	ecological	network	structures.
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Abstract

This	chapter	presents	a	brief	synthesis	of	recent	literature	on	ecosystem	services	in	urban	environments.	Different	types	of	urban	habitats	generate	different	types	of	ecosystem	service,	including	the	supply	of

food,	mitigation	of	air	pollution,	human	health	and	well-being,	and	biodiversity.	These	services	can	play	an	important	role	in	enhancing	the	resilience	of	cities	to	climate	change,	but	only	if	urban	planners	and	policy

makers	take	into	account	the	connectivity	required	by	key	ecological	processes	in	order	for	their	potential	to	be	optimized.	The	economic	valuation	of	urban	ecosystem	services	is	a	useful	tool	for	communicating	with

these	stakeholders.
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