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Abstract 

Contextual fear conditioning selection is an important behavioral paradigm for studying 

the role of genetic variables and their interaction with the surrounding environment in 

the etiology and development of anxiety disorders. Recently, a new line of animals 

selectively bred for high levels of freezing in response to contextual cues previously 

associated with footshock was developed from a Wistar population. The purpose of the 

present study was to evaluate the emotional and cognitive aspects of this new line of 

animals, which has been named Carioca High-Freezing (CHF). For the characterization 

of anxious behavior, CHF and control animals were tested in the elevated plus-maze 

(EPM) and the social interaction test. CHF animals were significantly more anxious 

than control rats in terms of both the number of entries into EPM open arms and the 

percentage of time spent in these arms. The time spent in social interaction behavior 

was also significantly decreased. No statistical differences were found in locomotor 

activity, as measured by both the number of entries into the closed arms of the EPM and 

the number of crossings into the social interaction test arena. No differences between 

CHF and control groups were found in the depression forced swimming test, suggesting 

that the anxiety trait selected in the CHF line interacted with other emotional systems 

such as depression. Cognitive aspects of the CHF rats were evaluated in the object 

recognition task. Results from this test indicated no difference between the two groups. 

The present study also performed histological analysis of the dorsal hippocampus from 

CHF and control animals. Results revealed an absence of qualitative and quantitative 

differences between these two groups of animals in cells located in the dentate gyrus, 

CA1, and CA3 areas. Therefore, future studies are required to further investigate the 

possible neural mechanisms involved in the origin and development of the anxious 

phenotype observed in this model. 
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1- Introduction 

Fear and anxiety traits are believed to have been selected in human evolutionary 

history for their crucial role in protecting our hunter-gatherer ancestors when facing 

adverse environments [1]. Indeed, appropriate anxious reaction has an adaptive role in 

dealing with threatening situations. However, chronic anxious responses, especially in 

the absence of the feared stimuli, can characterize dysfunctional or pathological 

processes. 

Freezing response to contextual cues previously associated with footshock seems to 

be one of the most reliable animal models of anxiety disorders [2;3]. Specific and 

complex circuits in the brain are known to underlie this conditioned response. The 

hippocampus is considered to be one of the major brain structures involved in the 

mediation of learned fear responses, likely via descending projections to the amygdala 

[4], as electrolytic lesions in hippocampal regions that connect to the amygdala prevent 

contextual fear learning [5;6]. The hippocampus is believed to be responsible for 

gathering contextual stimuli into representational units and then sending this 

information to the amygdala. Efferent projections from the central nucleus of the 

amygdala to the brain stem seem to be responsible for the motor output of the 

conditioned freezing response [7]. In particular, the dorsal portion of the hippocampus 

has been found to be involved in the modulation of this response [8], although the 

ventral hippocampus is also implicated, with anxiogenic effects when stimulated by 

serotonergic agonists [9].  

Important molecular and pharmacological aspects of mental disorders are difficult to 

investigate in humans. Moreover, the study of fear and anxiety in animals from 

normalized populations might not always mimic the pathophysiology of clinical 

conditions, but natural and adaptive behavioral and physiological reactions to drugs and 
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aversive events [10]. For this reason, animals selectively bred for high emotionality 

have been considered to be important tools for understanding the neurobiology of 

anxiety disorders. Different behavioral paradigms have been employed for this purpose. 

Among these paradigms are the ambulation and defecation in the open field, such as in 

the Maudsley reactive rats [11;12],  open arm entrance in the elevated plus-maze, as in 

the high-anxiety related behavior rats [10], and  active avoidance behavior, as in the 

high-avoidance rats referred to as Roman [13], Syrakuse [14], Koltushi [15], and 

Hatano [16]. 

Recently, Gomes and Landeira-Fernandez [17] developed two new lines of Wistar 

rats, termed Carioca High- and Low-Freezing (CHF, CLF), that were selectively bred 

for high and low levels of freezing in response to contextual cues previously associated 

with footshock. After three generations of breeding, CHF rats are considered to 

naturally have a greater propensity for exhibiting higher freezing responses when 

compared to the low-freezing line. Since the characterization of this animal model may 

be an important tool for investigating the role of genetic variables and their interaction 

with the surrounding environment in the etiology and development of anxiety disorders, 

the major objective of this study was to validate behaviorally the CHF line (Carioca 

High-Freezing) in an innate animal model of anxiety (i.e., the elevated plus-maze and 

the social interaction test). The forced swimming test and the object recognition task 

were also employed in order to evaluate whether traits from other emotional or 

cognitive systems, such as depression or memory, were co-selected during the CHF 

breeding procedure. Finally, the present study also investigated whether CHF and 

control animals presented qualitative and/or quantitative differences in cells located in 

the dorsal hippocampus. 
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2- Materials and Methods 

 

2.1 Animals 

Experimental procedures reported herein were performed under the guidelines 

for the use of animal experimental research established by the Brazilian Society of 

Neuroscience and Behavior (SBNeC), in accordance with the National Institute of 

Health Guide for the Care and Use of Laboratory Animals (NIH Publications).  

Animal handling and sacrifice methods were reviewed and approved by the 

Committee for Animal Care and Use of the CCS/UFRJ (protocol # IBCCF002). 

Experimental animals (Carioca High-Freezing [CHF], a line selectively bred for 

high contextual fear conditioning) were obtained according to procedures described 

in previous work [17]. In the present work, CHF rats from the S4 (elevated plus-

maze, social interaction, and forced swimming tests, as well as histological 

experiments) and the S6 (object recognition test) were used. Males from both groups 

were housed in acrylic cages (31 cm x 38 cm) in groups of 3-6 in an animal room 

under a 12-h light-dark cycle (lights on at 8:00 h), and food and water were 

provided ad libitum. For both groups, 2-3-month-old animals were used. Body 

weight varied from 250-348 g (control) and 323-363 g (CHF). Both the control 

(CTRL) and the experimental groups were reared under the same environmental 

conditions. Experimental animals used in this work did not undergo a line selecting 

test (contextual fear conditioning) and did not go through any other stressful events. 

 

2.2 Behavioral tests 

Animals were tested in the elevated plus-maze (EPM) and social interaction test 

for anxious behavior screening, in the forced swimming test for depressive behavior 
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identification, and in the object recognition test for cognitive performance 

assessment. Animals that were tested in the EPM were later perfused for histological 

analysis; those placed in the social interaction test were also tested in the forced 

swimming apparatus, with a minimum of two weeks latency between tests; animals 

used for object recognition measures did not go through any other tests. 

 

2.2.1 Elevated plus-maze 

Twelve control rats and 16 CHF rats were tested in the elevated plus-maze test. 

The test was first developed by Handley and Mithani [18] and was validated as a 

model for anxious-related behavior by Pellow et al. [19]. The test is based on the 

natural conflict faced by rodents when exploring a new environment and the innate 

aversion of being exposed to open areas [20]. The apparatus consists of two wooden 

opposed closed arms, two opposed open arms surrounded by an acryclic protection 

in order to prevent animals from falling down, and an open square in the center. The 

maze was elevated 50 cm above the floor. All animals were handled for two minutes 

on five consecutive days prior to the experimental session. The same experimenter 

was responsible for both handling and placing the animals into the maze in order to 

reduce human contact bias. The apparatus was cleaned with ethanol 98% before 

each rat was placed within in. The animals were placed into the center of the plus-

maze facing one of the closed arms. The experimental session (5 minutes) was 

recorded by a camera located 70 cm above the maze, and the following measures 

were later analyzed: the number of entries into closed arms, and both the number of 

entries and the percentage of time spent in open arms. 

 

2.2.2 Social interaction 
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 The social interaction protocol was a modified version of that presented by 

Henniger et al. [20]. The test arena was made of black PVC (54 x 36x 27 cm) and 

the floor was divided into six squares (18 x 18 cm). The test was conducted under 

cold light. All animals (n = 12; 6 pairs for each group) were individually 

familiarized with the apparatus on the two days prior to testing for 10 minutes each 

day. Animals were divided in weight-matched pairs. In the experimental session, 

rats were placed in the center of the arena facing each other. Both members of a pair 

belonged to the same line of rats, but were unknown to each other. The testing 

session was recorded by a Sony Video Hi8 TRV238 camera placed vertically over 

the apparatus. The following parameters were recorded: (1) time spent in active 

social interaction (sniffing, following, grooming, kicking, mounting, jumping on, 

wrestling and boxing with, crawling under or over the partner); (2) the number of 

line crossings of both rats. The arena was cleaned before each trial with ethanol 

98%. 

 

2.2.3 Forced swimming test 

The forced swimming test was first designed by Porsolt, LePichon, and Jalfre 

[21], but the protocol used here was an adapted version from Zangen et al. [22]. The 

arena consisted of a glass cylindrical tank (42 cm high and 17.5 cm in diameter) that 

contained enough water (25oC) so that the rat could not touch the bottom of the tank 

with its hind paws. Rats (n = 9 for each group) were placed in the tank for a 10-

minute habituation session on each of the two days prior to testing; rats’ 

performance was recorded with a Sony Video Hi8 TRV238 camera, located 90 cm 

from the apparatus. Before each trial, water from the apparatus was changed. The 

following swimming behaviors were used as measures of coping: diving, vigorous 
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paddling with all four legs, circling the tank, and clambering at the tank walls. 

“Immobility” was scored as floating and treading water just enough to keep the nose 

above the water’s surface [23;24]. After both habituation and testing sessions, rats 

were gently dried and returned to their respective home cages.  

 

2.2.4 Object recognition 

 The object recognition test was first established by Ennaceur and Delacour [25]. 

A 40cm x 40cm wooden arena was used for this test and the experimental 

procedures performed were similar to those previously described by De Lima et al. 

[26]. Animals (n = 12/group) were individually habituated to the apparatus in the 

four consecutive days prior to testing, for 20 minutes each day. In the habituation 

session, there were no objects in the arena. Twenty-four hours after the last 

habituation session, animals were individually placed in the center of the arena for 5 

minutes, where two similar objects (A1 and A2) were available for free exploration. 

Typically, objects are made of plastic, glass, or metal. In this study, soft drink cans 

and colorful glass cookie jars were used. Several samples of each object were used 

in order to avoid olfactory cues. Exploration was defined as sniffing or touching 

objects with either the nose or the forepaws. Twenty-four hours after this first 

testing session, long-term memory was evaluated. At this stage, rats were re-

exposed to the arena for 5 minutes in the presence of a familiar object (A) and a 

novel one (B). For half of the animals from each group, A was familiar and B was 

novel. For the other half, the opposite was presented. The aim of this procedure was 

to avoid spatial or object preference. This test provides three different measures: 

index of recognition (TB / (TA + TB) [TA = time spent exploring the familiar 

object; TB = time exploring the novel object]; index of exploration 1 (time spent in 
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both familiar objects exploration), and index of exploration 2 (time spent in both 

types of object exploration). Exploration indexes validate the index of recognition as 

they show that the ability to explore, which is a basic condition for recognizing the 

object the next day, is unaltered. Both testing session were recorded by a Sony 

Video Hi8 TRV238 camera, located 130 cm vertically above the apparatus. 

 

2.3 Hippocampal histology 

 Animals were anesthetized (n = 3 for each group) with chloroform perfused 

through the left ventricle of the heart with 4% paraformaldehyde and 10% 

saccharose in 0.1 phosphate buffer (pH = 7.4), followed by 20% and 30% 

saccharose in 0.1 phosphate buffer (pH = 7.4). Brains were removed and kept 

immersed in 30% saccharose in 0.1 phosphate buffer (pH = 7.4) solution for 

cryoprotection for one week. Serial 40 µm brain sections were cut in Leica CM 

3050 S cryostat apparatus and thaw-mounted in poly-L-lysine-treated slides. After 

two days under room temperature, slides were kept at -20ºC. Brain sections from 

interaural 6.2 mm/ bregma -2.8mm to interaural 4.7 mm / bregma -4.3mm from each 

animal were then washed with phosphate buffer saline (PBS) for 5 minutes and 

stained with 4',6-diamidino-2-phenylindole (DAPI), a fluorescent stain that binds to 

DNA, for 1.5 minutes. Slides were washed with PBS once more for 5 minutes and 

mounted in N-propyl galate. Next, staining was observed using a fluorescent 

microscope (Zeiss Standard 20) and photos from the three hippocampal areas 

(dentate gyrus, CA1, and CA3) were taken (10x magnification; 3.6 focus) using a 

digital camera attached to the microscope. Using Image ProPlus 4.0 software, cells 

were counted in eight 100-µm2 fields drawn in each picture (total of 27 pictures of 
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each hippocampal region/group). Manipulation of the digital images was restricted 

to threshold and brightness adjustments to the entire image. 

 

2.4 Statistics  

 Data were analyzed in the Graph Prism 4.0 program, using t test for unpaired 

samples and results are expressed as mean ± S.E.M. Histological analyses are 

expressed in mm3, according to estimative calculus based on the thickness of each 

brain slice (40 m). 

 

3. Results 

3.1 Elevated plus-maze 

 Figure 1 illustrates performance on the EPM. CHF animals displayed a 

significantly lower number of entries into open arms (t(26)=2.31; p<0.05) and 

percentage of time spent in these arms (t(26)=2.16; p<0.05). There were no 

significant differences in general locomotor activity as the number of entries into the 

closed arms did not differ significantly between the two groups (t(26)=1.96; 

p>0.05). Therefore, the CHF group exhibited a significantly more anxious 

phenotype, according to two parameters measured in this test, and these differences 

cannot be accounted for by variations in locomotor activity. 

--------------------------------------------------------------- 

INSERT FIGURE 1 HERE 

---------------------------------------------------------------- 

 

3.2 Social interaction 
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Congruent with the results observed in the EPM, CHF rats showed higher 

anxiety scores in the social interaction test. The experimental group spent 

significantly less time exhibiting active social interactive behavior with an unknown 

partner from the same line (t(10)=4.91; p<0.05), as can be seen in Figure 2. 

Additionally, there were no significant differences in locomotor activity, as 

measured by the number of line crossings in the arena (t(10)=1.60; p>0.05). 

 

--------------------------------------------------------------- 

INSERT FIGURE 2 HERE 

---------------------------------------------------------------- 

 

3.3 Forced swimming 

Behavior of CHF and control animals in the forced swimming test is illustrated 

in Figure 3. As can be seen, the experimental group did not significantly differ from 

control rats in this depressive behavior paradigm (t(16)=0.99; p>0.05), as measured 

by the time spent in escaping behaviors. 

--------------------------------------------------------------- 

INSERT FIGURE 3 HERE 

---------------------------------------------------------------- 

 

3.4 Object recognition 

Cognitive aspects associated with memory in CHF and controls animals were 

assessed by the object recognition test, as illustrated in Figure 4. No significant 

differences were observed in any of the three measures taken from this paradigm. 

Therefore, CHF did not differ from control group in the recognition index 
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(t(22)=0.81;  p>0.05), the index of exploration 1 (t(22)=1.75; p>0.05), or the index 

of exploration 2 (t(22)=0.34;  p>0.05). 

--------------------------------------------------------------- 

INSERT FIGURE 4 HERE 

---------------------------------------------------------------- 

 

3.5 Histological analysis 

3.5.1 Qualitative analysis 

 Qualitative analysis of the three cell layers of the dorsal hippocampus (dentate 

gyrus, CA1, and CA3) revealed no variations between groups concerning the 

hippocampal tissue conformation, as seen in Figure 5.  

--------------------------------------------------------------- 

INSERT FIGURE 5 HERE 

---------------------------------------------------------------- 

 

3.5.2 Quantitative analysis 

 Quantitative analysis of total dorsal hippocampal cells stained with DAPI was 

performed for the same three hippocampal layers: dentate gyrus, CA1, and CA3. No 

significant differences were observed for these measures (Dentate gyrus: t(69)=1.58; 

p>0.05; CA1: t(68)=0.14; p>0.05; CA3: t(68)=0.38; p>0.05), as illustrated in Figure 6. 

--------------------------------------------------------------- 

INSERT FIGURE 6 HERE 

---------------------------------------------------------------- 
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Discussion 

 The ability of an organism to evaluate stimuli and adaptively respond to them is 

one of the most important processes involved in survival in continuously changing 

environmental conditions [27]. Anxiety is a complex trait that has been conserved 

during evolution so that animals may assess potentially dangerous situations in order to 

enhance the probability of survival [28]. Anxious states in humans are characterized by 

avoidance behavior and by a tendency to perceive threatening stimuli [29]. Attentional 

and mnemonic processes are enhanced and ambiguous situations are interpreted as 

potentially dangerous [30]. 

The analysis of the neural substrates underlying anxiety and fear is, in great part, 

based on the investigation of behavioral inhibition induced by natural or learned 

aversive stimuli in animal models [5;31]. In this work, we used an animal line of Wistar 

rats selectively bred for contextual fear conditioning [17], an animal model for anxiety 

disorder [2]. The evaluation of anxiety-related behavioral and physiological aspects is 

crucial for the line to be considered an appropriate model for study of these 

psychopathologies. According to Landgraf and Wigger [32], an anxious phenotype 

should present features related to behaviors and coping strategies characteristic of this 

condition. In this sense, the present work behaviorally validates the CHF line as a model 

for studying anxiety and conditioned fear. 

Two animals models of anxiety used in this work revealed that the CHF line can 

be considered behaviorally validated as a model for anxiety disorder. In the elevated 

plus-maze test, both the total number of entries and the time spent in open arms were 

significantly decreased in comparison to the control group. The anxious behavioral 

pattern was also observed in the social interaction test, where CHF rats spent 

significantly less time exhibiting active social interaction behaviors with their pairs. 
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This observation indicates higher anxiety, which is in accordance with the performance 

of rats selected for anxiety in the elevated plus-maze [27]. 

 A commonly stated issue underlined by researchers that work with behavioral 

tests of anxiety based on exploratory behaviors is that factors unrelated to anxiety 

conditions might alter locomotor activity [33] and compromise data interpretation. The 

results obtained by both anxiety paradigms used here suggest that this issue did not 

introduce bias in this work. Interestingly, the observed difference in the number of 

entries and the time spent in open arms, as well as the decreased rate of social 

interactive behavior in CHF rats, cannot be attributed to differences in locomotor 

activity as both the number of entries in closed arms of the elevated plus-maze and the 

number of line crossings in the arena of the social interaction test did not differ between 

groups. Therefore, performance on the elevated plus-maze and social interaction test 

revealed that CHF rats exhibit a significantly more anxious phenotype when compared 

to the control group. The behavioral difference between CHF and control rats can be 

considered a stable and robust trait in conflict situations that elicit fear and anxiety, and 

not only a behavioral profile observed in the test used for selection [20]. 

The forced swimming test, used for depressive behavior screening, did not show 

differences between groups. This result corroborates the consistency of the CHF line as 

an anxious model as traits related to other phenotypes, such as depression, were not 

selected concomitantly. Landgraf and Wigger [32] underline the importance of this 

feature and postulated that an animal model must be able to capture the specific 

symptom or mechanism of the studied psychopathology, without modeling other 

processes or functions. According to Gorman [34], there is a high level of co-morbidity 

between anxiety disorders and depression, with an over 60% rate of co-occurrence. This 

rate of occurrence suggests that co-morbidity is the rule rather than the exception. 
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Therefore, even with this high probability of co-occurrence of anxious and depressive 

characteristics, the present model was most highly related to the anxious/fearful 

phenotype.  

Additionally, results from the forced swimming test demonstrated that, although 

there might be elevated rates of co-morbidity between anxiety and depression, the two 

systems are biologically distinct, which is in accordance with the hypothesis that these 

states have different etiologies [35]. The results of the CHF line in the forced swimming 

test differ from those obtained with some animal lines that were selected for innate fear 

as the latter show depressive behaviors in this paradigm [10;36;27]. However, data from 

this study are in accordance with those presented by Ho et al. [37], in which rats 

selected for anxiety in the elevated plus-maze did not differ from the less anxious line in 

terms of depression, as measured by the forced swimming test. In this sense, it can be 

stated that the CHF line can be considered a good predictor of behavioral phenotypes in 

anxiety models, but cannot be considered a model for studying depression. 

  Since the emotional assessment of a new situation and the utilized coping 

strategies can depend on cognitive functions [28], the hypothesis that non-emotional 

memory differs between CHF and control rats was also investigated. For this purpose, 

the object recognition test was used. The task of recognizing objects has been widely 

used as a model for investigating the neurobiological mechanisms of learning and 

memory [26]. Interestingly, differences in the indices obtained from this test were not 

observed between groups, indicating that the memory systems selected during breeding 

of the CHF line were restricted to the emotional memory system.  

 The hippocampus was chosen as the neural structure responsible for the anxiety 

differences observed among CHF animals. This choice was made considering the fact 

that this region seems to be associated with the etiology of certain types of anxiety 
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disorder. In fact, several pieces of evidence indicate that patients with symptoms of 

post-traumatic stress disorder present smaller hippocampal volume in comparison to 

control subjects [38]. Moreover, experimental research indicates that the dorsal 

hippocampus modulates several anxiety-like responses. For example, Gonzalez et al. 

[39] found anxiolytic effects in the social interaction test after microinjection of 

benzodiazepinic sites in GABAA into the dorsal hippocampus. Additionally, Rezayat et 

al. [40] showed an interaction between GABA and cholecystokinin during modulation 

anxiety in the elevated plus-maze after injections of agonists and antagonists of both 

neurotransmitters into the dorsal hippocampus. Nazar et al. [41] also pointed out that 

GABA and serotonergic systems within the dorsal hippocampus are intimately involved 

in emotional behaviors. When they microinjected picrotoxin (a non-competitive 

antagonist of the GABAA receptor) into this hippocampal portion, the anxiolytic effect 

caused by serotonin depletion was attenuated. File et al. [36] also showed that the High 

DPAT Sensitive line (HDS) (an animal model selected for high sensitivity to the 

hypotermic response induced by the serotonergic agonist 8-OH-DPAT) presents 

reduced scores in the social interaction test, accounting for, at least in part, the abnormal 

functioning of 5-HT1A receptors in the dorsal hippocampus. Kjelstrup et al. [42], in turn, 

demonstrated that this hippocampal portion is involved in fear conditioning since 

lesions in this area prevent contextual fear conditioning.  

 Qualitative analysis of the dorsal hippocampal tissue, specifically the dentate 

gyrus and CA1 and CA3 areas, revealed that development of the hippocampal formation 

of CHF rats did not differ from that of control animals in relation to the morphological 

organization of the tissue in these three main cell layers. Therefore, no qualitative 

damage of the tissue was detected, indicating that the tissue was preserved as a whole 

and that behavioral differences between groups cannot be explained in terms of 
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hippocampal injury. Cell quantification in the three mentioned areas of the dorsal 

hippocampus was not different between groups, which suggests that differences in the 

hippocampal circuitry in CHF animals, as hypothesized, might occur at the molecular 

level of this structure.  

 It is important to mention that the ventral portion of the hippocampus was not 

addressed in the present study. This issue is important because there are some reports 

indicating that this region might be involved in anxiety regulation. For example, 

Kjelstrup et al. [42] reported that lesions within the ventral hippocampus alter 

unconditioned fear responses in the elevated plus-maze test. Moreover, activation of 5-

HT2C receptors within the ventral hippocampus induced anxiety responses in the 

elevated plus-maze. Therefore, future studies of the ventral hippocampus of CHF rats 

might produce additional data in the investigation of the mechanisms involved in the 

anxious trait exhibited by this animal model. 

In conclusion, these data show that the CHF line represents a robust animal 

model of anxiety disorder, as differences in the experimental group were observed in 

two different anxiety tests. Motor activity did not account for the differences between 

CHF and control animals. The absence of reliable differences between CHF and control 

animals in the forced swimming test and object recognition task indicated that the 

breeding procedure that increased the occurrence of conditioned freezing to contextual 

cues did not interfere with other emotional or memory systems. Possible 

neurophysiological differences between CHF and control animals might be more 

specific than the total amount of cells within the dorsal hippocampus. Thus, future 

studies are required to examine the possible mechanisms involved in the origin and 

development of the anxious phenotype observed in this model. 
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Figure captions 

Figure 1. Baseline scores (MEAN ± S.E.M.) of CTRL and CHF animals in the elevated 

plus-maze test (EPM). Top: number of entries into the open arms; middle: percentage of 

time spent in the open arms; bottom: number of entries into the closed arms. CTRL, 

control (n = 12); CHF, carioca high-freezing (n = 16). *P<0.05. 

 

Figure 2. Baseline scores (MEAN ± S.E.M.) of CTRL and CHF animals in the social 

interaction (top) and locomotor activity (bottom) tests. CTRL, control (n = 6 pairs); 

CHF, carioca high-freezing (n = 6 pairs). *P<0.05. 

 

Figure 3. Baseline scores (mean ± S.E.M.) of CTRL and CHF animals in the forced 

swimming test. CTRL, control (n = 9); CHF, carioca high-freezing (n = 9). 

 

Figure 4. Baseline scores (MEAN ± S.E.M.) of CTRL and CHF animals in the object 

recognition test. Top: object recognition. Middle: index of exploration 1 (time spent in 

exploration of both familiar objects). Bottom: index of exploration 2 (time spent in 

exploration of both types of objects). CTRL, control (n = 12); CHF, carioca high-

freezing (n = 12). 

 

Figure 5. Qualitative analysis of coronal sections of the dorsal hippocampus (dentate 

gyrus, CA1, and CA3 – 40 µm) of CTRL and CHF animals. CTRL, control (n = 3); 

CHF, carioca high-freezing (n = 3). A = Dentate gyrus CTRL; B = CA1 CTRL; C = 

CA3 CTRL; D = Dentate gyrus CHF; E = CA1 CHF; F = CA3 CHF. 
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Figure 6. Quantitative analysis of coronal sections of the dorsal hippocampus (dentate 

gyrus, CA1, and CA3 – 40 µm) of CTRL and CHF animals. Top: dentate gyrus. 

Middle: CA1 layer. Bottom: CA3 layer. CTRL, control (n=3); CHF, carioca high-

freezing (n=3). 
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