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Although it has been long believed that new neurons were only generated during development, there is now growing evidence
indicating that at least two regions in the brain are capable of continuously generating functional neurons: the subventricular zone
and the dentate gyrus of the hippocampus. Adult hippocampal neurogenesis (AHN) is a widely observed phenomenon verified in
different adult mammalian species including humans. Factors such as environmental enrichment, voluntary exercise, and diet have
been linked to increased levels of AHN. Conversely, aging, stress, anxiety and depression have been suggested to hinder it. However,
the mechanisms underlying these effects are still unclear and yet to be determined. In this paper, we discuss some recent findings
addressing the effects of different dietary polyphenols on hippocampal cell proliferation and differentiation, models of anxiety,
and depression as well as some proposed molecular mechanisms underlying those effects with particular focus on those related to
AHN. As a whole, dietary polyphenols seem to exert positive effects on anxiety and depression, possibly in part via regulation of
AHN. Studies on the effects of dietary polyphenols on behaviour and AHN may play an important role in the approach to use diet
as part of the therapeutic interventions for mental-health-related conditions.

1. Introduction

A long-standing dogma in the brain sciences stated that
new neurons were only generated during development.
However, in the mid-1900s new evidence indicated the need
for a change in this doctrine, as an unknown capacity in
the adult mammalian brain started to be unraveled: adult
neurogenesis.

Two regions in the adult mammalian brain, including
human [1], can be pointed as neurogenic sites [2]: the
subventricular zone (SVZ), located along the sides of the
lateral ventricles, and the subgranular zone (SGZ) of the
dentate gyrus (DG) in the hippocampus.

The new neurons generated in the SVZ migrate through
a precise route, the rostral migratory stream (RMS), and
integrate into the olfactory bulb, where they continuously
replace local neurons [3]. In the DG, new neurons are
generated from two types of progenitors or precursors
located in the SGZ [4]: type 1 hippocampal progenitors,
which extend a radial process across the granular layer,
ramifying in the inner molecular layer, and type 2 cells, which
are hippocampal progenitors with short processes (Figure 1,
also showing the 3 types of progenitor cells lying adjacent to
the ependymal cell layer in the SVZ: type B cells, which are
GFAP positive; type C transit amplifying cells; type A, which
are migrating neuroblasts) [4].
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Figure 1: Adult neurogenesis in the mammalian brain. The figure illustrates the two well-known neurogenic sites in the brain: the
subventricular zone (SVZ) and the dentate gyrus of the hippocampus (DG). Three types of progenitor cells are found lying adjacent to
the ependymal cell layer (E) in the SVZ: A subset of relatively quiescent GFAP+ radial cells (type B cells) in the SVZ has the potential to serve
as adult NSCs and generate rapidly dividing, transit-amplifying nonradial NSCs (type C cells), which in turn give rise to neuroblasts (type
A cells) that migrate through the rostral migratory stream toward the olfactory bulb. In the adult SGZ, a population of GFAP+ Sox2+ radial
cells corresponds to quiescent NSCs (type 1 cells). They coexist with actively proliferating, GFAP+ Sox2+ nonradial NSCs (type 2 cells) that
generate both astrocytes and neuroblasts. Neuroblasts then migrate into the granule cell layer and mature into neurons (red cell).

The new neurons generated in the adult hippocampus,
specifically in the SGZ of the DG, migrate to the inner layer of
the granular zone, where they send/receive synaptic contacts
[5].

Adult neurogenesis is a widely preserved phenomenon,
being verified in different mammalian species such as mice,
rats, guinea-pigs, monkeys, and humans [1, 6–12]. In
both mentioned neurogenic sites, adult neurogenesis follows
defined stages, identified as proliferation, cell fate determina-
tion, migration, and synaptic integration [5]. Many factors
can impact the regulation of these different steps, possibly
via the influence of factors released from vasculature [13, 14]
and complex cell-cell interactions, between progenitor cells
and other progenitors, astrocytes, and local/distal neurons
[4].

Some environmental factors have been shown to influ-
ence adult hippocampal neurogenesis (AHN), such as volun-
tary exercise, enriched environment, and caloric restriction
that increase the rates of AHN [15–17], whereas stressful
conditions like aging or stress itself have a decreasing
influence [8, 18].

Stress is one of the most potent negative modulators
of hippocampal neurogenesis, as demonstrated in several
species of mammals [19]. This effect has been demonstrated
by different paradigms, such as exposure to predator odour
[20], resident-intruder model of stress [8], psychosocial
stress [21], inescapable shock [22], and others (reviewed in
[23]). However, the mechanisms involved in this deleterious
effect have not yet been totally clarified. There is evidence
of a role for hormones and cytokines released during stress
in modulating AHN. Indeed, AHN is very sensitive to the
increase in corticoid levels [19], with these hormones neg-
atively regulating it. It is also known that the hippocampus
plays a role on the regulation of endocrine functions, possibly
promoting a negative regulation of the hypothalamus-
pituitary-adrenal (HPA) axis [24]. This involvement of the
hippocampus is evidenced by the high concentration of
glucocorticoid and mineralocorticoid receptors in this brain
structure (reviewed in [25]). However, there is also evidence
of a role for the newly generated neurons buffering the stress
response. Indeed, a recent study has shown that the ablation
of AHN led to a modulation of glucocorticoid levels after
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moderate stress, with a sustained increase in the levels of
these hormones even after a significant period following the
stressful event [26]. This reinforces the modulating role of
the hippocampus on the HPA axis through both AHN and
the more established negative feedback via glucocorticoid
receptors. This same study has suggested a relation between
neurogenesis and the aetiology of depression. As stated, it
has been proposed that depressed individuals have reduced
hippocampal volume [27, 28]. In addition, there is increasing
evidence from animal research that antidepressants might
exert a proneurogenic effect in the hippocampus [29], and
the ablation of neurogenesis has led to depressive behaviour
in animals tested in the forced swimming test (FST) and in
the sucrose preference test (SPT) [26, 30].

The role of AHN is still intensely debated. While several
contradictory findings emerge when analyzing the literature,
evidence in favour of a relevant role of adult-born neurons in
hippocampus-dependent learning is compelling; spatial and
associative memory is impaired in rodents under conditions
that decrease AHN, whereas hippocampus-dependent learn-
ing tasks are solved better under conditions that increase
AHN (reviewed in [31]).

AHN is also said to play a role in different neurode-
generative, neurological, and psychiatric disorders such as
Alzheimer’s and Parkinson’s disease, anxiety, and depression.
With regard to the latter, a small reduction of hippocampal
volume has been found in human patients suffering from
depression, suggesting an involvement of the hippocampus
in mood disorders [27, 28]. Reduced AHN in different
animal models of depression supports this observation as
well as the ability of antidepressants to restore it [22, 28].
However, data from different studies are still controversial
and the specific features that characterise the involvement
of AHN in depression and anxiety are not absolutely clear.
On the one hand, decreased AHN does not necessarily
induce depressive behaviour in laboratory rodents [30, 32]
and on the other hand, minimally normal levels of AHN
have been shown to be necessary for the successful effect of
some antidepressants [30, 33], and for buffering depressive
behaviour [26].

Several studies during the last 5 years suggest that
changes in diet can have a positive influence on neurogenesis,
learning, and memory as well as cognition and mood
(reviewed in [34]). As mentioned, laboratory rodents that
were fed under calorically restricted conditions had a higher
amount of AHN than ad libitum fed fellows, a process most
likely regulated via the brain-derived neurotrophic factor
(BDNF) [17]. Other positive effects on brain function were
achieved by omega-3 fatty acids and vitamins, as well as
by polyphenolic components of grapes, blueberries, cocoa,
or teas (reviewed in [35, 36]). Polyphenolic compounds
are phytochemicals known for their biological antioxidative,
neuroprotective, and cognitive properties. For instance, it has
been shown that different polyphenols can increase synaptic
plasticity in the context of AHN [37–40] and also promote
hippocampal long-term potentiation [41]. In addition, it has
been verified that polyphenols can enhance learning and
memory [42, 43] and reduce the risk of developing age-
related neurodegenerative diseases [44, 45], possibly via a

decrease in reactive oxygen species (ROS) production and
inflammation in models of aging [46, 47].

Besides antidepressant drugs, different polyphenolic
compounds such as catechins (flavanols/flavonoid from
green tea), curcumin (nonflavonoid from tumeric/Curcuma
longa), and resveratrol (stilbenoid produced naturally by sev-
eral plants when under attack/found high in red grape skin)
have been observed to have antidepresssant-like effects in
rodents and human [48–52]. This suggests that polyphenols
could be key compounds for the improvement of psychiatric
disorders like depression or anxiety.

The facts that polyphenols have been shown to be helpful
compounds against depression and that they can increase
AHN suggest that these molecules might affect mood, and
not only cognition, via AHN. In this way, this paper aims
to address this hypothesis, discussing the effects of dietary
polyphenols on mental health, particularly on depression
and anxiety, and the possible molecular mechanisms under-
lying these effects via AHN regulation.

2. Polyphenols and AHN

2.1. Effects of Polyphenols on AHN. Many of the studies about
the impact of polyphenols on the hippocampus have relied
on the antioxidant properties of these molecules and their
neuroprotective effect in different models of brain injury
[53–61] (see Table 1 for details), with the majority of them
not having addressed AHN. However, the emerging evidence
of hippocampal plasticity offered by the mechanisms under-
lying AHN has made this phenomenon a promising target
for pharmacological, environmental, and nutraceutical inter-
ventions, such as polyphenolic diet, raising the need for stud-
ies focusing on how these factors could impact the ability of
the adult hippocampus to generate new functional neurons.

A positive role of a diet enriched in polyphenols and
polyunsaturated fatty acids (LMN diet) on adult mice
neurogenesis has been shown [37]. Following 40 days of
LMN diet, different markers of AHN have been found to
be increased in comparison to mice under control diet, such
as the number of newly generated cells in the SGZ (as well
as in the SVZ), with significantly more cells expressing the
neuroblast marker doublecortin, suggesting that the LMN
diet had an effect on neuronal populations. Indeed, the rise
in neuronal differentiation was confirmed by the increased
colocalization of the cell proliferation marker 5-bromo-
2′-deoxyuridine (BrdU) and NeuN—expressed in mature
neurons—in neurons of the granule layer of animals fed
with the polyphenolic/fatty acid-enriched diet. Although
more is yet to be specifically clarified, one of the possible
mechanisms suggested for the increase in AHN by this
special diet could be the induction of hippocampal plasticity
factors such as insulin-like growth factor-1 (IGF-1) and
its receptor (IGF-1R), as previously shown by short-term
blueberry supplementation in rats [62]. In addition, the
neurogenic potential of the LMN diet has also been suggested
in a recent study that showed it to be capable of increasing
to 70% the rate of cell proliferation in the SVZ of a
mouse model of Alzheimer’s disease [54]. However, since
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a fatty-acid-(F-A) exclusive diet has not been used, there
is no conclusive evidence that the effects found are due
only to polyphenols. In this sense, the contribution of FA
or a synergistic effect of polyphenols and FA should be
considered.

This positive effect of polyphenols on hippocampal
neurogenesis has also been demonstrated in vitro, with low
concentrations of curcumin stimulating cell differentiation
in cultures of multipotent mouse neural progenitor cells. A
similar effect has been demonstrated in vivo, with increased
AHN in mice administered with this polyphenol [38] (see
Section 3.2.2 for further discussion on the effects of cur-
cumin on mental health and possible molecular mechanisms
underlying it).

In addition to curcumin, the interaction between pol-
yphenol and chronic stress has also been found with the
administration of flavonoids. In this sense, administration
of flavonoids extracted from Chinese herb Xiaobuxin-Tang
(XBXT-2) significantly increased hippocampal neurogenesis
in chronically stressed rats [39]. Additionally, XBXT-2 treat-
ment reversed the stress-induced decrease of hippocampal
BDNF and phosphorylated cyclic AMP-response element
DNA-binding protein (pCREB) (Ser133) expression, two
important factors closely related to hippocampal neuroge-
nesis. Interestingly, as occurred with curcumin, the positive
effects of these flavonoids were comparable to those achieved
with imipramine treatment.

Dietary polyphenols are thought to be the most abun-
dant antioxidants in foods and beverages [63], with par-
ticular potential to inhibit neuroinflammation (reviewed in
[64]). Thus, with special regard to inflammation, oxida-
tive stress and microglial activation—all factors known
to decrease cell proliferation and neuroplasticity—it has
been shown that neural progenitor cell proliferation and
spatial memory performance are increased, with decreased
microglial activation, in aged rats submitted to 4 weeks
of treatment with NT-020—a natural diet based on the
combination of polyphenols from blueberry and green tea,
as well as antioxidant and anti-inflammatory amino acids
like carnosine [65]. It is well established that one of the
physiological markers of aging is the increase in circulating
factors such as cytokines and chemokines, known to increase
proinflammatory factors that exert a negative effect on the
progenitor cell pools. The authors then suggest that the
positive influence of the NT-020 diet on health promotion
could occur via the promotion of proliferation and survival
of neurons, as well as by anti-inflammatory actions that
influence the stem cell niche of the aged brain [65].

Table 2 summarises the studies discussed before, on the
effects of polyphenols on hippocampal cell proliferation and
differentiation.

3. Polyphenols and Mental Health

3.1. Effects of Dietary Polyphenols on Depression and Anxiety:
Behavioural Aspects and Proposed Mechanisms of Action.
There is a growing body of data from animal and human
studies supporting the role of a variety of dietary polyphe-
nols in affecting behaviour and mood through anxiolytic

and antidepressant-like properties (see Table 3). The varied
mechanisms proposed for the effects of polyphenols on
mental health and the mounting evidence for the role of each
are suggestive of the complexity of the diverse interactions
influencing mood and behaviour. Thus the multiple cellular
and molecular mechanisms resulting in antidepressant-like
or anxiolytic effects of a particular polyphenol can reveal
potential targets at the level of the individual pathways
which may collectively contribute to a common behavioural
phenotype in the context of the etiologies of anxiety and
depressive disorders and expand our understanding of
interactions of these pathways.

The proposed mechanisms for polyphenol effects on
mental health are not limited to their well-established
antioxidant effects and are as varied as the different polyphe-
nols themselves and the sources in which they are found.
Chlorogenic acid is a common dietary polyphenol found
in fruits such as plums, apples, and cherries and beverages
such as tea and coffee which has been shown to have
anxiolytic effects in animal studies [67, 76]. Chlorogenic acid
has been demonstrated to have a number of effects on a
cellular level, leading to several proposed mechanisms for its
overall anxiolytic effects. In one study, the anxiolytic effect of
chlorogenic acid was blocked in vivo by the benzodiazepine
receptor antagonist flumazenil, suggesting that anxiety is
reduced by activation of the benzodiazepine receptor [67]. In
vitro, chlorogenic acid protected granulocytes from oxidative
stress, which is another proposed important contributor to
anxiety [67]. It has also been found to have neurotrophic
effects in vitro that stimulate neuronal differentiation and
neurite growth, supporting neuroplasticity, which also may
contribute to its anxiolytic effects [66].

Other polyphenols have been shown to exert anxiolytic
effects with proposed mechanisms that overlap those of
chlorogenic acid. Like chlorogenic acid, the green tea
polyphenol epigallocatechin-3-gallate (EGCG) has also been
shown to have anxiolytic properties in animal studies with
comparable results to a benzodiazepine anxiolytic drug
[68]. In vitro work with cultured hippocampal neurons
confirmed the specific modulation of the GABA-A receptor
benzodiazepine site by EGCG [68].

However, other studies suggest that different pathways
might contribute to the anxiolytic effects of other polyphe-
nols. Anthocyanin polyphenols from Vaccinium berries
(a genus which includes highbush blueberries, rabbiteye
blueberries, and bilberries) also show anxiolytic effects in
animal studies but in vitro studies have elucidated several
different mechanisms which may be responsible for the
anxiolytic property of this class of polyphenols [69, 77, 78].
The antioxidant properties of anthocyanins from rabbiteye
blueberries were shown to reduce oxidative damage to
neural DNA and this antioxidant neural protection was
proposed as a mechanism for the anxiolytic property of
berries [69]. Berry anthocyanins also inhibit monoamine
oxidases (MOAs), providing neuroprotective effects and
counteracting the MOA activity of lowering neural levels of
serotonin, noradrenaline, and dopamine whose low levels
have been implicated in the etiology of anxiety disorders
[77]. Blueberry polyphenols also have anti-inflammatory
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properties mediated through inhibition of the expression of
inflammatory cytokines interleukin-1β (IL-1β) and tumour
necrosis factor-α (TNF-α), inhibition of activities of the tran-
scription factor nuclear factor-κβ (NF-κβ), and increased
expression of the neurotrophic factor IGF-1 which may
increase neural plasticity and neurogenesis [78]. Increases
of these inflammatory cytokines and the transcription factor
NF-κβ have been associated with the development of mental
health disorders and inhibition of these cytokines and NF-κβ
has been suggested as a method of treatment [79–82].

A number of polyphenols have been shown to have anti-
depressant-like effects as well. As was the case with polyphe-
nols mediating anxiolytic effects, a variety of different
mechanisms have been implicated for the antidepressant-like
effects of different polyphenols. Ginkgobiloba extract con-
tains many polyphenols including the flavonols quercetin,
kaempferol, and isorhamnetin and has been shown to
have antidepressant-like effects that could be due to its
properties of increasing BDNF which would increase neu-
ronal survival and plasticity or due its increase of pCREB
through glutamate-invoked activation which would enhance
synaptic strength and neuronal plasticity [70]. The ginkgo
biloba flavonols quercetin and kaempferol also share the
property of inhibiting the action of MOA’s on serotonin
and catecholamines with other polyphenols such as berry
anthocyanins, the flavone apigenin in celery and the stil-
bene trans-resveratrol found in red wine [76, 77]. This
MOA inhibition may contribute to antidepressant effects
as elevated MOA activity is also linked to the etiology of
depressive disorders [77]. The polyphenols in cocoa have
also been shown to have antidepressant effects and to reduce
the symptoms of chronic fatigue syndrome, possibly due to
their anti-inflammatory properties mediated by inhibition of
proinflammatory cytokines [48, 49, 83].

Green tea contains many polyphenols belonging to sev-
eral molecular subclasses, including chlorogenic acid, pyro-
gallol, caffeic acid, (–)-epigallocatechin-3-gallate (EGCG),
(–)-epigallocatechin (EGC), epicatechin-3-gallate (ECG),
and (–)-epicatechin [71, 76, 84]. Green tea extracts have
been shown to have antidepressant-like effects with multiple
proposed mechanisms including antioxidant activity, regula-
tion of adrenocorticotrophic hormone (ACTH) serum levels,
inhibition of prostaglandins and inflammatory cytokines,
increase of anti-inflammatory cytokines, and inhibition of
MAO activity [52, 58, 71, 72, 85].

As can be seen in the examples of polyphenols discussed,
many mechanisms of action for the antidepressant-like and
anxiolytic behavioural effects of polyphenols show overlap
between polyphenols and suggest shared cellular pathways
that may interact and modulate each other.

A more detailed examination of a case in which the
mechanisms of action for the antidepressant effects of the
polyphenol have been elucidated may provide a clearer illus-
tration of such modulation and interaction. The mechanisms
of action for the polyphenol curcumin have been investigated
in detail and provide an illustrative example of how
polyphenol molecular and cellular pathways may interact
with those established for conditions affecting neurogenesis
and mental health such as stress and depression.

3.2. Proposed Curcumin Mechanisms of Antidepressant Action.
The antidepressant effects of curcumin, a polyphenol which
is the active ingredient in the spice turmeric, were investi-
gated using the standard testing paradigms used to screen
antidepressant drugs. The forced swimming test (FST)
and tail suspension test (TST) are two standard animal
models of depressive behaviour measurement in which the
degree to which the animal ceases to struggle and becomes
relatively passively immobile is used to assess depressive
behaviour and both have been used as accurate methods for
screening antidepressant properties of drugs when used in
conjunction with locomotion-screening tests to distinguish
any central nervous system stimulant properties [86, 87].
Curcumin was shown to dose-dependently reduce despair
immobility behaviour in the TST and FST to a degree
comparable to commonly prescribed tricyclic and selective
serotonin re-uptake antidepressants [50, 73]. Further in-
depth behavioural comparisons combined with in vitro
studies revealed that curcumin increased neural levels of
serotonin, noradrenaline, and dopamine and inhibited MOA
activity with molecular mechanisms that appear to differ
from typical tricyclic and selective serotonin reuptake antide-
pressants [50, 73].

However, there were additional cellular mechanisms and
antidepressant effects of curcumin revealed by a different
animal model of depression which was based on prolonged
stress and proved to be more sensitive to these diverse
mechanisms. This stress model allowed a more detailed
examination of curcumin’s multiple mechanisms of action
and reflected their complexity, illustrative of the diversity
of mechanisms through which a single polyphenol can
exert effect. Significantly, several of these pathways also
act to upregulate neurogenesis, offering additional context
for investigation of the cellular and molecular mechanisms
by which other polyphenols exert antidepressant-like and
anxiolytic effects.

Prolonged stress has been shown to have a role in
the etiology of depression in humans and the chronic
unpredictable stress in animal models of depression has
been shown to parallel the anatomical, neuroendocrine, and
behavioural aspects of depression in humans [74, 88, 89].
Thus the chronic unpredictable stress animal model has been
productive in elucidating cellular and molecular mechanisms
involved in the behavioural phenotype of depression and
shown that antidepressant effects may be related in part to
modulating the responses of the hypothalamus-pituitary-
adrenal (HPA) axis [74, 89–92] (Figure 2).

Curcumin has been shown to have the ability to block
or reverse the stress-induced changes typical of HPA axis
dysfunction to a level comparable to a typical tricyclic
antidepressant, including behavioural escape-response per-
formance deficits, physiological changes in the adrenal gland,
increases in corticosterone levels, reduced glucocorticoid
receptor (GR) mRNA expression, decreased levels of BDNF,
and reduced levels of phosphorylated CREB [74] (Figure 3).

Curcumin effects on restoring GR mRNA expression
are particularly important when viewed in the context of
HPA axis function. When functioning normally, activation
of the HPA axis begins with the perception of physical or
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Figure 2: Effects of curcumin on depression. Administration of curcumin in rodent models of depression has been shown to ameliorate
depressive-related behaviours, with decreased despair immobility, associated to increased levels of the neurotransmitters serotonin (5-HT),
noradrenaline (NA), and dopamine (DA), and decreased activity of the enzyme monoamine oxidase (MOA).

psychological stress and results in stimulation of the adrenal
cortex to release glucocorticoids (corticosterone in rodents
and cortisol in humans). Glucocorticoids bind with the GR
to regulate a number of systems in the body, including a
self-limiting feedback mechanism acting to stop stimulation
of glucocorticoid secretion and a GR feedback mechanism
which lowers the production of inflammatory cytokines by
inhibiting the activity of transcription factor NF-κβ [93, 94].

Thus glucocorticoids normally operate their own
negative-feedback mechanism to stop HPA axis activation
and to inhibit inflammation response; yet this negative
feedback effect on both systems has been shown ineffective
in depression where high levels of cortisol co-exist with
high levels of proinflammatory cytokines [82, 95, 96]. This
apparent lack of responsiveness to the feedback mechanism
is called glucocorticoid resistance and is attributed to
dysfunction of GR signalling rather than to elevated
glucocorticoid levels [82, 94, 97, 98].

Curcumin’s antidepressant-like effects in increasing levels
of stress-reduced GR mRNA expression may be one of
the keys in restoring normal levels of GR signalling for
GR-modulated feedback mechanisms and, coupled with
curcumin’s increase of phosphorylated CREB, may also have
implications for restoration of neurogenesis. A recent study
has shown that antidepressants increase GR expression and
induce GR nuclear translocation and transcription activities
through pathways involving cyclic AMP and protein kinase

A (PKA) which cumulatively result in increased levels of
neurogenesis [90]. This might elucidate the mechanism
of antidepressant effects established by earlier works in
which antidepressant drugs were shown to restore stress-
reduced levels of neurogenesis and GR expression, offering
further context for understanding Curcumin’s effects on GR
expression [19, 29, 98].

Curcumin has also been shown to inhibit NF-κβ acti-
vation pathways [99, 100]. Activated NF-κβ moves into the
nucleus where it disrupts GR signalling, preventing proper
functioning of GR feedback mechanisms [94, 97]. Activation
of NF-κβ also upregulates inflammatory cytokines which
can have a number of effects also shown in the etiology of
depression, including further dysregulation of the HPA axis,
metabolism of monoamine neurotransmitters through ele-
vated MOA activity, reduced neuronal plasticity, and reduced
neurogenesis [77, 89, 94]. Therefore inhibition of NF-κβ
activation by curcumin has a number of antidepressant-
like effects on the cellular level, preventing the reduced
monoamine levels due to the elevated MOA activity, NF-
κβ disruption of GR signalling, and the upregulation of
inflammatory cytokines whose elevated levels would other-
wise inhibit neurogenesis and further disrupt GR signalling
[89, 90, 101].

Curcumin administration in chronically stressed rats
increased hippocampal neurogenesis via modulation of
the HPA axis and upregulation of BDNF and 5-HT 1A
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Figure 3: Effects of curcumin on stress. Administration of curcumin in rodent models of stress has been found to reduce stress-related
behaviours, with decreased levels of the stress hormone corticosterone and increased levels of glucocorticoid receptor (GR) mRNA
expression, brain-derived neurotrophic factor (BDNF), and phosphorilated cyclic AMP-response element DNA-binding protein (pCREB).
Additionally, the decrease in AHN observed after exposure to stress has been found to be reversed following administration of curcumin.

receptors in the hippocampus [40]. Curcumin effects in
restoring BDNF protein levels is important in the context of
BDNF signalling in adult neurogenesis, shown to increase
neuronal differentiation, survival, and dendritic arborisation
[29, 102, 103].

However, modulation of serotoninergic signalling has
proven fundamental to curcumin antidepressant and neuro-
genic effects. The antidepressant-like effects of curcumin are
mediated in part through direct agonistic functions on 5-HT
1A and 5-HT 1B receptors and antagonistic effects on 5-HT
2C receptors [104]. The effects mediated by curcumin upreg-
ulation of 5-HT 1A receptors may be even more critical to
neurogenesis as 5-HT 1A, 5-HT 1B, and 5-HT 2A receptors
have been proven necessary for adult hippocampal neuroge-
nesis and 5-HT 1A receptor antagonists significantly decrease
cell proliferation in the hippocampus [105, 106]. The
increased serotonin signalling resulting from upregulation of
5-HT 1A receptors and agonist effects on 5-HT 1A and 5-
HT 1B receptors is also very pertinent to the antidepressant
effects of curcumin as increased serotonin transmission has
profound antidepressant effects as well as being associated
with an increase in adult neurogenesis [105].

The effect of curcumin on 5-HT receptors also modulates
GR signalling through serotonergic signalling activation of
PKA. Activated PKA translocates to the nucleus where it can

undergo protein-protein interactions with GR that optimise
GR-DNA binding, stimulating GR signalling [94, 107]. In
further interpathway modulation, activated PKA can also
inhibit NF-κβ from interfering with GR-DNA binding, thus
increasing GR transcription activity through modulation of
an additional pathway [94, 108].

Using the chronic unpredictable stress animal model
of depression in combination with in vitro studies has
provided details on many of the mechanisms through
which curcumin exerted the antidepressant-like behavioural
effects shown in FST and TST studies. As has been the
case with many polyphenols, curcumin was shown to have
multiple mechanisms of action that affect different cellular
and molecular pathways, many of which have been shown
to interact and modulate one another. Several of these
pathways also act to upregulate neurogenesis both directly
and indirectly, which is a further way in which curcumin may
exert its antidepressant-like effects as some antidepressant
drugs have been shown to exert neurogenesis-dependent
behavioural effects [30, 109, 110].

4. Conclusion

Given the high prevalence of depression and anxiety in
modern societies, unravelling the neurobiological basis of
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these psychiatric conditions is one of the most challenging
pursuits of science in the present days. The development of
effective treatments for depression is likely to emerge from
the identification of the mechanisms underlying its patho-
physiological components [111]. In this context, studies on
the effects of dietary polyphenols and elucidation of the
mechanisms by which they exert these effects may play an
important role as promising interventions in the field of
mental health.

The present work discussed some recent findings
addressing the effects of different dietary polyphenols on
models of anxiety and depression and proposed mechanisms
underlying these effects with particular focus on those related
to AHN. As a whole, there is growing evidence for a positive
effect of these plant- and food-derived components on
behaviours related to depression and anxiety. The dietary
polyphenols tested so far, however, appear to exert their
effects through different and specific molecular pathways
[112, 113], suggesting that the action of polyphenols is
not uniform but highly specific. In addition, it should be
noted that generalizing the effects of polyphenols as positive
is still nonconsensual. For instance, on the one hand, the
administration of 5,7,3′-trihydroxy-3,4-dimethoxyflavone (a
flavonoid similar to kaempferol) led to significantly inhibited
neurite outgrowth, and on the other hand, the polyphenol
chlorogenic acid stimulated it [66].

Indeed, polyphenols are a very heterogenous group of
natural chemical compounds that significantly differ with
regard to their chemical properties. Studies have shown
that the degree of polymerization and inherent properties
such as molecular polarity can determine their potency
in a range of actions, including antioxidation and anti-
inflammation [83, 114]. These properties also affect the
polyphenol level in different tissues, including the brain
[36]. This diversity may explain why the same dietary source
containing multiple polyphenols may show multiple effects
as the effects of a single polyphenol may be either additive
or altered when acting in the presence of other polyphenols
[76, 78]. This synergistic effect should be considered in future
investigations aiming to find effective interventions in the
field of mental health.

Some polyphenols have been shown to influence anxiety-
and depressive-like behaviours as well as AHN in different
in vivo and in vitro models. However, further studies are
necessary to clarify the potential of polyphenols in treating
depression and anxiety. It is worth noting that a significant
portion of the studies focusing on the effects of polyphenols
on the hippocampus did not address AHN and used learning
and memory paradigms as primarily models for studying
neurodegenerative disorders like Alzheimer’s disease. Given
that AHN represents one of the most remarkable features
of the central nervous system in terms of plasticity, more
studies investigating the effects and mechanisms of polyphe-
nols on hippocampal cell proliferation and differentiation
may identify additional specific neurobiological targets for
psychiatric-related behaviours. In addition, AHN has also
been shown to correlate with anxiety [115–118] as well as
emotional—and not only cognitive—learning and memory
processes [119–121]. Also, it is clear that anxiety disorders

present an important emotional mnemonic component
[122]. Given the role of AHN in emotional learning and
memory, future investigations that consider the potential
effects of dietary polyphenols on depression and anxiety
could expand our current understanding of these psychiatric
conditions and provide evidence of their potential as tools
for effective intervention.

Key Messages

(i) The adult hippocampus is capable of generating
new neurons, but how these newly generated cells
affect mental health and the different factors that can
regulate AHN are still debated.

(ii) Polyphenol effects and bioavailability vary greatly
due to their differing chemical, physical, and struc-
tural properties.

(iii) Plant-or food-derived polyphenols are widely known
for their biological properties in enhancing cognition
and neuroprotection in models of neurogenerative
conditions, but some polyphenols can also increase
cell proliferation and differentiation in models of
anxiety and depression.

(iv) Different polyphenols exert their effects on AHN
via different mechanisms of action, such as by
activating the MAP kinase pathway or stimulating the
expression and release of neurotrophic factors.

(v) Dietary polyphenols have been shown to affect men-
tal health, having anxiolytic effects comparable to
anxiolytic benzodiazepine drug chlordiazepoxide and
antidepressant-like effects comparable to those of the
SSRI antidepressant fluoxetine and TCA imipramine.

(vi) The anxiolytic and antidepressant-like effects of
polyphenols are mediated through multiple molecu-
lar and cellular pathways, which interact and modu-
late one another.
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