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ABSTRACT 

 

This paper revisits the fundamental structural dynamic systems with regard to the effect of gravity, and thus 

self-weight, on their dynamic characteristics and response. Far from being a purely theoretical exercise, as 

would have been the case in the past, this study is a first step in structural dynamics inspired by -and 

anticipating- the potential of building under extraterrestrial conditions. More specifically, five basic structural 

models are considered: (a) the simple pendulum (SP), (b) the rigid inverted pendulum (RIP), (c) the flexural 

inverted pendulum (FIP), (d) the rigid rocking block (RRB), and (e) the flexural rocking block (FRB). The 

focus is to identify patterns and regions where low gravity can have a beneficial or detrimental role on the 

structural response. The paper initially presents the effect of low gravity on the dynamic characteristics of 

each system and then proceeds with highlighting their self-similar response, along with the differences in 

response due to low gravity. It is proved that low gravity is detrimental for the SP, while it is beneficial for 

the RIP and FIP models. Nevertheless, the effect can be both beneficial and detrimental for the RRB and 

FRB, depending on their parameters as revealed from this investigation. Finally, the main dynamic 

characteristics of the five cases studied, factorized by the gravitational multiplier (α), are quantified and 

summarized in the form of a representative table.   

 

Keywords: Dynamic response, simple pendulum (SP), rigid inverted pendulum (RIP), flexural inverted 

pendulum (FIP), rigid rocking block (RRB), flexural rocking block (FRB), gravitational multiplier (α).   

 

 

1. Introduction and background 

In an effort to simulate the behavior of different types of structures under dynamic excitations, many studies 

in the past have developed different fundamental structural dynamic models. The simplest and most 

fundamental model is the single-degree-of-freedom (SDOF) system that consists of a mass connected to a 

spring and a dashpot (Chopra 2007, Clough and Penzien 2013 among others) [1, 2]. The beneficial role of 

the spring is due to the restoring forces from the structural elements that provide a positive stiffness and 

allows the system to vibrate during and after the excitation. However, several decades ago and especially 

after the 1995 Kobe earthquake it was obvious that the conventional structural design should adopt a more 

holistic view of the structure, including the superstructure, foundation and the soil (soil-structure interaction, 

SSI)[3–6]. Therefore, there was a transition from the SDOF cantilever systems to inverted pendulum-like 

models since the fixity at the base was replaced by a rotational spring accounting for the SSI. Thus, for 

structures where either the dissipation of energy takes place mainly at the base of a single building element 

or the main mass (over than 50%) is in the upper third of its height, the dynamic system can be considered 

as an inverted pendulum [7]. Kirkpatrick (1927) and Housner (1963) [8] were pioneers in introducing 

structures that exhibited an inverted pendulum-like behavior, characterized later on as rocking behavior. The 

transition from inverted pendulum to rocking systems occurs with the addition of the element’s width (thus 

introducing slenderness) and the differentiation of pivot points at each rocking cycle. This paper focuses on 

the clear distinction between the aforementioned models and elucidate their dynamic responses’ differences 

when moving from positive (inverted pendulum) to negative-stiffness systems (rocking). 

There is considerable ongoing research on rocking structures, whether for the purpose of investigating the 

seismic resilience of ancient monuments such as ancient temples or arches [9–12] or as an alternative 

technique for  seismic isolation, in order to decrease the forces transferred to the foundation [12–16]. 

However, the observation of large, slender elements (wind-turbines, industrial chimneys, piers in valley 
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bridges, etc.) that exhibit rocking behavior led to the coupling of flexural vibrations with rocking response, 

and therefore introduced the so-called flexural rocking models [17–21]. Nevertheless, the role of self-weight 

on the dynamic response of the different systems has not been thoroughly investigated until now, with the 

exception of the second-order (P-Δ) effects in flexible cantilever systems [22, 23]. The objective of this study 

is to investigate the role of weight on the dynamic characteristics and on the response of the different 

fundamental structural dynamic systems pertaining to civil engineering structures; fundamental dynamic 

systems exhibiting chaotic behaviour (such as the Duffing oscillator etc.) that can be of interest from a 

mechanical engineering perspective, are not included in this study.  

The motivation behind this objective is not merely academic but stems mostly from the enormous streamline 

of investments from various industrial firms and federal agencies (NASA, SpaceX, Boeing, Virgin Galactic, 

ESA, etc.) to expand civil engineering in extraterrestrial conditions, be it for the development of Lunar and 

Martian outposts or for Space tourism. Although some preliminary steps towards the conceptualization of 

extraterrestrial structures have already been made  [24–29], the effect of low gravity on a wide range of 

structures (with or without the consideration of foundations/SSI) is not yet fully understood. 

Hence, to take the first step in this direction, this paper revisits the fundamental structural dynamic systems 

and focuses on the effect of low gravity on their dynamic characteristics and thus on their dynamic structural 

response. The five systems considered herein are: (a) the simple pendulum (SP), (b) the rigid inverted 

pendulum (RIP), (c) the flexural inverted pendulum (FIP), (d) the rigid rocking block (RRB), and (e) the 

flexural rocking block (FRB), all of which are subjected to a simple harmonic excitation. The excitation was 

chosen as a single-cycle sine pulse, as this is the simplest waveform that can be identified as a ‘dangerous’ 

component of strong ground motion for structures [12]. The parameterization used is designed to reveal any 

self-similar response and to identify critical combinations of parameters where low gravity becomes 

dominant (beneficially or detrimentally) for structural behaviour.  

 

 

2. Fundamental Structural Dynamic Systems 

As mentioned above, the present work focuses on the effect of low gravity on the dynamic characteristics 

and response of five fundamental structural dynamic systems, subjected to a single harmonic pulse. In what 

follows, one subsection is dedicated to each system: first, each system is described with the aim to reveal its 

geometric and dynamic characteristics as a function of gravity; then the study reveals any existing self-

similarity, focusing on the effect of low gravity for different values of gravitational acceleration (𝛼𝑔). The 

values of the gravitational multiplier, 𝛼, considered in this study are set equal to 0.17, 0.38 and 1.00, as 

reference values for the cases of the Moon, Mars and Earth respectively. Note that damping was not 

considered in any of the models except FRB, because: (a) the aim is to highlight the effect of low gravity, 

and (b) there is not enough evidence as to how low gravity can affect damping.  

 

2.1 Simple pendulum (SP) 

At first, the most fundamental dynamic system, the simple pendulum, is investigated herein, where a 

concentrated mass (𝑚) is suspended from a pivot point via a massless thread, so that it can swing freely (Fig. 

1a). Although this system usually does not explicitly represent structural behavior, except some specific 

applications (tuned mass damper, friction pendulum bearing, etc.), it aims to serve as a reference case to 

illustrate critical aspects of the effect of low gravity on its behavior. More specifically, gravity plays a 

stabilizing role here, since it creates a restoring force that compels the mass to oscillate about the equilibrium 

point. By assuming zero damping, the motion of the concentrated mass subjected to a linear sinusoidal 

excitation, can be described by Eq. (1) as:   

�̈� +
𝑎𝑔

𝐿
sin(𝜃) =

𝐴𝑝

𝐿
𝑠𝑖𝑛 (

2𝜋

𝑇𝑃
𝑡)    

𝑠𝑖𝑛𝜃≈ 𝜃
⇒        �̈� +

𝑎𝑔

𝐿
𝜃 =

𝐴𝑝

𝐿
𝑠𝑖𝑛 (

2𝜋

𝑇𝑃
𝑡)                                                               (1) 
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(a) (b) 

Fig. 1 (a) Simple harmonic pendulum; (b) the influence of the gravitational acceleration 𝛼 to the natural 

period of the system by assuming zero damping. 

 

where 𝑔, 𝐿, 𝛼 are the reference acceleration of gravity in earth, the length of the thread and the gravitational 

multiplier, respectively. �̈� and 𝜃 are the rotational acceleration and chord rotation considered at the pivot 

point. 𝐴𝑝, 𝑇𝑝 are the amplitude and the pulse period of the linear excitation respectively. The maximum values 

of total displacements (𝑢𝑚𝑎𝑥) and rotations (𝜃𝑚𝑎𝑥) usually exhibited by civil engineering systems are very 

small compared to the geometry of the structure and thus, the linearized equations of motions  𝜃 ≈ 0, sin 𝜃 ≈

𝜃, cos 𝜃 ≈ 1) are used herein to describe the dynamic response of the systems.  

The exact expression of the natural period of a simple pendulum (�̂�0,𝑆𝑃
∗ ) along with the corresponding 

expression of the natural period obtained by a small-angle approximation (𝑇0,𝑆𝑃
∗ ), are defined as follows: 

�̂�0,𝑆𝑃
∗ = 2𝜋√

𝐿

𝛼𝑔
∙∑((

(2𝑛)!

(2𝑛 ∙ 𝑛!)2
)

2

∙ sin2𝑛
𝜃

2
)

∞

𝑛=0

    
𝜃≈ 0
⇒     𝑇0,𝑆𝑃

∗ = 2𝜋√
𝐿

𝛼𝑔
=
1

√𝛼
𝑇0,𝑆𝑃                                   (2) 

The effect of the gravitational multiplier, (𝛼), on the natural period of the harmonic pendulum is shown in 

Fig. 1b for the three distinct reference values of 𝛼 (0.17, 0.38 and 1.00). 𝑇0,𝑆𝑃  corresponds to the natural 

period of a simple pendulum under the assumption that 𝛼 = 1.00. Fig. 1b shows how dominant low gravity 

(i.e., low values of 𝛼) can become, as it increases the natural period of the SP significantly and with a 

geometric rate. The response of the system is a function of five variables: 𝜃 = 𝑓(𝐿, 𝑔, 𝛼, 𝑇𝑝, 𝐴𝑝), involving 

two fundamental dimensions. According to Buckingham’s theorem [30], the response can be described by 6-

2= 4 dimensionless parameters, which are shown below: 

𝛱𝜃 = 𝜃, 𝛱𝛼 = 𝛼,𝛱𝑔 =
𝐴𝑝

𝑔
, 𝛱𝑇𝑆𝑃 =

𝑇0,𝑆𝑃

𝑇𝑝
                                                                                                                  (3)                 

Thus, the response of the system is fully described by:  

𝜃 = 𝜑(𝛼,
𝐴𝑝

𝑔
,
𝑇0,𝑆𝑃

𝑇𝑝
)                                                                                                                                                           (4)                 

The self-similar response of the system, 
𝛱𝜃𝛱𝛼

4𝜋2𝛱𝑔
, when subjected to a single sinusoidal pulse can be deduced 

from the dimensionless master curve presented in Fig. 2a, which was computed by means of a small-angle 

approximation and for a wide range of values of 
𝛱𝑇𝑆𝑃

√𝛱𝛼
= 𝑇0,𝑆𝑃

∗ /𝑇𝑝.  



4 
 

 

  

(a) (b) 

Fig. 2 (a) Dimensionless response spectrum of an SP subjected to a one-cycle sinusoidal pulse, 

exhibiting self-similar behavior for a large range of dimensionless periods, 𝑇0,𝑆𝑃
∗ /𝑇𝑝, obtained by 

considering a small-angle approximation; (b) the influence of the angular response in the dimensionless 

response spectrum of an SP, subjected to a one-cycle sinusoidal pulse.  

 

Fig. 3 Dimesionless response spectra of the SP, 
𝛱𝜃𝑚𝑎𝑥

4𝜋2𝛱𝑔
, against the dimensionless reference period, 𝛱𝑇𝑆𝑃, 

for the three distinct values of the gravitational multiplier, 𝛱𝛼 , when subjected to a single sinusoidal pulse. 

 

On the other hand, Fig 2b shows the dimensionless response, 
𝛱𝜃𝑚𝑎𝑥

4𝜋2𝛱𝑔
, of the nonlinear SP system against the 

“nonlinear” dimensionless period ratio, �̂�0,𝑆𝑃
∗ /𝑇𝑝, subjected to one-pulse sinusoidal excitations. 𝜃0 is defined 

as the 𝑚𝑎𝑥{𝑚𝑎𝑥|𝜃| for a certain �̂�0,𝑆𝑃
∗ /𝑇𝑝}. The influence of large angles is illustrated in Fig. 2b, where 

higher discrepancy between the small-angle approximation (Fig. 2a-Master curve) and the exact nonlinear 

response is observed for higher response angles due to either the effect of low gravity (e.g. for α=0.17), or 

due to higher excitation amplitudes; both these factors result to higher dimensionless response values, 
𝛱𝜃𝑚𝑎𝑥

4𝜋2𝛱𝑔
.  

Given the self-similar response and the master curve of Fig. 2a, the low-gravity effect can be illustrated 

when the dimensional response, 
𝛱𝜃𝑚𝑎𝑥

4𝜋2𝛱𝑔
, is presented against the dimensionless period 𝛱𝑇𝑆𝑃 for the three 

distinct values of the gravitational multiplier, 𝛱𝛼 . Therefore, Fig 3 depicts dimensionless response spectra 

curves for the cases of 𝛼 = 0.17, 0.38 and 1.00. The purpose of this figure is to illustrate the response of 

different SPs with known values of natural periods on Earth (𝑇0,𝑆𝑃) when subjected to given harmonic 

excitations (𝑇𝑝) at different gravitational fields (𝛼). By observing Fig. 3, it is evident that lower values of 
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gravity, α, lead to higher dimensionless response values 
𝛱𝜃𝑚𝑎𝑥

4𝜋2𝛱𝑔
 and the resonance intervals shift towards 

smaller 𝛱𝑇𝑆𝑃 values. 

2.2  Rigid inverted pendulum (RIP) 

A rigid inverted pendulum is defined as a concentrated mass which is connected with a rotational spring 

having a finite rotational stiffness equal to Kr (Fig. 4a) through a rigid linear bar. 

 

  
                  (a) (b) 

Fig. 4 (a) Rigid inverted pendulum (RIP); (b) the influence of the gravitational multiplier α on the 

natural period of the system. 

 

 

Contrary to SP, for the case of rigid inverted pendulum, the gravity plays a destabilizing role, while the 

rotational stiffness of the spring prevents the system from acting like a mechanism. By observing the equation 

of motion: 

 

�̈� +
𝐾𝑟
𝑚𝐿2

𝜃 −
𝑎𝑔

𝐿
𝑠𝑖𝑛𝜃 =

𝐴

𝐿
𝑠𝑖𝑛 (

2𝜋

𝑇𝑃
𝑡)   

𝑠𝑖𝑛𝜃≈ 𝜃
⇒         �̈� + (

𝐾𝑟
𝑚𝐿2

−
𝑎𝑔

𝐿
) 𝜃 =

𝐴

𝐿
𝑠𝑖𝑛 (

2𝜋

𝑇𝑃
𝑡)                                   (5) 

 

one can conclude that the gravitational force (self-weight) reduces the overall stiffness of the system. 

Furthermore, the physical constraint (positive stiffness), (
𝐾𝑟

𝑚𝐿2
−
𝑎𝑔

𝐿
) > 0, allowing the system to vibrate, 

results in strictly 𝛼 < 𝛼𝑐𝑟, with 𝛼𝑐𝑟 =
𝐾𝑟

𝑚𝑔𝐿
.  

Fig. 4b indicates that a decreasing value of 𝛼/𝛼𝑐𝑟 (that has to be less than unity), leads also to decrease of 

the natural period of the system as: 

 

𝑇0,𝑅𝐼𝑃
∗ = 2𝜋√

𝑚𝐿2

𝐾𝑟 −𝑚𝛼𝑔𝐿
= 2𝜋

1

√
𝐾𝑟
𝑚𝐿2

− 𝛼
𝑔
𝐿

=
1

√𝛼𝑐𝑟 − 𝛼
𝑇0,𝑆𝑃                                                                           (6) 

From Eqs. (2) and (6), it is evident that RIP becomes a stiffer configuration with lower gravity, compared to 

the SP that becomes more flexible.  

The response of the RIP is a function of seven parameters 𝜃 = 𝑓(𝑚,𝐾𝑟 , 𝐿, 𝑔, 𝛼, 𝑇𝑝, 𝐴𝑝) with three reference 

dimensions, therefore by applying Buckingham’s theorem we need 8-3=5 dimensionless parameters. The 

five dimensionless parameters that can fully describe the response of the system are:  
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𝛱𝜃 = 𝜃, 𝛱𝛼 = 𝛼,𝛱𝑔 =
𝐴𝑝

𝑔
, 𝛱𝑇𝑅𝐼𝑃 =

𝑇0,𝑅𝐼𝑃

𝑇𝑝
, 𝛱𝛼𝑐𝑟 = 𝛼𝑐𝑟                                                                                       (7)                 

Thus, the response of the system is fully described by:  

𝜃 = 𝜑(𝛼,
𝐴𝑝

𝑔
,
𝑇0,𝑅𝐼𝑃

𝑇𝑝
, 𝛼𝑐𝑟)                                                                                                                                                 (8)                 

or by a combination of these.  

 

The response of a RIP in terms of rotation (𝜃) and rotational velocity (𝜃)̇ of the base, is shown in Fig. 5 for 

gravitational multiplier 𝛱𝛼 = 𝛼 = {0.17, 0.38, 1.00} and 𝛱𝛼𝑐𝑟 = 𝛼𝑐𝑟 = 1.5.    

 

Fig. 5 Time history of a RIP subjected to a single sinusoidal impulse of 𝛱𝑔 = 0.3 and 𝑇𝑝 = 2.5 𝑠𝑒𝑐, 

Where 𝑇0,𝑅𝐼𝑃 = 4.0𝑠𝑒𝑐, 𝛱𝛼 = {0.17, 0.38, 1.00} and 𝛱𝛼𝑐𝑟 = 1.5. 

 

 

Similarly to the SP case, a self-similar master curve is revealed in Fig. 6 when the dimensionless response, 
𝛱𝜃(𝛱𝛼𝑐𝑟−𝛱𝛼)

4𝜋2𝛱𝑔
, is presented against a wide range of dimensionless period, 

𝛱𝑇𝑅𝐼𝑃

√(𝛱𝛼𝑐𝑟−𝛱𝛼)
= 𝑇0,𝑅𝐼𝑃

∗ /𝑇𝑝. It is worth 

noting that the difference between the two systems is the substitution of 𝛱𝛼,(SP) with 𝛱𝛼𝑐𝑟 −𝛱𝛼,(RIP) which 

clearly indicates the reversal of the role of gravity (from stabilizing to destabilizing). 

 
Fig. 6 Self similar master curve concerning the dimensionless response spectrum of the RIP against a 

large range of 𝑇0,𝑅𝐼𝑃
∗ /𝑇𝑝 subjected to one-cycle sinusoidal pulse. 

 

For a structure that can be modelled as a RIP (water towers, silos, etc.), 𝑡ℎ𝑒 𝛼𝑐𝑟 = 𝛱𝛼𝑐𝑟 =
𝐾𝑟

𝑚𝑔𝐿
 factor is 

indicative of how rotationally stiff the foundation is (soil-structure interaction), relative to how susceptible 



7 
 

the system is to overturn by its own weight (P-Δ effect= 𝑚𝑔𝐿𝜃). Therefore, high values of 𝛼𝑐𝑟  mean that the 

rotational stiffness (𝐾𝑟) of the system is substantially increased and hence does not permit the development 

of large base rotation (𝜃), despite the mass (𝑚) and height (𝐿) of the structure.  

The influence of low gravity on the response of the RIP to a single sine pulse can be revealed if the 

dimensionless response, 
𝛱𝜃𝑚𝑎𝑥

4𝜋2𝛱𝑔
, is presented against the reference dimensionless period 𝛱𝑇𝑅𝐼𝑃, for distinct 

values of the gravitational multiplier, 𝛱𝛼  and for different 𝛱𝛼𝑐𝑟 values (Fig. 7). It is evident that for RIPs of 

the same 𝛼𝑐𝑟 , lower values of 𝛼 lead to smaller rotations at the base (𝜃𝑚𝑎𝑥), as the destabilizing factor of 

gravity decreases. However, for higher values of 𝛼𝑐𝑟 , the response of the system appears to be substantially 

lower, since the rotational spring is stiffer and thus the effect of low gravity as 𝛼𝑐𝑟  increases becomes 

negligible.  
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Fig. 7 Dimensionless response spectra of the RIP when subjected to a single sinusoidal pulse with period 

𝑇𝑝 and amplitude 𝐴𝑝, for different values of 𝛼 and 𝛼𝑐𝑟 . 

 

 

2.3 Flexural inverted pendulum (FIP) 

A more realistic approach regarding the modelling of structures that behave in an inverted pendulum-like 

way is presented in this subsection. The FIP (Fig. 8) retains the characteristics of a RIP, the difference being 

that the concentrated mass at the top is connected with the rotational spring through a flexural linear member. 

Thus, the FIP is a dynamic system of two degrees of freedom (𝜃, 𝑢), but without a mass assigned to each 

degree. Hence, the system of Fig. 8 is described as a pseudo single-degree-of-freedom (SDOF) and not as a 

two-degree-of-freedom system. However, adopting a Lagrangian formulation (see Appendix), the equations 

of motion (Eqs. (9) and (10)) can be obtained: 

 

𝑚𝐿𝑐𝑜𝑠(𝜃)�̈�𝑔 +𝑚𝐿
2�̈� + 2𝑚𝑢�̇��̇� + 𝑚𝑢2�̈� + 𝑚𝐿�̈� + 𝐾𝑟𝜃 − 𝑚𝛼𝑔𝐿𝑠𝑖𝑛(𝜃) − 𝑚𝛼𝑔𝑢𝑐𝑜𝑠(𝜃)

= 𝑚𝑢𝑠𝑖𝑛(𝜃)�̈�𝑔                                                                                                                                (9) 

𝑚�̈� + 𝑚𝐿�̈� − 𝑚𝑢�̇�2 + 𝑘𝑢 − 𝑚𝛼𝑔𝑠𝑖𝑛(𝜃) = 𝑚𝑐𝑜𝑠(𝜃)�̈�𝑔                                                                                   (10) 

 

 
Fig. 8 The flexural inverted pendulum system. 
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Structures in real life possess a finite stiffness and can exhibit large lateral displacements in extreme 

circumstances, such as strong wind loads or ground motions. Those lateral displacements, combined with 

high vertical loads (usually related to gravity loads), are responsible for the development of second-order 

effects [22, 23] which constitute an additional load for the structure. Such a phenomenon creates a 

destabilizing moment equal to the vertical force multiplied by the horizontal structural displacement when 

loaded laterally. In order to take the P-Δ effect under consideration, the stiffness of the flexural member is 

set to: 𝑘 = 3
𝐸𝐼

𝐿3
−
𝛼𝑚𝑔

𝐿
  (where 𝑘𝑐𝑎𝑛𝑡 = 3

𝐸𝐼

𝐿3
 is defined as the cantilever stiffness). The response of the flexural 

inverted pendulum is a function of eight parameters 𝜃 = 𝑓(𝑚, 𝑘, 𝐾𝑟 , 𝐿, 𝑔, 𝛼, 𝑇𝑝, 𝐴𝑝) with three reference 

dimensions, therefore: 9-3=6. The six dimensionless parameters that can fully describe the response of the 

system are:  

 

𝛱𝜃 = 𝜃𝑡𝑜𝑡 =
𝑢𝑡𝑜𝑡

𝐿
= (𝜃 +

𝑢

𝐿
)

𝛱𝛼 = 𝛼  ;   𝛱𝑔 =
𝐴𝑝

𝑔
  ;   𝛱𝑇𝐹𝐼𝑃 =

𝑇0,𝐹𝐼𝑃

𝑇𝑝
  ;   𝛱𝛼𝑐𝑟 = 𝛼𝑐𝑟

𝛱𝑘 =
𝑘𝐿2

𝐾𝑟
    (𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑝 − 𝛥) ;   𝛱𝑘𝑐𝑎𝑛𝑡 =

𝑘𝑐𝑎𝑛𝑡𝐿
2

𝐾𝑟
     (𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑝 − 𝛥)

   

}
 
 

 
 

                                                   (11)  

Thus, the total horizontal response of the system is fully described by:  

𝜃𝑡𝑜𝑡 = 𝜑(𝛼,
𝐴𝑝

𝑔
,
𝑇0,𝐹𝐼𝑃

𝑇𝑝
, 𝛼𝑐𝑟 ,

𝑘𝑐𝑎𝑛𝑡𝐿
2

𝐾𝑟
)                                                                                                                            (12)                 

or by a combination of these.  

 

Since the FIP of Fig. 8 is a pseudo-SDOF (as one rather than two masses exist), only one natural period can 

be extracted from the linearized equations of motion (Eqs. (9) and (10)): 

𝑇0,𝐹𝐼𝑃
∗ = 2𝜋√

𝐾𝑟𝑚 +𝑚𝐿
2𝑘 +𝑚2𝛼𝑔𝐿

𝐾𝑟𝑘 − 𝑚𝛼𝑔𝐿𝑘 − 𝑚
2𝛼2𝑔2

= √

1 +
𝛼
𝛼𝑐𝑟

+ 𝛱𝑘

𝛼𝑐𝑟[𝛱𝑘 − 𝛱𝑘
𝛼
𝛼𝑐𝑟

− (
𝛼
𝛼𝑐𝑟
)
2

]
𝑇0,𝑆𝑃                                             (13) 

From the natural period of the system a physical constrain arises similarly to the previous systems; the 

maximum value of the gravitational multiplier (𝛼) should be between 0 < 𝛼 ≤
𝑘

2𝑚𝑔
(√𝐿2 + 4

𝐾𝑟

𝑘
− 𝐿). The 

aforementioned upper limit of (𝛼) factor is symbolized as 𝛼𝑐𝑟
′  in order to avoid being confused with the 

corresponding 𝛼𝑐𝑟  which is relevant to RIP. The expression of  𝛼𝑐𝑟
′  is described by the Eqs. (14) and (15) and 

it is also correlated with the dimensionless stiffness parameter 𝛱𝑘. 

𝛼𝑐𝑟
′ =

𝐾𝑟
𝑚𝑔𝐿

(√(
𝑘𝐿2

2𝐾𝑟
)

2

+
𝑘𝐿2

𝐾𝑟
−
𝑘𝐿2

2𝐾𝑟
) = 𝛱𝛼𝑐𝑟 (

√(
𝛱𝑘
2
)
2

+ 𝛱𝑘 −
𝛱𝑘
2
)                                                         (14) 

Interestingly, the FIP has two independent limiting cases; firstly, when 𝐾𝑟 → ∞, the system becomes a 

vertical cantilever and on the other hand, when 𝑘 → ∞, then the structure resembles a RIP. The 

aforementioned conclusion can be proved as follows:  
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lim
𝐾𝑟→∞

𝜔𝐹𝐼𝑃
2 = lim

𝐾𝑟→∞
(
𝐾𝑟𝑘 − 𝑚𝛼𝑔𝐿𝑘 −𝑚

2𝛼2𝑔2

𝐾𝑟𝑚 +𝑚𝐿
2𝑘 +𝑚2𝛼𝑔𝐿

) = lim
𝐾𝑟→∞

(

𝐾𝑟𝑘
𝐾𝑟
−
𝑚𝛼𝑔𝐿𝑘
𝐾𝑟

−
𝑚2𝛼2𝑔2

𝐾𝑟
𝐾𝑟𝑚
𝐾𝑟

+
𝑚𝐿2𝑘
𝐾𝑟

+
𝑚2𝛼𝑔𝐿
𝐾𝑟

) =
𝑘

𝑚

= 𝜔𝑘
2     𝑎𝑛𝑑     𝛱𝑘 → 0 

lim
𝑘→∞

𝜔𝐹𝐼𝑃
2 = lim

𝑘→∞
(
𝐾𝑟𝑘 − 𝑚𝛼𝑔𝐿𝑘 − 𝑚

2𝛼2𝑔2

𝐾𝑟𝑚+𝑚𝐿
2𝑘 + 𝑚2𝛼𝑔𝐿

) = lim
𝑘→∞

(

𝐾𝑟𝑘
𝑘
−
𝑚𝛼𝑔𝐿𝑘
𝑘

−
𝑚2𝛼2𝑔2

𝑘
𝐾𝑟𝑚
𝑘
+
𝑚𝐿2𝑘
𝑘

+
𝑚2𝛼𝑔𝐿
𝑘

) =
𝐾𝑟 −𝑚𝑎𝑔𝐿

𝑚𝐿2

= 𝜔𝑅𝐼𝑃
2      𝑎𝑛𝑑     𝛱𝑘 → +∞ 

 

By considering p-Δ effects and substituting 𝑘 with 𝑘𝑐𝑎𝑛𝑡 −
𝛼𝑚𝑔

𝐿
 in Eq. (13) we end up to Eqs. (15) and (16) 

𝑇0,𝐹𝐼𝑃
∗ = 2𝜋√

𝐾𝑟𝑚 +𝑚𝐿
2𝑘 + 𝑚2𝛼𝑔𝐿

𝐾𝑟𝑘 − 𝑚𝛼𝑔𝐿𝑘 −
𝐾𝑟𝛼𝑚𝑔
𝐿

= √
1 + 𝛱𝑘𝑐𝑎𝑛𝑡

𝛼𝑐𝑟[ 𝛱𝑘𝑐𝑎𝑛𝑡 − 𝛱𝑘𝑐𝑎𝑛𝑡
𝛼
𝛼𝑐𝑟

−
𝛼
𝛼𝑐𝑟
]
𝑇0,𝑆𝑃                                       (15) 

𝛼𝑐𝑟
′ =

𝐾𝑟
𝑚𝑔𝐿

(
𝑘𝑐𝑎𝑛𝑡𝐿

2

𝐾𝑟 + 𝑘𝑐𝑎𝑛𝑡𝐿
2
) = 𝑎𝑐𝑟 (

𝑘𝑐𝑎𝑛𝑡𝐿
2

𝐾𝑟 + 𝑘𝑐𝑎𝑛𝑡𝐿
2
) = 𝛱𝛼𝑐𝑟 (

𝛱𝑘𝑐𝑎𝑛𝑡
1 + 𝛱𝑘𝑐𝑎𝑛𝑡

)                                                    (16) 

 

A typical time history of a FIP for gravitational multiplier = 𝛱𝛼 = {0.17, 0.38, 1.00}, 𝛼𝑐𝑟 = 𝛱𝛼𝑐𝑟 = 3.0 and 

𝛱𝑘 = 2.0 is presented in Fig. 9.  

 

Fig. 9 Time history of a FIP subjected to a sinusoidal impulse of 𝛱𝑔 = 0.3 and 𝑇𝑝 = 2 𝑠𝑒𝑐, Where 

𝑇0,𝑆𝑃 = 3.47𝑠𝑒𝑐, 𝛱𝛼 = {0.17, 0.38, 1.00}, 𝛱𝛼𝑐𝑟 = 3.0 and 𝛱𝑘 = 2.0. 

 

In this case, the system exhibits a self-similar behavior along the full range of parameters as the previous 

systems. Fig. 10 (a) shows the dimensionless response, 
𝛱𝜃(𝛼𝑐𝑟

′  −𝛱𝛼)

4𝜋2𝛱𝑔
, of the FIP against a wide range of 

√
1+𝛱𝑘𝑐𝑎𝑛𝑡

𝛱𝛼𝑐𝑟[𝛱𝑘𝑐𝑎𝑛𝑡−𝛱𝑘𝑐𝑎𝑛𝑡
𝛱𝛼
𝛱𝛼𝑐𝑟

−
𝛱𝛼
𝛱𝛼𝑐𝑟

]
𝑇0,𝑆𝑃/𝑇𝑝 = 𝑇0,𝐹𝐼𝑃

∗ /𝑇𝑝 and 𝛱𝑘𝑐𝑎𝑛𝑡 , when subjected to a continuous sine pulse 
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with amplitude, 𝐴𝑝, and period, 𝑇𝑝 and Fig. 10b shows the self-similar curve of a FIP subjected to one cycle 

sinusoidal pulse and resembles this of the RIP. Fig. 10 makes a very important point for this study, as it 

interconnects directly the response of two seemingly different systems (RIP and cantilever) to a single master 

response. Obviously, the link between the two different systems is the FIP, given that the two systems are 

two different aspects (limit cases) of the same system (FIP). 

  
(a) (b) 

Fig. 10 (a) 3D Dimensionless self-similar response spectrum of the FIP when subjected to a continuous 

sine pulse with period 𝑇𝑝 and amplitude 𝐴𝑝, (b) self-similar spectrum curve of a FIP which is subjected 

to one-cycle sinusoidal pulse with period 𝑇𝑝 and amplitude 𝐴𝑝.    

 

Fig. 11 shows the dimensionless response of a FIP. More specifically, it depicts 
𝛱𝜃

4𝜋2𝛱𝑔
, against 

√
1+𝛱𝑘𝑐𝑎𝑛𝑡

𝛱𝛼𝑐𝑟[𝛱𝑘𝑐𝑎𝑛𝑡−𝛱𝑘𝑐𝑎𝑛𝑡
1

𝛱𝛼𝑐𝑟
−

1

𝛱𝛼𝑐𝑟
]
𝑇0,𝑆𝑃/𝑇𝑝 = 𝑇0,𝐹𝐼𝑃/𝑇𝑝, for the three values of 𝛱𝛼 = {0.17, 0.38, 1.00} and for 

different values of 𝛼𝑐𝑟
′ = {1.2, 1.5, 2.0}. As expected, the response decreases with low gravity in a similar 

manner as RIP.  
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Fig. 11 Dimensionless response spectra of the flexural inverted pendulum FIP when subjected to a sine pulse with period Tp 

and amplitude 𝐴𝑝, for different values of 𝛼 and 𝛼′𝑐𝑟 . 

 

2.4 Rigid rocking block (RRB) 

Over the past few decades, various researchers investigated the concept of a free-standing rocking rigid block 

resting on a rigid surface. Rocking systems are classified as a different class of systems than RIP and FIP 

systems, since gravity tends to restore their equilibrium -  under the condition that the rotation angle (𝜃) 

defined at the pivot points (Fig. 12) will not surpass a certain threshold defined by the capacity of each block 

(overturning event). The equation of motion is then [8, 9, 21]:   

 

�̈� = −𝑝2 [𝑠𝑖𝑛(𝑠𝑖𝑔𝑛(𝜃)𝑎𝑠𝑙 − 𝜃) + 𝑐𝑜𝑠(𝑠𝑖𝑔𝑛(𝜃)𝑎𝑠𝑙 − 𝜃)
�̈�𝑔

𝛼𝑔
]                                                                           (17) 

 

Where   𝑝𝑅𝐵
∗ = √

3αg

4R
  : frequency parameter of the rigid block (RB) (𝑟𝑎𝑑/𝑠) and 𝑅 = √𝐵2 + 𝐻2 

   𝑎𝑠𝑙 = 𝑎𝑡𝑎𝑛 (
𝐵

𝐻
) : Defines the slenderness of the block  

The uplifting acceleration of the RB is equal to 𝛼𝑔𝑡𝑎𝑛(𝑎𝑠𝑙). Obviously, low gravity results in easier uplifting 

of the RRB. During the rocking motion, just before and after the impact, the rotation angle (𝜃) is equal to 

zero as is the potential energy of the system. Thus, the total energy of the system can be expressed in the 

form of kinetic energy. The energy loss according to Housner (1963) [8] is expresses by: 
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𝑙 = 1 − (
�̇�2

�̇�1
)

2

                                                                                                                                                               (18) 

 

The rocking response of the rigid block is a function of six parameters 𝜃 = 𝑓(𝛼𝑠𝑙 , 𝑝, 𝑔, 𝛼, 𝜔𝑝, 𝐴𝑝) with two 

reference dimensions, therefore by applying Buckingham’s theorem: 7-2=5. The five dimensionless 

parameters that can fully describe the response of the system are chosen as:   

 

𝛱𝜃 = 𝜃, 𝛱𝛼𝑠𝑙 = tan (𝛼𝑠𝑙), 𝛱𝛼 = 𝛼,𝛱𝑔 =
𝐴𝑝

𝑔
, 𝛱𝜔 =

𝜔𝑝

𝑝
                                                                                      (19)                 

Thus, the response of the system is fully described by:  

𝜃 = 𝜑(𝛼,
𝐴𝑝

𝑔
,
𝜔𝑝

𝑝
, tan (𝛼𝑠𝑙))                                                                                                                                        (20)                 

or by a combination of these.  

 

 
Fig. 12 Rocking of a rigid block. 

 

Fig. 13 presents the rocking response time histories of a RB with 𝑅 = 7.21 and 𝛼𝑠𝑙 = 1/4 when subjected 

to a one-cycle sine pulse with period TP=1sec and different amplitudes a) 𝐴𝑝 = 0.20g, b) 𝐴𝑝 = 0.35g, c) 

𝐴𝑝 = 0.55g  for the three distinct values of gravitational multiplier 𝛼 = 0.17, 0.38 𝑎𝑛𝑑 1.00. Fig. 13a shows 

that the system does not uplift for 𝛼 = 1.00. Additionally, Fig. 12b illustrates that the RB will rock for all 

gravitational multiplier values but the response for 𝛼 = 1.00 will exhibit the smallest amplitude, with a large 

difference compared to 𝛼 = 0.17 and  0.38. However, the maximum angular velocity of the RB for 𝛼 =

1.00 is very close to the other two cases. Fig. 13c highlights that, interestingly the RB for 𝛼 = 1.00 overturns 

first, even if it was the last to uplift compared to the other two. This observation is rather counterintuitive, 

since gravity acts as a stabilising factor. The reason for this overturning event is that the system for 𝛼 = 1.00 

has a bigger 𝑝 resulting in an impact (zero crossing) at an earlier time for the first rocking cycle, as indicated 

in the figure. Thus, just after the first impact, the system for 𝛼 = 1.00 receives an extra “push” from the 

excitation and this proves to be a critical parameter for this case. An additional factor to assist in the 
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overturning is that angular velocities for 𝛼 = 1.00 are higher than the cases of 𝛼 = 0.17 and 𝛼 = 0.38  as 

mentioned above.  

 

 

 

Fig. 13 Rocking response of a RB with 𝑅 = 7.21 and 𝛼𝑠𝑙 = 1/4 when subjected to a single 

sinusoidal pulse with period TP=1.00sec , and different amplitudes  a) 𝐴𝑝 = 0.20g, b) 𝐴𝑝 = 0.35g,  

c) 𝐴𝑝 = 0.55g  for 𝛼 = 0.17, 0.38 𝑎𝑛𝑑 1.00. 

 

The self-similar behavior of the system is shown in Fig. 14, which presents the overturning spectrum of the 

RB, 
𝛱𝑔𝑚𝑖𝑛

𝛱𝛼𝛱𝛼𝑠𝑙
 against 

𝛱𝜔

√𝛱𝛼
  when 𝛱𝛼𝑠𝑙 = 1/4. It has been proven that a free-standing rigid block under sinusoidal 



15 
 

pulses may overturn with two distinct modes [9, 12, 31, 32]. The first mode of overturning occurs by 

exhibiting at least one impact and the second without any impact. However, to deduce the effect of low 

gravity on the overturning spectrum of the RRB, Fig. 15 plots the minimum overturning acceleration, 
𝛱𝑔𝑚𝑖𝑛

𝛱𝛼𝑠𝑙
, 

against 𝛱𝜔 for the three distinct values of 𝛱𝛼 . Overturning without any impact always requires higher values 

of 𝐴𝑝 than overturning with impact for a certain value of 𝛱𝛼 . Moreover, the plot in Fig. 15 can be separated 

into four characteristic regions (A, B, C and D). Region A is defined for 0 < 𝛱𝜔 ≤ 2.23 where the first 

overturning happens for the RB with 𝛼 = 0.17. Region B is 2.23 <
𝜔𝑝

𝑝
≤ 3.61 where the first overturning 

occurs for 𝛼 = 0.38. Region C corresponds to 3.61 <
𝜔𝑝

𝑝
≤ 8.22 with the first overturning occurring for 𝛼 =

1.00. The RB in regions B and C exhibits a counterintuitive behavior since one would expect that the lower 

gravity leads to an easier overturning for a given value of 𝐴𝑝. Such phenomenon lies above the response 

illustrated in Fig. 13c and has already been explained in this subsection. Finally, region D (8.22 <
𝜔𝑝

𝑝
) is the 

safest, as one can observe only overturning without impact that corresponds firstly to 𝛼 = 0.17, then to 𝛼 =

0.38 and finally to 𝛼 = 1.00 which is the expected behaviour of the RB, since gravity acts as a stabilising 

factor.  

 

Fig. 14 Self similar rocking overturning spectrum for a rigid block of  𝛱𝛼𝑠𝑙 = 1/4, subjected to a one-

cycle sinusoidal excitation. 

 

 
Fig. 15. Rocking overturning spectra of rigid blocks with  𝛱𝛼𝑠𝑙 = 1/4, subjected to one-cycle sinusoidal 

excitation, concerning the gravitational multipliers 𝛼 = 0.17, 0.38 and 1.00. 
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2.5 Flexural rocking block (FRB) 

The rigid block model in some earthquake engineering applications can be characterized as unrealistic and 

incompatible with the structures that display flexural characteristics. Hence, in this subsection, the block is 

simulated as a deformable rocking column characterized by a uniformly distributed mass (𝑚𝑐) and stiffness 

(𝐸𝐼) as shown in Fig. 16. Several authors in the past have considered similar models [20, 30, 33]. However, 

Vassiliou et al. (2015) [30] investigated the analytical formulation in depth and proposed the model used in 

this study. The total mass of the column (𝑚𝑐)  is also uniformly distributed along the height. Two additional 

lumped masses are located at the top (𝑚𝑡) and base (𝑚𝑏), while the moment of inertia (𝐼𝑏) is considered 

around the center of mass. The width of the base is defined as 2B. Similarly to rigid blocks, the slenderness 

is: 𝑎𝑠𝑙 = 𝑎𝑡𝑎𝑛 (
𝐵

𝐻
) and the surface is assumed to be rigid. The flexural block subjected to rocking is a dynamic 

system of two degrees of freedom (DOFs). The first DOF is the base rotation (𝜃) and the second one is the 

horizontal displacement of the top with respect to the bottom of the column (𝑢).    

 

 
Fig. 16 The flexural rocking block model. 

 

When there is no uplift the motion is described by the same equation as this of a flexural vertical cantilever 

fixed to the base. 

�̈� + 2𝜉𝜔𝑛�̇� + 𝜔𝑛
2𝑢 = −�̃��̈�𝑔                                                                                                                                       (21)  

Where:  

𝜉: represents the damping ratio associated with the energy dissipated during the vibration of the column 

(viscous classical damping), 𝜔𝑛 =
�̃�

�̃�
, �̃� = 𝑚𝑡 +

33

140
𝑚𝑐  : expresses the generalized mass, �̃� = 3

𝐸𝐼

𝐻3
 : 

represents the generalized stiffness and -�̃��̈�𝑔 = −
𝑚𝑡+

3

8
𝑚𝑐

𝑚𝑡+
33

140
𝑚𝑐
�̈�𝑔 is equal to the excitation of the system.  

When the system uplifts, the rocking behavior is described by two DOFs (𝜃, 𝑢). By applying the Lagrangian 

formulation (see [30]) one can produce the equations of motion shown in Eqs. (22) and (23).  
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(𝐼𝑏 +𝑚𝑐 (𝐵
2 +

𝐻2

3
) +

33

140
𝑚𝑐𝑢

2 − 𝑠𝑖𝑔𝑛𝜃
3

4
𝐵𝑢𝑚𝑐 +𝑚𝑡(𝐵

2 + 𝐻2) − 𝑠𝑖𝑔𝑛𝜃2𝐵𝑢𝑚𝑡 +𝑚𝑡𝑢
2) �̈�  

=  − (
33

70
𝑚𝑐 + 2𝑚𝑡) 𝑢�̇��̇� − (

11

40
𝑚𝑐 +𝑚𝑡)𝛨�̈� + 𝑠𝑖𝑔𝑛𝜃 (

3

4
𝑚𝑐 + 2𝑚𝑡)𝐵�̇��̇�

+ (−𝑠𝑖𝑔𝑛𝜃(𝑚𝑡 +𝑚𝑐 +𝑚𝑏)𝐵𝑠𝑖𝑛𝜃 − (
𝑚𝑐
2
+𝑚𝑡)𝐻𝑐𝑜𝑠𝜃 + (

3

8
𝑚𝑐 +𝑚𝑡) 𝑢𝑠𝑖𝑛𝜃) �̈�𝑔

+ (−𝑠𝑖𝑔𝑛𝜃(𝑚𝑡 +𝑚𝑐 +𝑚𝑏)𝐵𝑐𝑜𝑠𝜃 − (
𝑚𝑐
2
+ 𝑚𝑡)𝐻𝑠𝑖𝑛𝜃 + (

3

8
𝑚𝑐 +𝑚𝑡) 𝑢𝑐𝑜𝑠𝜃) (𝛼𝑔)  

                                                                                                                                                                                         (22) 

(
33

140
𝑚𝑐 +𝑚𝑡) �̈� + (

11

40
𝑚𝑐 +𝑚𝑡)𝛨�̈� =

= −3
𝐸𝐼

𝐻3
𝑢 − 𝑐�̇� + (

3

8
𝑚𝑐 +𝑚𝑡) (𝛼𝑔)𝑠𝑖𝑛𝜃

+ ((
33

140
𝑚𝑐 +𝑚𝑡) 𝑢 − 𝑠𝑖𝑔𝑛𝜃 (

3

8
𝑚𝑐 +𝑚𝑡)𝐵) �̇�

2 − (
3

8
𝑚𝑐 +𝑚𝑡) �̈�𝑔𝑐𝑜𝑠𝜃 

                                                                                                                                                                                        (23) 

The uplift condition of the system is a function (Eq. (26)) of the overturning (𝑀𝑜𝑡) and restoring (𝑀𝑟𝑡) 
moments about a pivot point (Fig. 16). More specifically: 

𝑀𝑜𝑡 = −�̈�𝐻 (𝑚𝑡 +
11

40
𝑚𝑐) − (𝑚𝑡 +

𝑚𝑐
2
) �̈�𝑔𝐻                                                                                                     (24) 

𝑀𝑟𝑡 = (𝑚𝑏 +𝑚𝑐 +𝑚𝑡)(𝑎𝑔)𝐵 ± (
3

8
𝑚𝑐 +𝑚𝑡) (𝛼𝑔)𝑢                                                                                       (25) 

Where the upper and the lower signs denote moments about the right and the left pivot point respectively. By 

combining Eqs. (24) and (25), the uplift condition which is described in Eq. (26) is defined. 

±(𝑀𝑜𝑡 +𝑀𝑟𝑡) > 0 ⇔ 

±𝐻 (𝑚𝑡 +
11

40
𝑚𝑐) (𝜔𝑛

2𝑢 + 2𝜉𝜔𝑛�̇� + �̃��̈�𝑔) ∓ (𝑚𝑡 +
𝑚𝑐
2
) �̈�𝑔𝐻 − 

−(𝑚𝑏 +𝑚𝑐 +𝑚𝑡)(𝑎𝑔)𝐵 ± (
3

8
𝑚𝑐 +𝑚𝑡) (𝛼𝑔)𝑢 > 0                                                                                       (26) 

The modeling of the dissipated energy at impact during the rocking of a deformable block, constitutes a field 

of interest for many researchers [17, 20, 30]. The approach of Acikgoz and Dejong (ADJex) [20] is adopted 

herein and considers two possible states after the impact. In the first state, after the impact the block’s base 

stays on the ground and experiences a full contact phase, while in the second state, the block immediately 

uplifts about the opposite corner and continues to rock. The ‘decision’ between these two possible states is 

taken by considering the minimum of the total energy of the rocking system under the restriction that the 

amount of the post-impact kinetic energy must be less than the pre-impact kinetic energy. Acikgoz and 

Dejong enforce energy decrease through the conservation of the horizontal momentum instead of that of 

angular momentum, which in certain cases leads to energy increase after impact. 

 

In the full contact phase: 
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�̇�2 =

(𝐼𝑏𝑐 − 2𝑚𝑏𝐵
2 +𝑚𝑐 (−𝐵

2 +
𝐻2

3
+
33
140

𝑢2) +𝑚𝑡(−𝐵
2 + 𝐻2 + 𝑢2))

(
11
40
𝑚𝑐 +𝑚𝑡)𝐻

�̇� + �̇�                                     (27) 

The indicies ‘1’ and ‘2’ denote the pre- and the post- impact states of the system. 

𝐸2,𝑓𝑐 =
1

2
(𝑚𝑡 +

33

140
𝑚𝑐) �̇�2

2                                                                                                                                    (28) 

Due to the instantaneous character of the impact 𝑢2 = 𝑢1 and 𝜃2 = �̇�2 = 0. 

In the immediate rocking phase: 

There are two unknown quantities. The first is the post-impact angular velocity of the base (�̇�2) and the 

second is the post-impact relative horizontal velocity of the top mass (𝑚𝑡) with respect to the base of the 

block (�̇�2). As mentioned above, in order to conserve the horizontal momentum, Acikgoz and Dejong [20] 

made the assumption that the relative horizontal velocity remains the same after impact, that is: �̇�2 = �̇�1.   

Hence, by adopting the above assumption and applying the conservation of angular momentum around an 

impact corner one can derive the following equations: 

�̇�2 =
(𝛪𝑏𝑐 − 2𝐵

2𝑚𝑏) + 𝑚𝑐 (−𝐵
2 +

𝐻2

3
+
33
140

𝑢1
2) + 𝑚𝑡(−𝐵

2 + 𝐻2 + 𝑢1
2)

𝛪𝑏𝑐 +𝑚𝑐 (𝐵
2 +

𝐻2

3
+
33
140

𝑢1
2 ±

3
4
𝐵𝑢1) + 𝑚𝑡(𝐵

2 +𝐻2 + 𝑢1
2 ± 2𝐵𝑢1)

�̇�1                                       (29) 

Where the upper sign corresponds to impact on the left corner and the lower sign corresponds to the right 

corner of the block.  

The kinetic energy is given by the following equation: 

𝐸2,𝑟 =
1

2
𝛪𝑏𝑐�̇�

2 +
1

2
𝑚𝑐 ((𝐵

2 +
𝐻2

3
+
33

140
𝑢2 ±

3

4
𝐵𝑢) �̇�2

2
+
33

140
�̇�2
2 +

11

20
𝐻�̇�2�̇�2)

+
1

2
𝑚𝑡 ((𝐵

2 + 𝐻2 + 𝑢2 ± 2𝐵𝑢)�̇�2
2
+ �̇�2

2 + 2𝐻�̇�2�̇�2)                                                     (30) 

With the sign convention of Eq. (25) 

If 𝐸1 is the prior to the impact kinetic energy of the system, in case that (𝐸𝑟 , 𝐸𝑓𝑐) > 𝐸1the conservation of 

horizontal momentum leads to: 

�̇�2 =
(
𝑚𝑐
2
+ 𝑚𝑡)𝐻

3
8
𝑚𝑐 +𝑚𝑡

�̇�1 + �̇�1                                                                                                                                        (31) 

The response is a function of 13 variables: 

(𝑢, 𝜃) = 𝑓(𝜔𝑛, 𝑚,𝑚𝑐 , 𝑚𝑏 , 𝐼𝑏 , 𝜉, 𝛼𝑠𝑙 , 𝑝, 𝑔, 𝜔𝑝, 𝐴𝑝, 𝑎)                                                                                              (32) 

Through the application of dimensional analysis, the response can be described by 14-3=11 dimensionless 

parameters: 
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𝛱𝜃 =
𝜃

𝜃𝑐𝑟
 ;  𝛱𝑢 =

𝑢

𝑢𝑐𝑟
 ;  𝛱𝛼𝑠𝑙 = tan (𝛼𝑠𝑙) ;  𝛱𝛼 = 𝛼

𝛱𝑔 =
𝐴𝑝

𝑔
 ;  𝛱𝜔𝑝 =

𝜔𝑝

𝑝
 ;  𝛱𝜔𝑛 =

𝜔𝑛
𝑝
 ;  𝛱𝜉 = 𝜉

𝛱𝑚𝑐 = 𝛾𝑚𝑐 =
𝑚𝑐
𝑚
 ; 𝛱𝑚𝑏 = 𝛾𝑚𝑏 =

𝑚𝑏
𝑚
  ;   𝛱𝐼𝑏 = 𝛾𝐼𝑏 =

𝐼𝑏
4
3
𝑚𝑏𝐵

2
}
 
 
 

 
 
 

                                                                    (33) 

And the response can be expressed as  

(
𝑢

𝑢𝑐𝑟
,
𝜃

𝜃𝑐𝑟
) = 𝑓 (

𝜔𝑛
𝑝
,
𝜔𝑝

𝑝
, 𝛾𝑚𝑐 , 𝛾𝑚𝑏 , 𝛾𝐼𝑏 , 𝜉, 𝛼,

𝐴𝑝

𝑔𝑡𝑎𝑛𝑎𝑠𝑙
)                                                                                         (34) 

Where 

𝜔𝑛 = √

3𝐸𝐼
𝐻3

(𝑚𝑡 +
33
140

𝑚𝑐)
                                                                                                                                             (35) 

𝑝 = √
𝑔

𝑅
                                                                                                                                                                           (36) 

𝛾𝑚𝑐 =
𝑚𝑐
𝑚𝑡
, 𝛾𝑚𝑏 =

𝑚𝑏
𝑚𝑡
, 𝛾𝐼𝑏 = (

𝐼𝑏
4
3
𝑚𝑏𝐵

2
)                                                                                               (37) 

𝜃𝑐𝑟 = 𝑡𝑎𝑛
−1 (

𝑚𝑡 +𝑚𝑏 +𝑚𝑐

𝑚𝑡 +
𝑚𝑐
2

𝐵

𝐻
)                                                                                                                            (38) 

𝑢𝑐𝑟 =
(𝑚𝑡 +𝑚𝑏 +𝑚𝑐)𝐵𝑔

(𝑚𝑡 +
11
40
𝑚𝑐)𝐻𝜔𝑛

2 + (
3
8
𝑚𝑐 +𝑚𝑡)𝑔

                                                                                                        (39) 

 

Fig. 17 and 18 present the rocking response of the flexural block with 
𝜔𝑛

𝑝
= 5 and 

𝜔𝑛

𝑝
= 20, respectively for 

𝛾𝑚𝑏 = 2, 𝛾𝑚𝑐 = 1,
𝜔𝑝

𝑝
= 7,

𝐴𝑝

𝑔𝑡𝑎𝑛(𝛼𝑠𝑙)
= 5, 𝛼𝑠𝑙 = 0.1 and for the three distinct values of gravitational 

multiplier, 𝑎 = 0.17, 0.38, 1.00. 

The RRB system analysis has shown that generally low gravity does not act beneficially for rocking (except 

for regions B and C in Fig. 15 -for a single sinusoidal pulse) but on the other hand Fig. 11 illustrates the 

beneficial effect of low gravity on the vertical cantilever system. In this case, the FRB system couples the 

two systems together. From Fig. 17 and 18 it can be deduced that low gravity significantly lengthens the 

rocking cycles through the “rocking frequency” (𝑝) but it is very beneficial regarding the flexural response, 

𝛱𝑢, as this decreases significantly in accordance with Fig. 11. The latter observation is also a result of the 

stronger gravitational field when 𝛼 = 1.00, which leads to higher angular velocities prior and post-impact, 

compared to the α = 0.17 and 0.38 cases. The higher post-impact angular velocities for 𝛼 = 1.00 amplify 

the flexural response accordingly, independent of other parameters, such as 𝛱𝜔𝑛 or 𝛱𝜉 . Lower values of 𝛱𝜔𝑛 

combined with higher gravitational multipliers (Fig. 17- blue thick line), lead to flexible FRB which is 
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affected more by the p-Δ effects (due to the higher gravity). The jaggedness of the 𝜃 𝛼𝑠𝑙⁄  curve for 𝛼 = 1.00 

in Figure 17 confirms the aforementioned observation.  

 
Fig. 17. Rocking response of a flexural block when subjected to a sinusoidal pulse for 𝛼 =

{1.00, 0.38, 0.17} Where: 
𝜔𝑛

𝑝
= 5, 𝛾𝑚𝑏 = 2, 𝛾𝑚𝑐 = 1, 

𝜔𝑝

𝑝
= 7, 

𝐴𝑝

𝑔𝑡𝑎𝑛(𝑎𝑠𝑙)
= 5, 𝛼𝑠𝑙 = 0.1. 

 

 

 

Fig. 18. Rocking response of a flexural block when subjected to a sinusoidal pulse for 𝛼 =

{1.00, 0.38, 0.17} Where: 
𝜔𝑛

𝑝
= 20, 𝛾𝑚𝑏 = 2, 𝛾𝑚𝑐 = 1, 

𝜔𝑝

𝑝
= 7, 

𝐴𝑝

𝑔𝑡𝑎𝑛(𝑎𝑠𝑙)
= 5, 𝛼𝑠𝑙 = 0.1. 

 

The FRB is a complex system affected by many dimensionless parameters as shown in Eqs. (32) and (33). 

This study chooses to present only the most important aspects of its response. Four representative overturning 

spectra of FRB subjected to a single sinusoidal impulse are shown in Fig. 19 and 20, for different values of 

dimensionless stiffness (
𝜔𝑛

𝑝
= {5, 20}), slenderness (𝛼𝑠𝑙 = 0.1, 0.2) and gravitational multiplier (α =

0.17, 0,38 𝑎𝑛𝑑 1.00). As in the case of the RRB, the sequence concerning regions A, B and C is the same 

for each spectrum. However, region C dominates the range 𝜔𝑝/𝑝, hence, low gravity plays a more beneficial 
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role than expected, especially for large blocks or high-frequency pulses (
𝜔𝑝

𝑝
> 3 − 4). On the contrary, region 

D cannot be defined, since it varies for different values of the aforementioned parameters. Slenderness (𝛼𝑠𝑙) 
is important when it comes to overturning of a block, since for 𝛼𝑠𝑙 = 0.1 we observe a broadened area of 

mode-1 overturning (with one impact), while for 𝛼𝑠𝑙 = 0.2 this area is substantially limited. On the other 

hand, the area of overturning without impact is slightly different from spectrum to spectrum, irrespective of 

the stiffness and slenderness of the flexural block, or of the gravitational conditions. 

 

 

 
Figure 19. Rocking spectra of a flexural block when subjected to a sinusoidal pulse for 𝛼 =

{1.00, 0.38, 0.17} Where: 
𝜔𝑛

𝑝
= 5, 𝛾𝑚𝑏 = 1, 𝛾𝑚𝑐 = 1. 
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Figure 20. Rocking spectra of a flexural block when subjected to a sinusoidal pulse for 𝛼 =

{1.00, 0.38, 0.17} Where: 
𝜔𝑛

𝑝
= 20, 𝛾𝑚𝑏 = 1, 𝛾𝑚𝑐 = 1. 

 

3.  Conclusions 

This paper revisits the fundamental structural dynamic systems to investigate the effect of low gravity on 

their dynamic characteristics and their response when subjected to a sine pulse. It begins by using dimensional 

analysis for the formulation of positive-stiffness vibration models, such as the simple pendulum (SP), the 

rigid inverted pendulum (RIP) and the flexural inverted pendulum (FIP), and concludes with (negative-

stiffness) rocking-system models: the rigid rocking block (RRB) and the flexural rocking block (FRB). The 

sine pulse was chosen as the simplest harmonic excitation and in order to reveal any critical trends or patterns 

regarding the effect of low gravity. 

The conclusions of this study can be summarized as follows:  

 The SP –studied here purely as a reference case– becomes a more flexible configuration as the 

gravitational multiplier decreases (low gravity). This results in an amplification of the response in 

the vicinity of the resonant frequency. On the other hand, this increase in flexibility occurs for a 

wider range of 𝑇0,𝑆𝑃/𝑇𝑝, indicating less sensitivity to the frequency content of the excitation. The 

response is self-similar and can be described by a master curve as shown in Fig. 2.  

 The change in gravity has exactly the opposite effect on the RIP. Low gravity forms a stiffer RIP 

configuration and thus decreases the response accordingly. The response in this case is also self-

similar and can be described by the master curve in Fig. 6. The beneficial effect of low gravity is 

further highlighted in Fig. 7. 

 The FIP, the last of the vibrating systems, is also the most complex, as it combines a rotational with 

a translational/flexural DOF in series, resembling a Maxwell element. This system is a pseudo-

SDOF, as no mass is assigned to the rotational DOF. By considering 𝑘 = 3
𝐸𝐼

𝐿3
−
𝛼𝑚𝑔

𝐿
  and 𝛼𝑐𝑟

′ =

𝑎𝑐𝑟 (
𝑘𝑐𝑎𝑛𝑡𝐿

2

𝐾𝑟+𝑘𝑐𝑎𝑛𝑡𝐿
2) in order to take p-Δ effects into account, the system exhibits a self-similar behavior 

similar to the RIP. Interestingly, we find that although the RIP and the vertical cantilever appear to 

be two different systems, they are actually two aspects of the FIP; as such, we prove that they exhibit 

the same dimensionless response, defined by the master curve of Fig. 10. The beneficial role of low 

gravity is shown in Fig. 11. 

 The RRB is the simplest rocking model and is affected by low gravity in three ways; (a) the uplift 

of the block occurs for lower excitation amplitudes (𝐴𝑝); (b) the “rocking frequency” parameter, 𝑝, 

results in longer rocking cycles; and (c) weakening of the gravitational field results in lower angular 
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velocities. However, the effect is not the same over the entire range of 𝜔𝑝/𝑝 values; in regions A 

and D, low gravity acts detrimentally (as expected), while in regions B and C, it acts beneficially, 

as explained in Fig. 13.  

 The FRB is a complex system that combines rocking with flexural response. Because gravity acts 

as a stabilizing force in rocking, but in most cases as a de-stabilizing force in vibrations, this 

introduces an added complexity. The effect of low gravity with respect to the rocking response is -

similar to that of the RRB-, divided into three regions A, B and C (Fig. 19 and 20), with no 

reliable/discernible region D. Nevertheless, when flexure is more dominant in the system (
𝜔𝑛

𝑝
= 5), 

low gravity plays a beneficial role for larger blocks, where 
𝜔𝑝

𝑝
> 3 − 3.5. 

Table 1 summarizes all key results of this study for the 5 main systems analyzed, comparing and 

contrasting the stabilizing and destabilizing factors, frequency parameters and gravity effects. 

This study has revisited the main structural systems from an extraterrestrial civil engineering point of 

view. Although such applications are not yet underway, this study anticipates them based on the 

enormous streamline of investments that have taken place in recent years by world-leading firms and 

federal agencies (NASA, SpaceX, Boeing, Virgin Galactic, ESA). These investments will most assuredly 

require the extension of civil engineering in extraterrestrial conditions, be it for the development of Lunar 

and Martian outposts or for Space tourism.
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Table 1.  Comparison of the dynamic characteristics of the under study fundamental dynamic systems  (SP, RIP, FIP, RRB, FRB). 

Parameters/characteristics 

Simple  

Pendulum  

(SP) 

Rigid inverted 

pendulum 

 (RIP) 

Flexural inverted  

pendulum 

(FIP) 

Rigid rocking  

block 

(RRB) 

Flexural rocking  

block  

(FRB) 

Restoring mechanism Gravity 
Elasticity  

(rotational spring)  

Elasticity 

 (rotational spring & structure) 

Gravity 

(𝜃 < 𝛼𝑠𝑙) 

Gravity and counteracting 

elasticity,  
(𝜃 < 𝛼𝑠𝑙) 

Destabilizing mechanism 
External imposed 

conditions 
Gravity Gravity, p-Δ effects 

External imposed 

conditions, gravity  

(𝜃 > 𝛼𝑠𝑙) 

Gravity and elasticity,  
(𝜃 > 𝛼𝑠𝑙) 

Restoring force/moment 𝐹𝑟 = −𝑚𝛼𝑔 sin 𝜃 𝑀𝑟 = 𝐾𝑟𝜃 
𝑀𝑟 = 𝐾𝑟𝜃 

𝐹𝑟 = 𝐾𝐿𝑢 

𝑀𝑟 = 

−𝑚𝛼𝑔𝑅 sin(±𝛼𝑠𝑙 − 𝜃) 

𝑀𝑟 = −(
11

40
𝑚𝑐 +𝑚𝑡)𝐻�̈� 

𝐹𝑟 = −(
11

40
𝑚𝑐 +𝑚𝑡)𝐻�̈� 

−𝐾𝑢 

Frequency parameter 𝜔0,𝑠𝑝 = √
𝛼𝑔

𝐿
 𝜔0,𝑅𝐼𝑃 = √

𝐾𝑟
𝑚𝐿2

− 𝛼
𝑔

𝐿
 

𝜔0,𝐹𝐼𝑃 = 

√
𝐾𝑟𝑘 − 𝑚𝛼𝑔𝐿𝑘 − 𝑚

2𝛼2𝑔2

𝐾𝑟𝑚 +𝑚𝐿
2𝑘 +𝑚2𝛼𝑔𝐿

 
𝑝𝑅𝑅𝐵 = √

3𝛼𝑔

4𝑅
 

𝑝𝐹𝑅𝐵 = √
𝛼𝑔

𝑅
 

 

Before uplift: 

𝜔𝑛 = √

3𝐸𝐼
𝐻3

(𝑚𝑡 +
33
140

𝑚𝑐)
 

 

After uplift: 

𝜔𝑢𝑝,2 = 𝜆𝜔𝑛 

Low gravity effect Negative Positive Positive 
Depends on {

𝜔𝑝

𝑝
, 𝛼𝑠𝑙}  

(see Fig.15) 

Depends on {
𝜔𝑝

𝑝
,
𝜔𝑛

𝑝
, 𝛼𝑠𝑙}  

(see Fig.19,20) 

Prerequisite for the motion  0 < 𝛼 0 < 𝛼 < 𝛼𝑐𝑟 0 < 𝛼 < 𝛼𝑐𝑟
′  0 < 𝛼 <

𝐴𝑝

𝑔𝑡𝑎𝑛(𝛼𝑠𝑙)
 

±(𝑀𝑜𝑡 +𝑀𝑟𝑡) > 0 

(see Eq. (26)) 

Dimensionless parameters 
𝛱𝜃 , 𝛱𝛼 ,  
𝛱𝑔, 𝛱𝑇𝑆𝑃 

𝛱𝜃 , 𝛱𝛼 , 𝛱𝑔 , 

𝛱𝛼𝑐𝑟 , 𝛱𝑇𝑅𝐼𝑃 

𝛱𝜃 , 𝛱𝛼 , 𝛱𝑔, 𝛱𝛼𝑐𝑟 , 

𝛱𝑘  𝑜𝑟 𝛱𝑘𝑐𝑎𝑛𝑡 , 𝛱𝑇𝐹𝐼𝑃  

𝛱𝜃 , 𝛱𝜔 , 𝛱𝛼𝑠𝑙, 

𝛱𝛼 , 𝛱𝑔 

𝛱𝜃 , 𝛱𝑢 , 𝛱𝛼𝑠𝑙, 𝛱𝛼 , 𝛱𝑔, 𝛱𝜔𝑝 , 𝛱𝜔𝑛 ,  

𝛱𝜉 , 𝛱𝑚𝑐 , 𝛱𝑚𝑏 , 𝛱𝐼𝑏   
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Where :   

𝜆 =

√
  
  
  
  
  
 

𝐼𝑏𝑐 +𝑚𝑐 (
𝐻2

3
+ 𝐵2) + 𝑚𝑡(𝐻

2 + 𝐵2)

𝐼𝑏𝑐 +𝑚𝑐 (
𝐻2

3
+ 𝐵2) +𝑚𝑡(𝐻

2 + 𝐵2) −
(
11
40
𝑚𝑐 +𝑚𝑡)

2

𝐻2

11
40
𝑚𝑐 +𝑚𝑡

 

 

 

Appendix 

Derivation of the equations of motion (Eqs. (9) and (10)) of the FIP dynamic system. 

The kinetic energy of the FIP dynamic system is equal to: 

𝑇 =
1

2
𝑚(�̇�𝑔

2 + 2�̇�𝑔𝐿𝑐𝑜𝑠𝜃�̇� − 2�̇�𝑔𝑢𝑠𝑖𝑛𝜃�̇� + 2�̇�𝑔�̇�𝑐𝑜𝑠𝜃 + 𝐿
2�̇�2 + 𝑢2�̇�2 + �̇�2 + 2𝐿�̇��̇�)                            (𝛢1) 

The potential energy of the FIP dynamic system due to gravity, D’Alembert forces and strain energy is 

equal to: 

𝑉 =
1

2
𝐾𝑟𝜃

2 +
3

2

𝐸𝐼

𝐿3
𝑢2 −𝑚(𝛼𝑔)(𝐿(1 − 𝑐𝑜𝑠𝜃) + 𝑢𝑠𝑖𝑛𝜃)                                                                                   (𝛢2) 

 

Lagrange equations: 

𝑑

𝑑𝑡

𝜕(𝑇 − 𝑉)

𝜕�̇�
−
𝜕(𝑇 − 𝑉)

𝜕𝜃
= 0                                                                                                                                    (𝛢3) 

𝑑

𝑑𝑡

𝜕(𝑇 − 𝑉)

𝜕�̇�
−
𝜕(𝑇 − 𝑉)

𝜕𝑢
= −𝑐�̇�                                                                                                                              (𝛢4) 
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