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Abstract
The Bemisia tabaci whitefly was previously considered a single, highly polyphagous species, but is now accepted as a group 
of cryptic biological species. We investigated the host plant relations of two sister species, the “Mediterranean” (MED) 
composed of the Q1 and Q2 mitochondrial groups and the “ASL” species (formerly considered a MED group), to discover 
whether polyphagy was related to the global pest status. We compared their performance by measuring the oviposition rate, 
survival, fecundity and proportion of female offspring on 13 host plants from nine families. In addition, oviposition prefer-
ence was compared among leaves of different ages. Significant (P < 0.05) differences were found between populations in 
all parameters, particularly in adult survival and fecundity. Females preferred strongly to oviposit on the oldest true leaf 
on tobacco and tomato and on young leaves of sweet potato and pepper. The greatest differences in fecundity occurred on 
bean, okra, squash, pepper and tobacco. Hosts favourable for all four populations were cotton and sweet potato; no offspring 
were produced on cassava, chard or tomato. Host ranges of Q1 populations from Europe and sub-Saharan Africa differed 
despite their close genetic relatedness at the mitogenome level. Discrepancies between the parental and offspring fitness were 
observed. Our findings show that (1) the species have differing but overlapping host plant ranges and (2) the Q1 is the most 
polyphagous and can utilise tobacco, which predisposes it to evolving resistance to neonicotinoids. Our findings contribute 
to the understanding of ecology of this pest species complex and aid the development of efficient pest control strategies.

Keywords Mitochondrial phylogenetic groups · Invasiveness · Survival analysis · Optimal oviposition theory · Optimal 
foraging theory · Bacterial endosymbionts

Key message

• The “Mediterranean” (MED) putative species of the 
Bemisia tabaci complex is a globally invasive pest and 
plant virus vector.

• MED was recently discovered to comprise more than one 
cryptic B. tabaci species. Groups Q1 and Q2 form one spe-
cies, while African silver-leafing (ASL) is a different species.

• Host plant range differences between these cryptic spe-
cies, and how this may affect their relative pest status, 
remained unknown.

• We found significant differences in host use between 
these sister species, which has implications for their con-
trol.

Introduction

Whiteflies classified as Bemisia tabaci (Gennadius) (Hemip-
tera: Aleyrodidae) are phloem-feeding pests damaging food 
and fibre crops and ornamental plants through direct feed-
ing, deposition of honeydew and virus transmission (Seal 
et al. 2006; De Barro et al. 2011). B. tabaci are distributed 
globally, from tropical to temperate climates and across all 
continents except Antarctica (Oliveira et al. 2001). Evidence 
collected from phylogenetic analyses based on partial mito-
chondrial cytochrome oxidase I (mtCOI) gene sequences, 
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coupled with reciprocal mating experiments, provided the 
first evidence that, rather than being a single biological spe-
cies, B. tabaci is a group of cryptic species (Frohlich et al. 
1999; Colvin et al. 2004; Maruthi et al. 2004; Dinsdale et al. 
2010; Xu et al. 2010; Boykin et al. 2012).

To design efficient and sustainable management strate-
gies to control an insect vector and the viruses it transmits, 
it is important to understand its ecology. In the field, many 
of the interactions between whitefly species, and also with 
their predators, symbionts and pathogens, can be affected 
by the plant host (Inbar and Gerling 2008). Whiteflies suck 
phloem from their hosts by inserting their stylet between leaf 
cells and into the phloem sieve elements (Fürstenberg-Hägg 
et al. 2013). Upon the initial probing into the leaf epidermis, 
the phloem-feeder determines the suitability of the host by 
detecting the nutritional content and encountering the plant 
chemical defences (Powell et al. 2006; Walling 2008). These 
defences can be constitutive and/or induced by the inflicted 
feeding damage, and they may influence the settling, feed-
ing, oviposition, growth and development, fecundity, and/
or fertility of the herbivore insect (Baldwin and Preston 
1999; Walling 2000; Elsayed 2011). The suitability of each 
plant then shapes the range of hosts suitable for feeding and 
reproduction of the pest. Such knowledge helps make pre-
dictions about its population dynamics in the field and so is 
particularly important for invasive pests, such as the “Middle 
East-Asia Minor 1” (MEAM1) and “Mediterranean” (MED) 
putative species within the B. tabaci complex. However, spe-
cific and accurate information about host range of individual 
species within the B. tabaci complex is limited.

Until the early 1990s, B. tabaci (sensu Russell 1957) was 
considered to be a single polyphagous species with 506 plant 
species listed as hosts (Mound and Halsey 1978; Greathead 
1986). As early as in the 1950s, however, the scientific com-
munity distinguished between different host-associated races 
within B. tabaci. In Puerto Rico, for example, one B. tabaci 
race was strongly associated with Jatropha gossypifolia and 
transmitted the Jatropha mosaic virus exclusively to and 
from J. gossypifolia (Bird 1957), while the other race was 
widely polyphagous and transmitted various geminiviruses 
to and from numerous hosts (Bird and Maramorosch 1978). 
A similar phenomenon was observed in Côte d’Ivoire, where 
one B. tabaci race specialised on cassava and eggplant, while 
the other fed on multiple plant species excluding cassava 
(Burban et al. 1992). Various host-specialised populations 
were called host races (e.g. Jatropha and Sida race), strains 
(e.g. poinsettia strain) or biotypes (e.g. okra and cassava 
biotype) (Bird and Maramorosch 1978; Perring et al. 1992; 
Omondi et al. 2005). Most other biotypes were described 
on the basis of esterase banding patterns (Costa and Brown 
1991; Bedford et al. 1992). After the more widespread use 
of DNA sequence data and acceptance that B. tabaci (sensu 
Russell 1957) is a complex of cryptic species, the biotypes 

and host races were synonymised into phylogenetic groups 
based on their 3′ partial mtCOI sequences, with an associ-
ated naming system for putative cryptic species (Dinsdale 
et al. 2010; De Barro et al. 2011; Liu et al. 2012b). The Q, J, 
L and ASL B. tabaci biotypes were synonymised into MED 
putative species.

Since the recognition and assignment of B. tabaci popu-
lations into different species within the complex, knowl-
edge on the host range of individual species remained to 
be reassessed. The MEAM1 species (formerly B and B2 
biotypes) received the most attention as it was the first glob-
ally invasive species from the B. tabaci complex (Toscano 
et al. 1998). However, MED became a globally invasive 
species shortly after MEAM1, which prompted the scien-
tific community to investigate the host use by MED as well, 
often in comparison with MEAM1. It was found that both 
species performed similarly well on tomato, cucumber and 
aubergine, although some discrepancies occurred between 
studies (Jiang et al. 1999; Iida et al. 2009; Liu et al. 2012a; 
Jiao et al. 2012). Cabbage was unequivocally more suitable 
for MEAM1 (Iida et al. 2009; Liu et al. 2012a; Jiao et al. 
2013), while poinsettia, cotton, pepper and bean were more 
favourable for MED (Muñiz and Nombela 2001; Iida et al. 
2009; Liu et al. 2012a; Chu et al. 2012; Jiao et al. 2012, 
2013). However, these differences can be specific to plant 
cultivars, as MEAM1 outperformed MED on the “Piquillo” 
cultivar of pepper (Muñiz and Nombela 1997).

The more recent invader, MED, has been split into four 
groups based on its intraspecies genetic variability and geo-
graphic range: Q1, Q2, Q3 and African silver-leafing (ASL, 
referring to the silver-leafing symptoms caused by feeding 
on squash) (Gueguen et al. 2010). Given these intraspe-
cies differences, the status of MED as a single species has 
recently been reassessed (Mouton et al. 2015; Vyskočilová 
et al. 2018). Microsatellite DNA marker analysis of sympa-
tric field populations (Mouton et al. 2015) and laboratory 
crossing experiments (Vyskočilová et al. 2018) showed that 
the ASL group is isolated reproductively from Q1 and Q2. 
In addition, despite its name, there is no published evidence 
of the capacity of ASL populations to induce silver-leafing 
symptoms in squash (Vyskočilová et al. 2018). The repro-
ductive incompatibility between ASL and MED populations 
and their genetic distinctness led to the conclusion that ASL 
belongs to a non-MED species (Vyskočilová et al. 2018). 
Until this species is assigned a new binomial name, we refer 
to it as “ASL”.

There are some reports indicating host plant range dif-
ferences among MED groups and “ASL”. In a field sur-
vey in Uganda, the Q1 (referred to as “Ug5”) was only 
collected from Nicotiana tabacum, while the “ASL” 
(referred to as “Ug4”) occurred on Cucumis sativus, 
Cucurbita pepo, Solanum melongena, Leonotis nepetifo-
lia and Pavonia urens (Sseruwagi et al. 2005). Different 
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host preferences were also reported for MED populations 
Q1 and Q2 in Italy, where individuals from Q2 were more 
predominant on solanaceous hosts, while Q1 adults were 
collected from members of Convolvulaceae, Malvaceae 
and Asteraceae (Parrella et al. 2014). The surveys above, 
however, only analysed adult whiteflies collected in the 
field, and it remained uncertain whether the different pop-
ulations were able to develop and complete a full life cycle 
on the plant species from which the adults were collected.

The aim of this study, therefore, was to find out whether 
the different MED groups and “ASL” species share the 
same host plant range or whether they specialise on dif-
ferent host plants. We used no-choice laboratory experi-
ments to test specifically whether or not the different popu-
lations could complete a reproductive cycle on a range 
of 13 plants from nine families. These plants included 
recognised hosts of MED and/or “ASL”, as well as novel 
encounters to broaden our knowledge about the host range 
of this invasive pest. Similar to other published studies 
(e.g. Xu et al. 2011; Alon et al. 2013; Su et al. 2015; Pap-
pas et al. 2018; Mugerwa et al. 2019), we quantified the 
oviposition rate, longevity and fertility of the adults to 
measure the whitefly performance on each host. In addi-
tion, we recorded the proportion of female offspring to 
observe a potential relationship between the rate of egg 
fertilisation and the host plant suitability. These data are 
coupled with information about the infection status of the 
experimental populations by six common bacterial endos-
ymbionts that can affect insect reproduction (Werren et al. 
2008; Duron et al. 2008) and fitness (Oliver et al. 2003; 
Himler et al. 2011), as well as genetic distances between 
the experimental populations measured in mitochondrial 
DNA acquired by high-throughput sequencing. These 
additional data shall facilitate linking future studies to 
this one.

Materials and methods

Growing plants and rearing insects

Plants were grown in a whitefly-free room at 28 ± 2 °C, 
50–60% relative humidity and a 14:10 light:dark photoper-
iod. Plant species used for the host plant performance bio-
assays are listed in Table 1. After plantlets rooted in loam-
based compost (J. Arthur Bower’s John Innes No. 2) reached 
10–15 cm above soil level, they were individually enclosed 
in Lock&Lock whitefly-proof cages (Wang et al. 2011) with 
two additional side openings in the upper container covered 
by 160-µm nylon mesh. The plants were watered twice a 
week.

Colonies of the whitefly Bemisia tabaci (Table 2) were 
reared on aubergine plants (S. melongena “Black Beauty”) 
in rectangular 45 × 44 × 44  cm cages (BugDorm, US) 
at 28 ± 2 °C, 30% relative humidity and 14:10 light:dark 
photoperiod.

Photographs of abaxial leaf surfaces

A separate set of plants was grown as described above, 
to photograph leaf surfaces. Detached leaves in different 
growth stages were placed under a stereomicroscope (Nikon 
SMZ18) with an attached DSLR camera (Nikon D5300) 
and illuminated with an LED light source (Photonic Optics 
F3000). Photographs were taken with automatic camera set-
tings at 20x magnification (Fig. S1 in Online Resource 1).

Whitefly species identification and endosymbiont 
screening

Species identity of the whitefly populations was tested 
by sequencing the 3′ partial sequence of the mtCOI gene 

Table 1  Plants used in the study 
with the information on the 
variety, taxonomic family and 
propagation method

Host name Plant species Variety Family Propagation

Aubergine Solanum melongena Black Beauty Solanaceae Seeds
Bean Phaseolus vulgaris Tendergreen Fabaceae Seeds
Borecole Brassica oleracea Dwarf Green Curled Brassicaceae Seeds
Cassava Manihot esculenta Colombian Euphorbiaceae Tissue culture
Chard Beta vulgaris Rhubarb Red Amaranthaceae Seeds
Cotton Gossypium hirsutum – Malvaceae Seeds
Mint Mentha piperita Peppermint Lamiaceae Cuttings
Okra Abelmoschus esculentus Clemson Spineless Malvaceae Seeds
Pepper Capsicum annuum Californian Wonder Solanaceae Seeds
Squash Cucurbita pepo All Green Bush Cucurbitaceae Seeds
Sweet potato Ipomoea batatas Naspot11 and Beauregard Convolvulaceae Cuttings
Tobacco Nicotiana tabacum Izmir and Basma Solanaceae Seeds
Tomato Solanum lycopersicum Moneymaker Solanaceae Seeds
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(657 bp) used for B. tabaci identification (Frohlich et al. 
1999; Dinsdale et  al. 2010; Mugerwa et  al. 2018), as 
described in Vyskočilová et al. (2018). In brief, genomic 
DNA was extracted using the Chelex method (Walsh et al. 
1991) and PCR of the 3′ partial mtCOI sequence was per-
formed with primers 2195Bt and COI2-BtSh2 (Mugerwa 
et al. 2018) at 52 °C annealing temperature and Sanger 
sequenced (Source Bioscience, Nottingham, UK). The 
sequences trimmed to 657  bp were compared with (1) 
consensus sequences for 24 putative species of B. tabaci 
(Dinsdale et al. 2010) to verify the MED putative species 
and (2) MED mtCOI haplotypes (Gueguen et al. 2010) to 
place our populations in a recognised naming framework. 
The sequence analyses and nucleotide divergence calcula-
tions were carried out in Geneious, version 10.0.8 (Kearse 
et al. 2012). The Sanger-sequenced data were checked for 
errors and pseudogenes as described in Vyskočilová et al. 
(2018). The GenBank accession numbers for partial mtCOI 
sequences are given in Table 2.

The presence of the primary bacterial endosymbiont 
(Portiera) and five secondary endosymbionts (Arsenopho-
nus, Cardinium, Hamiltonella, Rickettsia and Wolbachia) 
in Spain Q1, Israel Q2 and Uganda “ASL” was reported 
in Vyskočilová et al. (2018). In this study, we have added 
the Sudan Q1 population, which was screened in the same 
way as the others. Briefly, a conventional PCR with genus-
specific primers (Ghosh et al. 2015) was performed using 
genomic DNA from ten individual females per each colony 
as a template. Positive and negative controls were included 
in screening for each endosymbiont. PCR products were 
visualised by agarose gel electrophoresis, with results sum-
marised in Table S1 in Online Resource 1.

Mitogenome nucleotide sequence divergences

Mitogenomes of Spain Q1, Israel Q2 and Uganda “ASL” 
were accessed from GenBank (accession numbers in 
Table 2). The mitogenome of Sudan Q1 was generated in 
addition, using the protocol detailed in Vyskočilová et al. 
(2018). In brief, genomic DNA from a single male was used 
to generate the library for high-throughput sequencing on the 

Illumina HiSeq 4000 platform (Novogene Bioinformatics 
Institute, China). The mitogenome was assembled by map-
ping reads to the reference MED mitogenome JQ906700 
(Wang et al. 2013) and annotated in MITOS2 (Bernt et al. 
2013). Concatenations of 15 genes (13 protein-coding and 
two rRNA genes) with total length of 12,595 bp were used 
to calculate the pairwise nucleotide differences (p distance) 
among the four populations in Geneious 10.0.8 (Kearse et al. 
2012).

Oviposition and leaf preference assay

All plants from Table 1 except mint were used for the ovipo-
sition assay. Three to six experimental replicates were used 
for each combination of plant and whitefly population. Each 
plant had only three leaves in different stages: (1) “mature”, 
the first true leaf, (2) “young”, the last fully expanded leaf 
and (3) “immature”, the youngest, not fully expanded leaf. 
Other leaves were carefully removed with sharp scissors 
≥ 24 h prior to the release of whitefly adults. The exceptions 
were bean and chard, in which only two leaves of similar 
age were used, and hence were excluded from the leaf age 
preference assay.

Whitefly adults used in the experiments were collected 
from a synchronised colony. For each population, auber-
gine plants carrying large numbers of nymphs were taken 
from the core colony, devoid of all adults, and put in a 
separate cage. After 24–48 h, adults that have emerged on 
these plants (“young adults” hereafter) were collected into 
glass tubes (0.5 cm in diameter, 6.0 cm long) and their sex 
was determined using a stereomicroscope. Thirty young 
adults (15 males and 15 females) were released onto each 
experimental plant, except for cotton, okra and pepper, onto 
which 50 adults (25 males and 25 females) were released. 
The parental adults were removed from the plant 48 h after 
release. The eggs laid on the abaxial leaf side were counted 
using a stereomicroscope, and a photograph of the leaf was 
taken. The oviposition rate was then expressed as the num-
ber of eggs laid per female in 48 h.

To determine the oviposition preference for leaves of 
different ages, numbers of eggs/female/48 h were further 

Table 2  Summary of B. tabaci samples from which colonies of B. tabaci populations used in this study were established, with associated Gen-
Bank accessions of their partial 3′ mtCOI sequences and mitogenomes

a Vyskočilová et al. (2018)
b This study

Country Species Group Plant Year GenBank (3′ mtCOI) GenBank (mitogenome)

Spain MED Q1 Melon 2013 MH357339 MH205752a

Sudan MED Q1 Cotton 1978 MH357340 MH714535b

Israel MED Q2 Cotton 2003 MH357341 MH205753a

Uganda “ASL” ASL Okra 2013 MH357342 MH205754a
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divided by the leaf surface area. The areas were calcu-
lated based on the leaf photographs using the online tool 
SketchAndCalc (Dobbs 2011; available at www.sketc 
handc alc.com) (Table S2 in Online Resource 1). The eggs/
female/48 h/cm2 values were multiplied by an appropriate 
number assigned to the leaf stage (mature = 1, young = 2, 
immature = 3) and summed. Leaf preference scores were 
calculated for each plant by dividing the sum of eggs/
female/48 h/cm2 values by the sum of eggs/female/48 h/
cm2 × leaf stage number.

Survival, fecundity and sex ratio assay

Data on adult survival, progeny counts and progeny sex ratio 
were recorded from a separate set of plants from the oviposi-
tion assay. All plants from Table 1 were used, with three to 
seven replicates for each combination of plant and whitefly 
population. Experimental plants that had grown vigorously 
had one or two leaves removed ≥ 24 h before the whitefly 
release to enable them to fit inside the experimental cage. 
Thirty young adults (15 females and 15 males) from a syn-
chronised colony (detailed above) were released onto each 
experimental plant. The numbers of surviving adults were 
monitored during the period of 16–19 days, after which the 
parental generation was collected to avoid interference with 
the count of the  F1 generation. Adults of the  F1 generation 
from all replicates were collected at three time points of 21, 
28 and 35 days post-release. The collected  F1 adults were 
frozen at − 20 °C in order to be counted, and their sex was 
determined later. The total cumulative count of  F1 adults 
from each replicate was used for the analysis of progeny 
counts and sex ratio.

Statistical analyses

The statistical analyses and plots were done in R (R Devel-
opment Core Team 2011; www.R-proje ct.org). Whitefly 
performance on different plant hosts was analysed at four 
levels: (1) female oviposition rate, (2) adult whitefly sur-
vival, (3)  F1 progeny counts and (4) proportion of females 
in the  F1 progeny.

The counts of eggs and  F1 adults were analysed by a gen-
eralised linear model with a negative binomial error dis-
tribution and a log link using the MASS library (Venables 
and Ripley 2002). The estimated mean survival times were 
computed by survival analysis with censoring. The data 
file contained information on time of death in days for each 
whitefly (denoted by “1”) in each replicate from day 1 to 
day 16–19; the whiteflies surviving beyond that period were 
censored (denoted by “0”). The survival regression model 
was fitted by survreg assuming a Weibull distribution. The 
survival curves were plotted using the survfit function. For 
the proportion of  F1 female progeny, a generalised linear 

model with binomial error distribution and logit link of the 
proportional data was used.

Multiple comparisons were performed by Tukey’s test 
(Tukey 1949) using the multcomp package (Hothorn et al. 
2008), and significant differences were demonstrated by 
compact letter display. Comparisons of egg counts, prog-
eny counts, survival times and female proportions between 
whitefly populations were conducted for each host indi-
vidually, except for oviposition preference for different leaf 
stages in which all plants were included in one comparison. 
P-values from multiple comparisons are given in Tables 
S3–S6 in the Supplementary Material.

Classifying plants as whitefly hosts

We classified the 13 plants into four categories based on 
their suitability as a reproductive host for each whitefly 
population. The categories were delineated based on gaps 
in distribution of progeny counts, identified by plotting the 
mean progeny counts in a histogram in R (R Development 
Core Team 2011). Differences between the ranges of favour-
able plants among whitefly populations were visualised by 
a Venn diagram.

Results

Sequence divergence in mitochondrial genes

The sequence divergences among populations in this study 
were calculated for the 3′ partial mtCOI gene sequence used 
in whitefly barcoding (Frohlich et al. 1999; Dinsdale et al. 
2010; Mugerwa et al. 2018) and for a concatenation of 15 
mitochondrial genes (Table 3). The genetically closest popu-
lations were Spain Q1 and Sudan Q1 with divergence below 
0.5% in both regions, followed by Spain Q1 and Israel Q2 

Table 3  Nucleotide sequence divergence within the 3′ barcoding 
region of mtCOI gene (657  bp) and across 15 mitochondrial genes 
(12,595 bp)

Spain Q1 Sudan Q1 Israel Q2 Uganda “ASL”

3′ mtCOI
Spain Q1 –
Sudan Q1 0.15 –
Israel Q2 0.91 1.07 –
Uganda “ASL” 2.59 2.74 1.98 –
15 genes
Spain Q1 –
Sudan Q1 0.45 –
Israel Q2 1.06 1.17 –
Uganda “ASL” 3.93 4.00 3.91 –

http://www.sketchandcalc.com
http://www.sketchandcalc.com
http://www.R-project.org
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that were about 1% divergent. Uganda “ASL” was genetically 
distant from the three MED populations, the least from Israel 
Q2 (1.98–3.91%) and the most from Sudan Q1 (2.74–4%) in 
3′ mtCOI and 15 mitochondrial genes, respectively.

Oviposition rate

The oviposition rate was expressed as the number of eggs 
laid by one female in 48 h. Significant differences (P < 0.05) 
between populations occurred on 6 out of 12 plants: bean, 
cassava, cotton, okra, pepper and tomato (Fig.  1 and 
Table S3 in Online Resource 1).

The biggest differences among populations occurred on 
cassava, bean, okra and cotton. Israel Q2 females laid 20 
times more eggs than Uganda “ASL” females on cassava 

(P < 0.01). Spain Q1 and Uganda “ASL” females laid, 
respectively, 3.3 (P < 0.05) and 3.9 (P < 0.01) times more 
eggs than Israel Q2 females on bean. On okra, Uganda 
“ASL” females laid 2.6–2.8 times more eggs (P < 0.01) 
compared with females from the three MED populations. 
Another marked difference occurred on cotton where 
Spain Q1 females laid 2.6 times more eggs than Israel Q2 
(P < 0.05).

Collectively for all four populations, the highest num-
bers of eggs were laid on sweet potato, aubergine and bean 
(Table 4). The lowest numbers of eggs occurred on chard, 
cassava and tobacco.

The mean oviposition rate from all plants revealed that 
Uganda “ASL” and Spain Q1 females were more fertile 
than Sudan Q1 and Israel Q2 females. The highest mean 

Fig. 1  Oviposition rates of 
females from four whitefly 
populations on 12 host plants. 
Box length represents the 
interquartile range, whiskers 
express the full range, and black 
bar corresponds to the median. 
Different letters above the boxes 
indicate significant differences 
between whitefly populations on 
each plant individually (Tukey’s 
test, P < 0.05)
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Table 4  Oviposition rates (eggs/
female/48 h) ± standard errors 
and number of replicates (n) of 
four whitefly populations on 12 
host plants

Israel Q2 (n) Spain Q1 (n) Sudan Q1 (n) Uganda “ASL” (n)

Aubergine 3.4 ± 1.1 (3) 5.9 ± 1.4 (3) 2.9 ± 1.0 (3) 3.3 ± 1.0 (3)
Bean 1.5 ± 0.7 (3) 5.0 ± 1.3 (3) 2.7 ± 0.9 (3) 5.8 ± 1.4 (3)
Borecole 1.2 ± 0.6 (3) 1.1 ± 0.6 (3) 2.9 ± 1.0 (3) 3.0 ± 1.0 (3)
Cassava 2.0 ± 0.8 (3) 0.6 ± 0.4 (3) 0.9 ± 0.6 (3) 0.1 ± 0.1 (3)
Chard 0.7 ± 0.5 (3) 0.8 ± 0.5 (3) 0.2 ± 0.3 (3) 0.2 ± 0.3 (3)
Cotton 1.3 ± 0.6 (3) 3.4 ± 1.1 (3) 2.1 ± 0.8 (3) 2.9 ± 1.0 (3)
Okra 1.8 ± 0.8 (3) 1.9 ± 0.8 (3) 1.9 ± 0.8 (3) 5.0 ± 1.3 (3)
Pepper 3.5 ± 1.1 (3) 3.2 ± 1.0 (3) 2.6 ± 0.9 (3) 2.3 ± 0.9 (3)
Squash 3.3 ± 1.0 (3) 2.8 ± 1.0 (3) 2.3 ± 0.9 (3) 3.5 ± 1.1 (3)
Sweet potato 4.0 ± 1.2 (3) 4.2 ± 1.2 (3) 3.3 ± 1.0 (3) 4.4 ± 0.9 (6)
Tobacco 1.0 ± 0.6 (3) 1.2 ± 0.6 (3) 1.3 ± 0.7 (3) 0.6 ± 0.4 (3)
Tomato 2.0 ± 0.8 (3) 3.4 ± 1.1 (3) 1.5 ± 0.7 (3) 3.7 ± 1.1 (3)
Mean 2.1 ± 0.3 2.8 ± 0.3 2.1 ± 0.2 3.0 ± 0.3
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fertility was achieved by Spain Q1 on aubergine and bean, 
and Uganda “ASL” on bean and okra (Table 4). Raw data 
can be accessed from Online Resource 2.

The comparison of egg distribution between mature, 
young and immature leaves revealed differences in 
female oviposition preferences between hosts (Fig. 2). 
On tobacco and tomato, the preference to oviposit on 
older leaves was significantly higher (P < 0.05) than on 
all other plants. In contrast, young leaves were strongly 
preferred on sweet potato and pepper. The leaf preference 
did not differ significantly among the whitefly popula-
tions (P > 0.5).

Adult survival times and curves

The average survival times were estimated in the survival 
analysis as the number of days from release on the plant 
to death of an individual. Significant differences (P < 0.05) 
between populations occurred on all 13 plants (Fig. 3 and 
Table S4 in Online Resource 1).

For all populations, the highest adult survival occurred 
on sweet potato, cotton and aubergine. The shortest adult 
survival times were observed on cassava, chard and tomato. 
Spain Q1 and Israel Q2 lived longer on average across 
all plants, compared with Sudan Q1 and Uganda “ASL” 
(Table 5). Despite the low mean survival times across plants, 
Uganda “ASL” adults feeding on sweet potato reached an 
exceptionally high estimated life span of 47.4 ± 8.6 days. 

Fig. 2  Plant scores representing 
female oviposition preference 
for leaves of different ages 
(mature = 1, young = 2, imma-
ture = 3). Box length represents 
the interquartile range, whiskers 
express the full range, and black 
bar corresponds to the median. 
Different letters above the boxes 
indicate significant differences 
between plants (Tukey’s test, 
P < 0.05)
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Fig. 3  Mean adult survival times of the four whitefly populations on 13 host plants, calculated in the survival analysis. Different letters above the 
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Relatively long survival times (about 32 days) on sweet 
potato were also observed for Spain Q1 and Sudan Q1. A 
similar life span (28–30 days) was observed for Israel Q2 on 
cotton and Spain Q1 on aubergine and cotton. Raw data can 
be accessed from Online Resource 2.

The dynamics of a population’s decline on each plant spe-
cies was demonstrated by survival curves (Fig. 4). The initial 
death rate was the fastest on tomato and cassava, on which 
population sizes dropped to or below 50% within 2.5 and 
3.3 days on average, respectively. On tobacco and chard, the 
population decline to 50% occurred after 4 days on average. 
The continued death rate was the fastest on cassava, chard 
and tomato, on which the populations declined to or below 
10% in 4.3, 5.5 and 8.6 days, respectively.

The patterns of adult survival differed between Uganda 
“ASL” and other three populations. For example, the “ASL” 
population on tobacco dropped to 10% within two days, 
while for other populations the same decline took 13 or more 
days. Similarly, on pepper the “ASL” population declined by 
two-thirds within two days, while the same decline took 11 
or more days for Q1 and Q2 populations. Bean was favour-
able for the survival of all Q1 and Q2 populations, but 
“ASL” population dropped below 50% within three days. 
In contrast, about 40% of “ASL” population survived for 
18 days on okra, but for the other three populations only 
0–10% survived the same conditions.

Plants favourable for adult survival of all four populations 
were cotton, aubergine and sweet potato.

F1 progeny counts

The progeny counts were expressed as a cumulative sum of 
emerged adults per replicate up to day 35 after the parental 
release. Significant differences (P < 0.05) between white-
fly groups occurred on 10 out of 13 plants (Fig. 5 and 

Table S5 in Online Resource 1). The three exceptions were 
cassava, chard and tomato, on which either no, or only a 
single,  F1 adult emerged for all populations (Table 6).

The most significant differences among populations 
occurred on okra, bean, pepper and squash. Okra was 
an exceptionally suitable host for Uganda “ASL”, as its 
progeny was significantly larger than that of Israel Q2 
(29.9-fold, P < 0.001) and Sudan Q1 (3.7-fold, P < 0.05). 
Spain Q1 failed to produce any offspring on okra, but was 
the most successful population on bean, producing 56.3 
times more progeny than Uganda “ASL” (P < 0.001) and 
2.9 times more than Sudan Q1 (non-significant). Israel Q2 
failed to develop on bean. Pepper was only suitable for 
Q1 populations. Squash was very favourable for Uganda 
“ASL”, progeny of which was 65.4 and 13.6 times more 
than Israel Q2 and Sudan Q1, respectively (P < 0.001 and 
P < 0.05, respectively). The hosts suitable for reproduc-
tion of all four populations were sweet potato, cotton and 
aubergine.

The largest numbers of progeny across populations 
were produced on aubergine, cotton, sweet potato and 
okra (Table 6). In addition to cassava and chard, on which 
no adults were produced, the lowest number of  F1 adults 
emerged on tomato, tobacco and pepper.

Uganda “ASL” was the most fecund population on aver-
age (Table 6), but also displayed the most dramatic differ-
ences between plants. It failed to produce offspring on five 
host plants (cassava, chard, pepper, tobacco and tomato) and 
on further three plants (bean, mint and borecole) produced 
only a few offspring. Spain Q1 and Sudan Q1 had more con-
sistent and moderately high fecundity rates. Israel Q2 was 
appreciably less fecund in comparison with the other three 
populations (2.5-fold less than Uganda “ASL” and about 
twofold less than Spain and Sudan Q1). Raw data can be 
accessed from Online Resource 2.

Table 5  Adult survival times 
(days) ± standard errors and 
number of replicates (n) for four 
whitefly populations on 13 host 
plants

Israel Q2 (n) Spain Q1 (n) Sudan Q1 (n) Uganda “ASL” (n)

Aubergine 24.8 ± 3.5 (3) 28.7 ± 4.2 (3) 15.6 ± 1.6 (5) 16.1 ± 1.9 (3)
Bean 24.0 ± 3.5 (3) 21.0 ± 2.7 (3) 13.5 ± 1.5 (3) 8.2 ± 0.8 (3)
Borecole 20.1 ± 2.7 (3) 11.4 ± 1.3 (3) 8.2 ± 0.9 (3) 6.4 ± 0.7 (3)
Cassava 3.6 ± 0.3 (3) 3.4 ± 0.3 (3) 3.2 ± 0.3 (3) 2.2 ± 0.2 (3)
Chard 3.6 ± 0.4 (3) 3.6 ± 0.3 (3) 2.2 ± 0.2 (3) 3.1 ± 0.3 (3)
Cotton 29.5 ± 3.0 (6) 27.9 ± 2.8 (6) 18.0 ± 2.1 (3) 18.9 ± 1.8 (5)
Mint 17.8 ± 2.2 (3) 13.3 ± 1.5 (3) 11.8 ± 1.3 (3) 10.6 ± 1.1 (3)
Okra 8.8 ± 0.9 (3) 4.6 ± 0.4 (3) 15.0 ± 1.7 (3) 17.7 ± 2.2 (3)
Pepper 8.6 ± 0.9 (3) 19.6 ± 2.5 (3) 12.9 ± 1.4 (3) 3.8 ± 0.4 (3)
Squash 19.7 ± 2.6 (3) 21.8 ± 2.9 (3) 10.3 ± 0.9 (5) 14.9 ± 1.8 (3)
Sweet potato 18.4 ± 2.3 (3) 31.6 ± 4.8 (3) 31.7 ± 4.9 (3) 47.4 ± 8.6 (3)
Tobacco 6.2 ± 0.3 (7) 7.9 ± 0.6 (6) 4.9 ± 0.3 (6) 2.0 ± 0.2 (3)
Tomato 5.0 ± 0.5 (3) 3.2 ± 0.3 (3) 2.6 ± 0.2 (3) 2.8 ± 0.3 (3)
Mean 11.3 ± 0.4 12.9 ± 0.5 9.6 ± 0.3 9.2 ± 0.3
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Fig. 4  Survival curves showing whitefly population survival dynamics on 13 host plants over a period of 16–19 days post-release, generated 
from raw data

Fig. 5  Numbers of  F1 adults 
in progeny produced by four 
whitefly populations on 13 host 
plants. Box length represents 
the interquartile range, whiskers 
express the full range, and black 
bar corresponds to the median. 
Different letters above the boxes 
indicate significant differences 
between whitefly populations on 
each plant individually (Tukey’s 
test, P < 0.05)

a 

b 

b 

b 

a 

c 

c 

b 

ab 

ab 

b 

a 

bc 
ab 

c 

a 

bc 

ab 

c 

a b 
a 

c 

d 

a 

b 

b 

a a 

bc 

ab 

c 

a 
a 

b 

ab 

ab 

b 

a a a a a a 



 Journal of Pest Science

1 3

Proportion of females in  F1 progeny

Significant differences (P < 0.05) in the proportion of female 
progeny between whitefly groups occurred on 5 out of 13 
plants: aubergine, cotton, mint, pepper and sweet potato 
(Fig. 6 and Table S6 in Online Resource 1).

The largest differences in proportion of female  F1 progeny 
occurred on cotton (30.3 percentage points between Sudan 
Q1 and Uganda “ASL”) and pepper (29.4 percentage points 
between Spain Q1 and Sudan Q1) (Table 7) and were both 
statistically significant (P < 0.001). In general, we observed 
the highest percentage of females on bean and aubergine, 
while the lowest occurred on mint and sweet potato.

The mean proportion of females produced by the four 
populations ranged from 33.16% (Spain Q1) to 51.0% 
(Sudan Q1). Raw data can be accessed from Online 
Resource 2.

Classification of host plants

The histogram plotting frequencies of mean progeny counts 
(Fig. 7a) revealed four clusters: (1) 0, (2) 1–10, (3) 20–85 
and (4) more than 100  F1 adults. Based on these values, we 
classified the plants into four categories expressing the level 
of suitability as whitefly reproductive hosts: (1) unsuitable, 
(2) partially suitable, (3) suitable and (4) favourable. The full 
list of plants categorised for each population is summarised 
in Fig. 7b.

Comparing the ranges of favourable reproductive hosts 
among the four populations (Fig. 7c) revealed that Spain 
Q1 had the largest host range with seven favourable hosts 
out of the 13 tested plants. In contrast, this number is five 
for Sudan Q1 and Uganda “ASL”, and only three for Israel 
Q2. Hosts favourable for all populations were cotton and 
sweet potato; aubergine was favourable for all but Israel Q2. 

Table 6  F1 progeny 
counts ± standard errors and 
number of replicates (n) for four 
whitefly populations on 13 host 
plants

Israel Q2 (n) Spain Q1 (n) Sudan Q1 (n) Uganda “ASL” (n)

Aubergine 81.7 ± 23.7 (3) 724.0 ± 205.3 (3) 398.4 ± 87.7 (5) 492.3 ± 139.8 (3)
Bean 0.0 ± 0.0 (3) 225.0 ± 64.2 (3) 78.3 ± 22.7 (3) 4.0 ± 1.6 (3)
Borecole 105.3 ± 30.4 (3) 150.7 ± 43.2 (3) 29.7 ± 9.0 (3) 25.7 ± 7.8 (3)
Cassava 0.0 ± 0.0 (3) 0.0 ± 0.0 (3) 0.0 ± 0.0 (3) 0.0 ± 0.0 (3)
Chard 0.0 ± 0.0 (3) 0.0 ± 0.0 (3) 0.0 ± 0.0 (3) 0.0 ± 0.0 (3)
Cotton 285.8 ± 57.6 (6) 187.2 ± 37.8 (6) 495.3 ± 140.7 (3) 103.6 ± 23.1 (5)
Mint 68.7 ± 20.0 (3) 37.3 ± 11.1 (3) 126.0 ± 36.2 (3) 20.7 ± 6.4 (3)
Okra 22.0 ± 6.8 (3) 0.0 ± 0.0 (3) 178.0 ± 50.9 (3) 657.3 ± 186.5 (3)
Pepper 0.0 ± 0.0 (3) 176.7 ± 50.5 (3) 33.3 ± 10.0 (3) 0.0 ± 0.0 (3)
Squash 8.7 ± 3.0 (3) 105.7 ± 30.5 (3) 41.8 ± 10.7 (5) 569.3 ± 161.6 (3)
Sweet potato 142.3 ± 40.8 (3) 164.7 ± 47.2 (3) 358.7 ± 102.0 (3) 297.7 ± 84.8 (3)
Tobacco 6.1 ± 1.5 (7) 57.8 ± 12.0 (6) 7.0 ± 1.8 (6) 0.0 ± 0.0 (3)
Tomato 1.0 ± 0.6 (3) 0.3 ± 0.3 (3) 0.0 ± 0.0 (3) 0.3 ± 0.3 (3)
Mean 66.2 ± 20.2 138.3 ± 42.7 135.5 ± 41.8 163.9 ± 53

Fig. 6  Percentages of female 
adults in  F1 progeny produced 
by four whitefly populations on 
10 host plants. Cassava, chard 
and tomato are not shown due to 
the absence of  F1 generation in 
all four populations. Box length 
represents the interquartile 
range, whiskers express the full 
range, black bar corresponds 
to the median, and circles 
represent outliers. Different 
letters above the boxes indicate 
significant differences between 
whitefly populations on each 
plant individually (Tukey’s test, 
P < 0.05)
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Three hosts were not suitable for any population: cassava, 
chard and tomato.

Discussion

We have shown significant differences in host range between 
MED and “ASL” species, providing biological evidence of 
their distinctness in addition to their reproductive incom-
patibility and genetic divergence (Vyskočilová et al. 2018). 
Furthermore, significant differences also occurred between 
populations of the Q1 and Q2 mitochondrial groups and 
even within the Q1 group. We measured a number of life 
history traits for each population on each host to see how the 
parameters relate to each other and which could be useful for 
making decisions in pest management.

Differences in host ranges among the MED 
populations and “ASL” species

For the purpose of comparing host plant ranges among MED 
and “ASL” populations, the  F1 progeny counts were identi-
fied as the most informative for assessing the host suitability. 
The rationale behind this decision was twofold: (1) the ovi-
position rate does not fully capture reproductive success on a 
host without data on the survival of the later developmental 
stages up to adulthood and (2) adult survival is a proxy for 
adult feeding success, but does not capture the performance 
of immature stages developing on the host. It is the pest’s 
ability to produce further generations, ultimately, that is the 
key component of their population dynamics, infestation and 
spread in the field.

Our host assessment divided the plants into four clusters 
based on the number of  F1 adults that successfully completed 
their life cycle on the plant. Data presented in Fig. 7b, c 
suggest that Spain Q1 was the most polyphagous among the 
populations studied. The performance of Uganda “ASL” was 
more polarised than the other populations; it did poorly on 

many hosts (0–25  F1 adults), but on the favourable ones it 
performed very well (298–657  F1 adults). Israel Q2, on the 
other hand, was the only population that did not outperform 
other populations on any plant. This result could be due to a 
mismatch between the assayed plants and the actual range of 
favourable plants for Israel Q2, or an overall lower fecundity 
of this population, as indicated by the low mean fecundity 
(Table 6).

The Sudan Q1 population provided a model for compari-
son of how genetic relatedness and geographic proximity of 
whitefly populations relate to their host plant ranges. At the 
mitochondrial DNA level, Sudan Q1 was the most closely 
related to Spain Q1 and the least close to Uganda “ASL”. 
Geographically, however, it was the opposite. Comparing 
the host use of these three populations, Spain Q1 and Sudan 
Q1 shared similar preferences for bean, pepper and squash. 
However, on borecole, okra and sweet potato, the prefer-
ences of Sudan Q1 resembled more closely those of Uganda 
“ASL”. In addition, differences in biological adaptations 
are further evident in that Sudan Q1 outperformed all other 
populations on cotton and mint.

Discrepancies between parental and offspring 
fitness

Our results not only allowed a comparison between whitefly 
groups, but also allowed a comparison between the paren-
tal fitness (oviposition rate and survival) and the fitness of 
their immature offspring (progeny counts). According to 
the optimal oviposition theory, the oviposition preference 
of the female should correlate with host suitability for off-
spring development (Jaenike 1978). However, this corre-
lation in published studies ranges from excellent to poor 
(Mayhew 1997; Scheirs 2002). An alternative theory is the 
optimal foraging model which predicts that adults prefer to 
feed on those hosts that give the highest adult performance, 
which takes the form of realised fecundity (Stephens and 
Krebs 1986; Scheirs et al. 2000). For the B. tabaci species 

Table 7  Percentages of  F1 
female progeny ± standard 
errors and number of replicates 
(n) for four whitefly populations 
on 10 host plants. Cassava, 
chard and tomato are not 
shown due to the absence of  F1 
generation for all populations, 
and dashes indicate the absence 
of  F1 generation for some 
populations on the remaining 
plants

Israel Q2 (n) Spain Q1 (n) Sudan Q1 (n) Uganda “ASL” (n)

Aubergine 45.5 ± 3.2 (3) 39.2 ± 1.0 (3) 56.3 ± 1.1 (5) 52.2 ± 1.3 (3)
Bean – (3) 35.6 ± 1.8 (3) 52.3 ± 3.3 (3) 58.3 ± 14.2 (3)
Borecole 47.5 ± 2.8 (3) 29.6 ± 2.1 (3) 38.2 ± 5.2 (3) 37.7 ± 5.5 (3)
Cotton 34.9 ± 1.2 (6) 27.7 ± 1.3 (6) 54.2 ± 1.3 (3) 23.9 ± 1.9 (5)
Mint 44.7 ± 3.5 (3) 18.8 ± 3.7 (3) 38.9 ± 2.5 (3) 22.6 ± 5.3 (3)
Okra 40.9 ± 6.1 (3) – (3) – (3) 45.6 ± 1.1 (3)
Pepper – (3) – (3) 50 ± 5.0 (3) – (3)
Squash 26.9 ± 0.1 (3) 39.7 ± 2.7 (3) 35.9 ± 3.7 (5) 43.3 ± 1.2 (3)
Sweet potato 34.2 ± 2.3 (3) 25.9 ± 2.0 (3) 47.2 ± 1.5 (3) 30.2 ± 1.5 (3)
Tobacco 55.8 ± 0.1 (7) 41.5 ± 2.6 (6) 50.0 ± 7.7 (6) – (3)
Mean 37.9 ± 0.9 33.16 ± 0.6 51.0 ± 0.6 42.5 ± 0.6
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complex, the current evidence does not support the optimal 
oviposition theory, as they have been shown to lay eggs on 
nutritionally inferior or unsuitable hosts (Iida et al. 2009; 
Jiao et al. 2012).

Discrepancies between the oviposition rate and progeny 
success were also observed in this study. The most striking 
was that of Uganda “ASL” on bean, where oviposition rate 

was the second highest among all measurements (Table 4); 
however, the number of adult offspring was near zero 
(Table 6). Other examples of such discrepancies included 
Israel Q2 on pepper and squash, Spain Q1 and Uganda 
“ASL” on tomato, and Uganda “ASL” and Sudan Q1 on 
borecole. In most of these examples the adult survival 
was also poor (Table 5), but with exceptions (e.g. Israel 

Fig. 7  Classification of host 
plants’ suitability for the four B. 
tabaci populations based on the 
number of  F1 adults produced. a 
Histogram showing the distribu-
tion of mean  F1 progeny counts 
of all populations on all plants 
with four identified clusters 
i–iv. b Host plants ranked in 
descending order of suitability 
for each whitefly population, 
except for plants with zero  F1 
adults that appear in alpha-
betical order. Colour-coding 
follows the histogram above. 
c Distribution of favourable 
hosts (cluster iv) among the four 
whitefly populations. Plants not 
shown are cassava, chard and 
tomato that were unsuitable for 
all populations, and tobacco that 
fell into the suitable cluster iii 
for Spain Q1

Rank Israel Q2 Spain Q1 Sudan Q1 Uganda “ASL”
1 cotton aubergine cotton okra
2 sweet potato bean aubergine squash
3 borecole cotton sweet potato aubergine
4 aubergine pepper okra sweet potato
5 mint sweet potato mint cotton
6 okra borecole bean borecole
7 squash squash squash mint
8 tobacco tobacco pepper bean
9 tomato mint borecole tomato

10 bean tomato tobacco cassava
11 cassava cassava cassava chard
12 chard chard chard pepper
13 pepper okra tomato tobacco

i     ii                                     iii                                                      iva
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Q2 on squash). Conversely, in some cases the number of 
 F1 progeny exceeded the expected number of  F1 adults 
(mean number of eggs/female/48 h multiplied by fifteen 
and nine, giving an optimistic estimate of progeny counts 
after 15 females ovipositing for 18 days with no mortal-
ity). The largest difference was observed for Israel Q2 and 
Sudan Q1 on cotton, progeny counts of which were 1.7-
fold greater than the optimistic estimate. These two cases 
can be partially explained by the likely underestimation of 
the oviposition rate measured in the first 48 h.

We also found that the adult survival could not be easily 
linked to offspring survival, either. For example, Israel Q2 
adults survived very well on bean, although the offspring 
failed to develop. Similar, less extreme examples include 
Israel Q2 on borecole and Uganda “ASL” and Spain Q1 
on sweet potato. An opposite trend, in which the large 
offspring success was not reflected in good parental sur-
vival, was also observed (Sudan Q1 on cotton, Sudan Q1 
on mint, Uganda “ASL” on squash).

Our results suggest that there is no straightforward 
relationship between adult feeding success, female ovi-
position efforts and the offspring developmental success. 
There are likely additional factors contributing to the 
female’s decision to oviposit other than the quality of her 
feed. For example, the leaf surface morphology can play 
a role (Chu et al. 1995; Mcauslane 1996). Possible expla-
nations include interference with the air movement and 
capturing humidity by the leaf pubescence (Butler et al. 
1986; Inbar and Gerling 2008) and evolutionary changes 
stemming from multi-trophic interactions between white-
flies, plants and natural enemies (van Lenteren et al. 1995; 
Guershon and Gerling 1999; Meekes et al. 2000; Queiroz 
and Oliveira 2001; Head et al. 2004). Therefore, the pref-
erence of a female whitefly to oviposit on a particular host 
could reflect an evolutionary trade-off between host nutri-
tional suitability and the risk of being attacked by natural 
enemies (Dicke 2000; Murphy 2004; Vosteen et al. 2016).

We did observe a pattern in the oviposition prefer-
ence for different leaf stages. The strongest oviposition 
preference for older leaves occurred on tomato, tobacco, 
aubergine and okra, all of which had relatively smooth 
old leaves, whereas the young were densely covered with 
trichomes (Fig. S1 in Online Resource 1). In contrast, five 
out of six plants on which relatively young leaves were 
preferred were glabrous (sweet potato, pepper, cassava, 
cotton and borecole). The only exception was squash, 
young leaves of which were moderately hairy. We hypoth-
esise that there were additional leaf properties playing a 
large role in progeny success other than the leaf surface 
morphology, such as the chemical defence mechanisms of 
plants against pests (Channarayappa et al. 1992; Fürsten-
berg-Hägg et al. 2013).

Coping with plant defence mechanisms 
against herbivores

The capability of whiteflies to feed and reproduce on a plant 
requires mechanisms dealing with the plant defences. These 
include chemical defence by producing allelochemicals or 
physical barriers in the form of leaf pubescence.

Borecole (and other Brassica spp.) produce glucosi-
nolates which, upon feeding damage, are broken down into 
bioactive compounds by the enzyme myrosinase (Bones and 
Rossiter 1996). The ability of Israel Q2 to feed on borecole 
was expected, because of its reported ability to circumvent 
this defence mechanism by glucosinolate desulfation (Malka 
et al. 2016). As all four populations in this study were able 
to feed and reproduce on borecole (26–151  F1 adults), it 
is possible that all of them could employ this deactivating 
mechanism, albeit with varying level of efficiency.

The unsuitability of tomato for all populations was sur-
prising, because tomato is considered a good host for MED 
(Bonato et al. 2007; Jiao et al. 2012) and the variety “Mon-
eymaker” has previously been shown susceptible to MED in 
Spain (Nombela et al. 2003; Rodríguez-López et al. 2011). 
Because the oviposition rate on tomato was relatively high 
for all four populations (Fig. 1), the adverse effects of the 
plant defence probably took place during the development of 
eggs or nymphs. Tomato leaves are covered with eight pos-
sible types of glandular and non-glandular trichomes (Chan-
narayappa et al. 1992). The glandular trichomes produce 
zingiberene and acylsugars that can have a repelling, fumi-
gant or toxic effect to whiteflies, or the released exudates 
can trap whitefly adults (Kisha 1981; Muigai et al. 2002). 
The glandular trichomes (type IV) were negatively corre-
lated with whitefly oviposition and density and positively 
correlated with trapping and mortality (Muigai et al. 2003; 
Oriani and Vendramim 2010). The tomato trichome density 
varies between studies, which was attributed to the variation 
in experimental factors, such as the photoperiod, plant age, 
fertilisers and the growing environment (greenhouses or the 
field) (Oriani and Vendramim 2010 and references within). 
In this study, the experimental conditions with tomato plants 
confined within a small cage could have potentially influ-
enced the leaf surface morphology that might have nega-
tively impacted on the whitefly survival and oviposition rate 
on tomato, although this hypothesis remains to be tested.

Tobacco leaves contain nicotine, which is a highly toxic 
alkaloid for herbivores (Appel and Martin 1992; Steppuhn 
et al. 2004; du Rand et al. 2015). Tobacco was not a favour-
able host for any of the populations in this study; however, 
Spain Q1 was the only population for which tobacco was 
at least suitable (58  F1 adults). This was expected, as the 
mtCOI of MED Q1 corresponds to the original B. tabaci 
syntype collected from tobacco in Greece (Gennadius 
1889; Tay et al. 2012) and because the invasive MED Q1 
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populations were reported to develop resistance to neoni-
cotinoids (Fernández et al. 2009; Luo et al. 2010; Dennehy 
et al. 2010). Neonicotinoids are pesticides with a similar 
mode of action to nicotine (Tomizawa and Casida 2003), and 
so the detoxification mechanisms of these two compounds 
are likely similar (du Rand et al. 2015; Magesh et al. 2017). 
In contrast, Sudan Q1 did not reproduce well on tobacco 
(7  F1 adults), despite the close genetic link to the invasive 
Q1 populations. This was not surprising, because the Sudan 
Q1 population, also called SUD-S or BTS, has been used 
frequently as a susceptible control in toxicological studies 
(Byrne et al. 2000; Nauen et al. 2002; Rauch and Nauen 
2003; Nauen and Denholm 2005; Ma et al. 2007). This low 
ability to detoxify nicotine could partially explain why the 
sub-Saharan populations are not invasive.

The detoxification capacity could also be affected by the 
composition of endosymbiotic bacteria. For example, Rick-
ettsia-positive MEAM1 whiteflies were more susceptible to 
pyriproxyfen, acetamiprid, thiamethoxam and spiromesifen 
than their Rickettsia-negative counterparts (Kontsedalov 
et al. 2008). Similarly, the presence of Rickettsia in a dou-
ble infection with Arsenophonus increased the mortality of 
MED whiteflies in Israel after treatment with pyriproxyfen, 
thiamethoxam, spiromesifen and imidacloprid, when com-
pared to MED whiteflies with single Arsenophonus infec-
tion (Ghanim and Kontsedalov 2009). Interestingly, the most 
polyphagous Spain Q1 was the only population in which 
Rickettsia was not detected by the PCR screening in our 
study. However, the endosymbiont abundance was not tested 
in this study and further investigation is needed to establish 
the role of endosymbionts in the detoxification mechanisms.

Implications for pest control

The polyphagy and ability to detoxify nicotine could serve 
as a prerequisite to the invasiveness of Spain Q1 and related 
populations. Polyphagy makes pests more flexible and chal-
lenging to control, while the nicotine detoxification capac-
ity makes them predisposed to develop resistance to neoni-
cotinoid pesticides. Fighting the invasive MED, therefore, 
requires an alternative and combined approach.

Our findings could contribute to making decisions about 
plant choices in cultural practices. For example, intercrop-
ping with plants supporting long adult survival and devel-
opment of large numbers of offspring, such as sweet potato, 
cotton and aubergine, could have detrimental effects to adja-
cent susceptible crops. Such plants would support the mul-
tiplication and facilitate the spread of MED or “ASL” popu-
lations in the field. More suitable plants for intercropping 
would be those attractive for feeding and oviposition, but 
toxic for adults or nymphs, such as bean for Uganda “ASL” 
or pepper and squash for Israel Q2. However, an experiment 
with choice conditions would be needed to ascertain whether 

there is a preference for the trap crop over the susceptible 
crop. In addition, it would be useful to study the relation-
ships between intercropping plants and whitefly natural 
enemies, as a positive relationship can enhance the overall 
efficiency of pest control (Landis et al. 2000).

Plants unattractive or toxic for whiteflies could be used 
as a physical barrier around susceptible crops. For exam-
ple, it has been suggested to use maize as a barrier crop 
to protect cotton fields from MED whiteflies in China, 
because B. tabaci do not attack maize (Zhang et al. 2014). 
Our results suggest that chard could serve as a barrier crop 
against MED, but the low height of these plants needs to be 
taken into consideration. Cassava was similarly unsuitable 
for MED as chard; however, its use as a barrier crop would 
be impossible in sub-Saharan Africa, because multiple Afri-
can B. tabaci species colonise and seriously damage cassava 
(Macfadyen et al. 2018).

Our data could also be used to design comparative tran-
scriptomic studies for understanding the molecular mecha-
nisms conferring the whiteflies’ ability to utilise host plants. 
Such data could help in identifying targets for RNA inter-
ference and developing whitefly-resistant crop varieties or 
trap crops with a whitefly-specific lethal factor. For exam-
ple, a whitefly-resistant transgenic tobacco was developed by 
inserting a dsRNA precursor for RNA interference specifi-
cally designed to silence the vital insect gene for vacuolar 
ATPase enzyme, subunit A (Thakur et al. 2014).

Experimental limitations and recommendations

The existing literature on whitefly host performance often 
describes meticulous studies of whitefly development from 
egg to adult on leaf discs or in clip-cages (e.g. Xu et al. 
2011; Shah and Liu 2013; Alon et al. 2013; Pappas et al. 
2018). In contrast, our experimental approach was possibly 
closer to field conditions, as the released adult whiteflies 
were allowed to feed and oviposit anywhere on the plant. 
However, we acknowledge that our methods have a number 
of limitations.

Counting eggs from the whole plant was more time-con-
suming than from leaf discs/clip-cages, and the leaf areas 
were not equal across replicates. In addition, measuring of 
the oviposition rate during the first 48 h after release might 
not be representative of the rate throughout the female’s life 
span, partly because of the adjustment time needed after 
being handled by a researcher and forced into a host shift. 
In addition, despite allowing a ≥ 24-h recovery period, the 
stress response caused by leaf removal might have affected 
the oviposition and/or egg hatching (Ament et al. 2004; De 
Puysseleyr et al. 2011).

The adult survival data in our study served as a proxy 
of adult feeding success and provided an indication 
about the host’s potential to support the survival of adult 
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whitefly populations in the field. The method adopted in 
this study, however, might be too time-consuming for a 
practical application, as it required nearly daily counting 
for almost three weeks. The monitoring period could be 
shortened; however, it should be noted that the dynamics 
of a population decline can differ between the periods 
directly after the host shift and after settling on the host.

The  F1 progeny counts were the most easily obtain-
able, as they only required releasing parental adults with 
a standardised sex ratio and counting their progeny; peri-
odic monitoring was not essential. This method could be 
modified to be more time efficient by shortening the ovi-
positing period and not recording the offspring sex ratios, 
as these were not as significantly different nor indicative 
of the reproductive success.

We would like to note that the offspring sex ratio might 
have been affected by secondary endosymbiotic bacteria, 
namely Wolbachia, Cardinium or Rickettsia, which can 
manipulate the reproductive system of their insect hosts 
(Perlman et al. 2006; Engelstädter and Hurst 2009). This 
could be the reason behind the female-biased offspring of 
Sudan Q1 (Table 7), which was fixed for both Rickettsia 
and Wolbachia, or male-biased offspring of Spain Q1, 
which did not contain any of the three reported reproduc-
tive manipulators (Table S1).

An overall limitation of this study is that only one 
population was tested from each locality on only one or 
two varieties per plant. Ideally, several related popula-
tions would be tested on multiple plant varieties in more 
replicates in order to make a better assessment of host 
suitability (Iida et al. 2009).

Conclusions

We have provided additional biological evidence of the 
distinctness of MED and “ASL” species and showed that 
close genetic relationships within B. tabaci, specifically 
as illustrated by the MED species, do not equal the same 
host range. Our findings have implications for chemi-
cal and cultural aspects of integrated pest management. 
Our data on the whitefly performance on various hosts 
could contribute to decision-making for intercropping, 
trap crops or crop rotation. We advise against the use of 
neonicotinoid pesticides for the control of invasive MED 
B. tabaci, given its ability to detoxify nicotine. Future 
work will include research aimed at understanding the 
molecular mechanisms behind the whitefly–plant interac-
tions and identifying targets for development of whitefly-
resistant plants.
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