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Abstract

Conventional digital forensic investigations search digital devices for spe-

cific events or specific artefacts that indicate a crime has occurred. This

does fulfil the investigative need to identify a crime, but it does not at-

tribute the user of that digital device when the crime occurred. If a

crime occurs frequently, such as accessing unlawful pornography, or is an

isolated event but is co-located in time with other frequently occurring

events, such as the one-off sending of a harassing message, then there may

be investigative value in processing the history of the device to determine

if there are patterns of repetitive behaviour present at the times of interest.

This research project investigates the habitual use of a digital device by

analysing the Internet history that can be recovered from the physical

digital device, or from logs that are retained as the device is connected

to a firewall or service provider. The presumption in this project is that

there is zero-knowledge of the content of the web history, page content or

even an accurate classification of the nature of the sites that are visited.

We propose in this research that the patterns of usage themselves are a

significant indicator of who the user is, or the type of usage that is being

performed.

We define context analysis as the investigation not of what is contained

within the artefacts, but rather the investigation of the meta-data relating

to that artefact and any other similar artefacts within a proximity, be it

temporal, spatial or potentially spatio-temporal. Specifically, we show in



this thesis that given suitable feature selection the context analysis we de-

fine is effective at identifying patterns of habitual behaviour, as evaluated

in the case of Internet history artefacts.

We present as our major contributions: the methods of analysing periods

of Internet history in contextual groups of sessions; the novel approaches

to feature selection for the Internet history sessions; and the display of

the results on a network graph such that techniques such as community

detection can be used to automatically cluster the Internet history.
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Chapter 1

INTRODUCTION

“Ei incumbit probatio, qui dicit, non qui nega”

“The (onus of) proof lies upon him who affirms, not upon him who denies”

Digest of Justinian (22.3), 6th Century A.D.

“Ei incumbit probatio, qui dicit, non qui negat; cum per rerum naturam factum ne-

gantis probatio”

“The proof lies upon him who affirms, not upon him who denies; since, by the nature

of things, he who denies a fact cannot produce any proof.”

Black’s Law Dictionary, 1910

1.1 KEY CONCEPTS IN DIGITAL FORENSIC

SCIENCE

Digital Forensics is widely considered the investigation and presentation of results

from digital devices that could be used in a legal proceeding, to allow a decision

maker to make informed decisions about the matter that is being investigated. We

must therefore define the key concepts for the Digital Forensic Science, and the envi-

ronment within which the concepts exist. The descriptions in this thesis focus upon

the application of this research in the Common law, in the criminal courts of England

and Wales or other similar jurisdictions (the general concepts are the same, although

the specific acts vary in each from jurisdiction). This setting is an Adversarial rather
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than Inquisitorial legal adjudication, which is to say that the adversarial legal pro-

ceedings are led by a party such as the ‘prosecution’ in a criminal case on behalf of

the state, whereas in an inquisitorial system the proceedings are instead led by the

judge. The common law is based primarily upon laws and upon judge-made legal

precedent, and is seen across the Commonwealth of Nations, former countries of the

Commonwealth and within the USA.

Forensic Science can generally be considered the application of scientific methods

and techniques to matters under investigation by a court of law. The basic principles

or scientific laws of Forensic Science can be broken into laws relating to the natural

world and the laws relating to the forensic analysis of artefacts.

Within the natural world, we have the Law of Individuality [58], Principle of Ex-

change (the Locard Principle) [29] and Law of Progressive Change [120]. The natural

world laws/principles differ from the ‘digital world’ in that digital forensic artefacts

can be exact duplicates as it is data, there is no bi-direction exchange of matter when

writing a data artefact to a storage medium and although digital evidence is fragile

and can easily be modified if handled without care, it is not subject to degradation

over time in a realistic sense.

The ‘natural world’ of digital forensic science is a Computer Engineering problem

when dealing with the technology, hardware, networks etc., it is a Computer Science

problem when dealing with the data structures, applications, operating systems and

file systems, and it is an Information Systems, indeed even a social science problem

when dealing with how applications are used, why applications are used and the pref-

erences that users exhibit with their digital devices.

The scientific laws of analysis appear to transcend the purely natural world and

appear directly relevant to digital forensics, and are the Law of Comparison (or Com-

parative Judgment) [98], Law of Probability [97], Law of Circumstantial Facts [80].
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The laws of Comparison emphasise that only like-for-like artefacts can be compared

and such an analysis is only as good as the quality of the sampled artefacts. The law

of probability states that identification of an artefact, definite or indefinite is made

on the result of probability, and practically within digital forensics this can relate to

the analyst stating that artefacts are present as the result of a particular application

being used, rather than as a result of a computer virus, such as can be seen in the

R v Caffrey case which involved a hypothetical Trojan Horse virus defence [11]. The

law of Circumstantial facts/evidence, is to say the results of forensic analysis, have as

much weight as direct evidence from a witness, as witnesses can and do make mistakes

when recalling an event.

Therefore, we could define Digital Forensic Science as a subset of Forensic Science,

but perhaps it would be more accurate if we consider that Forensic Science is the

application of analytical methods and techniques to matters under investigation by

a court of law, and there are branches underneath this with ‘Natural World’ and

‘Digital’ as specialisms within the general science.

In a general sense, a crime consists of four parts: at a time, a particular individ-

ual (or individuals), with a sufficiently criminal mindset (Mens Rea), perform or

attempt to perform an act which is criminal (Actus Reus). There are exceptions to

this general statement such as Strict Liability offences where the Mens Rea is not

required to be proven, or conspiracy offences where an offender agrees to participate

in some fashion, but the criminal act is performed by another individual.

The Mens Rea is a historic concept discussed by many authors and surveyed in [28]

but is formally defined within English law under section 8 of the Criminal Justice Act

1967 [108] as:
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A court or jury, in determining whether a person has committed an offense,

(a) shall not be bound in law to infer that he intended or foresaw a result of

his actions by reasons only of its being a natural and probable consequence

of those actions; but

(b) shall decide whether he did intend or foresee that result by reference

to all the evidence, drawing such inferences from the evidence

as appear proper in the circumstances.

The emphasis added above highlights the importance of evidence and why it is crucial

for determining the mental state of a defendant. Digital forensic evidence is therefore

important in cases where the crime is recorded by a device, planned using a device,

performed using a device, or even if a device is used after the offence has occurred to

discuss or research the outcomes of the crime.

There are a range of offences where the totality of the offending occurs on the dig-

ital device. The possession [109] and distribution [111] of indecent photographs of

children occurs wholly electronically between one or more parties. Offensive commu-

nications such as a string of well publicised harassments that have occurred using

micro-blogging website ‘Twitter’ occur only on digital devices [7]. The classical ex-

ample of hacking a computer to gain unauthorised access [107], where the victim of

the offence is the digital device, can be seen in many well cited cases [94].

Sexual Grooming of Children over the Internet [112] occurs if a person (A) com-

municates (on at least one occasion) with a child (B) and “A travels with the in-

tention of meeting B in any part of the world or arranges to meet B in any part of

the world”. Given that a device could be used to research places to stay, and book

travel arrangements online we can see all the necessary preparatory behaviour along

with the communications to demonstrate the act and mental state for such an offence.

There are instances of a computer being used to research the outcome of a crime,
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such as during and after the trial of Vincent Tabak for the murder of Joanna Yeates

[117], [118]. He was reported that he had typed relevant search terminology, viewed

map locations that corresponded to the location where the body of Joanna Yeates was

recovered and had viewed pornographic pictures that were described as resembling

its appearance and condition.

The temporal component of a crime is quite possibly the simplest and scientifically

most rigorous part of Digital Forensic Science as substantial numbers of the artefacts

that forensic investigators rely upon are timestamped, and these timestamps can be

examined for correctness. With the notable exception of cases such as [10] where an

analyst failed to take into account the timezone of an artefact, and wrongly concluded

that Law Enforcement officers had intentionally placed artefacts on a machine after

seizing it, unless some form of intentional obfuscation is used to destroy or confuse

the timestamps, they are reliable forms of evidence. However, within the natural

world, the reconstruction of sequences and events are non-trivial and may require

the investigator to establish the precise order of the artefacts. In the well-publicised

trial of the Olympic athlete Oscar Pistorius who murdered Reeva Steenkamp [114],

a significant moment in the trial involved evidence about whether a pair of Jeans

trousers were lying on top of a duvet bedsheet, as the prosecution suggested that

bed sheets had been thrown off and that Miss Steenkamp had been trying to dress,

or as the defence case asserted the Jeans were originally elsewhere and put onto the

duvet by the Law Enforcement officers as an act of contamination of the crime scene.

Ultimately the provenance of the jeans was disputed, and this significant sequential

artefact was disregarded by the trial judge, but it does highlight the importance of

the placement of an artefact can drastically change the interpretation of the events

that led up to that placement.

Although we have described the Mens Rea, mental component of a crime, within

a digital forensic science environment the most significant challenge is determining

who the person (or persons) using the device was at the time of the offence. The
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requirement for the court or jury to infer the mental state implies we know who the

user was at any time. Physical control of a small personal device, such as a smart

phone, suggests that the owner of the device is the user of the device, but if investi-

gating a one-off offence then it is perfectly reasonable, within the standards of proof

of ‘reasonable doubt’, that the device was left unattended, unlocked for a brief period

of time.

A simpler task for digital forensic science is the investigation of offences that oc-

cur over a period of time, such as the single offence of Sexual Grooming which we

noted above requires at least two instances of communication, or multiple related

offences such as the collection of Indecent Photographs of Children over a period of

time. No attempt is made during this thesis to discuss the psychological aspects of

certain crimes, compulsive behaviour and the technology that allows these crimes

to be committed, however we note it here as an interesting area of digital forensic

science investigation. For investigations of ‘habitual’ offending, the reliability of the

temporal components coupled with a weight of circumstantial facts relating to specific

acts being repeatedly performed easily implies there was a Mens Rea to commit the

acts, for example, a large collection of unlawful pictures present on a device with the

time and date information that shows that the pictures were made onto the device on

a number of occasions, suggests that someone actively and repeatedly created those

pictures. Habitual behaviour does not conclusively show the identity of a person, but

it does show regular access to a device, and if that can be coupled with personally

identifiable behaviour then that is a significant circumstantial fact.

The standard of proof that evidence will be judged at varies from the type of court,

and who is presenting the evidence. In a criminal prosecution, the common expres-

sion “beyond reasonable doubt” (BRD) is commonly used, and within a civil court it

is the “balance of probabilities” or the “preponderance of the evidence” which Lord

Denning described as meaning “More probable than not” [73]. A defendant that is

presenting an affirmative defence, i.e. presenting facts that support the defendant’s
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case rather than the prosecutor’s case, will need to meet the lower preponderance of

evidence test in a criminal trial and the Digital Forensic Scientist must be aware of

that when testing the affirmative defence. Reasonable Doubt (RD) has been quanti-

fied as a certainty by the jury 90% (or 0.9) [30], and consequently for a jury to make

a decision beyond reasonable doubt, BRD, they must be certain to 91% (or 0.91)

or more. This is equivalent to Blackstone’s ratio which states “It is better that ten

guilty persons escape than that one innocent suffer” as highlighted by Lundrigan [67].

Consequently, we can consider Denning’s judgement of “More probable than not” as

a probability of 0.51.

Within the England and Wales jurisdiction, case law has decided that electronic

evidence is considered Documentary Evidence [95] and as such the principle of Best

Evidence Rule [77] requires that the original evidence should always be available

for examination, which led to the Association of Chief Police officers (ACPO) issuing

guidance [105] based around four principles, with the first ensuring investigators work

on copies of the best evidence where at all possible.

Rule 3 of the ACPO guidance also requires the replication of the same initial arte-

facts, tools, techniques and procedures be able to produce the same output evidence.

This is interesting in that it specifically ensures that no ‘black box’ tool based upon

an unknown set of training data can be used to produce evidence for court.

1.2 CHALLENGES WITHIN

DIGITAL FORENSIC SCIENCE

Beyond the legal and scientific challenges presented above, research in the area of

Digital Forensic Science is affected by the operational needs of Digital Forensic In-

vestigators/Analysts, the technological constraints of digital media and even the be-

haviour of the victims and suspects in the investigations. It should be noted that the

terms ‘Analyst’ and ‘Investigator’ are used in this thesis somewhat interchangeably,

7



with the difference that an analyst is a technology facing role, while an Investigator

tends towards people- and case-facing roles.

There is a tension within Digital Forensic Science research between the tools and

techniques that Academics are producing, versus the needs of practitioners. Baggili

et al. [6] surveyed 500 papers in the period between 1992 and 2011, and the authors

found that only 10% of the research projects involved academia and industry acting

in collaboration. Al Fahdi et al. [4] highlights that practitioners were concerned with

anti-forensics and encryption as future challenges whilst academics worried about tool

capability and social networking aspects.

Few surveys have been performed to ascertain the perceived needs of the Digital

Forensic Community. The ‘cyber forensics needs analysis survey’, initially performed

by Rogers and Seigfried in 2004 [87], and subsequently reperformed with more exten-

sive statistical analysis by Harichandran et al. in 2016 [44] highlighted the following

as the top issues or challenges within computer forensics in 2004:

1. Education/training/certification

2. Technologies

3. Encryption

4. Data acquisition

5. Tools

6. Legal justice system

7. Evidence correlation

8. Theory/research

9. Funding
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10. Other

When performed in the 2016 survey identified the following concerns:

1. Education/training/certification (ETC)

2. Technologies

3. Tools

4. Evidence correlation

5. Theory/research

6. Encryption

7. Legal/justice system

8. Data acquisition & Funding (tied)

Overwhelmingly, the results in 2004 and 2016 showed that Education/Training/

Certification was listed as the highest priority by practitioners. The majority of these

challenges are operational, such as Funding and ETC, which is beyond the wider scope

of our thesis, whereas our thrust can be considered ‘Theory/research’ and ‘Evidence

correlation’.

Although throughout the ACPO principles for electronic evidence [105] there is the

implication that the analyst/investigator should be suitably qualified, it is explicitly

noted in principle 2 when an analyst should be able and competent to explain the

implications of the actions that they take when interacting with a live, changeable

system. The expectation in the ACPO Manager’s guide [106] is that it takes 2-3

years for an analyst to become suitably knowledgeable to be considered competent,

although no specific benchmarks are identified in that guide. The language of the

manager’s guide also is indicative of the cost centric view of Forensic Science: “The

costs associated with running a specialist investigative unit within a law enforcement
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agency in terms of personnel, equipment and training is a significant drain of resources

but the overall value for money represented by such an asset can often be overlooked”.

Irons et al. [50] note that “the implicit expectation is that digital investigators should

be competent before undertaking any digital investigation duties”. The concern that

analysts should be competent, indeed that they should be considered ‘expert’, before

undertaking analysis is potentially the reason why Rogers, Seigfried and Harichandran

et al. identify the practitioner’s concern about not enough training. The analyst be-

ing ‘expert’ is not always the reality. Gogolin [37] highlights that many investigators

in law enforcement have little to no digital forensic science training before starting,

and even after they are in role, “[o]nly 34% of [digital forensic] investigators [surveyed

in Michigan, USA] received formal training in laboratory forensics, with the majority

being trained 2 weeks or less”.

Casey [21] states that “too little knowledge is a dangerous thing” with regards to

digital forensic investigations. Casey claims that investigators (both internal to law

enforcement or outsources specialists) may have an “over reliance on user-friendly

or automated forensic software”, and may “apply a form of pseudo-automation by

rigidly following predefined protocols”. Casey also states that, “Inexperienced indi-

viduals who do not critically review the results of a tool will inevitably misinterpret or

completely miss digital evidence”, which is an important point that emphasises that

the recovery of artefacts is only part of the evidential ‘production’ and interpretation

is just as, if not more so important.

Ultimately the analyst providing ‘expert’ testimony is as the ACPO [105] guidelines

emphasises: “It is also the personal responsibility of any person working within the

area of digital forensics to maintain their knowledge of the subject areas they are

involved in. Formal training is just one route”, which again can explain the training

related apprehension illustrated in the 2004 and 2016 surveys.
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The volume of material that must be examined during an investigation is not trivial

and there is a body of literature examining practical ways that, usually law enforce-

ment agencies, can manage the large volumes of digital equipment and the electronic

evidence that they produce. Irons and Lallie [51] studied the steady annual growth

in the number of forensic investigations, the amount of data being investigated, and

the amount of data being investigated per case using the annual data published by

the FBI from 2007 to 2011 and a UK regional police E-Crime unit.

The complexity of investigations is not purely the volume of material that must be

examined, but the complexity of technology, such as dynamic web pages or cloud com-

puting, which may mean that an analyst may no longer be able to fully reconstruct

the activity of a system. We can see this illustrated in a quote from Garfinkel [35]

“Without developing fundamentally new tools and capabilities, forensics experts will

face increasing difficulty and cost along with ever-expanding data size and system

complexity. Thus today’s digital detectives are in an arms race not just with crim-

inals, but also with the developers of tomorrow’s computer systems”. This is not

necessarily an issue of anti-forensic technologies, such as encryption or tools for ob-

fuscating activity, but an issue of the evolution of the technology, enabling normal

everyday usage than is far from trivial for an analyst to understand or reconstruct.

Al Awadhi et al. [3] describes a problem of operational Digital Forensics as a trade-off

between the number of person-hours spent on investigation, which needs to be kept

to a minimum whilst also paying close attention to the authenticity of the evidence.

Lillis and Scanlon [66] describes that traditionally, information retrieval effectiveness

is evaluated using the potentially conflicting measures of Precision and Recall. A sys-

tem with high precision avoids returning documents that are not relevant, whereas a

high-recall system aims to ensure that all available relevant documents are returned

to the user. Digital forensics is typically seen as a recall situation, but high recall

inevitably leads to a higher rate of false positives, this is tolerated due to the require-

ment to find all available evidence. Within this thesis, we repeatedly return to the
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problem of Precision and Recall (although we tend to refer to this as Availability, as

we are modelling as much of the historical events as possible).

James and Gladyshev [54] make the argument for well-planned, careful use of au-

tomation that allows for a more efficient and effective use of automation in digital

forensic investigations while at the same time attempting to improve the overall qual-

ity of expert investigators. They state that there will be no “dumbing down” of the

profession when automation is used at the correct stages of investigation.

Triage is the term used within Digital Forensic Science in a broad sense to mean

a process of selection of the available evidence to limit the volume to a quantity that

can be managed within a reasonable period of time. There are differences in how

triage is used, one of which relates to time sensitive cases where devices must be

looked at in the field, and this can be seen typified by modern mobile phone triage as

outlined in literature such as Rodgers et al. [86], Casey et al. [22] and Mislan et al. [74]

where the advantage of triage is highlighted, such that that it provides investigators

with automated, fast, in the field intelligence gathering.

Alternatively, triage can be described a process in which devices or processes are

ranked in terms of importance or priority to a case, and is applicable to the analyst

or investigator within the forensics laboratory setting. James and Gladyshev [54]

highlight the benefits have been examined within a UK high-tech crime unit in Goss

and Gladyshev [38], which showed a reduction in the quantities of seized computers

and suspect data which needing full in-depth analysis. Goss also compared automated

triage performance with manual investigation, and found that triage gave comparable

examination results in a fraction of the time for specific case types where in-depth

knowledge is not required, such as indecent photographs of children detection. The

ACPO Manager’s Guide [106] recommends a Triage Officer at laboratories for filter-

ing cases, requirements and evidence based upon the operational procedures in place

at the Agency.
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Organisational issues also impact law enforcement agencies’ ability to process and

investigate digital equipment as they have centralised their forensic science capabil-

ity. This leads to solutions where organisations will distribute out some analytical

and acquisition capabilities into the wider agency, such as the solution illustrated by

the Royal Canadian Mounted Police in [45] which deals with vast areas of geograph-

ical area that are sparsely populated. An alternative is to use distributed technology

where multiple people, which can be located in different areas can interact through

cloud technology to a centralised repository for that case, such as can be seen in the

Netherlands Forensic Science [99] Digital Forensics as a Service paper.

While automation and triage have been shown to have benefits in some specific cases,

and with some technology that lends itself to ‘push button’ analysis, there are chal-

lenges, such as investigator training, potential missed evidence and verification of the

best evidence that needs to be addressed.

As we noted above, the ‘natural world’ of Digital Forensic Science has traditionally

involved the manipulation of data on hard disk drives, memory cards and removable

media. Given the rise of storage within networks or ‘The Cloud’ as we see in Smith [92]

that Cloud computing was identified as the “most hyped concept in IT”. This has led

to not only the technological difficulties of acquiring a copy of data that is consistent

with best evidence principles in these remote locations, but also as Taylor et al. [96]

comment “in legal terms, cloud computing systems will make it potentially more dif-

ficult for the computer forensic analyst to acquire and analyse digital evidence to the

same standards as that currently expected for traditional server based systems, due to

the difficulty in establishing what data was stored or processed by what software on

what specific computing device”. This emphasises that there is a legal component to

future investigations, whereby the analyst may not have the authority to copy data,

or there are substantially different jurisdictional differences between the location of

the suspected crime, storage of the evidence and location of the investigation.
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We see therefore that a forensically sound approach should be compliant with the

following:

• Analytically sound: Law of Comparison, Law of Probability and the Law of

Circumstantial Facts.

• Related to the four elements of a crime: Time, Person, Mental state, Criminal

act.

• The digital forensic analysis is proportionate and provides results appropriate

to the device’s participation in the offence: the offence was recorded by a device,

was planned using a device, performed using a device, or the outcomes of the

crime were researched.

• The results of the analysis, the circumstantial facts, are compliant with the

Rules of Evidence.

• Ultimately the conclusions of the analysis reach a standard of proof, required

by the court.

We highlight that the most significant technical challenge within Digital Forensic Sci-

ence is the attribution of an action to individual, which is the most basic elements of

a crime. This is not an insurmountable challenge, if it were then no digital forensic

evidence would ever be presented. How this challenge is dealt with during an inves-

tigation is by the use of witness testimony about the physical access and control of

the device. If a defendant makes preposterous claims about how the device could

have been used by anyone, the inference of non-truth may be made by people in the

court. If a defendant makes affirmative defence, that are testable by a digital forensic

analyst, then the analyst will either agree or say that they cannot agree with the

defence.
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1.3 OBJECTIVES

There may be a need to model the overall activity on a system when investigations

identify that a series of individual actions on the machine form a pattern of identi-

fiable behaviour which may indicate who the user of the computer was during those

times.

We can see that there are three general times such modelling would be useful to

an investigation:

• Where there is an identified criminal event co-located in time with a body of

Internet history, but not necessarily related to the Internet activity. Modelling

of the activity could show that a regular user of the computer was present at

the device, mitigating a possible defence that an unknown person was using the

device. Examples of these co-located events could be the creation, modification

or access of a file that is relevant to an investigation, such as viewing an indecent

photograph of a child or modification for a document used in a fraud.

• Where there is Internet history containing the criminal activities: where there

are accesses to websites known to contain unlawful material and we want to

isolate all the sessions containing those acts and a) show if a regular user of the

device is engaged in that kind of activity and b) establish the patterns of access

relating to those acts so as to establish an investigative hypothesis relating to

the identity of the possible suspects to establish which ones are the most likely

offender.

• We may also see that there are cases where there are personally identifiable

actions that take place in one or more sessions and these may have a similar-

ity to other notable sessions, such as those that are co-located with notable

events or directly containing unlawful material. The inference in these cases is

that because there is some similarity between the session containing personally
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identifiable actions and the notable actions that they are created by the same

user.

We can therefore identify three profiles of offences that are of interest to our area of

research:

• Single Events that are a crime

• Single Events that are a crime, that occur multiple times

• Multiple events that combine to form a single crime

We suggest that modelling repetitive behaviour would be helpful to an investigator

in all of these cases as it could indicate who the user of the device was at that

time, particularly where there are multiple instances. In the case of single events the

activity at the time may also speak to motivation and the mental state of the user

which is also necessary for showing the criminal intent. Example of these situations:

• Single Events that are a crime an example would be someone sending a ha-

rassing message over social media. The additional context could show the user

of the machine was a regular user of the machine and not that it had been left

idle and unlocked such that any stranger could have done it.

• Single Events that are a crime, that occur multiple times and example would be

the accessing of unlawful material. The context modelling would show regularity

of offending, allow an investigator to determine patterns (such as time of day)

which could prove the identity of the user.

• Multiple events that combine to form a single crime an example could be

grooming of children, or computer misuse-type offences. In these cases, the user

has to research and scan for vulnerable targets and consequently the modelling

can potentially show considerable evidence relating to the guilty mental state

of the suspected offender.
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We have highlighted here that there is a need within Digital Forensic Science to show

how a device was used, not only at the time when the offence (or offences) occurred,

but across the entirety of the device’s usage.

This broader model of the system speaks to the probabilistic behaviour of the system,

it may show mental state of the defendant, for example “the user visited X website

numerous times before the Y act was performed”, and if there are identifiable features

within the behaviour, it may provide identification of the user, for example, “the acts

occurred between 9 and 5 and as such it is reasonable to believe it was the normal

work-time user of this device”.

Our objectives therefore are to research the following:

• Objective 1. Identify the state of the art and challenges in event modelling in

multi-user computing environments.

• Objective 2. Identify Internet history artefacts which would be typically

present on a regular digital device that can be used to model human Inter-

net browsing behaviour on the digital device.

• Objective 3. Evaluate feasibility and compare different approaches for ag-

gregating multi-user Internet history sessions without prior knowledge of the

user.

• Objective 4. Develop a method for grouping a computer systems Internet

history without prior knowledge about its structure, so as to identify and extract

idiosyncratic features with an accuracy beyond reasonable doubt, so as to be

admissible in a criminal court.

• Objective 5. Visualisation of the grouped Internet history so that the results

can be used for investigative reasoning and analysis of the aggregated history

sessions.
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The scope of this thesis is based upon an investigation into multi-user desktop en-

vironments that are connected to the Internet, where there is potentially weak user

authentication or account sharing. This represents a realistic and challenging envi-

ronment for digital forensic science.

1.4 THESIS SUMMARY

Chapter 1: Introduction

In this chapter, we have outlined the general features of Digital Forensic Science and

have shown that it differs from the general case of Forensic Science in that the digital

environment differs from the natural world environment. However, the development

of a forensically sound approach should be compliant with the analytical laws of

Forensic Science and extract reliable circumstantial evidence that can be evaluated

probabilistically to a standard where a court or jury can make a decision based upon

the relevant burden of proof.

We describe the key challenges that have been identified by other researchers and

practitioners and note that the is a strong case for automation in the field of Digital

Forensic Science as there are concerns about the volume of potential evidence that

must be examine. Although there is a case for automation, there is also a counter

point made that too great a reliance on automatic tools and procedures does not

allow the analyst to challenge or test the findings of their tools as well.

We identify in this chapter that the greatest challenge within Digital Forensic Science

is the discovery of the component of a crime that involves the identification of the

individual liable/culpable for the actions. In our objectives, we propose that methods

involving the grouping of data demonstrating regularity of behaviour can be used to

extract identifiable features of the user which can be used to address this question.
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Chapter 2: Context Analysis

As the objectives of our research are based around the investigation of specific actions

or points in time, chapter 2 presents the literature review of event modelling from the

perspective of the established Digital Forensics community, and other related mate-

rial. We propose in this chapter that the investigation of events viewed as individual

points in time does not facilitate any analysis relating to the mental state of the user,

or the identification of who that user was, and as such we propose the framework of

‘Context Analysis’, where events are viewed from the point of view of collection and

comparison of related artefacts.

Chapter 3: Session-to-Session Analysis

In this chapter, we show how the various types of Internet history data can be rendered

as groups of activity, which we call sessions. We show that sessions can be variable-

length which better matches the human interaction with the Internet, or fixed-length

blocks which can better model the interaction and behaviour of the websites. We

describe a simple method for comparing sessions to other sessions that is visually and

computationally simple to understand and forms the basis of the approach used in

this thesis. We demonstrate and investigate how the variables relating to the session

selection can have an effect upon the results that can be produced, and we highlight

there are a number of choices or ‘dials’ that we can adjust during our experiments

to increase the availability of sessions we can analyse at the expense of accuracy and

vice versa (the precision/recall problem).

Chapter 4: Zero-knowledge Internet History Session Feature Extraction

In Chapter 4, we propose two methods of sub-dividing the sessions data presented

in chapter 3 into groups that are based upon characteristics either, of the data con-

tained within the sessions, or the characteristics of the sessions. For example, short

sessions are combined together, long sessions are combined together etc. We present

a novel approach to grouping data based upon the relative popularity of the websites

within the Internet history, i.e. we show that websites can be considered indicators if
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they occur frequently amongst the sessions within the Internet history, but are niche

websites within the global popularity metrics.

The contribution of this chapter is that the approaches presented in chapter 3 do

model the activity on the system, but they do not highlight the individual character-

istics of the user and as such the contributions of this chapter facilitates the extraction

of characteristics of the behaviour, which we propose can better identify the individ-

ual or their mode of behaviour during the session.

Chapter 5: Graphical Representation and Use of Session-to-Session

Analysis

In Chapter 5, we show the results of the zero-knowledge grouping methods proposed

in chapter 4 using network graphs of the Session-to-Session data. The sessions are the

nodes of the network, and the similarity coefficient between the sessions is represented

as the edges between the nodes. A network community detection algorithm is used to

group the sessions with high similarity and this allows us to determine the accuracy

and correctness of the different grouping schemes with different datasets.

We provide results from experiments from test data using the different grouping meth-

ods of grouping to investigate the performance of the methods proposed in chapters

3 and 4, further illustrating that there is a trade-off between reliability of the results

and the availability of number of sessions we analyse. We test our data against a

‘Beyond Reasonable Doubt’ (BRD) value (as noted above, 0.91 accuracy) and show

what the resulting graphs of the grouped data at the BRD level.

We also describe in this chapter a method for using sub-graphs based upon pattern

of life information about the known facts in the case or the possible users’ activities

to attribute the network communities to a suspected individual. This approach may

automatically suggest website or groups of websites for an analyst to investigate and

generate lines of enquiry to assist in the identification of a user or the mental state
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of the user.

Chapter 6: Evaluation and Conclusions

We conclude the thesis with an evaluation of the Session-to-Session Context analysis

approach which we presented in chapter 3, expanded in chapter 4 and utilised in

chapter 5. This chapter concludes by highlighting the achievements of the research to

date, and identifies possible directions of future work which can be used to increase

the overall performance of the approach.

Appendices

Appendix 1: We provide a full set of results data performed during the experiments

outlined in chapter 5 for assessing the overall impact of the grouping approaches.
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Chapter 2

CONTEXT ANALYSIS

“Without context, words and actions have no meaning at all.”

Gregory Bateson - Mind and Nature: A Necessary Unity, 1979

2.1 INTRODUCTION

Researchers and practitioners in Digital Forensic Science have proposed a number of

frameworks and models to formalise the process of recovering artefacts and converting

them into evidence before a court of law. We highlight a few examples of the notable

models and research that were developed in this area:

Pollitt in 1995 [81] proposed a process of Acquisition, Identification, Evaluation and

Admission as Evidence. A major framework proposed for Digital Forensics was the

Digital Forensics Research Working Group (DFRW) model [78] in 2001, which con-

sisted of the processes: Identification, Preservation, Collection, Examination, Analy-

sis, Presentation and Decision. Reith et al. [85] in 2002 expanded upon the DFRW

model and proposed a nine-part process of Identification, Preparation, Approach

strategy, Preservation, Collection, Examination, Analysis, Presentation and Return-

ing evidence. Carrier and Spafford [17] presented in 2003 a large model that contained

the 5 major phases: Readiness, Deployment, Physical Crime Scene Investigation,
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Digital Crime Scene Investigation and Review. Carrier and Spafford’s model was ex-

panded in 2004 by Baryamureeba and Tushabe [8] with the addition of concept of the

primary digital crime scene and the secondary physical world crime scene being inves-

tigated concurrently. Other researchers have presented frameworks such as Casey [20]

identified a process of Recognition, Preservation, Classification, and Reconstruction,

and Kohn et al. present the process of Preparation, Investigation and Presentation.

We can see therefore that the traditional views of the Digital Forensic framework

can generally be broken down into the Acquisition stages, Investigation stages and

Presentation stages. Depending upon which framework is used there is greater or less

consideration to the physical ‘crime scene’, the investigation stage may require more,

or less prior knowledge of the circumstances of the investigation and about what is

explicitly sought, and the presentation stage is often focused specifically at ‘the court’.

We present in this thesis ‘Context Analysis’, an analysis process that can be fit-

ted into the investigative stages of an existing (or future) Digital Forensic Science

framework, rather than proposing a new all-encompassing framework for investiga-

tions.

We propose a form of analysis of digital forensic artefacts that takes account of how a

system is used rather than the traditional view of finding a specific artefact, such as

a contraband file or picture. We call this novel form of analysis ‘Context Analysis’.

This differs from a traditional view of digital forensic artefacts which is highly con-

tent focused. Unlike content analysis, context analysis can be viewed as the “what”,

“where” and “when” characteristics associated with these artefacts. For example,

content analysis may be the searching for words, patterns of phrases, skin tone or fa-

cial recognition features, whereas context analysis would focus on the location where

the artefacts are stored, whether they were modified, artefact type, location and time

of creation, modification, access etc. In general, context analysis uses artefact meta-

data to group or associate separate “point event” artefacts, temporally (which is the
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most common), spatially or based on artefact type.

It should be noted that there is a conspicuous absence of the “who” characteris-

tic from the list of context analysis, as in “who was using the device”, because as we

have noted in chapter 1, it is far from a trivial technical question to answer. Although

many types of devices have some form of explicit access control or user accounts, the

subject of a digital forensics investigation can easily claim that they were not the

user of a device at a specific time, or even that if they were the user of the device

that some background process was responsible for the artefacts. Consequently, the

“who” characteristic is an outcome or goal of context analysis rather than a reliable

contextual information.

We propose that context analysis consists of identification, interpretation, validation

and activity analysis. Identification of artefacts is a well-known process within digital

forensics, which lends itself well to automation, whereas activity analysis is very much

human-driven and a state-of-the-art research question. Casey [21] highlights that cur-

rently “diligent human oversight” is required in automated processes that are applied

to digital forensic investigations. The validation and interpretation stages constitute

the diligent oversight, be they performed by an automatic or human-directed process.
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2.2 THE CONTEXT ANALYSIS COMPONENTS

Here, we elaborate upon context analysis for digital forensics investigations and define

the sub-divisions of the four components that form the analysis.

Figure 2.1: The characteristics of Context Analysis

Figure 2.1 shows the four major components of our proposed Context Analysis model.

We will discuss this in more detail, then relate the Digital Forensics literature to this

model in chapter 2.3.

2.2.1 IDENTIFICATION

The problem of artefact identification is well understood, albeit not straightforward.

Artefacts can be present at one of three layers that we may classify as file system (FS),

operating system (OS) and application (App). In some cases, the three layers can

be highly dependent on each other, such as when an application writes the location

of its configuration data, which is a file system address into a protected operating

system area (e.g. the Microsoft Windows registry). Most of the time, however, the

three layers can be seen as related but independent of each other.
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Figure 2.2: Identification within the Context Analysis Model

Identification - File System. Typically, the file system view is a logical hierarchi-

cal view of files, folders and directory structures built over a physical storage medium.

The file system contains temporal data relating to creation, modification, access and

destruction of artefacts, and may contain other metadata fields depending on the

different file systems in use.

In a context analysis system, artefact identification can be particularly difficult when

files are in a state of deletion or in some non-contiguous state, at which point it is

crucial to identify the indexing system used to record the metadata relating to the

files. In contrast, in a content analysis system, it is the ability to parse through and

re-combine the individual storage units of the physical medium that is crucial.

Identification - Operating System. The operating system can span a range of

power and complexity from a lightweight kernel system with a minimum set of fea-

tures, to a complex tightly integrated desktop computing system or a distributed/cloud-

based system. The operating system layer sits between the file system layer, where

the storage of files occurs, and the application layer, where interactivity with the users

occurs. The operating system layer, therefore, acts as gatekeeper, provider and mon-

itor of resources, processing the logging, performance monitoring and management of

files and applications. Within this layer we see paging files, hibernation files, links,

pointers, Most Recently Used lists and other data structures that to some extent have

their own file system.
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An interesting and somewhat overlooked feature of analysis of the operating system

layer is the nature that it is a dynamic system, patched and updated, with capacities

that potentially change over the time span of the digital forensic investigation. When

contextually analysing an operating system, the extent to which it will autonomously

interact with the file system layer must also be considered, especially when involving

automated defragmentation and backup procedures.

Identification - Application-level. The application layer sits above the operating

system layer and often deletes or saves files from the file system layer. Applications

may retain logs, history or relevant contextual information, such as the Internet his-

tory saved by a browser, the conversation logs of two users communicating with a

chat application or the listing of files downloaded using peer-to-peer software.

2.2.2 INTERPRETATION

Figure 2.3: Interpretation within the Context Analysis Model

As noted above, there are few cases where purely the content of artefacts is so damning

that they can stand by themselves without any technical interpretation. Typically, an

investigator will want to know a history of what operations have happened to bring

the artefacts into existence on the device, what operations have been performed (e.g.,

has it been modified or accessed?) and potentially what operations could be per-

formed on the artefacts (are they accessible, visible etc.). Interpretation is a crucial

stage of investigation and is normally performed by a skilled analyst cross-referencing
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certain known artefacts, or an automated statistical process identifying associations

of patterns of significance.

Interpretation - Cross-referencing. Here, specific actions can be implied from

the presence of two or more artefacts. For example, a picture file artefact and a link

file artefact are recovered on the system. If it is known in advance that the link file

is only created when a user clicks on the picture, then there is a cross reference to

show that it is a human rather than an automated background process that accessed

the picture. Cross-referencing requires prior knowledge of the system and the rules

of where and how artefacts are created, modified, accessed and destroyed.

Interpretation - Correlation and Association. Here, artefacts that are in some

kind of proximity to each other are assumed to have a relationship. The measure of

proximity that is most commonly seen within digital forensics is time. Unlike cross-

referencing, detailed rules and prior knowledge of the system is not required, but at

the same time a certain volume of data is required before a reliable association can be

made. For example, if a specific file is created during the time that a specific appli-

cation is in operation, then there may be some general association between the two.

However, if the specific file is of a particular type and those types of files are created

during the operation of the same application, then we have a correlation between

these two events.
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2.2.3 VERIFICATION

Figure 2.4: Verification within the Context Analysis Model

This is the process of establishing the correctness and equality between the artefacts.

In this model, a single characteristic of contextual verification is used, namely the

temporal characteristic, as this is a universal metadata characteristic across a broad

spectrum of digital forensic artefacts. Note that some examinations, most notably in

mobile computing, may have a spatial component such that there needs to be a time

and space validity check. We have omitted Spatial verification from the model during

the scope of this thesis.

Although we note that the temporal characteristic is broadly universal across digital

forensic artefacts, it is by no means standard. A variety of levels of temporal precision

exist on different file systems, operating systems and applications. Operating systems

may be configured to operate in different time zones, and artefact synchronisation to

a known reference time is not a given with any forensic examination. Consequently,

reliable context analysis requires testing of data validity and synchronisation.
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2.2.4 ACTIVITY ANALYSIS

Figure 2.5: Activity Analysis within the Context Analysis Model

Activity analysis is the most complex aspect to the context analysis process in that

it takes artefacts that are grouped temporally, spatially or using a combination of the

two. Our focus here is on temporal grouping. Activity analysis presumes that there

is a concept of a ’session’, a period of activity where there is a start, a number of

artefacts and the end of the session, which is then delimited by an idle period before

the start of the next session. In a section of the related academic literature, the entire

data set is a single session. Other papers focus on a significant artefact and all other

artefacts that are within a temporal proximity. For instance, when a USB stick is

plugged into a computer all the artefacts created within the next ten seconds may be

considered as part of the same session.

Activity Analysis - Session-to-Session. Aggregate data compared to other ag-

gregates of data we have referred to as Session-to-Session analysis, and this type of

analysis forms the bulk of the work from chapter 3 and onwards.

Activity Analysis - Intra-session. A sequential order of events that are spread

over different levels such as the accessing of a File System artefact leaving a trace in

the Operating System level. Systems that analyse these sequential Multi-level pat-

terns we have referred to as ‘Multi-layer’ and sequential analysis of patterns that are

present at a single level we have referred to as ’Single-layer’.
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2.3 LITERATURE REVIEW

Here, we present the body of research that is applicable to Context Analysis in digi-

tal forensic investigations. The vast majority of related publications span more than

one of the four categories identified. They may for example, mention their identifi-

cation and interpretation approaches, but their focus is primarily on verification or

activity analysis. So, to avoid replication we cluster all items of the survey based

on their primary approach for example verification and activity analysis, and only

briefly mention their identification and interpretation approach where relevant. We

summarise this in a table for each section, where we display a ‘ ’ for the primary

approach followed and an ‘o’ for approaches that are noted in each paper but are not

focal points.

2.3.1 TEMPORAL VERIFICATION SYNCHRONISATION

The consequence of failing to take into account the artefact time stamps compared

to a standard reference time can lead to substantially different interpretations of the

results of an investigation. It is common to encounter numerous synchronisation

issues, such as changes in timezone caused by a shift to or from daylight saving time,

or events that are recorded in both application logs and file system entries that have

differences in time because the system and disks are recording at different rates. This

problem is aggravated when there are multiple devices involved in an investigation.
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Figure 2.6: Temporal Synchronisation Research Papers

Boyd and Forster [10] document a well-known (if somewhat notorious) case where

law enforcement analysts were falsely accused of tampering with a computer that

had been seized by police officers, because a computer examiner acting for the ac-

cused party had failed to take into account the difference of the time on the computer

against the time of seizure by law enforcement. The paper provides a checklist ap-

proach to ensure that a practical examination clearly documents and accounts for

substantially different timezones. Most importantly, the paper serves as a caution-

ary tale to the implications of a failure to synchronise evidence to a reference timeline.

Schatz et al. [91] discuss the problems of synchronising timelines from multiple sources,

including different machines or different applications, such as Internet Explorer ver-

sus Google Chrome, and parts of the Operating System, such as the Most Recently

Used list. The authors examine in detail the drift that occurs in clocks that have not

been set to automatically synchronise. The experiments presented in the paper show

the change of the system clock against the baseline time. They show that there is a

correlation between artefacts when synchronisation is accounted for between different
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machines. Notably, they also explain that the significance of artefacts for the exper-

iment depends on the granularity of the recording. For instance, cache files appear

to be more useful than Internet history records. As a result, the authors emphasise

that a forensic analyst should not assume that a perfect logging system is in place

and that a complete and robust log of all artefacts is present. Data can be missing

and the decoding of artefacts from a system can be incomplete.

An interesting approach to mining sequences of events is presented by Abraham [1],

who defines how systems are formally used and identifies unusual occurrences. The

author discusses how different types of profiles are useful for customer personalisa-

tion profiles. A number of issues are explored, such as the requirement for a unified

timeline when using sources of data from multiple locations, defining events and se-

quences of the events. Sequence chains of events are defined as regular sequences, such

as ABC, which may have one or more possible irregular events (say ABDC or ABEC)

present. Sequences may require wildcard events to correctly identify a pattern in the

system (e.g. AB*C). Also, whether repetitive or non-repetitive, profiling events is not

straight forward. For instance, it is not always obvious whether an ABAB sequence

is an instance of a single pattern or two shorter AB patterns repeated. Consequently,

to profile complex patterns one needs rules for defining maximum length, minimum

length, pruning and similarity, which depend on the scope and the complexity of the

event chains. This particular paper includes an example of a door lock log. Although

considerably simpler than say profiling an entire Internet history with multiple pos-

sible users, it is still not trivial to compile subject and sub-profile lists, which can

themselves have sub-profiles within them. Through the detection of inconsistent be-

haviour or outlier detection, subjects may show multiple users with access to a single

subject’s account. The paper explicitly deals with validation of temporal events, talks

about synchronisation, and presents a model pattern construction that can be used

for both intra-session and session-to-session analysis.

Buchholz [13] follows on from Buchholz and Falk [12] by identifying that there are

33



limitations with earlier models such as the one used by Stevens [93], as they do not

compare well to a reference time, do not appreciate skew and there are some issues

with certain time zones being given preferential attention while other times zones

do not have a 1-to-1 mapping to reference time. To deal with these limitations, the

author describes in detail clocks and events. Most importantly, he also notes that

“an investigator needs to have the ability to actually adjust timestamps to the proper

reference time and to create synchronized time lines as the final result”. The result

is a clock model. The particular paper shows a series of experiments where the effect

of long term operation of the clock causes observed clock skew and the powering on

and power off of the computer can change the skew. A “drift graph” to track the

clocks drift away from reference time is mathematically defined and demonstrated.

Its purpose is to facilitate tracking antedating.

Willassen [101] suggests that any timestamp artefact is subject to hypothesis testing

to ensure that the time recorded for the artefact is correct. This is because clocks not

only drift but may also be altered by a user to a time that is not the objective “civil”

real world time. The paper shows how actions that can change artefact timestamps

can be listed, such as modifications to the file created, written and accessed times

within a file system, as well as the sequences of actions that could have occurred to

affect the state of an artefact.

Specifically for timeline analysis, Raghavan and Saran [84] propose a Provenance

Information Model (PIM) which focuses on single artefacts that can only be credibly

examined when present within a timeline. They highlight that the key challenges

in creating timelines is to identify the syntax of the original time record, determine

reference time and determine synchronisation to that reference time (skew and drift).

Within a single computer there may be various homogeneous sources of time informa-

tion. Therefore, the authors were motivated to create a provenance model that can

synchronise with and between the various artefact types. To achieve this they have

created a tool for creating a reference timeline which artefacts are enter onto and
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validated against regardless of the original timezone or local time variation that was

present from the original provenance. The authors note in future work that predictive

methods of determining skew and drift could be added to a PIM.

Within our thesis the issue of Temporal Synchronisation is largely accepted that

the artefacts that we investigate will be correct. We note however that Abraham [1]

provided very important motivation in our thesis, showing the complexity of sequen-

tial analysis and informing our choice of session aggregates. When we make comments

that Session-to-Session analysis could be used for other types of data, such as sensors,

such comments are informed in large part by Abraham.

2.3.2 TEMPORAL VERIFICATION VALIDITY

Validity tests aim to detect when individual events or artefacts have had timestamps

modified, or when the system clock as a whole was modified. Unlike synchronisation

issues which show a systemic variation to reference time, validity checks are principally

aimed at identifying anomalous modifications or sudden unpredictable state changes

to events, event sequences or the system as a whole.

Figure 2.7: Temporal validity research papers
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Carney and Rogers [16] have developed a specialist file system analysis technique

based upon statistical differences between temporal metadata of the files. The tech-

nique proposed in this paper is to create hypothetical scenarios such as the user of a

computer visiting a website that creates pop-up windows containing illicit material,

and then metrics are calculated to show average time between file creations, saved

items, viewed item etc. There are four reasonable example scenarios presented for the

creation of unlawful pictures on a computer. The use of different applications, such

as web browsing or “back door” remote control software, demonstrates variety in the

approach. The analysis is limited to file creation times and to specific artefacts, such

as the most recently used lists and the folder view thumbnails. The scenarios are of a

somewhat limited scope, given the possible host of ways that unlawful pictures could

appear on a system.

Even if the exact time of an event B is unknown, if it is known is that there is a

causal relationship between an event before (A) and an event after (C), and that

A and C have reliable timestamps, then B can be time-bounded between A and C.

Based on this, Gladyshev and Patel [36] use a directed acyclic graph to represent

causal connections between events. Because of time bounding, intervals of events and

intervals between events can be calculated with some accuracy. However, the scope

and scale of the manual processing involved to assign times to the events raise ques-

tions about the human readability of such graphs in a large scale environment and

does rather indicate that it would possibly be more suitable for automated analysis

or used to prove small-scale limited ‘smoking gun’ type events.

Carrier and Spafford [19] noted that forensic analysis of a system was the analy-

sis of the current snapshot in time of the system or possibly previous states might be

recorded. If an investigator needed to make logical inferences about states that are

not recorded, or the information about that state are no longer present then there

were no formal models of computer history to use. An example of a missing state

could be when a file is updated numerous times, but only the last update is recorded
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in the files meta-data. The authors proposed two computer history models based on

finite state machine (FSM) theory. The paper does also note that as static model

of system capability is inadequate as devices are connected or disconnected, the ca-

pability would change and consequently a dynamic state model should be used to

represent the changing capability of the device. Carrier and Spafford state that a

primitive-level finite state machine model is not practical due to the vast quantities

of state transitions that occur in a short space of time on a normal simple computer

investigation. Hence the authors propose much higher-level history model based on

a number of analysis classes, including abstraction, construction, reconstruction and

materialisation.

Willassen [102] extends the work in Willassen [101] to show that in situations where

there is a strong causal “this happens before that” logic, such as when files are se-

quentially numbered, then additional checks can be added to the action sequences

to detect modification and further verify hypothesis testing of timestamps. The ap-

proach demonstrated takes existing functionality of the New Technology File System

(NTFS) Master File Table (MFT) to create a logical check of whether data are in

the correct time order based upon number sequences. Case studies are presented

showing the results of users attempting to antedate data. The experiments are sim-

ple scenarios such as if a user without specialist knowledge did X, then would the

approach detect X and the paper does not extend the analysis to the level of effort

and knowledge that would be required to defeat the proposed analysis technique.

Extending previous FSM-based work, James et al. [53] show a model for defining

states and transitions. They present an example where the claims in statements by

different people under investigation can be verified logically. However, as the FSM

diagrams enumerate all possible states and transitions, the relatively simple exam-

ple presented in the particular paper may rapidly become unreadable. The authors

acknowledge that an FSM based system is not a trivial matter for ‘post-mortem’

analysis of a computer system. The statement verification model does require some
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absolute and correct statements, and does not take into account error, uncertainty or

the unreliability of witness statements.

Marrington et al. [72] extends the work on computer profiling in [70] to substantially

include anomaly and inconsistency detection. The authors note that the predomi-

nate types of inconsistency that occur are related to the normal operation of systems

where data is destroyed and overwritten rather than to deliberate tampering. The

authors expand their event model which included recorded events and inferred events,

to include missing events, which are pre-condition events that must occur in a system

with well-known “happens-before” causality. A → B, B → C, transitively A → C.

In an example where event C is a recorded event with a precondition that A must

happen before B, and B can be implied from the recorded presence of C, then we can

detect that A is missing. The authors have presented experiments to demonstrate

the CAT Detect approach, notably collecting data from the start to the end of a

session for a user logged into the computer’s account. Large sessions do however run

the risk that multiple users could use the same device during the logged in session

and consequently attempting to profile individual users or types of activity could be

difficult without the use of a smaller “temporal proximity” window.

Ho et al. [48] in their paper show the problems in Context Analysis for ensuring

the validity of file system artefacts as the are moved over modern cloud-based net-

works. The authors show experiments of moving a file from one type of file system, to

a cloud to another cloud system and the observations of the impact of that transfer

onto the metadata for the files.

This section was incredibly influential within our research, particularly Marrington

et al. [72], although ultimately this work is about sequential correctness of sessions

rather than the overall pattern of use. We could describe the type of work in this

sections as being akin to cross-examining a witness, e.g. “So what did you do next?

Where did you go? Which way were you facing when you saw the bag? How could
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the man have ran to the left if you saw the bag on right?”. Ensuring that artefacts

are presented in the correct sequence and identifying when there are missing elements

is incredibly important, but we found during our specific research, sequential validity

did not lend itself to the overview analysis of Internet history.

2.3.3 INTRA-SESSION ACTIVITY ANALYSIS - SINGLE-
LAYER

The principal challenge for intra-session activity analysis is the grouping of a set of

point events, such that they can be considered a contiguous period of operation. For

example, if event X happened at a particular timestamp and Y happened at a differ-

ent timestamp, concluding that the difference between point X and point Y is brief

enough to say that the device was in continuous operation by the same user or process

is not trivial.

Buchholz and Falk [12] have developed a graphical tool, called Zeitline, which al-

lows events to be reconstructed from a number of different kinds of artefacts, logs

and timestamps. In an analogy to a file system’s browser with directories and files

being the children of a root, the Zeitline’s authors treat a timeline as a tree with a

complex event as the root and a hierarchy of events as its children. It allows a user

to create complex events from the records available, use search and filter capabilities,

and populate and analyse timelines from those events. The approach requires known

patterns and that the investigators select the artefacts that they consider pertinent.
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Figure 2.8: Single-Layer Intra-Session Activity Analysis Approaches

Carrier and Spafford [18] present an iterative four-stage crime scene and digital crime

scene processing model. Within this model the authors state that the target defini-

tion phase is more of a heuristic process than the other phases which more closely

resemble engineering processes. As a response to the heuristic nature of this prob-

lem, the authors present two different approaches. In the first approach, they show

that cross-referencing the target definition based on known or predefined patterns

allow detection of artefacts that are similar in time, location or content. The second

approach detects outlier files or folders that have been buried within the file system

structure so as to not appear conspicuous.

The approach by Khan and Wakeman [59] is to determine the footprint of appli-

cations on a system based upon the typical artefacts that are created in normal

usage. These features are then used to train a neural network. The trained neural

network can be applied to a forensic examination to attempt to reconstruct a timeline

of events when the application was used. The authors do not consider whether using

a training set from a wholly different source is desirable from a legal standpoint. An

experiment is used in the paper to illustrate the approach and the authors highlight
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that there are performance considerations with particularly large datasets. The au-

thors do not elaborate on the types of applications, the effect of different versions of

the same applications or indeed if there are significantly different outcomes. They

suggest that despite the complexity in describing the actions of machine learning to

laymen, jurors and members of the legal profession, the value of their approach is

worth considering for reconstructing events on a system.

Olsson and Boldt [76] present the Cyber Forensic TimeLab (CFTL) tool, which in-

cludes a scanner component for parsing a computer for a set of predefined artefacts

from a variety of locations, and a viewer/presentation tool that displays the recovered

artefacts on a histogram timeline. The authors show that the approach is extensi-

ble by adding additional parsers to the scanner component. The approach does not

provide automatic analysis. Instead, it is a clustering and display tool for a number

of individual timelines that are placed over each other so that a human analyst can

make a visual correlation. The authors do demonstrate with a case study that the

tool is beneficial when used side by side with a commercial tool, such as the Forensic

Tool Kit [116].

Gudjonsson [43] suggests that timeline analysis carried out purely at the file sys-

tem level does not provide adequate context for traditional file system artefacts. In

response to this, the author presents the log2timeline tool which collects together file

system dates and time but also parses log files and a variety of data structures for

timeline information. All of the timeline information is put into a monolithic list or

super-timeline. The paper details the locations and types of artefacts that can be

gathered into the super-timeline. The author suggests that each timestamp is rele-

vant, but it has to be understood within the context of the surrounding timestamps.

The author does also discuss issues relating to temporal proximity, and analysis is by

known keyword or by known pattern.

Carbone and Bean [15] review timeline creation utilities and competing formats for
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the storing and representing of timelines. The authors list the possible sources of

timeline data that can be extracted with the log2timeline tool and make some cau-

tionary notes about ‘information overload’ if too many files that are not pertinent are

included. This paper, although extensive in its detail about available investigation

tools advocates a flat super timeline. An interesting aspect to this paper is however

that the authors provide detailed descriptions of file system permissions. Not only do

they discuss the standard metadata times, such as created, modified and accessed,

but they include descriptions of what could happen to the artefacts because of the

file permissions.

Ding and Zou [32] detail the NTFS MFT operations that modify and create dates

and times, and show how attackers can modify the MFT to obfuscate attacks on

a system. The authors present an approach where suspicious files are checked in a

three-stage cross-referencing process. They extract the appropriate temporal data,

cross-check metadata within the operating system and the file system and then vali-

date the accuracy of the timestamps based on rules related to their operation in NTFS.

James and Gladyshev [55] define the concept which they formally specify as action

instances. This is a state transition model, where an action produces a trace. If

traces can be identified, then actions can be implied because of the causal nature of

certain state transitions on computer systems. The most recent action instance can

be identified by applying the pattern across an entire computer system. Past action

instances may also be reliably identified. The authors show experiments to highlight

the use of this model using Internet browser artefacts and operating system logs. .

2.3.4 INTRA-SESSION ACTIVITY ANALYSIS - MULTI-
LAYER

The multi-layer approach does not use the activity timeline as a monolithic list of

point events but uses an understanding of the type and location of the artefacts. The

multi-layer approach is more sophisticated than the single-layer method because it
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identifies the patterns in the artefact types and locations and presumes that concur-

rent patterns of different types of activity can be operating at the same time.

Figure 2.9: Multi-layer intra-session activity analysis approaches

Marrington et al. [70] describes computer profiling as a method of forensic recon-

struction analysis to determine a system’s characteristics, behaviour and usage, that

requires no prior knowledge of the system or initial direction to the sought artefacts.

The approach presented in this paper is classifying a timeline of events into an object-

orientated model and then performing correlation on the objects. The approach does

identify that there are discovered events, which are directly extracted from the sources

of artefacts (such as log files) and there are events that can be inferred from a known

causal connection. For example, if event B is a discovered event and it is known that

event B is always caused by an event A, then A must have occurred. Although com-

puter profiling ostensibly does not require direction by a human investigator or prior

knowledge of the events on the system, it is not to say that it is purely statistical,

rather the object model and the inferred events do require detailed system specific

knowledge (such as how inter-related artefacts such as link files and Registry files on

a Windows system are for example), but the circumstances of the investigation, how

many users etc. are not necessarily known.
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Marrington [71] extends his research on temporal inconsistency detection initially

presented in Marrington et al. [70]. Temporal inconsistencies include missing or

overwritten data, clock skew, drift and also intentional modification. The research

presents examples of inconsistency detection, such as misattribution of the ownership

of the documents and modification of timestamps. The author shows that it is possi-

ble to perform automated detection for temporal inconsistencies when rules governing

causal behaviour on the system are known.

Hargreaves and Patterson [47] propose an approach that first extracts timeline arte-

facts from a system, then performs low-level analysis of the artefacts and finally com-

bines the low-level events into high-level events. For example low level events are sim-

ple records or log artefacts such as the record of a USB device being connected, or the

record of an executable program running, whereas the high-level events are a known

activity or action happening, such as a possible virus is introduced into a system

through a USB device being plugged into a system. The two low-level events above

performed in that sequence in close proximity could suggest the high-level pattern of

an automated virus being introduced. The approach uses rules defined in advance of

the analysis, be it extraction, low-level or high-level analysis. This approach is not

about automated discovery of a systems behaviour, but about automating the iden-

tification of known types of activities or events. The approach is however distinctly

modular and therefore the ease of adding and extending the established rules is noted.

Rowe and Garfinkel [89] compared the file systems on a variety of different drives

and anomalous files are detected. Their approach is to compare a large quantity of

hard disk drives which will by the nature of normal usage have broad similarities,

with semantically predefined groups for the artefacts, such as pictures files grouped

together, database files grouped etc. Drives with large quantities of pictures, media

or application files will out stand as being anomalous.

The approach by Al Awawdeh et al. [2] is a real-time agent for recording data as
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it happens rather than post-mortem style forensics. The aim is to provide data for

further academic research and to provide data for incident response in a large scale

commercial deployment. The authors discuss the problem of verbosity, which is the

issue that unimportant details can be over-reported in logs and salient details are

not given adequate prominence even though they are reported. Within their experi-

ments they show that there can be significant differences between the amount of data

recorded by different operating systems.

The AssocGEN approach in Raghavan and Raghavan [82], [83] is a simple corre-

lation between file system metadata and web-based application logs. The purpose

is to provide the origin of a file and specifically to determine if that file has been

downloaded from the Internet. The authors approach is to trace the metadata of a

file to other activity on the system with similar metadata associations and times, and

then ultimately to try to establish the website address in use at the time and confirm

that the picture file did in fact originate at the location identified. The approach not

only makes comparisons against log files but also against network packet captures,

suggesting that the approach is an active monitoring tool rather than a ’post-mortem’

forensic examination. It also has the requirement that the files cannot be overwritten,

must contain metadata and are recent and accurate.

In Chabot et al. [24], [25], a holistic approach is proposed for gathering data re-

lating to the circumstances of the investigation, provide a model of the investigation

process, tools for extraction of heterogeneous data and to “provide tools to assist

investigators in the analysis of the knowledge extracted from the incident”. The ap-

proach requires a high degree of prior knowledge to model different scenarios with a

method called Semantic Analysis of Digital Forensic Cases (SADFC). The authors

review a number of forensic analysis techniques for comparison, using the criteria of

auto extraction, heterogeneity, analysis, theory and data integrity. Excluding auto

extraction, which is primarily a criterion to assess the tool’s effectiveness, the major-

ity of approaches had a capacity for dealing with heterogeneous data. All techniques
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scored rather poorly on automatic analysis, theory and data integrity. Analysis is dis-

cussed and is broadly based upon temporal proximity to events, correlation in time

and heuristic rules that have been determined in advance. The authors argue that

a digital forensic investigation needs rich knowledge representation and processes for

consistency checking of data and filtering. With respect to events the authors describe

the intervals of events and use time boundaries from Allen’s logic, much as can be

seen in previous works such as Gladyshev and Patel [36]. Interestingly, they point out

that because of the nature of time intervals and the beginning and end boundaries

potentially overlapping it may not always be possible to discriminate between event

footprints”.

The approach used by Kalber et al. [57] is to perform statistical clustering on a

file system to identify what applications and files are closely associated in time. The

approach presupposes no prior knowledge of the system, although to successfully in-

terpret the results would require an analyst to review the clusters and confirm the

associations that have been made. The authors note that events that happen at the

same time or within a very short space of time can be differentiated because they will

appear in different clusters. The paper presents an experiment where the approach

is successfully used to identify the use of various applications across a file system but

the author notes that investigation within the applications, such as examination of

an email application is not possible with their approach.

James and Jang [56] propose a generic detection and general identification of events

on a system without specific prior knowledge what the events are. The Action In-

stance model relates to events that update a number of traces and by detecting the

traces this approach can make deductions about the events that caused the traces.

The approach does require some domain-knowledge relating to the causal relation-

ships between events and trace artefacts and the authors do note that if you were

basing the traces on a location (as opposed to clusters of metadata) then it is possible

for a user to save a file into that location without the normal event that would have
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occurred to cause a file to be there. They give the example of files in the Internet

Cache are usually present as the result of a web page viewing event, but it is possi-

ble for a person to save into that location without it being caused by a web page view.

Palmer et al. [79] demonstrate in this paper how digital forensic evidence is diffi-

cult to reliably present. The authors assert that placing the digital forensic artefacts

of note onto a graph and using an appropriate algorithm to draw associations be-

tween the nodes a correlation can be drawn between the artefacts, and the they give

an example from memory analysis showing files and the software used to access those

files can be correctly deduced.

Amato et al. [5] suggest that digital devices are increasingly likely in modern in-

vestigations involved as goal of the crime, medium or simply witness of a criminal

event. They propose a framework for the analysis and reasoning of digital investi-

gations, by adopting the practices and technologies of Semantic Web. Amato et al.

propose that the use of such technology would provide advantages of Information

Integration, Classification and Inference of evidence, Extensibility and Flexibility of

resources and improved Search capabilities.

This section of the research was very influential in our thesis and shows the two

big issues are cross-referencing for known patterns that are significant, and for corre-

lation and association to discover the potentially interesting but unknown activities

or events. Ultimately our research led to working with correlation and association

style discovery of previously unknown features as we were particularly interesting in

pursuing zero domain knowledge in this research.
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2.3.5 SESSION-TO-SESSION ACTIVITY ANALYSIS

Where there are multiple sessions within a data set, there is the possibility of assessing

the similarities and differences between sessions and inferring some session-to-session

patterns. For example, sessions that appear at certain times of day or on certain days

of the week may bear similarity to the corresponding sessions in other days or weeks.

Figure 2.10: Session-to-Session Activity Analysis Approaches

Li et al. [65] propose a geographic information system analysis based upon spatiotem-

poral similarity of users. The work in the paper proposes a hierarchical-graph-based

similarity measurement, for determining the similarity between users, taking into ac-

count not only the geographic regions they accessed, but also the sequence that the

regions were visited. The approach proposed in the paper is based upon data gathered

from the global positioning system (GPS) locations and based upon the sequence of

locations and the time taken at the locations, similarity of the users is first calculated

and from co-existing patterns friends and a “community” of like-minded users can

be inferred. The authors provide a case study with an example of using a simple

threshold of time to identify the significance of a location. Is it a location where

people choose to spend significant time or a place where people are caused to stop,

such as waiting in a queue? The paper compares different users at different times, in

the form of a session-to-session activity analysis.
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Outside of the area of traditional digital forensics investigations, of interest are also

the large event sequence files, such as those considered by Kiernan and Terzi [60].

They assert that large event sequences must be reduced and simplified to view, whilst

at the same time give a global view of the activity and allow suspicious activity to be

detected. Examples of this problem domain would be resource management, database

optimisation and the authors do propose this technique for the analysis of large-size

audit logs which need to be digested and displayed to an investigator. The authors

show sequences of data that are broken up by type into what we can consider sessions

where certain types of activity is more frequently occurring than other types. The

authors present a segmentation and encoding scheme for the data, and once this has

been segmented the results can be colour coded and displayed on a high-level timeline

for simple viewing by an analyst. Different algorithms for the segmentation are shown

and the results are demonstrated with each option.

Eagle and Pentland [33] assert that a person has structures, routines and patterns

of behaviour, which when temporally, spatially and even socially contextualised can

be easily identified. The authors term these underlying principal component-like be-

haviours as eigenbehaviours. In addition to identifying the components that represent

the individual, they assert that a social group’s behaviour can also be predicted based

on how close or far the individual is from the social group. The premise is particu-

larly interesting, but the experiments presented in the paper rely only on a sample

of telephony data showing location, communication and levels of device usage of a

selected group of individuals.

Ye et al. [104] propose a notation called life pattern normal form (LP-normal form)

and a life pattern framework to determine and mine location-based data about indi-

viduals and their mobile computing habits. The authors of this paper propose that

the patterns refer to significant places in an individual’s daily life, but these must

be extracted from raw GPS data, using “stay point” detection and clustering. The
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research identifies that there are sequential and non-sequential patterns within their

non-conditional life patterns. For the conditional patterns these were considered life

rules. E.g. at X location and only at that location, action Y occurs. The authors

explicitly use the day as the unit of temporal granularity and work on life rules such

as ‘work day’, ‘every Monday’ etc.

Wang et al. [100] propose that event summation, as can be seen in Kiernan and

Terzi [60], does not reveal underlying properties of the patterns. The authors sug-

gest that their approach is one of an educated guess at what processes are in play

to produce the events and can be considered hidden concept learning, using Hidden

Markov models. Their paper presents results of experimentation on synthetic and

real-world data from an event log from a single computer, using different optimisa-

tion algorithms for comparison against their approach.

Schaefer et al. [90] discusses event sequences and makes some notable distinctions

between the time-synchronous events, where a precise ordering of events is signifi-

cant and between aggregate events, where a particular interval of time is important

and the significant data is present during this period, but the precise order is not

required. The paper presents different ways to visualise clusters of events, gaps and

indeed shows representations which are not timelines, but only event information.

Two examples are shown using fraud detection and keyword and content matching

from news feeds. They show a visual analysis tool to present event data for auditing

information based on rules.

Ma et al. [69] describe spatial location and behaviour pattern identification research.

Locations and actions that are being performed on mobile computing devices can ex-

trapolate user behaviour patterns and be used to identify other similar users operating

within the same area. The authors note that there are problems with data sparseness

so they propose grouping interactions based on location, such as home or work and

types of activities such as email and games. The authors suggest that attempting
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to provide social context from precise location is not trivial. GPS signals may be

turned off or unavailable indoors, and positioning based upon cell-tower locations is

too imprecise especially in dense urban or sparse rural areas. The authors address

this by classifying a number of possible social locations, and attempt a method to

address the prior knowledge required to create the classified interactions for the users.

Notably within the experiments presented, the data sessions are typically very long,

over several months of data per user. General periods of the day are classified during

the behaviour patterns, for example, does the entry occur between 0800 to 0900hrs,

but explicitly breaking the patterns into sessions is not explored in this approach.

In Gresty et al. [40], a session-to-session comparison of artefacts from an interac-

tive application, such as a web browser on a personal computer, allows statistical

analysis for determining whether repetitive or habitual behaviour can be observed

during the sessions of usage. The authors show that a user’s Internet history can

be processed to reduce a large data sample to a small number of principal compo-

nents. These components can be clustered into sessions by temporal proximity to

other principal components and then a like-for-like comparison of the sessions can

be performed. The results of the experiments show that timelines of Internet history

with large numbers of events can be digested into a simple table where an analyst can

detect habitual behaviour by visually observing patterns and regularity to the data.

Kirchler et al. [61] address the problem of online privacy by demonstrating an ap-

proach to tracking user activity through Internet activity logs using behavioural fin-

gerprints. The approach presented here does not use cookies or active click monitoring

types of behavioural tracking, but rather this is an approach where sessions of net-

work traffic activity are analysed. The session sizes used in these experiments are one

day in length and the approach used to perform the analysis uses an unsupervised

machine learning, which the authors assert does not require large volumes of labelled

training data.
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Galbraith and Smyth [34] use a statistical technique normally available in traditional

real-world forensics to examine and compare two sets of sequential event data to de-

termine if they originated from the same source. The experiments used in this paper

tested real-world browser event streams and they used data from 28 individuals. The

authors propose that further work and improvement of this approach can be done

with suitable calibration and characterisation of the properties within the data

The approaches presented in this section are significant to our research, not least

because our own early work in this area is present (Gresty et al. [40]), but because

this work relates to comparing information from one period of time to other similar

periods. The papers in this area are not necessarily drawn from what we would con-

sider the traditional Digital Forensics “event reconstruction” field, and instead are

based on research into spatial and/or temporal events.

2.4 RESEARCH QUESTION AND METHOD

2.4.1 The Research Issues

We have outlined that Context Analysis is ultimately about being able to consider

artefacts together such that we can understand the behaviour of the system. So,

given the motivation for this research outlined in section 1.3, we have to determine if

there is a form of Context Analysis, and type of artefacts, that can be used to achieve

these objectives? The overall approach we are presenting is a novel form of Analysis

for Internet history artefacts. We presume that such types of artefacts are correctly

identified and valid within the Context Analysis model.

We note that there is no approach within the ‘traditional’ Digital Forensics literature

that takes a overall view of the actions on a system and shows how those overall

actions may be useful to an investigation. Researchers such as Marrington [71], Harg-

reaves and Patterson [47] , James and Jang [56] etc. do note how the actions or traces

of activity on a system can imply the technical actions that caused those traces, but
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they do not necessarily address the intent behind the actions.

We see in Amato et al. [5] that the authors make the same assertion we do in chapter

1, that increasingly the electronic device is a witness to a crime, but furthermore we

assert that not only is the device an ‘eyewitness’ that can talk about the actions at

a specific time, but it is also a ‘character witness’, like a spouse that can talk about

long-term abuse, or the co-conspirator in a case of fraud. The credibility of such

a witness is important but they provide very compelling testimony relating to the

intent of an offender. Stepping beyond the eyewitness approach allows us to look at

a much wider open field of research, which we see is important for our motivation

and objectives (section 1.3), where we note that there are offences that a traditional

‘eyewitness’ would not be suitable: the single events that occur multiple times and

multiple events that form a single crime. This therefore showed that there was a

motivation to move beyond the traditional Digital Forensics body of literature and

to incorporate other types of Activity analysis.

As part of our Context Analysis we have incorporated work such as Ma et al. [69]

which deals with spatial location and behaviour, Schaefer et al. [90] deals with event

sequences and the order of events and Eagle and Pentland [33] investigate the inter-

action between social groups and so on. These areas of research relate to comparing

information from one period of time to other similar periods, and are not necessarily

drawn from what we would consider the traditional Digital Forensics “event recon-

struction” field. This widening of the research techniques is necessary to deal with

the new types of digital forensics crime scenarios we present as motivation for our

research.

2.4.2 Methods in this Thesis

In Chapter 3 we investigate the choice between an Intra-session type of Activity Anal-

ysis and the Session-to-Session approach. We describe in detail methods of aggregat-

ing data into ‘Sessions’, namely the fixed-length and variable-length approaches, and
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we show that by plotting the number of sessions whilst varying the fixed-length and

variable-length thresholds, we can show appropriate settings for our session aggre-

gation thresholds, without any prior knowledge. We also introduce the backbone of

our research, the session-to-session comparison using the Jaccard similarity coefficient.

In Chapter 3 we also address the need for suitable data that can be used to test

the appropriateness of our approaches, which does not simulate any specific ‘crime’,

but is of a suitably large volume, that the data is marked as coming from one source

or other and finally showing that the data is suitable to represent ‘normal’ Internet

history, which we show using Spearman correlation to a measure of popularity for

websites (which is properly explained in chapter 4).

Chapter 4 considers the problem that two or more users of a single device may have

similar interests and consequently Activity Analysis can draw incorrect conclusions

about the provenance of two periods of time. We describe in this chapter variables

that can be adjusted in the Internet history session data to improve correctness,

namely the s-val, t-val and c-val. We present novel approaches to breaking up In-

ternet history session data without prior knowledge of the users or of the types of

data by showing the length of the session can identify types of behaviour and the

Relative Popularity method which uses a reference source and the difference from

that reference point to the actions on the system dictate how the data is grouped.

In Chapter 5 we demonstrate that the approaches used in chapters 3 and 4 can

produce overall sets of results with sufficient accuracy, which we call the Beyond

Reasonable Doubt (BRD), at 91%. The results of the session-to-session comparisons

(chapter 3) of the grouped data (chapter 4) is placed onto a graph and Louvain Com-

munity Detection is used to cluster and colour the graphs. We then present how an

analyst or investigator could use such graphs for Pattern of Life detection, answering

Investigative Hypothesis and varying the s-val and t-val variables to show strength

of connection between two or more sessions.
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2.5 CONCLUSION

We have shown that there is a broad literature in Digital Forensics that considers

tools and techniques in a way that we describe as Context Analysis. Techniques that

collectively examine forensic artefacts in conjunction with other artefacts, so as to

describe, test the validity or determine the behaviour in time and or space of those

artefacts, we would describe as contextual.

The alternative to Context Analysis is to test the metadata of the artefact in iso-

lation, such as searching for a specific keyword, hash value, or to test the content of

the artefact.

A system that uses context analysis need not provide all of the elements that we

present here to be a context analysis technique, but the analyst must be aware that

for example, in a multi-layer intra-session activity analysis technique, there must be

trust that the correct artefacts have been identified, are valid and have been inter-

preted correctly, even if those elements are not explicitly tested contextually.

In the following chapters, we propose a system that uses Internet history artefacts as

a Session-to-Session Activity Analysis that does not explicitly use any other form of

contextual temporal validation, and the identification methods are addressed due to

this being aggregated from application level.
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Chapter 3

SESSION-TO-SESSION

ANALYSIS

“I have now finished with the ungrateful task of criticizing, and I proceed to propose

a system which it is hoped will be as severely criticized by others.”

Sir Richard Francis Burton - A new system of sword exercise for

infantry, 1876

3.1 INTRODUCTION

In Chapter 1, we proposed that there are a number of challenges within Digital

Forensics Science. In this chapter we are interested in investigating the following:

• Investigate ways in which the behaviour that is recorded on the device can

be automatically grouped in such a way that it can be analysed that is both

correct, and sufficiently simple that it is able to be transparently described to

a court or jury.

• Show if there are specific events than an investigator is interested in, how pat-

terns can be identified within the data relating to those events, which may assist

in determining the mens rea of a suspect, if at all possible.

• Facilitate identifying features within the digital data that can be used to identify

the user or users of a device
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• Investigation into multi-user desktop environments that is connected to the

Internet, where there is potentially weak user authentication or account shar-

ing. This represents a realistic and challenging environment for digital forensic

science.

In Chapter 2 we therefore explored the literature of what we described as Context

Analysis, which considers event artefacts that can and should be collectively analysed

together. Considering artefacts together is essential to building the weight of circum-

stantial evidence, that we noted in chapter 1 is the practical way in which Digital

Forensic Science answers the question about the user performing the actions on a

device.

In this chapter, and for our thesis, we have looked at a highly interactive set of

event artefacts that would be present on our goal target system, and would likely

contain personal and identifiable features: namely the Internet history artefacts that

are left on a device as part of the normal use of browser software. A detailed descrip-

tion of the data sets used in this thesis can be found in section 3.9 of this chapter.

We assert that the different individuals who use a device will have characteristic

patterns of behaviour that can be identified. Therefore, if there were specific events

that comprise the actus reus of a crime, we could identify if there were personally

identifiable patterns that intersected with the act, such that it could indicate the user

at that time. If there were other notable periods of time that interacted with the act,

they could show planning, performing or researching the outcomes of a crime, i.e. the

mens rea.
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3.2 INTERNET HISTORY ARTEFACTS

The Internet history records are single point events showing access to a resource/page,

and they do not contain the content of the page/site/resource, but may be paired with

the content stored elsewhere within the web cache of the device. Investigators typi-

cally can find Internet history artefacts from the unallocated area of previously used

areas of hard disk drives, file slack, within page files, shadow copy file structures and

any other forms of backup. Given that Internet history may also be recorded at the

firewall, gateway or service provider it is quite possible, indeed in our experience it

is extremely common, that a Digital Forensic Scientist will be analysing a corpora of

Internet artefacts with only the point event data without any of the content to refer to.

From these individual points, which contain a date and time and the address to

the resource that was being accessed, an analyst can imply a period of continuous us-

age by considering closely occurring point events, separated by short intervals. Figure

3.1, illustrates an example of such history drawn on a timeline with the point events

as black lines.

Figure 3.1: Internet artefacts are point events on a timeline

The address component of the Internet history records can have three levels of resolu-

tion and verbosity depending upon the source of the artefact: Host-level, Page-level

and Element-level.

Host-level Resolution - At this resolution the only information that is retained

is the address of the host where a page was accessed. The pathway to the individual
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pages or elements is not retained and this type of resolution is typical of the type of

data saved at firewall/gateway logs and is the type of data that will be retained by

Communication Service Providers as part of the Investigatory Powers Act 2016 [110].

Page-level resolution - This resolution of data is retained within a typical web-

browser ‘History’ and displayed to a user when they view the previously visited sites.

This level of data shows which page was accessed but it does not show details about

how many pictures, what JavaScript code was executed or if there were sidebars on

the page using data from other sites.

Element-level resolution - The low-level data in a web-browser ‘Cache’, that is

not shown at the Page-level resolution is shown at the Element-level. This level re-

tains the pathways to the scripts, hyper-text files and pictures that are needed to

construct the pages that are being accessed.

Some pages may contain elements from hosts that are wholly different to the host

that is calling the element. For example, if there is a page that is being accessed:

www.unknown-site.com/page.html

This page might contain pictures or content from other hosts that are known and are

being blocked through conventional firewall or service provider Host-level filtering.

www.known-illegal-site.com/pictures/1.jpg

The approach used in this research project is to use a Host-level view of the data,

but that view is constructed from any of the available Internet history. For example,

if the analyst has an Element-level Internet history that has been recovered from a

device, the trailing page or element details will be stripped off such that only the

Host-level details remain.

This approach has the advantage that it largely complies with the scientific law of
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comparative analysis, such that all three levels can be compared against each other,

which will enable the mixing and comparison of evidence sources to see if there is

missing or obscured data, and ‘cross drive analysis’ types of problems where there is

an attempt to identify similar artefacts across different media sources. There is a dif-

ference in that some websites and pages have a high degree of dependence upon each

other, i.e. going to one web page will always access resources from another website.

For example, A regional shop web page selling an item could have the page:

www.shopsellingitem.co.uk/washingmachines.htm

Which contains elements that refers back to the global headquarters website:

media.shopsellingitem.com/superdeluxmodel.jpg

As such when we take this Element-level history and render it down to a Host-level

history we will see the ‘shopsellingitem.com’ and ‘shopsellingitem.co.uk’ components

appearing together in all sessions. If an analyst was then to compare a second set of

data that was natively Host-level or rendered down Page-level history, with the data

that had been rendered down from the Element-level history, the analyst would see a

difference as there would be one set of sessions that contained ‘shopsellingitem.com’

and ‘shopsellingitem.co.uk’ and another set of sessions that did not ever show the

global ‘shopsellingitem.com’ component. Therefore, care must be used if recovering

Internet history that has come from different levels.

3.3 SEQUENCE OR AGGREGATE

Schaefer et al. [90] outlined two useful methods of analysing temporal data, the se-

quence approach and the aggregate approach:

• Temporal sequence comparison. Patterns are identified within an ordered, typ-

ically long, sequence of data.

• Aggregate-against-aggregate comparison. A collection of grouped artefacts is

compared against another collection of grouped artefacts.
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In chapter 2, we have identified within the Activity Analysis section of our Literature

Review that there are event modelling approaches that are sequence-based and there

are aggregate methods. Within this project, we have investigated sequential analysis

of Internet history data and noted that overall there are two main problems:

• Issues relating to how the webpages are technically implemented.

• Issues related to user interaction.

Web pages come in a variety of styles: large blocks of text, interactive ‘flash’ pages,

short text blocks that require a user to navigate through pages that could easily have

been presented on a single page, thumbnail gallery picture pages etc. Developing

rules based upon number of pages visited, speed of navigation, pictures viewed etc.

is in effect a profile not of the user, but a profile of the technical implementation of

the websites. Whilst that could be an area of interesting future research, especially

with regard to commonly used websites, it would necessitate the actual content of the

websites visited available for comparison. It may be possible to profile individuals,

how they viewed, used, accessed the pages, but such an analysis goes well beyond the

scope of what is commonly available within Internet history listings and the scope of

this thesis.

We have found it an extremely complex problem trying to create sequential rules

that can identify repetitive behaviour based upon the realistic experiences of users

interacting with their web browsers. A user that is a regular visitor to a particular

sport/activity/interest website, i.e. a high degree of probability of visitation to that

site, may still visit the site at the beginning, middle or end of the session. If there

are a variety of sites that the user may or may not visit, and they may visit them in

any order, and they may visit any number of other sites during the session, then the

reliability of the rules that can be deduced and the amount of replicability of those

rules is in our experience low.
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Therefore, in this thesis, we have looked at a simple aggregate method: If a user

visits a website during a session (sessions are defined in the next section), once, ten

times in a row, or visited and returned to at a later time in the session, it is considered

only a single time. Therefore, this approach ignores implementation issues, it ignores

the variability of the person’s behaviour and ultimately we will show that the sessions

that share commonly visited websites can be simply identified and compared against

each other to determine how similar the overall aggregate behaviour was at that time.

In our further work, we propose that once we have highlighted sessions that appear

similar to each other using this aggregate method, we can then use sequential analysis

to further investigate the behaviour at those periods of time.

3.4 SESSIONS AGGREGATES

For the analysis of Internet history timelines, or for any meta-data context analysis

within digital forensic investigations, we propose an approach where ‘session’ tempo-

ral aggregates are compared against other ‘sessions’ to identify to what extent any

of the sessions contain matching members or components. Once sessions have been

compared and the like-for-like sessions have been grouped together, then the process

of intra-session sequence analysis may be performed if it is so desired to identify

whether specific patterns of components appear. This session-to-session grouping it-

self provides significant macro-level contextual analysis about the use of a device at

any time, and temporal sequential analysis after this analysis, substantially reducing

the quantities of sequential data to be processed.

The selection of the session temporal aggregates is therefore fundamental. We identify

two approaches to selecting sessions:

• Fixed length sessions. Fixed periods of time are selected in advance, for example

all artefacts in a window of 30 s, 60 s, or 60 min.
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• Variable length continuous activity sessions. If two artefacts are closer together

in time than a predefined temporal threshold, they are considered to be in the

same session. Otherwise, the second artefact is considered the start of the next

session.

The variable length approach organically follows the activity from beginning to end

of the session without artificially breaking up long sessions into smaller chunks. How-

ever, like-for-like comparison between sessions is open to some interpretation when

using a variable length approach. Two sessions which could have the exact same

component members and look at face value to be the same, could have very different

characteristics. For example, one session being two or three times longer than the

other and having quite different behaviour at the beginning and end of the session.

Figure 3.2: An illustration of Fixed-length sessions

The biggest disadvantage with using a Fixed-length approach can be seen in figure

3.2, where it can be seen at the boundary between Session 3 and 4 where there ap-

pears to be contiguous activity that is lopped into two different sessions, which could

create a misleading pattern.

In the Variable-length approach, if two artefacts are closer together in time than a

predefined temporal interval threshold, they are considered to be in the same session.
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Figure 3.3: An illustration of Variable-length sessions

Figure 3.3 illustrates that if the fixed interval threshold (grey box) can fit between the

point events then that is the point where the sessions are segregated. The advantage

of this can be seen in that it does not arbitrarily cut-off the contiguous activity as

can be seen with Session 4. The disadvantage is the opposite to the fixed-length ses-

sions in that all of the sessions are different in length and have different start times etc.

The problem with using sessions is capturing the right amount of information that

represents the ‘behaviour’ that is taking place at the time. The simplest example of

this is where two users share the same user account on a computer, but each uses

the computer for accessing very different website interests. Choosing a very large

fixed-length size could easily capture the usage of the computer by both users if there

is a short window of time where they swap over usage, when there is very likely a

desire to try and isolate the different access habits. Figure 3.4 illustrates two large

fixed-length sessions where there are two different users creating Internet history, and

because of the large size selection of the session aggregation, the first session contains

mixed User 1 and User 2 artefacts.
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Figure 3.4: An illustration of incorrect session selection

There are a variety of levels of precision when dealing with digital timestamps as

noted in Oh et al. [75]. Oh’s second-level of precision (i.e. log files are stored at the 1

second level of precision rather than at the microsecond level or larger) is the common

minimum level of time precision that can be seen across log files and meta-data that

are suitable for constructing timelines for Internet history. During our experiments,

tests have been performed on larger time window aggregates than the 1- second level

of precision, such as cases that contain all the events within a 5, 10 or 30 up to 3600

seconds (60 minutes).

There are advantages to grouping data in larger time windows, especially when the

timeline has been constructed from more than one source and there is a concern

that the artefacts are not synchronised, for example file system timestamps showing

creation times occurring before the web artefacts appear on the computer.

3.5 BINARY COMPONENTS VERSUS

INTEGER COMPONENTS

Components are the individual distinct actions that are recorded within the sessions.

In file system analysis, a component could be each directory or each file creation,

modification or access to a file type. In a wider pattern of life analysis of a home

automation system, the activation of lights, devices or other sensors could be recorded

as components. Here, we focus on Internet history components and consequently
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the host-level website details are used as components. We can define two kinds of

Components:

• Binary Components - if there is a visit to the website host once or multiple

times during the session, the session is marked as a black box in our diagrams,

an example is shown in figure 3.5.

• Integer Components each instance of the website host occurring during the

session is recorded (the notation we originally used was a grey box with the

integer inside the box).

The Integer components suffer from the implementation issues noted above in Se-

quence Analysis, and they are unsatisfactory when comparing session like-for-like

behaviour. Individual components that create larger numbers of artefacts or require

the user to navigate more will ostensibly seem more important or more frequently

used than another site which could in actual fact be visited more frequently, but

create fewer artefacts.

Figure 3.5: Five sessions containing five binary components, C1 to C5

As we noted above, the act of visiting certain sites would be more important than the

number of times it is visited. For example, if trying to attribute a particular session to

a specific user who is known to be a motorcycle enthusiast, the number of times that

a motorcycle-related website is accessed is substantially less significant than the fact

that the motorcycle website was accessed at all. Therefore, not only is recording an

Integer component unhelpful, but it can also mislead. Take another example: During

session 1, site A is visited once; During session 2 site A is visited twice. The similarity
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between session 1 and session 2 is 0.5 as there were only half as many visits during

session 1 as during session 2. The problem is that the oversampling, which is again

a challenge within the analytical Forensic Science laws, has completely obscured the

important similar behaviour that the same website was accessed.

Consequently, for the aggregate Session-to-Session comparisons, our research has fo-

cused solely upon using Binary Components (which we refer to only as Components

throughout the rest of the thesis) and we leave concerns about frequency of visits to

a website to the Intra-Session or Sequential Analysis phase that we note in future

work.

3.6 SESSION-TO-SESSION COMPARISON

The basic presumption for all our Session-to-Session comparisons is that if we match

a session to all of the other sessions in the dataset, which contains data from more

than one individual, the highest matching sessions to the one we are testing should

have been created by the same user.

By creating a binary condition for components, a simple visual display can be made

for the components per session as can be seen in Figure 3.5, which shows an example

set of data containing five components (C1 to C5) and five sessions. Session 1 to 3

represent user 1, whereas sessions 4 and 5 represent user 2. Even with this example

small set of data the repetitive pattern in sessions 4 and 5 and somewhat in sessions

1 and 3 stand out well visually.

The sessions, however, form a simple string which can have a pairwise distance com-

parison. For example, session 1 [10101] and session 2 [00111] can be calculated to

have a distance of 0.5 using the Jaccard similarity coefficient [52] which is the size of

the intersection of two sets divided by the size of their union:
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Figure 3.6: Jaccard Distance

The advantage of using Jaccard is that it only considers the components in sessions

1 and 2 that they share and does not consider C2, which is 0 in both cases.

Other methods for performing pairwise comparisons are available, such as Hamming

distance [46], Levenshtein distance [64] or Sorensen index / Dice’s coefficient [31].

When dealing with some hundreds or thousands of components all of them 0’s such

as seen in typical, frequently used home computer Internet history, use of Hamming

or Levenshtein distances are undesirable as they will produce similarity coefficients

of 0.999 as all of the 0’s will be considered exact matches. Sorensen index / Dice’s

coefficient are functionally similar to Jaccard, but as we are using binary components

Jaccard is easy to understand and explain to a court/jury.

Figure 3.7: Jaccard Similarity Table for figure 3.5

Patterns are constructed by identifying groups of two or more sessions that are above

a Jaccard distance measure. Although any value above 0.0 is potentially useful, the

number of loosely associated sessions significantly increases as the acceptable Jaccard

value is lowered. For example, at a level of 1.0, one session pattern is created: Pattern

1 = [s4 s5]. At a Jaccard level of 0.5, two session patterns are created: Pattern 1 =

[s1 s2 s3], Pattern 2 = [s4 s5].

68



3.7 SELECTING THE TIME THRESHOLD

Selecting the total length of the session when using the Fixed-length approach, and

the temporal interval threshold when using the Variable-length approach has a signif-

icant effect on the number of sessions that are available for analysis, and the accuracy

of the comparisons.

Figure 3.8 shows an example of experiments performed using the Variable-length

approach on the seven individual sets of data that are combined together to form our

test data sets (which are detailed in chapter 3.9). We plotted the number of sessions

that were available using a 1 second Variable-length aggregate, up to 3600 seconds (1

hour). We can see that the rate of change in the number of sessions is on the whole

more interesting that the final proportion of sessions that are available. The data

plotted as Series6 was a small set of Internet history, and consequently we see that

it falls off much less drastically than the data plotted as Series3, which was from a

large set of Internet history over an extensive period of time.

Figure 3.8: The overall percentage of sessions available for analysis based upon dif-
ferent interval times for the Variable-length analysis approach
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The rate of change in the number of available sessions falls rapidly as one would ex-

pect, but depending upon the data we see from around 300 to 600 seconds (5 to 10

minutes) the number of sessions has largely stabilised, and at 900 seconds (15 minutes

of idle time) we see that there is very little change. For our experiments, we therefore

selected the 900 second threshold as this experimentally suited the mixing of data,

without having to select too great a threshold. Operationally (i.e. without having

to know the ground truth) an analyst could process the Internet history by looking

at rate of change and where appropriate select a shorter threshold than 900 seconds.

For example, if the analyst was processing data similar to that plotted as Series3 or

Series5 then they might want to use a 300 second threshold, while if it was more like

Series2 or Series1 they might opt for 600 second threshold.

To illustrate the difference in number between Variable-length sessions and Fixed-

length sessions we can look at two examples using the ‘ZR’ dataset and the ‘ZS’

dataset. In [41], we showed two different datasets and performed the fixed-length

and variable-length session selection. The ‘ZS’ set comes originally from the Dig-

ital Corpora project [103], [115] and is a set of user data that is based upon three

small-size workplace computers using cache-level recovery of the Mozilla web browser.

The ‘ZR’ dataset is created from two large-size real user’s Internet history based

upon home/domestic usage recovered from cache-level extraction of Internet Explorer.

These sets of Internet history have been constructed using a method similar to those

described later in section 3.9, i.e. from two sources in the case of the ‘ZR’ dataset,

and from three sources in the case of the ‘ZS’ dataset.
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Figure 3.9: The ZR dataset showing the number of Fixed-length and Variable-Length
sessions

Figure 3.9 shows the number of sessions that would be available for the ZR dataset

if Variable-length and Fixed-length methods were each used to aggregate the data.

71



Figure 3.10: The ZS dataset showing the number of Fixed-length and Variable-Length
sessions

In figure 3.10, we see the number of sessions that would be available for the ZS dataset

if Variable-length and Fixed-length methods were used to aggregate the data.

For both the ZR and ZS dataset we see that there are more Fixed-length created

sessions and although there is initially a steady fall-off in the number of available ses-

sions, both the ZR and ZS cannot be said to ‘stabilise’ over the 3600 second windows.

We can see that when using the Variable-length method, the ZS data set stabilises at

about 100 sessions, which is much smaller than the 1800 or so sessions that the ZR

dataset stabilises at when also using the Variable-length approach.

The Variable-length approach produces fewer available sessions, but these do sta-

bilise, again both datasets show between 300 and 600 seconds is a fair point to consider

Variable-length thresholds for this data.
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3.8 ACCURACY OF THE SESSION SELECTION

METHODS

Here, we show the results of experiments to compare the Variable-length approach

and the Fixed-length approach using the two simple datasets (ZR and ZS).

The method used for these experiments was to create sessions using different tempo-

ral thresholds, perform a Session-to-Session Jaccard similarity analysis and find how

many correct matches were created at a specified threshold level (which we define as

t-val in section 3.10.1), i.e. how many correct matches occur if the session-to-session

overlap threshold is 0.25, 0.5, 0.75 and exact matches of 1.0. We have presented the

results of these experiments as two types of graphs:

• The percentage of correct matches in the Y axis, the temporal threshold in

the X axis and the t-val session overlap threshold in the Z axis.

• The total number of correct matches in the Y axis, the temporal threshold in

the X axis and the t-val session overlap threshold in the Z axis.

The ZR percentage graphs (figure 3.11 for the Fixed-length approach and figure 3.15

for the Variable-length approach) appear to show that as both the temporal and t-val

thresholds are raised the level of accuracy increases dramatically, but we see in the

total number graphs (figure 3.12 for the Fixed-length approach and figure 3.16 for

the Variable-length approach) this is because the number of available sessions has

dropped off to a very small number. As we raise the precision, we drastically reduce

the number of sessions we have available to analyse, but we have much greater confi-

dence that those sessions are correct.

We see in the ZS graphs (figure 3.13 for the Fixed-length approach and figure 3.17

for the Variable-length approach) a different performance to the ZR graphs, how-

ever we do still see an element that as precision is increased, availability of sessions

is decreased. We see that there is generally a point between 600 and 900 seconds,
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and above the t-val 0.75 where there is good overall performance in the percentage

of correct sessions, and reasonable availability in the number of sessions. This also

corresponds to the temporal point in figure 3.8 where the rate of change for number

of sessions has stabilised.

When looking at the ZS data (figure 3.13 for the Fixed-length approach and fig-

ure 3.17 for the Variable-length approach) the Variable-length approach does appear

to perform better with a greater percentage of correct matches than the Fixed-length

approach, and similarly for the ZR data (figure 3.11 for the Fixed-length approach

and figure 3.15 for the Variable-length approach).

Therefore to simplify the numbers of variables for our experiments, the approach

used for the remainder of this thesis is based around the Variable-length approach,

for the reasons illustrated in this section.
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Graphs plotting the Jaccard similarity value (Z axis), Time interval or threshold
(X axis) and percentage or total number of correct matches (Y axis) - the graph is
coloured in greyscale from low results (dark) to higher results (light).

Figure 3.11: The ZR dataset showing
the correct PERCENTAGE of match-
ing patterns, using the Fixed-length
approach

Figure 3.12: The ZR dataset show-
ing the correct TOTAL NUMBER of
matching patterns, using the Fixed-
length approach

Figure 3.13: The ZS dataset showing
the correct PERCENTAGE of match-
ing patterns, using the Fixed-length
approach

Figure 3.14: The ZS dataset show-
ing the correct TOTAL NUMBER of
matching patterns, using the Fixed-
length approach

3.9 DATASETS USED IN THE EXPERIMENTS

The experiments to test the theories in this thesis and to illustrate the techniques

that we propose were initially tested on the ZS and ZR test datasets. To ensure that
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Figure 3.15: The ZR dataset showing
the correct PERCENTAGE of match-
ing patterns, using the Variable-length
approach

Figure 3.16: The ZR dataset show-
ing the correct TOTAL NUMBER of
matching patterns, using the Variable-
length approach

Figure 3.17: The ZS dataset showing
the correct PERCENTAGE of match-
ing patterns, using the Variable-length
approach

Figure 3.18: The ZS dataset show-
ing the correct TOTAL NUMBER of
matching patterns, using the Variable-
length approach
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the ground truth was known, these two datasets came from known sources. The ZS

data was manufactured from test data provided from the Digital Corpora project,

and the ZR data was taken from the hard drives of people that knew they were pro-

viding Internet history data for testing, but were asked to “behave normally”. In

these experiments we knew the ground truth of who had made the artefacts, but for

the large-scale testing which we present throughout the remainder of this thesis, we

selected new sources of data, where there was no element of bias, modification or

construction of the data.

3.9.1 SELECTION OF SUITABLE DATA

We are not trying to simulate any specific scenarios, but we need data that is consis-

tent with large-scale device usage and interaction, such that it would be relevant to

the investigation of cases where it would be beneficial to model the overall activity,

as outlined in section 1.3.

Grajeda et al. [39] surveyed the Digital Forensics field and examined how many

datasets were publicly available for researchers to use, and also examined the need

and impediments for the sharing of datasets. Grajeda et al. categorised datasets

into ‘computer generated’, ‘experimentally generated’ and ‘real world’. We can see

from the datasets surveyed in this paper that there are no standard sets of data that

can be used to explore Internet history analysis and consequently to overcome any

concerns relating to researcher bias being introduced with ‘computer generated’ and

‘experimentally generated’ dataset, we have opted for ‘real world’ data.

The test data must show the activity of the users’ Internet History that was re-

covered from hard-disk drives (although in theory it could come from Internet Con-

nection Records) using standard Internet History recovery tools. To ensure that the

researchers have not introduced bias or expectation of what ‘normal’ web browsing
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should be, we have during data selection acquired the data from normal desktop and

laptop computer hard disk drives and there has been no selection on the type of data

contained with those devices, other than a suitable quantity of data for testing:

• No attempt to perform selection based upon any criteria within the dataset.

• No attempt to select on the number or type of host websites.

Because we have not performed any selection within the datasets we cannot deter-

mine how representative they are of ‘normal behaviour’, however we do not currently

see any evidence within the research literature that there is a single type of ‘normal’

behaviour when it comes to usage, activity or users. We present a statistical analysis

of the datasets below (see section 3.9.3) which indicates that the datasets do correlate

with observable patterns of normal website access.

A selection of hard-disk drives were acquired, the Internet history was searched and

cache-level Internet history records were recovered (see chapter 3.2 for a description

of cache-level). In all cases, the Internet history records were for the ‘Internet Ex-

plorer’ web browser with the exceptions of D1 (which was Google Chrome), M4 and

M5 (which were Mozilla Firefox).

Figure 3.19 shows the number of variable-length sessions (see chapter 3.4 for Variable-

length description) that are created when using a threshold of 900 seconds (i.e. 15

minutes of idle time to delimit the sessions). In figure 3.8, we can see that 900 seconds

is a general-purpose threshold, where there is very little change in the number of ses-

sions after that point, which we selected for consistency across the experiments. The

seven series of data plotted in figure 3.8 are the seven sets of data that we highlight

here and were used to construct our test data sets.
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Figure 3.19: Number of Variable-length sessions available in the Internet History
Datasets when using 900 second thresholds. The highlighted histories are used in our
research

We can see that there are major sets of data with several hundred periods of time

accessing the Internet, minor sets of data representing a small number of access up

to a hundred accesses on a single machine and trivial sets of data that only represent

a couple of access to the Internet.

The selection criteria when creating the experimental datasets was to identify the
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large sets of data and combine them in such a way that there was minimal chance of

an inadvertent overlap between the original sources. For example, The S1 set may

have come from the same source as the A1 set, therefore S1 was combined with D1

which was known to come from a different time and location. The use of the large

data sets were determined to be most useful because the experiments were investi-

gating repetitive behaviour and therefore using large quantities of data allowed us to

look at substantial clusters of similarity.

The datasets we have used for the experiments address the three needs for modelling

of the whole system that we highlighted in section 1.3:

• Where there is an identified criminal event co-located in time with a body of

Internet history the important feature here is to consider the volume of available

Internet history that the system can analyse. The ‘Pattern of Life’ approach

presented in section 5.7 could be used to provide a pattern of the co-located

events and cross-reference this with the impacted communities.

• Where there is Internet history containing the criminal activities The approach

presented in this research lends itself very well to this analysis and if certain

components within the data was notable to an investigator, then whole com-

munities could be designated as notable.

• The Session-to-Session relationships we do look at this in in great depth as the

whole approach used in this research compares the similarity of one period of

time and deduces the confidence that they were both created by the same user.

We present in section 5.2 an investigation of this, and we note the difficulties,

and our results in section 5.6 show that within communities this is potentially

a valid technique but becomes increasingly unreliable when it is a community-

to-community analysis.
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The techniques presented in this research do not however improve the ability for an

investigator to perform traditional computer-based crime analysis such as keyword

search or artefact identification, rather the approach is to place this into context with

other artefacts such that they can be interpreted and presented to court.

3.9.2 THE DATASETS USED IN THIS RESEARCH

In figure 3.20, we can see that the six largest sets of data were combined together

to form three large datasets: W, Y and Z. The S2 dataset, which was the most

substantial of the ‘minor’ sets of data, was selected to be combined with D1 so we

could test the reality of a second but infrequent user combined with a major set of

Internet history. The major and minor set created the X dataset. The column ‘Final

Number of Sessions’ is smaller than the sum of the Sessions in figure 3.19, as the

sessions comprising only of non-repeating components are removed (see the reasoning

for this in the c-val section, 3.10.3). For example, R1 + M2 = 1129 sessions, whereas

the Z dataset is 720 sessions. This is a significant and interesting difference, but

profiling the abnormal or non-repetitive behaviour is outside the scope of this thesis.

Figure 3.20: The Experimental Datasets and details about the quantity of Internet
History artefacts
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3.9.3 STATISTICAL CORRELATION WITH THE
DATASETS

We can see in Grajeda et al. [39] that there are presently no standard sets of Internet

history that can be used to act as a model or reference point to assess analytical tech-

niques against, so therefore we must address the question that any Internet history

used for this kind of system model is representative of a normal web browsing history.

The approach presented in section 4.4 uses the rank order of the Global Popularity

of websites as a reference point and compares this to the rank order of the frequency

of visit/popularity of the websites on the local machine.

We can see in figure 3.21 that we can calculate the popularity rank order of the

components C1 to C10 and as long as we have the rank order of the Global Popular-

ity of those sites we can determine the difference between the Local Popularity rank

and the Global Popularity rank. We see in figure 3.21 that the Global Popularity of

C3 was ranked the 10th, the least popular of the components, and we could call it

a ‘niche’ interest website, whereas we can see that on the system this history came

from that it was the 3.5th most popular website visited (shared in popularity with

component C4). Therefore, component C3 stands out as having the highest difference

at 6.5.
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Figure 3.21: An example of the Local Popularity (LP) of figure 3.5 with the Rank
order for the LP and Difference in rank order calculated from an example Global
Popularity (GP) Rank.

This rank order data lends itself to a Spearman Correlation between the Local Pop-

ularity rank order and the Global Popularity rank order. Performing a Spearman

correlation between the GP and LP ranks in figure 3.21 we can see that the correla-

tion is 0.6 with a pvalue of 0.067, which would be close to significance, but with only

10 components we would likely not consider this sufficiently significant.

If the high difference C3 component was removed, the Spearman correlation would

change to 0.87 with a pvalue of 0.0034, clearly demonstrating that the user’s be-

haviour does approach the norm and the data become statistically significant when

the niche interest websites are removed. We have performed a Spearman Correlation

analysis of the individual datasets used in this research, and when they are combined

together to form our two-user datasets, the results of which can be seen in figure 3.22.
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Figure 3.22: Showing the results of the Spearman Rho Correlation (R) of the Experi-
mental Datasets correlated with the Global Popularity ranking taken from the Alexa
Internet service as described in section 4.4

We can see in figure 3.22 that due to the large number of non-repeating individual

websites/components that appear in our datasets (the ‘n’ value) the correlations of

0.21 to 0.35 (the ‘R’ value) show statistical significance at these P-value levels.

N.B. the S2 dataset individually would probably be rejected as insufficiently sig-

nificant in our experiments, but how we use it in the X dataset is specifically as a

minority user of the device, which we could expect to not have a comprehensive range

of Internet access. Future work of our research will focus on the normality and sig-

nificance of the low difference conditions of the history, such as highlighted in section

4.4.3 of this thesis.
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We therefore conclude from this analysis that each of these possible datasets (with

the possible exception of S2 taken individually) is representative of a ‘normal’ set of

Internet history. When combining the individual datasets into known test datasets

W, X, Y and Z, we see that these datasets although artificially combined, do retain

statistical significance and we conclude therefore are valid for our purpose of modelling

a body of Internet history sessions.

3.9.4 STANDARD DEVIATION AND
‘NORMALITY’ OF THE DATASETS

It is possible to plot for each website/component the difference of the Local Popular-

ity (LP) rank and the Global Popularity (GP) rank. These plots will be either zero,

where there is no difference between the rank order of the GP and the LP, or will be

positive or negative of zero. The graphs shown in figures 4.13 to 4.20 are histograms

showing the number of websites and their position relative to the zero difference at

the middle of the graph.

It is not to suggest that the data inherently has a normal distribution form, rather

these plots have discovered that there is normality to the distribution of the behaviour

of the users. The full implications of this distribution are not presently understood,

but does provide a practically useful model for segregating the components based

upon the difference in rank order by using the Standard Deviation (SD) from the

zero difference.
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Figure 3.23: Showing the Standard Deviation of the difference between the Global
Popularity and Local Popularity rankings across all of the components in the datasets

We can see in figure 3.23 that the D1 and the S2 datasets individually and when

combined into the X dataset have relatively small SDs when compared with the

individual R1 and M2 sets, and when combined to form the Z dataset. The Z dataset

has not only three times as many components as the X dataset, but it also has a much

wider range of differences. We can therefore see in section 4.4.4 that we can segregate

the data based upon the individual fitting of the curve to the data regardless of how

broad or narrow that data profile is, rather than using either a hard, pre-defined

threshold (e.g. +/- 200 difference) or an experimentally derived proportion of the

data (e.g. x% difference). Further work in this area may address alternative schemes

for effectively partitioning the data and we see in section 4.3 that the partitioning

scheme is temporally based, rather than the difference in rank ordering.
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3.9.5 DATASET DISSEMINATION ISSUES

Grajeda et al. [39] acknowledge reasons why researchers within Digital Forensics

are unwilling to share datasets, particularly with respect to those generated from

real world sources as there are substantial ethical and legal concerns about releasing

data that contains personally identifiable information. The research presented in this

project uses two methods of grouping, one of which is temporally based and would

be possible to anonymise, whereas the second technique is not able to be realistically

anonymised. It is possible to anonymise a dataset by applying a one-way hashing al-

gorithm to the data, so it can be disseminated to other researchers. For example, the

host address ‘google.com’ becomes ‘1D5920F4B44B27A802BD77C4F0536F5A’ when

using the MD5 hashing algorithm, and it is not possible to reverse from that hash

back to ‘google.com’.

It is possible for other researchers to however partially (or even wholly) reconstruct the

dataset by using a ‘rainbow table’-like approach, where a list of the most likely/probable

hashes have already been computed and can be compared against the ‘anonymous’

dataset. The researcher would search for ‘1D5920F4B44B27A802BD77C4F0536F5A’

and when it appears (it is likely to, as it is the most visited website in the world

at the time of writing) replace that hash with ‘google.com’. If the dataset contains

only popular websites that could be pre-computed the dataset could be wholly recon-

structed if a ‘salt’ value is not used (and if a ‘salt’ value is used to prevent someone

pre-computing a hash table, then like-for-like comparisons cannot be performed be-

tween datasets).

There are two approaches we use in this thesis: the short/long approach lends itself

to anonymous datasets as there is no additional contextual information other than

the time intervals between the artefacts, whereas the Relative Popularity method

requires contextual information about the significance or ranking of the websites.

If a Researcher had the hash ‘E4D965FCC60DD83C7FF8BA0CBC198EC1’ and the
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Global Popularity ranking of 45,496, even though this is a somewhat niche website

that might not appear in a pre-computed rainbow table of hashes, it should be simple

to cross reference and compute this hash belongs to the website host ‘gre.ac.uk’.

Because of the data protection privacy concerns, we have therefore not provided

our datasets either in plain-text or ‘anonymised’ format as the relative popularity

method would allow the dataset to potentially be reverse engineered.

3.10 ACCURACY OF THE SESSION-TO-

SESSION COMPARISON METHOD

In the previous section, we looked at Temporal Interval Threshold and the Session

Aggregation method, which we noted across a range of data and temporal intervals.

One of the criteria used was the Session-to-Session t-val, which we define in this

section, and highlight two other variables, which we call the c-val and s-val.

3.10.1 THE T-VAL

The Jaccard similarity coefficient is the similarity between two session aggregates,

whereas the t-val represents a minimum value that the Jaccard coefficient be above

to be considered significant. In figure 3.24 we can see a plot of all the Session-to-

Session similarity coefficient values. For example, if there were 10 sessions then we

would see 100 plots on the graph (although removing 0.0 values is worthwhile). In

figure 3.24 we see a large dataset where the overwhelming number of the session-to

session matches are below 0.5, and consequently with the ground truth we can plot

the number of correct and incorrect Session-to-Session matches.
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Figure 3.24: Graph showing the number of non-zero session-to-sessions comparisons
(Y Axis) and the Jaccard Similarity value (X Axis) of those comparisons in the W
dataset.

In figure 3.25, we see that the same data from figure 3.24 has been split to show all

the correct user comparisons are represented in green and the incorrect comparisons

are in red. This is important because it shows that after all the 0-value comparisons

are removed, there are clearly a majority of correct user comparisons remaining, even

at the low end of the plot. This is the support for our assertion that the like-for-like

sessions do show the correct user the majority of the time. We can, however, see

also in figure 3.25 that even high similarity comparisons are incorrect with a notable

proportion of red comparisons at 0.5 and even 1.0 Jaccard Similarity.

Figure 3.25: Graph showing correct user comparisons (Green) and incorrect compar-
isons (Red) from the W dataset, 900 s Variable-Length

Figure 3.26 shows a similar set of data to figure 3.25. The D1 data is the same,
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whereas the S2 data is much fewer in number than the S1 set, consequently there is

less opportunity for the two individual dataset to collide, and much less error is seen

in the figure.

Figure 3.26: Graph showing correct user comparisons (Green) and incorrect compar-
isons (Red) from the X dataset, 900 s Variable-Length

Figures 3.27 and 3.28 both show the same type of plots with different sets of data.

In these cases the high degree of red indicate similarity between the original source

data, such that a reliance on the t-val alone, would lead to miss classification

Figure 3.27: Graph showing correct user comparisons (Green) and incorrect compar-
isons (Red) from the Z dataset, 900 s Variable-Length
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Figure 3.28: Graph showing correct user comparisons (Green) and incorrect compar-
isons (Red) from the Y dataset, 900 s Variable-Length

The experiments noted in the above section ‘Accuracy of the Session Selection Meth-

ods’ (section 3.8) illustrated in figures 3.11 through 3.18, suggest that relying upon a

t-val of 0.75 can provide reasonable performance (for particular temporal thresholds)

but what we see here in figures 3.25 to 3.28 is that there are potentially significant

errors from t-val > 0.50. However it is also notable that in the figures that there

are substantial numbers of correctly matching sessions-to-session comparisons below

0.50. If our objective was to utilise as many sessions as possibly, to model as much

of the activity on the device as feasible, then we would want to use as many of these

matches as possible and therefore a t-val itself is not sufficiently precise to achieve

this.
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3.10.2 THE S-VAL

The s-val is the minimum number of components that must appear in a session for

it to be considered valid.

Figure 3.29: Illustration of seven session (S1 to S7) containing ten components (C1
to C10)

Figure 3.29 illustrates Internet history that comprises seven session (S1 to S7) con-

taining ten components (C1 to C10) comprising of Binary Components, which records

any one or more visit to that website as a black box. We see by adding up the hor-

izontal rows that the lowest s-vals for this set of data is 3, which can be seen in

sessions S1 and S5, showing that these sessions contain visits to three websites. We

can re-emphasise here that these sessions could be short or long in duration and

the components could occur a single time or multiple times, potentially visited and

revisited throughout the duration of the session.

3.10.3 THE C-VAL

The c-val is the minimum number of sessions that a component must appear in to

be considered valid. A website that is visited once has a c-val of 1 and demonstrates

no repetitive behaviour.

For example, consider a case where Session 1 contains three repeating components

and five non-repeating, whereas Session 2 contains the same three repeating compo-

nents and ten different non-repeating components. If the non-repeating components,

the c-val = 1, were removed, a comparison using the Jaccard similarity measure
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would show the sessions as exact matches, 1.0, but only as 0.167 if including the

non-repeating components.

In figure 3.29, we see that components C9 and C10 have a c-val = 1 and they are not

repeating components.

3.10.4 THE AMBIGUITY PROBLEM

The presumption for all our Session-to-Session analysis is that if we match a session

to all of the other sessions in the dataset, the sessions that are most similar to each

other are likely to have been created by the same user. If we then look down the de-

scending list of sessions and their matching values, we should eventually find matches

that were created by a different user if there is some shared kind of similarity, but

these will be lower than the highest match.

However, in figures 3.25 through to 3.28, we can see that there are sessions that

exactly match (values of 1.0 similarity) incorrectly with the wrong user. In addition

to wholly incorrectly matching, there can be a situation where there are two or more

‘next highest’ matches belonging to different users, and consequently we would not

be able to identify which one of these belongs to the correct user. We have called this

the ambiguity problem state.

Figure 3.30: Where User 1 and User 2 have sessions that are the same we are unable
to determine which user was responsible: the Ambiguity Problem
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If we were to cluster sessions together that had either the highest matching value, or

were even above a particular t-val, it is possibly that these sessions were created by

one user, but also match against another user.

Figure 3.31: Table illustrating an example of Session-to-Session results for two users,
User 1 responsible for S1 and S2, User 2 responsible for S3 and S4

For example, in figure 3.31 there are four sessions (S1 to S4) and the session-to-session

comparisons, for two different users. Session 1’s highest value is 0.5 (an inexact match

as this is not 1.0), which matches with Session 2, the same user and as such this would

be a correct match. Session 2 however matches the highest value 0.5 with both Session

1 and Session 3, which would be an ambiguous match because we know that these

sessions belong to two different users. Session 3’s highest match is with Session 2

rather than Session 4 which belongs to the same user and as such this is an incorrect

match. Session 4 is correctly matched with Session 3, but at potentially quite a low

matching value of 0.25.

It should be emphasised that ‘Ambiguous’ matches may be correct, but there is

no clear determination between which user is correct. We see for Session 2 that there

are two matches, and one of these is indeed a correct match. Consequently, the

ambiguous matches are the biggest problem with this approach to session-to-session

analysis, more so than the clearly incorrect matches, as invariably users will share

some components as they visit the same search engines, social media or news sites

etc. We will see in this chapter that there are substantially more ambiguous matches

than there are incorrect matches.
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3.11 MANIPULATING THE ‘DIALS’

We can test our hypothesis that the initial session is sufficiently unique, as the next

highest match (an exact or inexact match) should be from the same user of the device,

where there are two sets of data which can be compared to each other. This simulates

a scenario where there are two users of a single machine that uses a single user profile.

The results of these comparisons therefore fall into three categories:

• Correct Match: the highest match belonged to the same user.

• Incorrect match: the highest match belonged to a different user.

• Ambiguous Match: there were matches for both users that had the same match

value.

We can therefore measure the correctness of manipulating the c-val and s-val ‘dials’

with respect to how many errors, ambiguous sessions matches and overall availability

of sessions for analysis.

The graphs presented in this section show the number of Correct highest matches,

Incorrect highest matches and Ambiguous highest matches for a number of different

conditions of the c-val and the s-val (which we have for simplicity just called C and

S): C=2, S=1; C=3, S=1; C=3, S=2; C=4, S=1; C=4, S=2; C=4, S=3.

These experiments have an effect of showing that as the manipulation is applied by

removing the components and sessions, the proportion of sessions which are correct

increases, but the overall number of sessions that can be examined are substantially

reduced.
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3.11.1 THE W DATASET

Figure 3.32: W dataset showing correct, incorrect and ambiguous matches at various
levels of error reduction

In figure 3.32, we see a dataset constructed from two substantial sets of Internet

history (explained in more detail in chapter 3.9). The C=2, C=3 and C=4 sets show

a broadly similar number of ambiguous matches when the number of session are S=1.

However, the number of correct and ambiguous matches significantly falls as the s-val

is increased, whereas the c-val has a much smaller effect.
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3.11.2 THE X DATASET

Figure 3.33: X dataset showing correct, incorrect and ambiguous matches at various
levels of error reduction

In figure 3.33, we see a dataset constructed from a major set of Internet history and

a much small second set (explained in more detail in chapter 3.9). These sets of

experiments appear to show an unusual increase in the ambiguity problem as the c-

val is increased without the s-val being adjusted. The X dataset is similar to the W

dataset (figure 3.32), and consequently this is not a surprising increase at C=4 S=1,

rather the C=2 and C=3 values are relative lower than they were in the W dataset.
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3.11.3 THE Z DATASET

Figure 3.34: Z dataset showing correct, incorrect and ambiguous matches at various
levels of error reduction

In figure 3.34, we see a dataset constructed from two substantial sets of Internet

history. The C=2, C=3 and C=4 sets show a broadly similar number of ambiguous

matches when the number of session are S=1, however the number of correct and

ambiguous matches significantly falls as the s-val is increased, whereas the c-val has

a much smaller effect.

This dataset had a notable number of incorrect matches, and we therefore see the

c-val and the s-val have an effect reducing these as well as the ambiguous conditions.

The implications of this are considered below in section 3.11.5.

98



3.11.4 THE Y DATASET

Figure 3.35: Y dataset showing correct, incorrect and ambiguous matches at various
levels of error reduction

In figure 3.35, we see a dataset constructed from two substantial sets of Internet

history. Adjusting the c-val with this dataset dramatically effects the availability of

the number of the sessions for analysis when looking at the C=2 and C=3 columns,

although much less so between C=3 and C=4. We indeed see that although less

pronounced than with the Z dataset, by increasing the c-val the ambiguity problem

increases. The implications of this are considered below in section 3.11.5.

3.11.5 THE CORRECT, INCORRECT AND AMBIGUOUS
MATCHES

If we consider the percentage of components that overlap in these datasets, which is

detailed in figure 3.20, we see that the W and X datasets have overlaps of 12.9% and

10.65 % respectively. Both of these sets of data have very low amounts of Incorrect

matching and few Ambiguous matches, all of which was reduced by raising the s-val

rather than the c-val.
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The Y and Z datasets have substantial overlaps of 32.30% and 31.53 % respectively.

Both of these datasets have a notable amount of Incorrect matching, and there is also

a notable amount of Ambiguous matching, more so in the Y dataset. The amount

of Ambiguous matching in the Z dataset is not substantially more than in the W

dataset, but there is a difference between the amounts of wholly incorrect matches.

We see in both the Y and Z datasets the incorrect and ambiguous matches are

reduced by controlling the s-val rather than the c-val and interestingly we also see

a very pronounced effect reducing the overall correct matches when the c-val is ad-

justed within the Y dataset.

Where there is greater overlap in activity between the users on a device there ap-

pears that there is greater possibility of ambiguously mismatching sessions, but also

of wholly incorrectly mismatching sessions, both of which conditions can be controlled

by increasing the s-val rather than the c-val - i.e. the users may have shared interests

but they are less likely to occur at the same time/within the same session as the other

users of the machine.

We can therefore conclude that the manipulation of the c-val, beyond the initial

filtering of non-repeating components C=1, is considerably less useful at controlling

the ambiguous and incorrect matching conditions, and our subsequent research will

focus primarily on the s-val.

3.12 EVALUATION

In this chapter, we have presented a number of key concepts:

• Fixed-length and Variable-length Session aggregates.

• Temporal Threshold for the session aggregates.

• Session-to-Session comparison approach using Jaccard Similarity coefficient.
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• The t-val similarity threshold.

• The c-val minimum number of sessions that components must appear in.

• The s-val minimum number components that must appear in a session.

We have examined the above concepts by performing experiments and producing

graphs:

• Plotted the number of sessions that are available depending upon the session

aggregate method and the temporal threshold.

• Plotted the percentage of accurate sessions and the number of available sessions

in relation to the temporal threshold and the Jaccard similarity t-val.

• Plotted all correct and incorrect Session-to-Session matches and the level of

similarity they appear at.

• Plotted the number of correct, incorrect and potentially correct or incorrect

(ambiguous) highest matches for various levels of the c-val and s-val.

• Introduced the 4 datasets which we will use throughout this thesis.

We see that by plotting the number of sessions against a hypothetical temporal thresh-

old, we can estimate what the appropriate temporal threshold would be for the ses-

sion aggregates and this has been shown to be accurate in our experiments where the

ground truth was known. We see that the fixed-length session aggregate approach

doesn’t appear to be as effective on the whole as the variable-length approach when

evaluating Internet history. We do consider that the fixed-length approach may work

with other types of artefacts, file or operating system records for example, although

that has been outside the scope of this work.

By plotting all of the session-to-session matches, as can be seen in figures 3.25 through

3.28, we see that there are many correct, but low similarity value matches plotted,

but at the same time there are notable high similarity matches that are incorrect.
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The c-val variable has some effect during the experiments, but beyond the initial

filtering for C=1 conditions, where there is no repetition, it has considerably less

effect than the s-val, which does have significant effect as it is raised. We noted that

there were numerous instances of sessions that contained single components and, al-

though at first consideration that might not be the most useful behaviour to analyse,

these sessions could involve repeated access to that same component over an ex-

tended period of time. We therefore consider the s-val further in the next chapter

as a potentially most useful way of filtering sessions if they contain uninteresting or

non-indicative components.

Across the range of our experiments, we see that for a high similarity value for cor-

rect matches, we have a reduced amount of available sessions to examine. Therefore,

the approach presented in chapter 4 is to propose and investigate techniques which

identify or exclude as best as possible the components that lead to the ambiguous

matching, and as such we can then rely upon lower levels of similarity t-val or less

manipulation of the s-val dial to remove erroneous matching.
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Chapter 4

ZERO-KNOWLEDGE

INTERNET HISTORY SESSION

FEATURE EXTRACTION

“Set patterns, incapable of adaptability, of pliability, only offer a better cage. Truth

is outside of all patterns.”

Bruce Lee - Tao of Jeet Kune Do, 1975

4.1 INTRODUCTION

The previous chapter described the Session-to-Session analysis approach and intro-

duced the Jaccard similarity measure as it is used to compare two sessions to each

other. The hypothesis is that if two sessions are compared and the resulting value is

above a particular threshold value, the t-val, then they must be sufficiently self-similar

to conclude that the sessions belong to the same user.

Ultimately, however, two very different users on some occasions will behave in ex-

actly the same way because there will be some overlap in the websites they visit, and

there will be, to some greater or lesser extent, overlap in how they use the Internet

that will make the comparisons indistinguishable.
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For example, a user that inputs a term into a popular search engine such as Google,

looking for some definition or explanation of that term could find that the first-

choice result presented by the search engine directs them to a reference site such as

Wikipedia. Having sought and found a suitable answer, those two entries might be

the total content of that online session. A search engine and well known reference

website are not at all unique artefacts that could be profiled to one type of person or

user of the Internet, yet this pattern of behaviour could occur as an exact match for

any user with any other user.

The existence of sessions that contain only or substantially ‘popular’ sites or data

that is likely to occur amongst all user on a system presents two significant problems:

Firstly, using pre-prepared lists of websites that are interesting or perhaps most sig-

nificantly, that are known to be uninteresting is not desirable. The terms of this

research project as outlined in chapter 1, suggest that using external information is

undesirable as this could be said to come from a ‘black box’ source that is unavail-

able for inspection. Whilst this term does not preclude all types of external reference

about what data may or may not be relevant to the investigation or likely to be the

commonly overlapping websites, it does limit the use of certain techniques such as

pre-established association rules or trained neural networks as these are built from

data outside of the case and are not readily available for inspection.

Secondly and perhaps most importantly, a website being popular does not mean

that it is insignificant to our analysis. I could have a preference to one particular

search engine, whilst another person could have a preference to another (Google and

Bing for example). These are both very popular tools and could be considered un-

helpful in determining the uniqueness of the user of any sessions where they appear,

if it was not for the fact that one person does have a preference towards a specific

search engine and that preference excludes the use of the other search engine. Under

that circumstance, the search engine is a unique identifying feature, regardless of the
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overall popularity of the site. Although the search engine example is perhaps an

extreme case of user preference, the use of certain social media sites and news sites

which could all be popular within the wider global context could very much distin-

guish between users within a household. Parents, for example, have access to a much

more limited social media footprint compared to teenage children.

In this chapter, we present techniques for extracting from overlapping Internet history

data between different users, with zero-knowledge about the nature of the websites,

and segregating important elements that are unique to the users.

We present the following techniques in detail:

• Short-session and Long-session partitioning.

• Short-only, Long-only and Both session partitioning.

• Grouping based upon Relative Popularity

We discuss other types of grouping that could be interesting, such as known web-

sites or known types of websites, temporal grouping and even spatial grouping when

considering that mobile devices could behave differently depending upon where the

device is.

4.2 SHORT SESSIONS AND LONG SESSIONS

As noted in chapter 3, our sessions are modelled on the idea that there is activity, an

interval and then more activity. When the interval is sufficiently long and above a

threshold value we would consider the new activity to be part of a different session.

This model can however lead to very short, bursty periods of different activities, and

also long periods of a single activity being accessed and re-accessed.

This kind of data can be grouped based upon the characteristic of the session length

as the session can be classified into ‘short’ and ‘long’. What is ‘short’ and what is
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‘long’ is a somewhat arbitrary definition and an area of potential further research

but we note that the use of ‘short’ and ‘long’ is a simple and natural partitioning of

the sessions. If the length of the whole session is equal or shorter than the threshold

value that is being used to delimit the sessions, this is considered ‘short’, and ‘long’

if the overall length of the session is longer than the threshold. For example, we

have selected a threshold of 900 seconds to delimit our Variable-length sessions: if

the overall length of the session is less than or equal to 900 seconds it is short; if the

total length is greater than 900 seconds it is long.

A short session need not however be insignificant. A user can access a website that is

specific to them frequently throughout the day to look at social media updates, forum

posts, sports scores, betting odds or any number of significant websites. Conversely,

whilst a long session provides the possibility of more components appearing, it is also

possible that a session could contain only overlapping components, such as a video

streaming website, that is accessed repeatedly over an extended period.

We show here four datasets, the W, X, Y and Z datasets, the simplified versions

of figures 3.32 to 3.35, showing only the s-val adjustment and the resulting Correct,

Incorrect and Ambiguous matches for those datasets. Next, we show the same data

broken down by Correct, Incorrect and Ambiguous matches for all of the Short ses-

sions and Long sessions.

The overall trend that can be observed in these datasets is that the Long sessions

shows the most consistency, such that s-val manipulation does not reduce the number

of correct Long results as much as can be seen with the Short sessions, and the Long

sessions have the least Incorrect and Ambiguous matches. We do note that the Long

sessions are, at S=1, much fewer in number than the Short sessions however once the

S=3 filter is used, the number of correct sessions is similar (generally there are more

Long sessions, with the exception of the Z dataset).
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4.2.1 THE W DATASET SHORT/LONG SESSIONS

We show here the simplified versions of figure 3.32 for the W dataset, showing only

the s-val adjustment and the result when breaking the data into short (S) and long

(L) sessions. For clarity, the figures are organised from S=3 to S=1 so the S=3 bars

are not obscured.

Figure 4.1: W Dataset showing Correct, Incorrect and Ambiguous highest matches
for the data where the s-val has been adjusted

Figure 4.1 shows that adjustment of the s-val to S=3 removes the small number of

wholly incorrect matches and substantially removes the ambiguous matches, at the

cost of significantly reducing the overall number of sessions that can be analysed.

This strongly indicates that although the two users within the dataset share some

similar websites, they do not typically share two or more of them during the same

sessions.
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Figure 4.2: W Dataset showing Correct, Incorrect and Ambiguous highest matches for
the ‘short’ and ‘long’ session partitioning method, where the s-val has been adjusted

Figure 4.2 is similar to figure 4.1 in that it shows that adjustment of the s-val removes

the small number of wholly incorrect matches and substantially removes the ambigu-

ous matches, at the cost of significantly reducing the overall number of sessions that

can be analysed. We also see in this graph that the ambiguity primarily appears in

the short sessions and there is little ambiguity or error in the long sessions. This

further supports the discovery that it is the short-time accesses where only a single

repetitive website that is accessed causes the majority of error or ambiguity.
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4.2.2 THE X DATASET SHORT/LONG SESSIONS

We show here the simplified versions of figure 3.33 for the X dataset, showing only

the s-val adjustment and the result when breaking the data into short (S) and long

(L) sessions.

Figure 4.3: X Dataset showing Correct, Incorrect and Ambiguous highest matches
for the data where the s-val has been adjusted

Figures 4.3 and 4.4 are similar to figures 4.1 and 4.2 and show the same findings,

that the ambiguity appears in the short sessions and there is little ambiguity or error

in the long sessions. This further supports the discovery that it is the short-time

accesses where only a single repetitive website that is accessed causes the majority of

error or ambiguity.
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Figure 4.4: X Dataset showing Correct, Incorrect and Ambiguous highest matches for
the ‘short’ and ‘long’ session partitioning method, where the s-val has been adjusted

4.2.3 THE Y DATASET SHORT/LONG SESSIONS

We show here the simplified versions of figure 3.35 for the Y dataset, showing only

the s-val adjustment and the result when breaking the data into short (S) and long

(L) sessions. For clarity, the figures are organised from S=3 to S=1 so the S=3 bars

are not obscured.
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Figure 4.5: Y Dataset showing Correct, Incorrect and Ambiguous highest matches
for the data where the s-val has been adjusted

Figure 4.5 shows a large proportion of ambiguous matches and a notable number of

incorrect matches. Figure 4.6 also shows that the majority of the ambiguity appears

in the short sessions. This dataset suggests that there is similarity either in the

behaviour of the users or there is similarity in the websites associations between

those websites as even an increase of the s-val to S=3 does not remove ambiguity or

error.
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Figure 4.6: Y Dataset showing Correct, Incorrect and Ambiguous highest matches for
the ‘short’ and ‘long’ session partitioning method, where the s-val has been adjusted

4.2.4 THE Z DATASET SHORT/LONG SESSIONS

We show here the simplified versions of figure 3.34 for the Z dataset, showing only

the s-val adjustment and the result when breaking the data into short (S) and long

(L) sessions. For clarity, the figures are organised from S=3 to S=1 so the S=3 bars

are not obscured.
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Figure 4.7: Z Dataset showing Correct, Incorrect and Ambiguous highest matches
for the data where the s-val has been adjusted

Figures 4.7 and 4.8 are again similar to figures 4.1 and 4.2, with a similar perfor-

mance in when the data is broken down into the short and long sessions. The same

conclusions that this data strongly indicates that although the two users within the

dataset share some similar websites, they do not share them typically two or more

times during the same sessions.
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Figure 4.8: Z Dataset showing Correct, Incorrect and Ambiguous highest matches for
the ‘short’ and ‘long’ session partitioning method, where the s-val has been adjusted

4.2.5 EVALUATION OF THE SHORT/LONG SESSIONS

This approach is simple, computationally cheap, easy to explain and with manipu-

lation of the s-val it is very effective at removing incorrect and ambiguous matches.

Indeed by selectively using an s-val of S=2 or S=3 on the Short sessions and not

manipulating the Long sessions at all (I.e. S=1) we can gain the most possible Long

sessions, whilst at the same time removing the high probability of ambiguous Short

sessions. The selective use of different s-vals is explored more in chapter 5.
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4.3 SHORT-ONLY AND LONG-ONLY

COMPONENTS

There appears to be a value to the Short and Long session partitioning of the datasets,

but a further consideration is the behaviour in the Short sessions sufficiently different

to the behaviour in the Long sessions, such that we can consider the length of the

session a feature?

We can perform a conditional grouping where the components that appear only within

the Short sessions are placed in one group, the components that appear only in Long

sessions in another group and the else condition contains the components that appear

in both categories. These are referred to as the ‘Short-only’, the ‘Long-only’ and the

‘Both’ components.

Figures 4.9 and 4.10 illustrate examples of this for the W and Y datasets and it

can be seen that the graphs become quite unwieldy when evaluating the differences

between these groups.

Although there is a large number of correct matches with components that appear in

both session, the Short-only and Long-only components do infact perform reasonably

well. The Short-only components are notably sensitive to the change in s-val, but

interestingly with the W data sets the Short-only and Long-only components show

very low error and ambiguity. This performance is not replicated with the Y set,

however the adjustment of the s-val such that S=2 does reduce error and ambiguity.
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Figure 4.9: W Dataset showing Correct, Incorrect and Ambiguous highest matches
for the ‘Short-only’, ‘Long-only’ and ‘Both’ session partitioning method, where the
s-val has been adjusted

Ultimately this does suggest that individuals do perform different activities during

their Short access times, although it is more reliably detected in their longer access

sessions, which does stand to reason as longer periods of time suggest more opportu-

nities for individuality to be expressed.
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Figure 4.10: Y Dataset showing Correct, Incorrect and Ambiguous highest matches
for the ‘Short-only’, ‘Long-only’ and ‘Both’ session partitioning method, where the
s-val has been adjusted
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4.4 IDENTIFYING COMPONENTS BASED

UPON AN EXTERNAL POPULARITY

REFERENCE

Although we noted in chapter 1 that analysis which relies upon external information

may become susceptible to an argument that it is invalid because it is a ‘black box’,

this is not necessarily the case if the information that is used is freely available for

inspection. The information need not be ‘free’ in the sense of it being completely open

to the public, but freely available and understandable to other analysts performing

examination on the data, which is especially important in an adversarial legal system.

We propose in this section a grouping that uses reference data from an external

source, but the information is a simple metric of the popularity of the component. As

noted in section 4.1, the popularity of a website itself is not necessarily a useful, or

unhelpful, feature and consequently we describe how the relative popularity becomes

important.

4.4.1 LOCAL POPULARITY

By breaking up the Internet history records into sessions we can see by totalling

the number of sessions that certain website hosts or components are regularly visited.

Figure 4.11 shows ten websites (or Components) listed as C1 to C10 and seven periods

of time or sessions listed as S1 to S7. If a website appears, even once, during the session

then the box is filled in black (a binary component). For each component, the total

number of sessions that it appears in is shown at the top of the table as the Local

Popularity Total. We see that in this case C1 appears in every session, whereas C9

and C10 appear only in single sessions.
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Figure 4.11: Table of seven example sessions (S1 to S7) comprising ten components
(C1 to C10), with the Component Totals referred to as ‘Local Popularity’ Totals

The regularity of access to a website may not be the result of a user’s behaviour,

for example a particular site appears in every session because it is the home page of

the browser that appears each time the application is started. The presence of such

a pattern is an artefact of the system’s behaviour as opposed to a user’s behaviour

and any kind of automatic session-to-session analysis should be able to disregard such

artefacts.

Where there are regular visits to websites, that do not appear because of automated

behaviour, there is behavioural significance as a user has through some method of

selection visited and revisited the site.

We therefore define:

Local Popularity (LP) the number of sessions that the component

appears in on the machine or history that is being analysed. It may be

desirable to remove from the analysis components that appear a single

time and do not appear in multiple sessions (i.e. c-val =1).

We further define:

Local Popularity Ranking (LP Rank) the ranking of the Local Popu-

larity of the components, from 1st rank for the component with the highest

LP, to the nth for the components with the lowest LP. It should be noted
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that many components will have the same value LP and consequently the

average of the tied rankings is used in these cases.

4.4.2 GLOBAL POPULARITY

As we noted above, each component has a Local Popularity value representing how

frequently that website has been visited over a number of sessions, but this itself gives

us no suggestion to the relative value of the component. We therefore define:

Global Popularity (GP) - a measure of popularity for the component

that is external to the data gathered during the analysis.

Global Popularity measures provide some level of impact assessment, which could be

link-based algorithms that identify how well referenced sites are by other sites, such

as PageRank [63], HITS [26], CLEVER [27] or the impact assessment could be based

upon the analysis of the volume of web traffic, such as Alexa Internet [68].

As part of our experiments we are using a single GP metric from the Alexa In-

ternet Traffic Rank, which provides a global ranking metric for a substantial quantity

of websites. Therefore, we define:

Global Popularity Ranking (GP Rank) The Global Popularity value

is listed from 1st rank for the component with the highest GP, to the nth

for the components with the lowest GP.

The Alexa ranking used in our experiments was provided in GP rank ordering, with

the exception of sites that were particularly niche where no data had been gath-

ered for them. Consequently, the last GP Rank was always a tied average of the

niche/unranked websites.
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4.4.3 COMPARING LOCAL POPULARITY AGAINST
GLOBAL POPULARITY

Without any prior knowledge about the users, their interests or the types of websites

they like to visit we can compare the locally popular (LP Rank) components to ex-

ternal global popularity (GP Rank) metrics.

We can compare LP rank to GP rank, which allows us to determine if the result

is Low or High difference between the Local and Global popularity and four basic

conditions can be inferred from this about the components:

1. High difference: Low GP, High LP This is the potentially idiosyncratic

web sites that are sufficiently niche that they have low GP, but are visited by

a user with sufficient frequency that they immediately stand out as interesting

to the analysis.

2. High difference: High GP, Low LP These are sites that are Globally

popular but a user has rarely visited them. This condition would be typified by

someone that has rarely used a particular popular service, such as a user not

having a significant social media footprint, but occasionally follows links onto

a social media site.

3. Low Difference: High GP, High LP This condition is where a user on the

device is a regular user of a globally popular website, such as search engines or

social media sites. This condition however is not irrelevant as it may be that

in scenario where multiple users have access to the same device, one user may

have preference to the use of one social media site the other person is a user of

a wholly different social media site, or even not at all.

4. Low Difference: Low GP, Low LP This condition is infrequent viewing of

a fairly niche website. From our experience to date, this tends to make up a

sizable bulk of a subject’s Internet history.
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We can see from the above four conditions that high local popularity is always sig-

nificant, principally because session-to-session analysis is an analysis of repetitive

behaviour, and the more repetition of behaviour the better. Condition 1 and 3, a

High and a Low difference conditions are both therefore likely to be significant in the

analysis of the Internet history, but they both represent different types of behaviours.

Because of low LP, conditions 2 and 4 do not occur with enough frequency to provide

a substantial number of patterns for identifying behaviour.

In figure 4.12 we see the four conditions illustrated. Some difference in the rank-

ings is always present and consequently the selection of the X threshold value that

determines high difference and low difference conditions is critical.

Figure 4.12: Illustration of the possible Relative Difference conditions

Condition 1 components are interesting because they indicate regularity of access to

sites above the norm for the global population. We term these as ‘idiosyncratic’,

giving the investigator clues to the users’ interests, hobbies, type of work, etc. These

kinds of activities may overlap, or indeed may be mutually exclusive. A person may

have various modes of operation, for example their ‘work mode’, ‘social media mode’,

‘pornography viewing mode’, etc. These modes may be considered part of a pattern

of life for the user in that they are distinct activities that can occur at different times
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(and places).

Although not ‘idiosyncratic’, condition 3 components can be significant. The com-

ponents matching this condition may contain behaviour which is more difficult to

distinguish from user to user because all the users of a device may overlap, for ex-

ample, using the same search engine or social media site. Combining these groups

with other aspects of the pattern of life, such as time of day, day of week, location,

duration etc., an analyst may be able to distinguish the behaviour.

We show here in figures 4.13 to 4.20 the graphs of the difference between the LP

rank and the GP rank for the components in the datasets. We have shown the indi-

vidual datasets and the combined two-user datasets. For example, figure 4.13 shows

the D1 dataset and the the S1 dataset, whereas figure 4.14 shows the result of com-

bining these two sets as the W dataset.

By combing the individual datasets to form our two-user datasets we increase the

number of components which means there are now a larger range range of Local Pop-

ulation components to be rank ordered against a larger range of Global Popularity

components to be rank ordered and this has an effect of making the combined plots

to be wider. This can be seen in figures 4.14, 4.16, 4.18 and 4.20.
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Figure 4.13: The number of components and their Relative Difference from zero for
the LP Rank Order and GP Rank Order, plotted for the D1 (left) and S1 (right)
datasets

Figure 4.14: The number of components and their Relative Difference from zero for
the LP Rank Order and GP Rank Order, plotted for the W dataset. We also show
here the Relative Popularity grouping scheme
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The S2 dataset (shown in figure 4.15) has a much smaller number of sessions, repre-

senting a ‘minority user’ and consequently this has a smaller flattening effect in figure

4.16.

Figure 4.15: The number of components and their Relative Difference from zero for
the LP Rank Order and GP Rank Order, plotted for the D1 (left) and S2 (right)
datasets
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Figure 4.16: The number of components and their Relative Difference from zero for
the LP Rank Order and GP Rank Order, plotted for the X dataset. We also show
here the Relative Popularity grouping scheme

The Y set (figure 4.18) and Z dataset (figure 4.20), which we can see from the tables in

section 3.9 that the A1 and M1 datasets (figure 4.17) shared 32.3% of the components

in their history, and the datasets that comprise the Z set (figure 4.19) also overlap

by 31.53%. Therefore, as we can see that as the Z dataset is considerably wider and

flatter, we can conclude the flattening effect is not accounted for by overlap, rather

by the large number of components and how they differ from the Global Popularity

zero point.
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Figure 4.17: The number of components and their Relative Difference from zero for
the LP Rank Order and GP Rank Order, plotted for the A1 (left) and M1 (right)
datasets

Figure 4.18: The number of components and their Relative Difference from zero for
the LP Rank Order and GP Rank Order, plotted for the Y dataset. We also show
here the Relative Popularity grouping scheme
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Figure 4.19: The number of components and their Relative Difference from zero for
the LP Rank Order and GP Rank Order, plotted for the R1 (left) and M2 (right)
datasets

Figure 4.20: The number of components and their Relative Difference from zero for
the LP Rank Order and GP Rank Order, plotted for the Z dataset. We also show
here the Relative Popularity grouping scheme
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4.4.4 GROUPING RELATIVE POPULARITY

We can illustrate relative popularity by plotting the difference between the LP and

GP ranks on a graph, such as seen in figure 4.21, and then group based upon some

threshold value. We have performed our experiments using standard deviation (which

is shown in section 3.9.4) to group the Relative Popularity data. Figure 4.21 shows

that ‘condition 1’ has been categorised into groups D (+1 to +2 Standard Deviations)

and E (+2 or more), where E is the greatest difference between the LP and the

GP ranks. The results for ‘condition 2’ are similarly divided for the negative high

difference in groups A and B.

Figure 4.21: An illustration of the standard distribution and how Relative Popularity
groups A through E could be plotted on the X axis as a deviation from 0 difference
between the Global Popularity Rank and the Local Popularity Rank
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A summary of the relative difference conditions and the groups they have been cate-

gorised into is shown in figure 4.22.

Figure 4.22: Relative Popularity Groups

Figures 4.23 and 4.24 illustrates the distribution curve plotted over the four sets

of data that show the number of artefacts (Y Axis) that have a relative difference

between the LP and the GP (X axis).

Figure 4.23: The W Dataset (left) and the X Dataset (right) both plotted against
the Standard Distribution curve to illustrate the relative similarity with a normal
curve
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Figure 4.24: The Y Dataset (left) and the Z Dataset (right) both plotted against the
Standard Distribution curve to illustrate the relative similarity with a normal curve

4.4.5 REGIONAL POPULARITY AS A CONSIDERATION

Whilst assigning the external ‘global’ ranking it is worth considering the difference

between a regional ranking versus a generic global ranking if such data is available.

As can be seen at the time of writing, the overall globally most visited sites, such as

the ‘Alexa top 500 sites’ [113], contain many regionalised versions of websites have a

global reach or presence, such as the Google search engines or large-scale ecommerce

sites such as Amazon.

A history recovered from a machine in the UK region is likely to contain artefacts

relating to both the US/Generic version of a website (e.g. amazon.com) and the UK

regional version of that site (e.g. amazon.co.uk). We would however expect to see

the regional version to be considerably more popular on the local machine.

The regional consideration becomes even more pronounced when dealing with web-

sites for organisations or companies that exist only within the region and are not

international represented. This means the overall global ranking can be considered
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unpopular, yet when considering the ranking within that region the site can be con-

sidered popular.

Take the example of The University of Greenwich in London, UK with ranking data

from Alexa Internet:

‘gre.ac.uk’ The University of Greenwich

Global ranking of 45,496

UK Regional Ranking of 1,707

USA Regional Ranking of 221,930

Malaysia Regional Ranking of 3,509

The UK regional ranking is considerably more popular than the global ranking, and if

you were to view the UoG’s website from another geographic region such as Malaysia

or the USA there would be quite different rankings to the overall Global ranking.

Is the difference between the regional ranking of 1,707 and the global ranking of

45,496 as stark as it initially seems? The sites that are popular within the region

but relatively unknown globally (for example, high-street stores, or local news sites)

will have a greater difference between the regional LP and the GP and as such may

appear in the D group when they should have appeared in C. Any correlation between

a high local (UK) regional ranking along with a high global (predominantly English

speaking) region may be a linguistic, rather than a regional correlation. Further work

in this area with Internet history for different regions and different languages would

be desirable.
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4.4.6 HISTORIC POPULARITY AS A CONSIDERATION

As we have shown when referring to Triage in chapter 1, a law enforcement investiga-

tion can typically expect to see a lag between the time that a device was seized and

the time that it was analysed. This lag could be hours in the most urgent of cases, but

most realistically this can be a substantial period of time in the order of many months.

Using a global ranking system that is rapidly changing from day-to-day, hour-to-

hour can lead to some variation in the data with sites intentionally jockeying for

position of higher popularity or unintentionally changing position due to the ebbs

and flows of Internet traffic. Figure 4.25 below shows the variation in the popularity

of the University of Greenwich over a 6-month period in 2016.

Figure 4.25: Showing the global popularity position (Y axis) of the ‘gre.ac.uk’ website
in the first half of 2016, from Alexa Internet

In addition to the lag between seizure and analysis there may an extensive quantity

of Internet history artefacts present on the device going back many years. Change of

a few thousand places is highly unlikely at all to affect a particularly niche website

that languishes several million places down the global popularity ranking but even a

few hundred position changes may significantly affect a globally popular website.

The popularity of a website can change significantly over a number of years and
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when dealing with Internet history artefacts recovered from a computer it is perfectly

conceivable that artefacts from over a period of years can be present.

When comparing sessions to other sessions a historical context and an understanding

that an extended pattern of life, or examination of the normality of the behaviour

over time should acknowledges that websites will fall in and out of favour as time

passes.

Ultimately there are a number of research question relating to the temporal change

in site popularity and impact. How significant or prevalent is the widespread change

of popularity ratings? Is it subject to the type of website, such as social media,

search engine, ecommerce? Should the GP to LP difference be recomputed for dif-

ferent points in the timeline, or should some overall average be taken and a single

popularity metric be applied to the whole analysis? These questions remain an area

of ongoing research.

4.5 OTHER APPROACHES

Grouping must be meaningful and have an emphasis on behaviour. We consider other

possible forms of grouping components that are based upon the type of component, if

it is a component known to be indicative of behaviour, or part of a spatial grouping.

4.5.1 GROUP BY TYPE

Grouping by type is primarily membership-based, where components are placed by

checking against a large corpora of websites, which have been categorised by the gen-

eral ‘theme’ of the website. Examples of this could be ‘commerce’, ‘news’, ‘social

media’, ‘entertainment’ etc. but categorising websites, by a simple theme is non-

trivial and the subject of substantial further research.
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Normally we suggest that each component appear in only a single group, although

we also note that each session may because of multiple components, belong to differ-

ent groups. Groups by type we suggest may benefit from components appearing in

multiple type groups.

Figure 4.26: Multiple Characteristics belonging to a single component

Figure 4.26 illustrates a single component with multiple characteristics, and as such

that component may belong to multiple groups.

The principal problem with this approach is that the type classification scheme is

difficult to construct for every possible website, it may be possible for thousands of

the most popular sites but the niche sites which are likely to be indicative of the in-

dividual would have to be classified on demand. There is also a temporal component

if a site changes ownership from a historic point when it was viewed in the Internet

history and the point when the analyst compiles the type data, at a later date.
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There are additional problems with this approach when trying to classify a user’s

behaviour where there are a variety of services, or sufficiently different services that it

is important to not include the component in all the groups. For example, a picture

sharing website that contains non-notable photographs and pornographic pictures.

It is possible to classify that session as potentially pornographic, but could lead

to substantial errors and incorrect associations unless it was known exactly which

pictures were being viewed.

4.5.2 GROUP BY KNOWN

Much like the grouping by Type approach, this approach does require some prior

knowledge for the membership grouping, although this does not necessarily have to

be from a third party. This approach is indeed a more specific form of the group by

type in that specific individual sites are classified as:

• Known sites

• Known and Significant

• Unknown

Rather than a single ‘Known’ category, there could be multiple Known groups (Known

Group 1, Known Group 2 etc.), which could be constructed from regularly associated

websites. If site X and site Y appear together in Z percentage of sessions across all

cases, then that could be reduced to a Known Group.

Known and Significant could include ‘red flag’ sites that immediately identify sessions

of being of particular note such as containing websites or keywords that are specific

to the circumstances of the case or generally known sites that contain objectionable

material such as illegal pornography.
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4.5.3 TEMPORAL GROUPING

Grouping by time characteristics allows the grouping by time of day, day of week,

day of the month, combinations thereof and so on.

The following is an example of a grouping scheme which illustrates a a 24-hour period,

but rather than being equally divided into fixed time chunks, it is heuristically fitted

to a modern urban life-cycle where there is a presumption of the period before lunch,

after lunch and before the end of the working day, the evening, the ‘staying up late’

and ‘middle of the night/early morning’:

• Early (0300 to 0700)

• Morning (0700 to 1200)

• Day (1200 to 1800)

• Evening (1800 to 2200)

• Late (2200 to 0300)

It may be desirable to also consider adjacent groups:

• Late and Early (2200 to 0700)

• Early and Morning (0300 to 1200)

• Morning and Day (0700 to 1800)

• Day and Evening (1200 to 2200)

• Evening and Late (1800 to 0300)

It may be desirable to adjust the groups based upon information within the case

about the working environment of the individuals that have access to the Internet

history.
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This kind of grouping scheme may suit conditional approach where there are morning-

only components and so on, but the number of possible grouping conditions can

quickly become large especially if attempting to enumerate all of the possible options

(early, early and morning, early and morning and day) etc.

4.5.4 SPATIAL GROUPING

Although beyond the scope of this thesis which is focused principally on a single

desktop or laptop-style computer at a single location, there is also the consideration

with laptop computers, or indeed any other kinds of mobile devices, that the device

can be in different physical and different network locations.

A device can be connected to a situated wireless Wi-Fi network, such as home, work,

school, coffee shop, hotel etc. A device could be connected to a limited-resource, but

always-on service such as cellular 2G/3G/4G etc. How the person behaves and the

sites they visit could be entirely based upon the type of network they are connected

to at any time.

For example, a user may not use high-capacity media streaming whilst on a cel-

lular connection, whilst that might be much more common whilst on unlimited hotel

Wi-Fi. People may have a greater tendency to visit certain sites whilst ‘on the go’,

using cellular networks, than they would whilst situated, for example reading travel,

timetable information etc.

A “stay point” as described in Ye et al. [104] could also dictate the type of sites

that are visited: At a work location there would be lesser chance of ‘entertainment’

sites; a public place such as a coffee shop would likely have fewer/no accesses to objec-

tionable material such as pornography; at university there would be a higher chance

for educational/subject related material; across all platforms and locations there is

a likelihood of a background hum of social media. The size of the stay point is an

interesting consideration: too small a location and you are profiling the behaviour at
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that specific coffee shop; too large a location and you will be profiling the behaviour

of ‘home’, ‘work’ and ‘other’, which might be a desirable classification but ostensibly

seems simplistic at this point in our research.

It is also possible to consider the multiple characteristic model of a component such

as illustrated in figure 4.26, with regard to a spatial model, where a location can be

both physical, logically connected to a Wi-Fi, or cellular network.

4.6 EVALUATION OF EFFECTIVE FEATURE

EXTRACTION

4.6.1 SESSION LENGTH AS A FEATURE

Comparing short and long sessions as two separate membership groups is computa-

tionally quick, there is almost no additional work required as the ‘Short’ or ‘Long’

characteristic can be determined as the sessions are computed, and there is no ad-

ditional computation required as the same number of comparisons are performed.

Performing this analysis will have the effect of extracting the reliable sessions, i.e.

the long sessions rather than the short sessions.

This approach does require a threshold value to determine if a session is ‘Short’

or ‘Long’ and we have for simplicity used the same value as is used to separate the

sessions, however it is conceivable that a different threshold could be used. Other,

more complex schemes can be used for this type of Membership Grouping, but we

suggest that trying to extend this approach to ‘medium’, ‘long’, ‘very long’ etc. is

ultimately not very productive.

We can use the ‘Short’ and ‘Long’ sessions to extract the components that appear

only in ‘short-only’ in ‘long-only’ and the else condition of appearing in ‘both’ where

we put the components that appear in either category. This approach has the princi-

pal advantage that no external look-up or reference source is required. It is entirely
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possible in realistic law enforcement scenarios when dealing with sensitive informa-

tion such as websites that distribute illegal and indecent material, that the sending

of the details of those sites to a 3rd party is not desired. If the investigation is in an

environment where the websites are particularly niche or from a region that is not

well covered by an external reference source, then the conditional grouping may be

more useful than using an external membership-based reference.

4.6.2 THE GROUPS

All data within the Internet history has the capacity to be individual, even the com-

monly occurring ‘globally popular’ data as we outlined at the beginning of this chap-

ter, where for example two users could have a distinct preference to one search engine

to the exclusion of using another. However, the practical reality is that there will be

some level of overlap between users. The amount of overlap one could typically expect

and the general ‘types of users’ that can be identified from their Internet history does

remain an interesting area for future work on behavioural profiling.

We do not want to create too many groups as we could miss important associa-

tions between data across different groups. However not all groups are created equal.

Within the Relative Popularity difference method, we can see that there is potentially

significant information across the entire set of data but the most useful components

for identifying idiosyncratic behaviour without having ambiguous matches is in the

‘category 1’, high difference data, shown as the D and E groups (or even D and E

taken together as a single group). In the Short and Long conditional method the

Short-only and Long-only components appear to contain interesting information. In-

deed, you might expect the Long-only data to be more significant as the user has

greater amount of time to behave uniquely, but they also have greater amount of

time to access components which overlap as well, whereas a person accessing a web-

site to ‘just check in’, such as their social media, email or some news forum then those

Short-only bursts of activity have a possibility to be unique.
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We have highlighted some interesting considerations such as the temporal and re-

gional differences that may skew the analysis, although we note that these charac-

teristics are an open area of research in regions and for websites that do not use the

English language.

4.6.3 DEGREES OF CONFIDENCE WHEN MATCHING
MULTIPLE GROUPS

In situations where there are one or more groups of components in a session that

match with one or more groups in another session. For example, sessions X and Y

both match the Short-only groups and the Both groups, however sessions X and Z

only match the Both groups. In this case, we would have a higher degree of confidence

that X and Y belong to the same user not only because the Short-only components

match and they are less likely to Incorrectly or Ambiguously match another user, but

also because there are 2 groups matching. As long as some form of ‘dialing’ (with the

s-val for example) has been used on the Both group, then we would have two tests

of confidence for the sessions that this match is authentic.

In another example, Sessions X and Y could both have components in the Short-only

groups and in the Both groups, however rather than matching two tests of confidence,

if a stringent filtering scheme was used to test the Both group, for example S=3 and

T=0.9, and this was not reached then the session could still be considered matched,

but only at one test of confidence for the Short-only group.

With the Relative Popularity Difference technique above we proposed an example

with 5 groups (A to E) and consequently there are 5 possible degrees of confidence

for every session to session match, although realistically we find a group of A and B,

a group of C and a group of D and/or E (i.e. 3 or 4 groups) more useful. With the

Short and Long approach there are also 3 groups, but the Short-only and Long-only

groups are mutually exclusive (the session is either short, or it is long) and therefore

the maximum number of degrees of confidence are 2.
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4.6.4 OTHER METHODS

GROUP BY TYPE AND KNOWN

Grouping by Type and Known categories are standard techniques in File System

Analysis [14], where there are limited types of files, or large datasets of known op-

erating system files such as the National Software Reference Library [88], due to the

large number of possible components when dealing with websites this approach might

not be the most appropriate at this time. The approach however remains valid if con-

text analysis was used in the File System environment and that is an area of further

research.

TEMPORAL GROUPING

For Temporal grouping the advantages are that at its most basic level it is not based

upon any external knowledge, although the time groups can be adjusted based upon

‘culture’, such is what are the norms are in the society, for example 9 to 5 working

or later ‘evening’ periods. The time groups could be based upon case-specific details

such as events that happen during lunch breaks, or events that happen after other

members of the household are alleged to have gone to bed. However, a large number

of groups can be produced, especially when considering that it may be desirable to

include adjacent groups.

SPATIAL GROUPING

Although the Spatial grouping approach does not require an external reference source,

it does require additional information that remains outside the scope of this thesis,

such as the network type, access point location, cellular tower information, or device

location.

When analysing historic data, there is a concern that the locations of access points,

cellular or wireless networks may have changed [49] and there are similarities with

Spatial grouping to Type grouping.
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We consider spatial grouping to be pattern-based rather than behavioural-based anal-

ysis and we briefly describe in the next chapter how spatial patterns-of-life could be

analysed and tested.
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Chapter 5

GRAPHICAL

REPRESENTATION AND USE

OF SESSION-TO-SESSION

ANALYSIS

“Deep in the human unconscious is a pervasive need for a logical universe that makes

sense. But the real universe is always one step beyond logic.”

Frank Herbert - Dune, 1965

5.1 INTRODUCTION

In Chapter 3 we showed how the Session-to-Session matches between two different

users could be done using a similarity coefficient, such as Jaccard’s. We showed the

Session-to-Session comparisons in our figures 3.25 to 3.28 and it is notable that at

the high-end of the Jaccard similarity there are incorrect comparisons, and at the

low-end there are extensive numbers of correct comparisons.

This led to the development of approaches in Chapter 4 that attempted to group

sessions such that they contained a higher likelihood of similarity, such that the dif-

ferences between the multiple users’ sessions would stand out.
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In this chapter, we show how all of the Session-to-Session comparisons between the

sessions can be plotted onto a graph/network to visually represent all the periods of

time as interconnected nodes and we investigate the concept we identified in chapter

3, that as we insist on using increasingly stringent variables, the availability of the ses-

sions is reduced, and we will look at this in the context of an investigator attempting

to show the interconnectedness of two or more sessions.

5.2 GRAPHICAL REPRESENTATIONS OF

SESSION-TO-SESSION COMPARISONS

5.2.1 SESSION-TO-SESSION COMPARISONS

As we have noted, there are more matches than just the highest match. Some of

these matches may be from the correct user, but some, especially at the lower-end of

the similarity coefficient, may be incorrect matches. If trying to show that Session

A is associated with Session B, and Session B is associated with Session C then the

transitive association between A and C seems reasonable, except for the fact that it

may be completely unrelated and belong to different users.

Figure 5.1: The Jaccard distance between three sessions

Figure 5.1 shows that the Jaccard similarities between Sessions A and B, and Sessions

B and C are 0.33, as both pairs share 1 of the 3 components, but the similarity between

Sessions A and C is 0.0, as these sessions share none of the components.
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Figure 5.2: Three sessions displayed graphically

We can visually represent Session-to-session comparison as nodes connected by undi-

rected edges, as we can see the above example of Sessions A, B and C in figure 5.2.

In this case, we do not draw the 0.0 value relationship between Sessions A and C.

5.2.2 DIRECT AND INDIRECT RELATIONSHIPS

It may be desirable to include all edges, but highlight edges that fall below the

matching conditions, the t-val as broken edges, as we can see in figure 5.3. This has

the advantage of explicitly showing that there is no direct relationship, no matter

how small, between Sessions A and C, but practically it is only useful for very small

networks.

Figure 5.3: All edges in the graph shown, but non-matching edges are displayed as
broken lines

There are different notations that could be used, such as a broken line for a direct

connection above zero, but below the t-val. This notation of showing the ‘nearly, but

not quite’ relationships has an advantage that an investigator trying to determine

if there is a relationship between two sessions or events can see if there is truly no
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relationship between the events, or if there is a relationship but it is a low confidence

one. Similarly, there is potentially a value in emphasising the very high matching

comparisons so it may be desirable to make those connections appear thicker.

Figure 5.4: A graph showing the relationship between five sessions, using different
thickness edges to indicate strength of similarity

Figure 5.4 shows an example where there are five sessions displayed as nodes, the

session-to-session Jaccard values are displayed on the edges and we see that between

A and D there is some form of association but the value 0.33 is displayed as a broken

line and is presumably below the matching criteria, indicating that there is a direct

relationship, but it is a low confidence one. The edges between A and B, and D and

E are both shown as thick lines to indicate the high Jaccard similarity values.

The disadvantage of increasingly complex notation is that with the kind of graphs we

see realistically coming out of this analysis, such as can be seen in section 5.3, where

there are hundreds of nodes and tens of thousands of edges, this quickly becomes

impractical.

A simplified notation can be seen in figure 5.5 where all of the undirected edges

are a uniform thickness and no weighted value is provided, as the assumption is that

as long as the matching criteria is above the t-val, there is sufficiently value to include

it on the graph.
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Figure 5.5: Simplified Notation showing two Cliques bridged by a single edge

Figure 5.5 illustrates that there can be interconnected clusters within the graph.

There may not be an exact match (a t-val of 1.0) amongst A, B, C or D, but there is

sufficient similarity, a core set of components that those sessions must share, which

suggests that the ABCD clique constitutes some type of collective behaviour and the

EFGH clique a different behaviour.

If all of the indirect connections below the t-val, but greater than 0.0 were included

on even a relatively small graph such as shown in figure 5.5 this would less useful,

and consequently we note this technique but have avoided using it.

5.2.3 SESSION-TO-SESSION GROUPS

Sessions are made up of one or more components. We have shown in the previous

chapter that it is possible, indeed advantageous, to group these components based

upon characteristics that will minimise the ambiguity of the user at the time of the

session. What this does however mean is that there may be different groups in each

session, and each of those groups have their own independent relationship with other

members of the group.

We have shown that to reason A is related to B, B is related to C, therefore A

is related to C can be problematic (figures 5.2 and 5.3) but this becomes even more
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problematic when considering the relationship between different groups.

In figure 5.6 we introduce a different notation where the session name is followed

by a numeric value to indicate the group which that data belongs. We can see that

there is a relationship between A and B, and C and D within the first group. There is

also a relationship between B and C in the second group. Does this mean that there

is a direct relationship between A and D?

Figure 5.6: Session relationships within different groups

If we were to remove the grouping technique from the data there would likely be a

direct relationship between A to D, so transitioning between groups should not alone

disqualify the relationship. In figure 5.7 we see that in group 1, A is connected in

cluster of sessions where it appears strongly connected to B and C, and sessions B and

C also appear in group 2, strongly connected to F. A transitive relationship between

A, BC and F is present and even though there is no direct connection between A

and F, it may be possible for an investigator to draw and association between those

sessions.
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Figure 5.7: Relationship between session clusters across groups

Ultimately the different group ‘levels’ are created during the feature extraction stage

(chapter 4) so as to provide assurance that the sessions belong to the same user. If

there is a higher degree of confidence that Group 1 will produce idiosyncratic sessions

than Group 2 will, then drawing an indirect association across groups should be

considered with due consideration to that lower confidence.

5.3 MEASURING THE ACCURACY

OF GROUPING

5.3.1 COMMUNITY DETECTION

Community detection is an established area of graph theory. A community is where

nodes in a network can be grouped into clusters such that each set of nodes is densely

connected internally, with sparser connections between other groups.

The objective within this chapter of the thesis is to demonstrate the application

of community detection. We have not exhaustively tested the available community

detection algorithms and that remains an area of future work. We have essentially

classified the types of community detection into weighted and non-weighted options.
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A weighted approach could be to use Hierarchical Clustering, which has the advan-

tage that the Jaccard similarity coefficient weight of the edges allow the nodes to be

clustered due to strength of similarity. This is illustrated in [42].

We have primarily used the non-weighted Louvain Method of Modularity Detection

implemented within the Gephi software [119] based upon the algorithm presented in

Blondel et al. [9] for all 4 of our datasets and we also include in Appendix 1 the use

of the weighted algorithm for the Y dataset. The difference between weighted and

non-weighted does not seem particularly significant in this application. Modularity

measures the density of edges inside a community and the density of the edges outside

the community, the technique used in this project also allows a ‘Resolution’ setting

to be used when determining the modularity and we present results in the appendix

for modularity ‘1.0’ and ‘0.1’, which were selected as they represent an upper value

for the calculation and a reasonable bottom end of the spectrum (discussed later in

section 5.6).

5.3.2 MEASUREMENT CRITERIA

We can create a network for each of our data groupings, apply community detection

to the network and then measure a number of characteristics to determine the accu-

racy and correctness of that grouping, and the variables (the s-val and t-val). The

characteristics we can measure can be illustrated diagrammatically in figure 5.8:
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Figure 5.8: Two communities of nodes with correct matches shown with green edges
and incorrect matches shown with red edges

We see in figure 5.8 that there are two communities that have been detected. The

edge between A and B goes cross 2 communities, because there is a connection the

implication is that community 1 and community 2 were created by the same user. If

we know the ground truth that those communities belong to different users edge AB

is considered a community-to-community error.

The edges DF and DE have been denoted in red also with the same implication,

i.e. that node/session D was created by the same user as the other sessions within

the community. If the ground truth is that edges DE and DF are incorrect we can

refer to this as Intra-community error.

In this case we have one good community, Community 2 that contains no Intra-

community error, and Community 1 a bad community as it contains at least one edge

of intra-community error.
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Figure 5.9: The same communities as shown in figure 5.8 but with an alternative
community detection

Figure 5.9 however shows that a different community grouping where edge AB has

been classified belonging to Community 2, rather than Community 1. Now edge AB

is an intra-community error, whereas edge AC is a correct community-to-community

edge.
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5.3.3 EXPERIMENTAL RESULTS FOR DATASETS

As noted in chapter 1, “beyond reasonable doubt” (BRD) is not a well-defined stan-

dard of proof, but we will consider a goal for BRD precision to be over 91%. That can

be 91% if dealing solely with Intra-community edges, or 91% total accuracy across

all edges, both the intra-community and community-to-community edges. This leads

to two questions which we can examine:

• Are there s-val, t-val and grouping schemes that reliably produce BRD results?

If so, what kind of ‘availability’ of analysis does this produce?

• Can we, with a desired level of availability, predict the BRD result for groups

of data?

The full set of results from these experiments have been included in Appendix 1. We

demonstrate the results of our analysis on the following criteria:

• Nodes - The number of sessions in the graph.

• Good Com - The number of communities that contain no edges that are incor-

rect.

• Bad Com - The number of communities that contain one or more edges that

are incorrect.

• Total Correct % - The percentage of edges within the graph that have nodes

that correctly match to the same user.

• Total Incorrect % - The percentage of edges within the graph that have nodes

that incorrectly as belonging to the same user.

We can assess the ‘availability’ of our analysis as the quantity of nodes/sessions and

the number of communities, compared against the ‘precision’ which is the number of

correctly matching edges versus the incorrect matches. We can consider the avail-

ability and the precision for the different grouping schemes, and we can consider the
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results with respect to different s-val and t-val levels.

For simplicity, we have performed our experiments at four t-val levels: 0.25, 0.5,

0.75 and 1.0. These t-val levels do correspond with observably interesting spikes in

the figures 3.25 to 3.28 and as such we believe that these are useful and representative

points to assess the results.

We have performed our experiments at three s-val levels: S=1, S=2 and S=3. The

setting S=1 is where a session group must contain at least 1 component and S=2 is

a minimum of two components and so on.
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W DATASET, S=1

The results showing the total percentage of correct session-to-session edges at various

t-vals. The full results for this dataset can be found in appendix A.1.

Figure 5.10: W dataset grouped by s-val S=1

156



W DATASET, S=2

The results showing the total percentage of correct session-to-session edges at various

t-vals. The full results for this dataset can be found in appendix A.2.

Figure 5.11: W dataset grouped by s-val S=2
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W DATASET, S=3

The results showing the total percentage of correct session-to-session edges at various

t-vals. The full results for this dataset can be found in appendix A.3.

Figure 5.12: W dataset grouped by s-val S=3
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COMMENTS ON THE W DATASET

There is a high degree of accuracy with this set for the D, E, S-only and L-only groups

at a t-val of 0.25 and an s-val of S=1. An s-val of S=2 with a t-val of 0.5 improves

the accuracy of C and Both to BRD.
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Y DATASET, S=1

The results showing the total percentage of correct session-to-session edges at various

t-vals. The full results for this dataset can be found in appendix A.10.

Figure 5.13: Y dataset grouped by s-val S=1
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Y DATASET, S=2

The results showing the total percentage of correct session-to-session edges at various

t-vals. The full results for this dataset can be found in appendix A.11.

Figure 5.14: Y dataset grouped by s-val S=2
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Y DATASET, S=3

The results showing the total percentage of correct session-to-session edges at various

t-vals. The full results for this dataset can be found in appendix A.12.

Figure 5.15: Y dataset grouped by s-val S=2
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COMMENTS ON THE Y DATASET

The D, E, S-only and L-only groups perform consistently well at a t-val of 0.75 and

an s-val of S=2, and skirts the BRD values for S=1, suggesting there may be some

overlap between the two users in this dataset. The C and the Both groups do not pass

the BRD level until the s-val and t-val has been adjusted so high that the number of

nodes and communities is reduced to a small quantity.
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Z DATASET, S=1

The results showing the total percentage of correct session-to-session edges at various

t-vals. The full results for this dataset can be found in appendix A.7.

Figure 5.16: Z dataset grouped by s-val S=1
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Z DATASET, S=2

The results showing the total percentage of correct session-to-session edges at various

t-vals. The full results for this dataset can be found in appendix A.8.

Figure 5.17: Z dataset grouped by s-val S=2
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Z DATASET, S=3

The results showing the total percentage of correct session-to-session edges at various

t-vals. The full results for this dataset can be found in appendix A.9.

Figure 5.18: Z dataset grouped by s-val S=3
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COMMENTS ON THE Z DATASET

There is a high degree of accuracy with this set for the D, E, S-only and L-only groups

at a t-val of 0.25 and an s-val of S=1. An s-val of S=2 with a t-val of 0.75 improves

the accuracy of C and Both to BRD.
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X DATASET, S=1

The results showing the total percentage of correct session-to-session edges at various

t-vals. The full results for this dataset can be found in appendix A.4.

Figure 5.19: X dataset grouped by s-val S=1
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X DATASET, S=2

The results showing the total percentage of correct session-to-session edges at various

t-vals. The full results for this dataset can be found in appendix A.5.

Figure 5.20: X dataset grouped by s-val S=2
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X DATASET, S=3

The results showing the total percentage of correct session-to-session edges at various

t-vals. The full results for this dataset can be found in appendix A.6.

Figure 5.21: X dataset grouped by s-val S=3
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COMMENTS ON THE X DATASET

The dataset is similar to the W and as such there is a high degree of accuracy with

this set for the D, E, S-only and L-only groups at a t-val of 0.25 and an s-val of S=1.

In this set the C and Both groups are also at the BRD level with a t-val of 0.25 and

an s-val of S=1.

5.3.4 OVERALL COMMENTS ON ALL FOUR DATASETS

There is not a single clear setting of the t-val and s-val for particular groupings that

is the ‘best’.

For the W, X and the Z datasets the D, E, S-only and L-only groupings all per-

form well at an s-val of S=1. The t-val of 0.25 produces a BRD of 91% accuracy

across the whole dataset, with an increase to accuracy as the t-val is raised to 0.5,

with a corresponding drop in the number of nodes/sessions on the graph.

With the W, X and the Z sets, the C and Both groups perform generally well when

the s-val is S=2 and with higher values of the t-val such as 0.75.

The Y group has an overlap between the two users, not that dissimilar to Z (i.e.

the low 30%), but the performance of this dataset requires higher s-val and t-val to

achieve BRD results across all of the grouping schemes.

Groups A and B generally perform fairly poorly (below the BRD), or when the s-val

and t-val are raised to the point where they do pass the 91% mark, the number of

nodes and communities that remain are very low. These groups have therefore been

excluded from the following graphs.
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5.3.5 PLOTTING THE ACCURACY OF THE
GROUPING METHODS

As we know the ground truth of the results, shown in tables Figure 5.10 to 5.21, we

can plot each of the t-vals as a sequence of s-vals and use a line of best fit to estimate

the shape of the performance. In figure 5.22 we can see that if there is a known set of

sessions that we want to have on our graph, in this example we want to display 1000

nodes and we want to produce results above the reasonable doubt level of 91%, then

we see that the S=1 line is not going to produce the accuracy we demand. The S=2

and S=3 line will produce the correct number of nodes if for the S=2 line the t-val is

between 0.5 and 0.75 (but closer to 0.5). Whereas for the S=3 line the t-val should

be set between 0.25 and 0.5 (but closer to 0.25).

Figure 5.22: The W dataset showing the ‘Both’ group. The percentage of correctly
matching edges (Y-Axis) compared against the number of session (X-axis), for differ-
ent s-val and t-val settings

We illustrate this approach used for the W dataset in figures 5.23 to 5.28. Ultimately

the W dataset performs well overall with large numbers of nodes available for analysis
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The W dataset showing percentage of correct edges (Y-Axis) versus number of
sessions (X-axis):

Figure 5.23: ‘B’ group Figure 5.24: ‘C’ group

Figure 5.25: ‘D’ group Figure 5.26: ‘E’ group

Figure 5.27: ‘S-only’ group Figure 5.28: ‘L-only’ group
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(X axis) corresponding with high degrees of accurate edges between those nodes (Y

axis). It can be seen in tables 5.10 to 5.21 that not all of the datasets perform this

well, so we present a comparative plot for the different grouping types C, D, S, L and

Both groupings below.

Figure 5.29: The C Grouping for the W, Y and Z datasets with the lower t-val
T=0.25 plots to the right, increasing in value as sequence moves to the left

Figure 5.29 shows the C grouping for the W, Y and Z datasets (we have omitted the

X dataset as it is highly accurate across all groupings). We see that the S=3 plots all

reach 100% correct and the S=2 plots almost all reach 100% correct (the Y dataset

does not get above the BRD level). We note however that the gradient on the lines

of best fit is sufficiently steep that there are few nodes available at the BRD level.
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Figure 5.30: The D Grouping for the W, Y and Z datasets with the lower t-val
T=0.25 plots to the right, increasing in value as sequence moves to the left

Figure 5.30 shows the D grouping for the W, Y and Z datasets (we have omitted the

X dataset as noted). Although the performance is good in this grouping scheme, an

interesting feature of S=1 is that there is an initial rise in accuracy between T=0.25

and T=0.5 but then we can see a falling off of accuracy.
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Figure 5.31: The L Grouping for the W, Y and Z datasets with the lower t-val
T=0.25 plots to the right, increasing in value as sequence moves to the left

Figure 5.31 shows the L grouping for the W, Y and Z datasets (we have omitted the

X dataset as noted). We see that S=1 performs well, with the exception of the Y

dataset, which still ends up reaching BRD with a sufficiently high t-val. A notable

difference with this graph is that plots of of S=3 and T=1.0 can lead to results of 0%.
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Figure 5.32: The S Grouping for the W, Y and Z datasets with the lower t-val T=0.25
plots to the right, increasing in value as sequence moves to the left

Figure 5.32 shows the S grouping for the W, Y and Z datasets (we have omitted the

X dataset as noted). Similar to the L grouping there is a fall to 0% for the high s-val

and t-val combinations.
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Figure 5.33: The Both Grouping for the W, Y and Z datasets with the lower t-val
T=0.25 plots to the right, increasing in value as sequence moves to the left

Figure 5.33 shows the Both grouping for the W, Y and Z datasets (we have omitted

the X dataset as noted). Much like the C grouping the S=1 sequence perform poorly

and the S=2 and S=3 sequences ultimately reach above BRD levels, but they do so

with a small percentage of the available nodes.

OVERALL COMMENTS

There is not one clear shape that can be observed with these 3 datasets. Four plots

for each series is a small amount of data to provide a good best fit, however we see

in figures 3.25 to 3.28 that there are relatively few points beyond 0.5 where we could

take measurements, potentially 0.66 would provide an additional point, but this is

not going to substantially change the shape of the graphs as they are generally in

steady growth or fall.

We see that the results can be 100% accurate, with high s-val and t-val combina-

tions, but this only produces a couple of percentages of the nodes that were initially
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available with the C and Both grouping. Given that the C and Both grouping do

start with hundreds to a thousand nodes in some datasets, this can however still be

a substantial amount of history.

There is an interesting shape that can be observed on the D grouping graphs, where

one series of data ends, such as at the S=1 T=1.0 point, there is a gap in the number

of available nodes before where the S=2 T=0.25 point begins. It shows that there is

within the D grouping a interesting difference in the ‘class’ of S=1 grouping and the

S=2 grouping etc. This is illustrated later in the figures 5.58 to 5.69, where we see

certain clusters of sessions are available for the S=3, S=2, S=1 groupings, and whilst

the session in the S=3 grouping are available in the S=1 grouping, the reverse is not

true and there is a stark difference in the availability of the groupings.

Ultimately what these graphs show is that for any grouping and setting of the t-

val and s-val, if we have sufficiently disentangled the Internet activity of the users in

the dataset we will have a high accuracy and large number of sessions available. The

underlying issue is therefore how similar the data is, and how similar the users are. If

we have two individuals that have the same interests then our ability to differentiate

between them is based on their behaviour. For example, User 1 like Site A and Site B

and always goes to Site B during the same session as Site A, whereas User 2 also like

Site A and Site B, but does not visit them during the same sessions. In this case ma-

nipulating the s-val could accurately discriminate between the two users (S=2 would

find User 1’s visiting both sites), but it is the behaviour of the users and presumably

the content of those sites that dictates how effective our method is. We will discuss

in the conclusions that the way forward at predicting and automating the selection

of the correct t-val and s-val to get the best accuracy and number of nodes would be

to have a concept of the closeness of similarity of the users.
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5.4 GRAPHING THE RESULTS OF THE

GROUPING AT THE ‘BEYOND

REASONABLE DOUBT’ LEVEL

The nodes/sessions and the edges, the Jaccard similarity coefficients above the des-

ignated t-val, can be plotted onto a graph. We show here coloured graphs, where

the colours of the nodes indicate automatically detected community groupings. The

edges have been coloured green for correct matches and red for incorrect matches

between nodes.

We have provided the D, E, S-only, L-only, C and Both graphs, for s-val and t-

val that correctly match a BRD for the whole set of data. We have not included

for simplicity the A and B graphs as these were either missing (in many cases the A

group) or very low numbers (such as the B group).
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5.4.1 W DATASET GRAPHS

Figure 5.34 shows the session-to-session graph for the W dataset using the D grouping.

This graph has a t-val of T=0.25 and an s-val of S=1, which is the lowest t-val and

s-val to produce a ‘Beyond Reasonable Doubt (BRD) result of 99.95%.

Figure 5.34: W dataset, D Groups, t=0.25, S=1
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Figure 5.35 shows the session-to-session graph for the W dataset using the E grouping.

This graph has a t-val of T=0.25 and an s-val of S=1, which is the lowest t-val and

s-val to produce a BRD result of 100%.

Figure 5.35: W dataset, E Group, t=0.25, S=1
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Figure 5.36 shows the session-to-session graph for the W dataset using the S-only

grouping. This graph has a t-val of T=0.25 and an s-val of S=1, which is the lowest

t-val and s-val to produce a BRD result of 100%.

Figure 5.36: W dataset, S-only Group, t=0.25, S=1
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Figure 5.37 shows the session-to-session graph for the W dataset using the L-only

grouping. This graph has a t-val of T=0.25 and an s-val of S=1, which is the lowest

t-val and s-val to produce a BRD result of 95.04%.

Figure 5.37: W dataset, L-only Group, t=0.25, S=1
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Figure 5.38 shows the session-to-session graph for the W dataset using the C grouping.

This graph has a t-val of T=0.5 and an s-val of S=2, which is the lowest t-val and

s-val to produce a BRD result of 91.94%.

Figure 5.38: W dataset, C Group, t=0.5, S=2 n.b. this graph is extremely large
(1143 sessions) and as such the communities have not been expanded
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Figure 5.39 shows the session-to-session graph for the W dataset using the Both

grouping. This graph has a t-val of T=0.5 and an s-val of S=2, which is the lowest

t-val and s-val to produce a BRD result of 91.19%.

Figure 5.39: W dataset, Both Group, t=0.5, S=2 n.b. this graph is extremely large
(1154 sessions) and as such the communities have not been expanded
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5.4.2 Y DATASET GRAPHS

Figure 5.40 shows the session-to-session graph for the Y dataset using the D grouping.

This graph has a t-val of T=0.25 and an s-val of S=2, which is the lowest t-val and

s-val to produce a ‘Beyond Reasonable Doubt (BRD) result of 91.14%.

Figure 5.40: Y dataset, D Groups, t=0.5, S=2
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Figure 5.41 shows the session-to-session graph for the Y dataset using the E grouping.

This graph has a t-val of T=0.75 and an s-val of S=2, which is the lowest t-val and

s-val to produce a BRD result of 100%.

Figure 5.41: Y dataset, E Group, t=0.75, S=2
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Figure 5.42 shows the session-to-session graph for the Y dataset using the S-only

grouping. This graph has a t-val of T=0.5 and an s-val of S=2, which is the lowest

t-val and s-val to produce a BRD result of 92.11%.

Figure 5.42: Y dataset, S-only Group, t=0.5, S=2
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Figure 5.43 shows the session-to-session graph for the Y dataset using the L-only

grouping. This graph has a t-val of T=0.75 and an s-val of S=2, which is the lowest

t-val and s-val to produce a BRD result of 100%.

Figure 5.43: Y dataset, L-only Group, t=0.75, S=2
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Figure 5.44 shows the session-to-session graph for the Y dataset using the C grouping.

This graph has a t-val of T=1.0 and an s-val of S=3, which is the lowest t-val and

s-val to produce a BRD result of 100%.

Figure 5.44: Y dataset, C Group, t=1.0, S=3
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Figure 5.45 shows the session-to-session graph for the Y dataset using the Both

grouping. This graph has a t-val of T=0.75 and an s-val of S=3, which is the lowest

t-val and s-val to produce a BRD result of 100%.

Figure 5.45: Y dataset, Both Group, t=0.75, S=3
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5.4.3 Z DATASET GRAPHS

Figure 5.46 shows the session-to-session graph for the Z dataset using the D grouping.

This graph has a t-val of T=0.25 and an s-val of S=1, which is the lowest t-val and

s-val to produce a ‘Beyond Reasonable Doubt (BRD) result of 93.14%.

Figure 5.46: Z dataset, D Groups, t=0.25, S=1
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Figure 5.47 shows the session-to-session graph for the Z dataset using the E grouping.

This graph has a t-val of T=0.25 and an s-val of S=1, which is the lowest t-val and

s-val to produce a BRD result of 98.31%.

Figure 5.47: Z dataset, E Group, t=0.25, S=1
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Figure 5.48 shows the session-to-session graph for the Z dataset using the S-only

grouping. This graph has a t-val of T=0.25 and an s-val of S=1, which is the lowest

t-val and s-val to produce a BRD result of 96.95%.

Figure 5.48: Z dataset, S-only Group, t=0.25, S=1
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Figure 5.49 shows the session-to-session graph for the Z dataset using the L-only

grouping. This graph has a t-val of T=0.25 and an s-val of S=1, which is the lowest

t-val and s-val to produce a BRD result of 93.07%.

Figure 5.49: Z dataset, L-only Group, t=0.25, S=1
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Figure 5.50 shows the session-to-session graph for the Z dataset using the C grouping.

This graph has a t-val of T=0.75 and an s-val of S=2, which is the lowest t-val and

s-val to produce a BRD result of 93.64%.

Figure 5.50: Z dataset, C Group, t=0.75, S=2
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Figure 5.51 shows the session-to-session graph for the Z dataset using the Both group-

ing. This graph has a t-val of T=0.75 and an s-val of S=2, which is the lowest t-val

and s-val to produce a BRD result of 97.08%.

Figure 5.51: Z dataset, Both Group, t=0.75, S=2
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5.4.4 X DATASET GRAPHS

Figure 5.52 shows the session-to-session graph for the X dataset using the D grouping.

This graph has a t-val of T=0.25 and an s-val of S=1, which is the lowest t-val and

s-val to produce a ‘Beyond Reasonable Doubt (BRD) result of 100%.

Figure 5.52: X dataset, D Group, t=0.25, S=1

199



Figure 5.53 shows the session-to-session graph for the X dataset using the E grouping.

This graph has a t-val of T=0.25 and an s-val of S=1, which is the lowest t-val and

s-val to produce a BRD result of 100%.

Figure 5.53: X dataset, E Group, t=0.25, S=1

This is an unusual situation where 10 seemingly interconnected nodes have been

segregated into 2 communities, by the community detection algorithm. Functionally,

as there is zero error there is no effect by this.
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Figure 5.54 shows the session-to-session graph for the X dataset using the S-only

grouping. This graph has a t-val of T=0.25 and an s-val of S=1, which is the lowest

t-val and s-val to produce a BRD result of 95.45%.

Figure 5.54: X dataset, S-only Group, t=0.25, S=1
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Figure 5.55 shows the session-to-session graph for the X dataset using the L-only

grouping. This graph has a t-val of T=0.25 and an s-val of S=1, which is the lowest

t-val and s-val to produce a BRD result of 100%.

Figure 5.55: X dataset, L-only, t=0.25, S=1
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Figure 5.56 shows the session-to-session graph for the X dataset using the C grouping.

This graph has a t-val of T=0.25 and an s-val of S=1, which is the lowest t-val and

s-val to produce a BRD result of 96.39%.

Figure 5.56: X dataset, C Group, t=0.25, S=1 n.b. this graph is extremely large
(1098 sessions) and as such the communities have not been expanded
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Figure 5.57 shows the session-to-session graph for the X dataset using the Both

grouping. This graph has a t-val of T=0.25 and an s-val of S=1, which is the lowest

t-val and s-val to produce a BRD result of 96.71%.

Figure 5.57: X dataset, Both Group, t=0.25, S=1 n.b. this graph is extremely large
(1133 sessions) and as such the communities have not been expanded

204



5.4.5 OVERALL COMMENTS ON THE GRAPHS

The S-only and L-only graphs have similar performance to the D and E graphs in the

sense that they reach the BRD level with the same s-val and t-val, however we can

see the appearance of the graphs is quite different. S-only and L-only graphs tend to

have a much higher number of communities containing smaller numbers of nodes per

community. The D and E graphs have fewer communities and a much higher degree

of interconnectedness between the communities generally.

We cannot necessarily predict the number of nodes and communities that will be

available using different grouping schemes. For example, the Z dataset (at S=1 and

t-val 0.25) has 427 nodes in the D group, 135 nodes in the E group, 97 nodes in the

S-only group and 107 nodes in the L-only group). The Y dataset (at S=1 and t-val

0.25) has 185 nodes in the D group, 82 nodes in the E group, 324 nodes in the S-only

group and 39 nodes in the L-only group). In one case the S-only grouping produced

much more than the D grouping, and in the other case the reverse is true.

We therefore cannot say that X grouping scheme will produce Y numbers of nodes as

this is far too dependent on the Internet history used as input. We can predict that

the S-only and L-only scheme will produce a higher number of pairwise communities

and an overall greater number of communities than the D and E groupings.

Practically this means that the D and E schemes are likely to better answer questions

if a particular session is ‘regular behaviour’ rather than a ‘one-off event’ as it will be

part of a larger interconnected group. S-only and L-only grouping schemes are likely

to provide good reliability if we are trying to say session X and session Y belong to

the same user, but it is probabilistically less likely that any two sessions in the dataset

will be interconnected with those types of grouping schemes, than with the D and E

groupings.
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We note that the C and Both grouping schemes produce somewhat similar results,

with similar numbers of nodes, communities and accuracies.
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5.5 ILLUSTRATING THE EFFECT OF THE

S-VAL AND T-VAL ON THE NETWORK

GRAPHS

Although we discuss earlier the issue of selecting the correct s-val and t-val, we illus-

trate here the effect of dialing different s-val and t-vals. We propose that if analysts

are attempting to show the relationship between two or more sessions, they can ini-

tially select a high s-val and t-val and then ‘walk back’ the variables until either a

connection has been made between the two (or more sessions), or that the setting

of the s-val or t-val is so low that the analyst has insufficient confidence that the

produced graph is accurate ‘beyond reasonable doubt’.

We show here as an example the Y dataset plotted for comparison, with all the

nodes/sessions coloured grey for each data grouping. As above the edges between the

nodes are green if they represent a correct match between two sessions belonging to

the same user, and red if they represent an incorrect match.

In figure 5.58 we see the highest level of filtering where the s-val is S=3, i.e. there

must be three or more matching components and the t-val is T=1.0, i.e. there must

be an exact match between the components in the matching sessions. We see that in

the figure there are only 2 sessions coloured black which meet this criteria and all the

remaining sessions are unavailable.

As we ‘dial down’ the t-val settings from T=1.0 to T=0.25 in figures 5.59 to 5.61

we see more and more sessions turn black which means they become available for

analysis at the quite stringent S=3 level.
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For the ‘D’ Group of data, the sessions coloured black are present and available in
the analysis at that s-val and t-val setting:

Figure 5.58: S=3 T=1 Figure 5.59: S=3 T=0.75

Figure 5.60: S=3 T=0.5 Figure 5.61: S=3 T=0.25
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For the ‘D’ Group of data, the sessions coloured black and blue are present and
available in the analysis at that s-val and t-val setting:

Figure 5.62: S=2 T=1 Figure 5.63: S=2 T=0.75

Figure 5.64: S=2 T=0.5 Figure 5.65: S=3 T=0.25

In figures 5.62 through 5.65 we see the same process as done in figures 5.58 through

5.61, but at the lower s-val of S=2. It is worth noting that the black coloured nodes

are still available during this process, but the addition of the blue coloured nodes

represent the S=2 sessions.
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For the ‘D’ Group of data, the sessions coloured black, blue and pink are present and
available in the analysis at that s-val and t-val setting:

Figure 5.66: S=1 T=1 Figure 5.67: S=1 T=0.75

Figure 5.68: S=1 T=0.5 Figure 5.69: S=1 T=0.25
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For the ‘E’ Group of data, the sessions coloured black, blue and pink are present and
available in the analysis at that s-val and t-val setting:

Figure 5.70: S=3 T=1
Figure 5.71: S=3 T=0.75, T=0.5 and
T=0.25

Figure 5.72: S=2 T=0.5 and T=0.25 Figure 5.73: S=1 for all t-vals

In figures 5.66 through 5.69 we see S=1 and the introduction of the pink coloured

nodes, which shows a substantial increase of available nodes for analysis, but given

that in this test data we know the ground truth of the correctness of these intercon-

nections, we also see large numbers of incorrect edges in the graphs.
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For the ‘L’ Group of data, the sessions coloured black, blue and pink are present and
available in the analysis at that s-val and t-val setting:

Figure 5.74: S=3 T=0.75 and T=0.5 Figure 5.75: S=3 T=0.25

Figure 5.76: S=2 T=1 Figure 5.77: S=2 T=0.5 and T=0.25

We see in figures 5.70 to 5.73 the same approach used on this dataset for the ‘E’

group, however we show a smaller number of figures for this set as there is less data,

which is less sensitive to changes of the s-val and t-val variables.

Similarly to figures 5.70 to 5.73, we show here the effect of the ‘L’ Grouping in

figures 5.74 to 5.79. This data is also not as sensitive as the ‘D’ grouping and as
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Figure 5.78: S=1 T=1
Figure 5.79: S=1 T=0.75, T=0.5 and
T=0.25

such there are fewer figures presented here for the ‘L’ grouping than were presented

for the ‘D’ grouping. We can see that this approach is visually simple and could be

implemented in software with a simple dial or slider, but with these groupings of the

datasets, D, E and L, they are sufficiently small and manageable for a human analyst

or investigator, where this would not be as simple or easy to use for the larger scale

groupings such as the ‘Both group’ and ‘C group’ and the somewhat large size of the

‘S group’, these have been omitted from the thesis.
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5.6 USING COMMUNITIES TO IMPROVE

PERFORMANCE

The ‘correctness’ of data is determined essentially during the group selection phase,

coupled with the appropriate choice of the t-val and s-val for that group. The commu-

nity detection algorithm does not at that point improve or modify the overall session-

to-session, rather it clusters the sessions together and there may be errors within a

community (what we have referred to as Intra-community errors) and there may be

error between communities (what we have referred to as community-to-community or

C2C errors).

Figure 5.80: Raw data from the W dataset, where S=1

We can see in figure 5.80, an excerpt from the W dataset, the D group of data

which has 23 communities (determined using the Unweighted Louvain method for

community detection (noted in section 5.3.1) with a Resolution of 1.0). There are

3912 correct edges within communities, there are 2 edges that are incorrect within

the communities (the Intra-community error) and there are no errors between com-

munities with the D group (the C2C error). Indeed, with this dataset the C2C error

occurs only with the C group and the Both group. As can be seen in the appendices,

for the dataset used in this thesis the L grouping scheme never produced C2C errors,

and the S, D and E grouping schemes only produced it where there were lower t-vals.

We can therefore propose a method where all community-to-community edges are

severed, which has the effect of improving the overall ‘correctness with the C and
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Both grouping, particularly in the lower t-vals. An example of this can be seen in

figure 5.81:

Figure 5.81: Data from the Y dataset, where S=1

In figure 5.81 from the Y dataset (using the weighted Louvain method with a Res-

olution of 1.0), we can see for the ‘Total Correct%’ column that the C group has a

56.48% correctness and we see for the ‘C2C Incorrect %’ has 54.71% of the C2C edges

being incorrect. By severing all of these edges (correct and incorrect) the overall is

raised to 60.96%, which although far below the 91% correctness for us to call the

grouping data ‘Beyond Reasonable Doubt’ it does show a method of using commu-

nities to improve performance, but at the cost of not being able to associate sessions

in adjacent communities together.
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Figure 5.82: Data from the Y dataset, where S=1 and showing a single community
of nodes all coloured red

Figure 5.82 shows an excerpt from the Y dataset where all sessions belong to the same

community. The communities were calculated using the weighted Louvain method

with a Resolution of 1.0. If the resolution is reduced to 0.1, as we can see in figure

5.83 the same network does not contain a single session, but rather contains four com-

munities, two of which contain no intra-community error. By severing the C2C edges

for the light green community from the blue community at ‘A, we have automatically

improved the ‘correctness of this set of data.
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Figure 5.83: Data from the Y dataset, where S=1 the same as figure 5.82 however
this time showing 4 different coloured communities

We can see in figure 5.84 that the same Y data from the above figure 5.81, however

this time the resolution of 0.1 is used to calculate the communities (using the weighted

Louvain method) which produces substantially more communities, 167 rather than

84 for the C grouping. The ‘Intra Correct %’ (i.e. the correctness after all of the C2C

edges have been severed) is 72.33% which is a substantial improvement on the ‘Total

Correct %’ of 56.48% with all of the C2C edges retained.

Figure 5.84: Data from the Y dataset, where S=1

The difference between using the resolution of 1.0 (which had an ‘Intra Correct %’ of
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60.96%) and a resolution of 0.1 (which had an ‘Intra correct % of 72.33%) strongly

indicates that the use of finer granularity community detection algorithms is effective

when dealing with the larger groups of data such as the C and Both groups. The

same approach when used with the other grouping systems was largely ineffective,

predominantly as we noted above that relatively few grouping systems had much C2C

error present.

We show in the appendices A.0.4 to A.0.7 the Y dataset processed using the Louvain

method for community detection (noted in section 5.3.1), Weighted, Unweighted, at

Resolution 1.0 and Resolution 0.1. for the t-vals T=0.25 to T=1.0 and for s-val of

S=1 to S=3. There is very little difference between weighted and unweighted algo-

rithms and as we note above there is substantial difference for the ‘Intra correct %

versus the ‘Total Correct % when using the finer granularity resolution, but only for

the C and Both grouping systems.

5.7 PATTERNS OF LIFE

We define Patterns of Life within our Context Analysis Approach as a model of how a

device was used in time and space. As we have noted, the spatial component is largely

left as future work for this thesis, but forms a generally important consideration for

future research with mobile computing devices, and for the use of these techniques

with general communications records data, for example Cell Site analysis.

We need to discover, or impose a model of the operation of the device in the ‘real

world’ and then see if that model identifies relevant patterns that can be used by the

analyst or investigator.

As we showed in section 5.4 above, we can plot the session-to-session matches onto a

graph and then perform community detection on the clusters of nodes/session. If we

then apply some model of the real world onto those nodes we can identify sub-graphs
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within the communities or across communities.

We show here an example Pattern of Life model where the sessions are categorised

by a time of day (as proposed in Chapter 4.5.3), as shown in figure 5.85.

Figure 5.85: A Time of day model for Pattern of Life analysis

Note, unlike in chapter 4.5.3 we have included here a session start group and ses-

sion end group, taking what was 5 categories and increasing this to 9 (theoretically

10, although group 5.5 did not appear in the example data that we used) as a re-

sponse to the real-world data not fitting into the pre-determined time boxes. The

problem of starting in one time group and ending in another is caused by the use of

Variable-length session classification (chapter 3.4) where the total length of the ses-

sion is unknown in advance, whereas if analysis approach used Fixed-length sessions

the Pattern of Life model could easily be fitted to those fixed time ‘buckets’.

We illustrate here in figure 5.86, the application of this temporal model by using

the W dataset, showing the D and E groups of the relative popularity grouping

method that has had community detection applied to the graph.
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Figure 5.86: The W dataset’s DE Groups with an s-val of 1 and a t-val of 0.50,
showing the communities
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By applying the temporal model from table 5.85 in figure 5.86, we get the result

shown in figure 5.87. What we can note is that only one of the large communities

and two of the small outlier communities has group 1 (and 1.5) data present in them,

which is emphasised in figures 5.87 and 5.88.

Figure 5.87: The temporal model overlaid onto Figure 5.86
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Figure 5.88 shows that the two sessions in the outlier sessions are not connected,

within this dataset, to any other sessions and therefore are excluded from the pattern

of life analysis. It does suggest however that the outliers may belong to the user

associated with the activity seen in large community 1, and as such this could be a

situation when the edges just below the t-val would be looked at to see if they were

connected.

Figure 5.88: A section of the W dataset’s DE Group with the Early (Blue) and
Early/Morning (Light Blue) sessions highlighted

We can remove all of the sessions that have not been highlighted to create the sub-

graph and determine if there are direct and indirect connections between the remain-

ing blue sessions, as can be seen in figure 5.89.
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Figure 5.89: The W dataset’s DE Group with a t-val of 0.5, showing only the inter-
connected dark blue and light blue nodes

Figure 5.90: shows the communities for the nodes highlighted in Figure 5.89

Figure 5.90 shows the original communities that had been identified using the com-

munity detection approach with this dataset, and we can see that although there

are almost no communities that are exclusively of one group of temporal data in

the original graph (in figure 5.87), there is a general trend that can be observed of

Purple/Evening (34%) and Green/Day (31%) being mixed with Red/Morning (18%).

Again, we note that the Blue/Early (2.43%) and Light Blue/Early and Morning

(1.22%) are exclusively grouped with one of the large communities with a small num-

ber of outliers.
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When the sessions belonging to all of the other Pattern of Life groups are removed

we find in figure 5.89 that there are 9 sessions remaining, in three subgraphs. Figure

5.90 shows the Pattern of Life data with respect to the original community data.

We see that the members of the three subgraphs all consistently belong to the same

communities.

We can show the discovery of interconnected direct relationship sub-graphs within

communities. This can be used to further strengthen the case when testing a rela-

tionship between two or more sessions, or discovering trends within a community.

The testing of investigative hypotheses and the discovery of lifestyle data is described

in the next section.

5.8 INVESTIGATIVE REASONING

An investigator may want to use the proposed context analysis approach to either

discover information about the operation of a device in time and space, which may

be used to provide lines of enquiry for an investigator, or to test an investigative hy-

pothesis/question which supports or refutes a line of enquiry, specifically with respect

to the time or place that a device could have been used.

To use this approach, the investigator must be able to frame all questions as re-

lating to the test of a session in a community or matching with another session. The

session(s) the investigator in interested in must also belong to a particular group-

ing and consequently adjusting the s-val and t-val may be required such that the

session(s) appear in the analysis, with the consequent understanding that if the ad-

justment is very low then there is the realistic possibility that there are precision

errors, especially if the sessions appear in the C or Both groupings.
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5.8.1 TESTING THE INVESTIGATIVE HYPOTHESIS

The following are tests that we can do well with our approach using the graphs:

• Membership Within a community.

• Direct Relationship within a community between 2 members.

• Indirect Relationship within a community between 2 members via 1 or more

other members.

• Direct Relationship between members of 2 different communities.

• Indirect Relationship between members of 2 different communities via 1 or more

other members.

To illustrate these tests, figure 5.91 shows two communities taken from the W dataset

DE group, and we list here a set of tests we can perform across these two communities:

• Test of membership in a community (A belongs to Blue community)

• Test direct relationship between sessions within a community (A has a relation-

ship with B)

• Test indirect relationship between sessions within a community (C has a Rela-

tionship with E, via D)

• Test direct relationship between sessions, between different adjacent communi-

ties (A has a relationship with C)

• Test indirect relationship between sessions, between different adjacent commu-

nities (B has a relationship with C via A)
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Figure 5.91: Two communities from the W dataset

Can we frame the typical kinds of questions an investigator would want to ask as

questions relating to the test of a session’s membership within a community or rela-

tionship to other sessions? The following presents a sample of investigative questions

that an investigator could simply test using our approach:

• At time X, was the usage of the device

– normal,

– or abnormal?

• If at time X we have a notable event (an offence) and at time Y we have

information relating to the identity of the user, can we tie the user at X to the

user at Y?

• Who are the users of a device?
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– Who was the user of the device at time X?

– How many regular users of the device?

• Can we exclude sessions and communities as part of an investigative question?

At time X, was the usage of the device normal, or abnormal?

A reasonably straightforward question if time X corresponds to a session, although

what is ‘normal’ may be contentious. This is a test of membership in a community

and if the session belongs to a large community (or communities if grouped in such

a way), the size and interrelatedness of the communities would determine if this was

particularly ‘normal’. A Pattern of Life model may also be used to show that the

community also consists of a large number of sessions occurring within a similar time

box, day of the week etc.

If at time X we have a notable event (an offence) and at time Y we have infor-

mation relating to the identity of the user, can we tie the user at X to the user at Y?

This is a test of direct relationship, or a test of how distant an indirect relationship

is. Although the test is fairly straight forward, we have discussed at the beginning of

chapter 5 the dangers of associating two sessions indirectly connected where there is

absolutely no direct relationship. However, we also see in figure 5.86 that where there

is very clear segregation between the user’s behaviour, even a low t-val is enough to

emphasise the difference.

Therefore, if a direct relationship is present between two sessions that have per-

sonably identifiable information and notable events then this can be considered good.

If there is also an indirect relationship alongside a direct relationship this could be

considered a ‘good and supported’ relationship. If there are multiple ‘good’ relation-

ships the analyst should be in ‘good confidence’ of the relationship. If there are only
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indirect relationships then these relationships should be considered ‘possible’ but have

a declining level of confidence for each level of indirectness, particularly with respect

to crossing community boundaries.

Who are the users of a device?

The questions relating to users are both the most desirable from an investigate stand-

point, yet also the most technically difficult to prove and largely do require some

knowledge prior to the analysis about the identity of one or more users of the system.

The questions of users can be the general question of who are the pool of possible

users, and then the specific case of who was the user at a specified time:

Who was the user of the device at time X?

This question requires that a session contains personal identification for the most

reliable answer. If the personal information is not available during the time X session

then we have to look at if the session can be associated directly or indirectly with

another session, within the same community, or if possible, or desirable, within an

alternative community. How many regular users of the device?

The approach presented in this thesis does not, at least at this time, attempt to

predict the number of users of a device and this remains an area of future work. We

can however see in figure 5.86 that by adjusting the t-val, it may be possible to iden-

tify clear segregation in the data suggesting, accurately in figure 5.86, the number

of distinct users, i.e. a large community of interconnected sessions for each of the

users. We have shown in our experiment that the D and E groups perform well at

establishing the most idiosyncratic data relating to the users, and as such there may

be much less clear cut partitioning of the data if for example, using the C or Both

group data.
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Can we exclude sessions and communities as part of an investigative ques-

tion?

We can classify broadly based upon some prior knowledge that has been determined

during the investigation, for example “The suspect is at work between 9 to 5, Monday

to Friday and has taken no other time off during the year”. Such information can

be used to identify all the sessions that occur between 0900 and 1700 hours, Monday

to Friday, and determine if there are patterns of usage during that time, if there are

patterns between 1701 and 0859 hours and for all of the weekend.

In such a scenario, we have two groups or patterns of life: Group 1) 0900 to 1700,

Monday to Friday; Group 2) all other sessions. The investigator would naturally want

to exclude communities where both of these patterns are present as being either, be-

longing to a second user, or being sufficiently non-unique to the suspect. Indeed, if

any artefacts of note appear within a community that contains patterns from both

groups - and the investigator is sufficiently happy that the data is likely to be idiosyn-

cratic - then this would be a strong exculpatory line of enquiry, suggesting that the

suspect is unrelated to the notable artefacts.

5.8.2 DISCOVERY OF LIFESTYLE INFORMATION

It is entirely possible, particularly when considering Internet history derived from

server-side Internet Communications Records, that an Internet history could be anal-

ysed, before any of the witnesses have been interviewed. The results of an early

analysis may be used to direct lines of enquiry, to frame the questions that need to

be asked by investigators to most effectively establish ownership of a device at any

particular time or place. There is also the iterative nature of investigations where

witnesses and suspects can be re-interviewed as an investigation progresses.

Without any prior knowledge of the circumstances relating to a device an analyst
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can extract the Internet history, compile sessions, perform grouping and session-to-

session analysis. The results of the session-to-session analysis can we have shown in

this chapter be graphically represented and community discovery can be performed

on that data. Normally this would be the point to test investigative hypotheses, but

in an early analysis it is possible to unpick and discover characteristics and com-

ponents within the communities, allowing an investigator to ask probing questions

about the individuals’ interests, or times they are active on a device etc. For example,

a general question about “who uses the device in the mornings, who uses it late at

night?” would be standard fare for an experienced investigator. However, the addi-

tion of “Who in the house likes Motorcycles?” becomes available as a line of enquiry

because the investigator has noted that one of the communities contains sessions that

contain components relating to motorcycles.

We can see this approach with figure 5.92 where we have three communities that

have been determined from session-to-session analysis, that have then been reduced

back to showing only the components that belong to those sessions in figure 5.93.
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Figure 5.92: Three Communities from W dataset, DE Group with s-val 1, t-val=0.5

We can see in figure 5.93 that there are 5 components (C1 to C5) that relate to these

22 sessions in the 3 communities. These sessions have an s-val of 1, which is to say

that a single component was required to make a session and the largest number of

components in any of these sessions is 2.

We can see that the uncoloured community is based upon primarily C1 with some C2,

the dark grey community is split between C3 and C4, and the light grey community

is based purely upon access to C5.
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Figure 5.93: The Session table for Figure 5.92

In this example, the ground truth for these 3 communities is that the light grey com-

munity has an error in it that cannot be detected purely by examining the data and

graph. Session ‘544’ belongs to ‘User 1’, whereas the remaining two sessions in the

light grey community belong to ‘User 2’. The light grey community is however a small

community and that should be considered when using this approach for discovering

lines of enquiry.

An analyst could see from the graphical representation that session ‘1060’ is po-

tentially the odd-one-out in the uncoloured community and then looking at the data

to see the C1 component is the most crucial information within that community.

Similarly, in the dark grey community an analyst can see from the graphical repre-

sentation that session ‘413’ sits between two smaller communities and as such that
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might be point where the analyst would not be prepared to show indirect connect

between sessions on either side unless question could show disclosure from witnesses

or suspects to suggest either side of that community had relevance.

This approach to discovery offers an interesting way to work backwards and high-

light potentially significant components, but as there are hundreds of components

in a typical dataset, it may be desirable to only use this approach on a handful of

components from the larger, or the ostensibly most significant communities.

By performing discovery of lifestyle information:

• The investigator can use this to interview witnesses and suspects about what

is seemingly general questions about their overall Internet accessing habits,

but with the specific goal of determining if there is disclosure about critical

components, sessions or communities.

• Analysts can identify the most significant components for the communities that

they may rely upon for evidence. They can then investigate those components

in more detail, see if the original web pages are available, cross reference these

against bookmarks or other intelligence to strengthen any arguments that they

represent crucial behavioural indicators.

5.9 CONCLUSIONS

We have shown in this chapter that the Session-to-Session comparisons that were

grouped in the previous chapter can be graphically displayed in a visually accessible

way, and that community detection algorithms can be performed on these graphs

to automate the grouping of sessions into communities of, what is ostensibly similar

behaviour.

We have performed analysis in this chapter showing that the groups can have the
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t-val Jaccard similarity coefficient manipulated and the s-val minimum number of

components that must appear in a session to produce a Beyond Reasonable Doubt

(BRD) of 91% accuracy of the edges for the whole grouping of data. It is important

to emphasise that the BRD is a match across all of the data in that grouping rather

than the individual edges, as we have seen in chapter 3 that there are proportionally

few session-to-session matches that are so similar that they have a match at greater

or equal to 0.91.

We have shown in this chapter that number of sessions that are available for analysis,

and consequently the number of communities that we automatically detect falls as

the precision of the s-val and t-val are raised.

We do however show in this chapter that the groupings that we proposed in chapter 4,

the relative popularity grouping and the Short-only and Long-only session groupings,

do appear to extract ‘idiosyncratic’ sessions and group them into communities. We

can make this statement by considering the overlap in the datasets: The Z and Y

datasets have overlaps in the low 30% area, yet by grouping the data we can get a

BRD (i.e. 9% or less error) for the groups D, E, S-only and L-only with quite small

s-val and t-val manipulation for the Z dataset and a larger but reasonable manipula-

tion for the Y dataset. With the W and X datasets that have an overlap of greater

than 10%, but the same modest manipulations used for the Z data set produces a

BRD of significantly higher accuracy, 95% to 100%.

There is a general trend in the regression graphs in section 5.3.5 that shows that

the smaller the number of sessions used in the analysis (something which is con-

trolled by the tuning of the t-val and s-val variables), then generally the higher the

accuracy in the correct matching between the correct user identification. Depending

upon the grouping scheme and differences within the data this we have shown can

be accurate, but these variables are being applied across the whole dataset and it

may be appropriate to provide finer levels of control at the community-level based
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upon domain-knowledge of activities. For example, we see in section 5.6 the higher

possibility of error between communities and therefore the use of higher threshold

t-val between communities and a lower value within communities may be appropri-

ate rather than a general setting applied across the whole dataset. Two users with

similar interests are likely to access similar websites if not the same websites. If the

shared interests are what we would classify as sufficiently niche, then it would be

difficult to disentangle those two users without domain-level knowledge of the actual

individuals. The closer the overall similarity between the user characteristics, the

greater the difficulty in separating the difference between the data that we would

categorise as idiosyncratic. We therefore conclude that future work to automatically

select appropriate s-val and t-val would be based upon:

• The domain-level knowledge of the communities or activities.

• The perceived similarity between the possible users of the device.

Notably both of these approaches are not zero-knowledge solutions, where the knowl-

edge of the websites is present in the former option and knowledge of the possible

users is in the latter option. We have noted that in the majority of our results (see

section 5.3.3) the s-val of S=1 and t-val of T=0.25 is sufficient to differentiate the

users within datasets such as the D and E groups of the W dataset. The original

sources of data the D1 and S1 datasets were clearly interested in different sites there-

fore the techniques work very well with low s-val and t-val settings. Comparing this

with the Y dataset where much higher values are required to get the same accuracy,

which has a consequence of fewer sessions in the analysis. We therefore propose in

future work experiments can be developed for two or more sets of users on a single

device and determine the similarity of those users based upon the following criteria:

• Location Visiting websites that are specific to a geographic area, such as local

news or regional transport websites. Schools, community centres and other

subjects of limited relevance to people outside of the region.
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• Friends and Family Shared friends, family and associates which may be ge-

ographically diverse (family members on the other side of the world) but of

shared relevance to the users of the device.

• Occupation Visiting news, current events and industry/school/university re-

lated websites.

• Interests Sports, hobbies and activities

• Language On some systems/households there are members of the household

that speak languages that may not be spoken by other members of the same

household and consequently this is a significant discriminator between users on

the system.

• Popular Culture Gender and Age may influence what popular culture, music

and media that is consumed by the different users of the system.

Where there is overlap between the users we can see to what extent this impacts the

s-val and t-val. This approach would still somewhat be a zero-knowledge approach

as we are assessing if a model of the users could be used to dictate an appropriate

setting for the variables. However, such an approach must also be considered alongside

domain-level knowledge of the data and the communities this produces, otherwise we

could still be subjecting our whole dataset to analysis with variables that may or may

not be suitable for all intra-community relationships and community-to-community

relationships.
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Chapter 6

CONCLUSIONS

“An inconvenience is only an adventure wrongly considered; an adventure is an in-

convenience rightly considered.”

G. K. Chesterton - All Things Considered, 1908

6.1 CONTRIBUTIONS

From our objectives outlined in chapter 1, we have provided research in this thesis to

achieve the following objectives:

• Objective 1. We have identified the state of the art and challenges in event

modelling in multi-user computing environments and proposed a model of as-

sessing this research called ‘Context Analysis’.

• Objective 2. Identified Internet history artefacts and the levels of resolu-

tion we can expect to find for Internet history records on a standard multi-user

computing environment or server-side records that might be retained by a Com-

munications Service Provider.

• Objective 3. We have evaluated the feasibility of aggregating multi-user Inter-

net history sessions without prior knowledge of the user and produced schemes

for aggregating the history into sessions. We have found that the Session-to-

Session Context Analysis approach gives a broad-based model of how the system
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was used and a similarity comparison between any two periods of time in the

history.

• Objective 4. Developed novel methods for grouping a computer system’s In-

ternet history without prior knowledge about the websites that are visited, their

structure, and the users of the system, so as to identify and extract idiosyncratic

features of the history with an accuracy we have classified as ‘beyond reasonable

doubt’.

• Objective 5. We have provided a novel visualisation of the grouped Inter-

net history records, so the results of our analysis can be used for investigative

reasoning and analysis of the aggregated history sessions.

The contributions of the research are therefore:

• Context Analysis: We propose an approach that considers how artefacts are

related to other artefacts, such that they can be Identified, Interpreted, Verified

and the Activity of the artefacts be analysed with respect to their peer artefacts.

This has the novelty within Digital Forensic Science in that we consider the

modelling of the whole Internet history of the system, rather than focusing

around specific events.

• Sessions and Session-to-Session Analysis: We formally defined a novel aggrega-

tion method for Internet history as Fixed-length and Variable-length sessions.

This approach allows us to evaluate periods of time in the Internet history and

make meaningful comparisons between those periods of time. The process of

aggregating into sessions can not only be used for analysing history from a

computer, or smart phone device, but can also be used to analyse history from

gateway devices such as firewalls, routers and the Internet Connection Records

that new UK legislation [110] will compel Communication Service Providers to

retain. We propose this approach could be used for analysing a variety of other

types of activities that relate to events that can be aggregated together, such

as sensors or access control logs etc.
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• Grouping methods: We have proposed two novel methods of grouping or char-

acterising the components within our sessions using zero-knowledge about the

characteristics of the users of the device or the websites that they are accessing:

– Short and Long Sessions: A simple but powerful threshold method of de-

termining if the session is ‘short’, or ‘long’. Although this method is not

technically sophisticated it is fast to compute, requires no external refer-

ence and because of the way we have aggregated the history into session we

have a novel way of analysing the website/components that appear only in

short sessions, components that appear only in long sessions and the else

condition of components that appear in both the short and long sessions,

which is an interesting way of characterising the behaviour of the user.

– Relative Popularity: This method of grouping our data contrasts the dif-

ference between the rank order of the popularity of components taken from

a third-party reference source, and the rank order of the popularity of the

component across the local system that is under investigation. This ap-

proach also lends itself to the statistical investigation of the ‘normality’

of web browsing behaviour and what is “a normal person’s web browsing

behaviour”?

• Graphing Session-to-Session Comparisons and Community Detection: We have

taken the graphing of similarity coefficients between two or more nodes and used

it in a novel way to graph the activity of Internet activity on a device. Using

this new approach to Internet history analysis we can automatically detect the

communities within these graphs which has the implication of showing like-for-

like website access behaviour, which we have shown during our experiments in

chapter 5.
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6.2 DISCUSSION

The four sets of data represented four slightly different scenarios, but they are con-

sistent with the types of scenarios that an investigator would want to model a large

body of Internet history, such as outline is section 1.3:

• The W set was a large set of data split 2/3 for one user and 1/3 for a second

user with a 12.9% in the components.

• The X set had a majority user (92.5% of the sessions) and a minority user (7.5%

of the sessions) and this represented a scenario where there were two users that

shared some activity (10.65% of the components).

• The Z set was approximately 50/50 usage between two users and the overlap

between the users was 31.53%.

• The Y set was a 2/3 and 1/3 split between users with a 32.3% overlap in

components.

We saw that the X, although having a similar amount of overall overlap as the W

set, a small amount of s-val and t-val adjustment to the data drastically reduced

the possibility of error. Similarly, the overall performance between Y and Z is quite

different despite both sets of data having similar overall overlap. The total overlap

of the components does not appear to indicate the correctness of grouping or the

variable settings that must be used to achieve high precision and availability.

We can therefore conclude that to better evaluate the correctness of the grouping

we could use the volume (in the Local Popularity sense) of the overlapping compo-

nents to better estimate the similarity of the two datasets. That would allow us to

better measure the reduction of error, rather than the correctness of matching.

Although this is interesting from an experimental point of view where we are con-

sidering how best to measure the accuracy and correctness of our proposed method
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on a set of data with a known ground truth, we ultimately are left with the issue

that given any set of data, we cannot necessarily predict the probability of error in

determining if a session was made by the same user as another session. What we can

do is apply the techniques proposed in this thesis, determine if the sessions appear

in groups that are likely to distinguish a user, and apply increasingly harsh variable

manipulation. If two sessions still have a high similarity coefficient after all of that,

then we can conclude that the two sessions were made by the same user “beyond a

reasonable doubt”, but we cannot, without the ground truth assess the exact BRD

accuracy for that dataset. This is in large part because of what we describe below in

6.3.1, where we discuss we do not exactly know what is ‘normal’ or the volumes of

‘typical’ activity. With a theoretical model of behaviour, we can group and manipu-

late data in the way we propose in this thesis.

The development of such a model and the investigation of normal behaviour, along

with other refinements to the grouping and community detection are necessary next

steps in this research and are necessary before our approach could be used as a stan-

dard analytical technique, unquestioned in the courts of law.

6.3 FUTURE WORK

This thesis is a proof of concept that Internet history can be automatically and reliably

broken up into periods of activity, and those periods can be accurately related to other

periods of activity created by the same user, by grouping them based on the websites

visited, with zero knowledge of the content and type of website. However, as a result

of our work we have noted a number of issues to consider which due to the scope of

this project we leave as avenues of further research.
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6.3.1 NORMALITY OF BEHAVIOUR

The approach we have used has no knowledge about the type of websites, with the

exception of the relative popularity grouping approach, which did require an external

ranking of global popularity. Even with the global popularity ranking, there is no

explicit knowledge about the type of website that is visited, although there is some

implicit knowledge with respect to popularity such that the website may be search

related, commerce, social media, pornography etc., i.e. popular websites.

This leaves a very important open question about what is ‘normal’ browsing be-

haviour. We can describe any session with respect to its normality on that system

(Local Popularity), but at the moment we cannot describe the session with respect

to a model of what we would expect to find on a typical system. If we are inter-

ested in a particular session, we can show if a session belongs to a community, if

it belongs to communities across different groupings (for example, if the particular

session contains components in communities for the C and D groups), and we can

describe the size of the communities and look at pattern of life information relat-

ing to time of day that the sessions were made, location etc. What we do not have

at the moment is a model that gives us an expectation about what components we

should find in someone’s Internet history, what time of day they were made and so on.

An investigation into the normality of Internet history would be interesting and would

not only be able to assist the type of work we are doing here, removing or identifying

potentially incorrect session-to-session matches, but would also form the basis of user

behavioural profiling where characteristics such as gender, age, etc. could be used to

anticipate the user at any time.
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6.3.2 COMMUNITIES

We have used community detection in a relatively simplistic way, and we have not ex-

amined in great detail characteristics of the communities such as size, shape, density,

efficiency and type of algorithms for finding the communities. However, we note that

community detection on groups such as the S-only, L-only, A and B tend towards a

large number of communities with few members that are clearly segregated from each

other. The D and E groups typically have larger sized communities, fewer of them,

but the communities are also fairly segregated. This segregation is clearly an artefact

of the small numbers of components in each sessions.

Consequently, our initial testing of different community methods, weighted edges and

different resolution settings did not drastically affect the results for the S-only, L-only,

A, B, D and E groups. Where we believe there is scope for enhancing our findings

is with the C and Both groups as these have many more components in the sessions

and to remove false matching requires higher t-vals. Therefore we believe that we can

substantially increase the number of communities, those communities will have good

intra-community edges and those ‘sub communities’ will relate to what we talk about

next which is categorising the behaviour within the sessions and communities.

6.3.3 CATEGORISING A SESSION

A logical next step in this research is the automatic categorisation of the behaviour

in the communities. The approach thus far has used zero explicit knowledge about

the components, but we see that in chapter 4.5.1 we propose that if ‘type’ data was

known for the components we could use that for matching. A perhaps more useful

approach would be to enable an analyst to highlight or colour a community based

upon the dominant type of websites that make up a community.

It is also worth considering that there are generally few components that make up the

communities for the S-only, L-only, A, B, D and E groupings. It would be reasonably
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simple task to group those communities, if, and this is where it becomes a non-trivial

task, there was the appropriate ‘type’ data for the components, given the difficulties

we note in chapter 4.5.1. As the S-only, L-only, A, B, D and E groupings are likely to

contain ‘niche’ or regional specific websites, the possibility of having the ‘type’ data

is much lower than say with the C or Both group data which would likely be much

more commonly available, even with prior knowledge from a different case.

6.3.4 DISPLAY AND PRESENTATION

There is still an open area of research in how to create an effective and useful front-end

for the different stakeholders and users of this approach:

• The analyst is technologically literate, but may not be fully versed in the details

of the case. This person would normally be expected to search and manually

extract Internet history so they will want to be able to apply keyword searches

to the history, find the sessions this best relates to and then associate that with

other sessions and other files and events on the digital devices. The analyst

would be happy with graph views and being able to manipulate the variables

so as to be confident that they have good level of precision and recall.

• An investigator may not be as technically literate as an analyst (if a different

person), but will be fully familiar with the circumstances, offences, points that

they need to prove to the court and witness testimony. The investigator will

want to test alibis, find out if there is history for times and dates that they have

statements about and consequently they will be interested in relating this back

to the real-world and will want calendar views etc.

• The court. Professional lawyers and lay people such as a jury may have very

little technical knowledge and they will only have the case-specific knowledge

that has been presented to them as part of the proceedings. If they are being

told that some period of time is like another period of time they will want

to know from an expert if that is a fact or an opinion, and how confident the
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opinion is. This may, indeed should, involve an expert being able to demonstrate

in a clear non-technical way why two or more sets of data are related. We have

presented in this research a functional way of graphing data that satisfies the

majority of the analyst-level view. The Jaccard similarity tables (such as seen

in figure 3.5) are fairly straightforward and can provide a visually simple way to

demonstrate similarity with court-level view. We have focused our experiments

in Chapter 5 at a level “beyond reasonable doubt”, but we are still left with open

questions about determining the precision and recall/availability, so there may

be desirable views for the investigator where they can ‘dial it up’ to demonstrate

the highest degree of assurance. The practical usability of our approach for these

different levels therefore remains an interesting future area of work.

To address if the techniques presented in this research is immediately admissible in

the UK legal system it very much depends upon if the work is being used to identify

an individual, or if it is being used to test either an investigative hypothesis or an

affirmative defence made by a defendant/suspect.

Admissibility is very much the grant of the court and with all expert techniques

and testimony it is subject to the test of how accepted within the scientific commu-

nity. Therefore, at this stage the admissibility of the whole proposed method would

be subjected to scrutiny.

The first major stage is if the court would accept the aggregation of Internet his-

tory into a ‘session’. If this was accepted then the use of session-to-session analysis

is straightforward and based on Set Theory, and although the application in this re-

search is novel, the concept is well accepted, available for inspection and explicable

even to a lay jury. Therefore, we suggest that the testing of affirmative defences, e.g.

“It wasnt me, it must have been someone else” can be easily tested for the occurrence

of a repetitive pattern.
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For proactively determining the identity of a user we suggest that the research re-

quires further experimentation, enhancement and data before it would be considered

sufficiently robust for use in a trial, despite our results demonstrating high degrees

of accuracy and confidence. We present a number of areas of further work in this

chapter and these can only improve the confidence and admissibility of the research.

We would consider a practical software implementation of the research presented

in this thesis could be used by an investigator in testing the intersection of activity

on the device with other forms of witness testimony, such as financial transactions,

eyewitness testimony etc. For analysts, such a tool would provide an overview of the

system, allowing them to highlight websites and periods of time that they would not

necessarily be aware of, which is a substantial advantage of this kind of approach over

a traditional approach of searching for known keywords only. The use of this kind

of analysis may be useful in the courtroom as the community detection is visual and

a prosecutor could put to a defendant “Each of these circles represents a period of

time. Each of those circles that are the same colour that are connected together are

very, very similar use of the computer. Are you telling me that it was some random

person off the street using your computer rather than as the diagram shows it was

someone that was using it the same way that it has been used all these times before?”.

Such an argument may be persuasive not only to the defendant such that they drop

the pursuit of such a defence, but also to a jury. The dynamics of the use of expert

evidence in court however beyond the scope of this thesis.

6.3.5 SEQUENTIAL ANALYSIS

From the outset of our research we identified that we could analyse our data sequen-

tially or in aggregate. We have always held that the complexity of sequential analysis

may be simplified if sufficiently similar aggregates can be identified, then sequentially

parsed. The evidence we present in this thesis suggests that users are not sufficiently

repetitive in their behaviour each time that they log in such that sequential analysis

is even necessary (this is summarised below in section 6.4).
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Internet history we contend may not lend itself to sequence analysis, but if using

Context Session-to-Session Analysis on other types of data where there is greater

predictability in the sequences such as with operating system log files, or cell phone

call records, or cyber-physical systems where sensors can be activated in sessions but

there are potentially multiple pathways through the sensors that could indicate id-

iosyncrasy, then we believe that there is scope for using sequential analysis alongside

aggregate session analysis.

6.4 FINAL COMMENTS

This research project has not only produced the high-level concept of ‘Context Analy-

sis’, which has value to researchers, but has produced a significant low-level concept,

which we assert as having immediate value to the researcher, the analyst and the

investigator: the formally defined ‘Session’ of Internet history.

Sessions can be calculated without knowing the ground truth of who was using the

device, so analysts and Investigators can immediately use Session-to-Session analy-

sis and the novel grouping schemes that we have developed during this research, to

identify the components that have significance to the users without having to have

domain-level knowledge of the users, their interest or even specific websites or key-

words to search for. Such information can guide an analyst or investigator to periods

of time that they may want to focus their enquiries upon.

Although ultimately the further work in this research for automating the detection

of the individual users is outside the scope of the results in this thesis, we have

demonstrated that with zero-knowledge about the users we can automatically detect

websites/components that can discriminate between two different users that share a

device, with a high degree of accuracy. This work and the methods we have devel-

oped should then form the basis of future research that we can pursue where there
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is domain-level knowledge about the potential users of the device and the types of

websites that are being visited.

In addition to the practical analytical techniques that we have presented we have

identified that there are significant questions about assessing the normality of Inter-

net history and Sessions. We have extensively investigated the difference between a

session where there is only a single repeating component, what we have referred to

as S=1, and how there are many more of those kinds of sessions than the sessions

where there are two or three repeating components, S=2, S=3 respectively. What we

have seen is that although people have websites that they visit throughout the day,

week etc. we see that they do not necessarily have a regular pattern of behaviour

they will perform everytime they go online. This leads to a number of interesting

questions that a researcher may want to pursue about those clusters of activity which

we have called communities. Do those communities appear with the same frequency,

size, components, time of day etc. across different datasets? That is to say, can

we with sufficient data draw conclusions about those communities across all users?

We have as part of our research into the validity of our datasets been able to show

statistical correlation with the global norms for the appearance of those websites,

but much finer levels of analysis would be a fascinating area of further research, that

is now available because of the formal specification of sessions and Relative Popularity.

Consequently, the high-level concept of ‘Context Analysis’, and the low-level tech-

niques and methods for splitting up the specific Internet history artefacts has gone

a significant way to formally define the investigation of the user of a device at any

particular time and establish if observable patterns of regularly occurring behaviour

are present, which may be significant to analysts, investigators and future researchers

of Internet history and Context Analysis.
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Appendix A

RESULTS AND TABLES

We have performed our analysis on the following criteria:

• Nodes - The number of sessions in the graph.

• Good Com - The number of communities that contain no edges that are incor-

rect.

• Bad Com - The number of communities that contain one or more edges that

are incorrect.

• Total Correct % - The percentage of edges within the graph that have nodes

that correctly match to the same user.

• Total Incorrect % - The percentage of edges within the graph that have nodes

that incorrectly as belonging to the same user.

• Intra Correct % - The percentage of edges that reside within communities that

are correct.

• C2C Correct % - The percentage of edges that cross community-to-community

that are correct.

• Intra Incorrect % - The percentage of edges that reside within communities that

are incorrect.
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• C2C Incorrect % - The percentage of edges that cross community-to-community

that are incorrect.

And with the Y dataset where we have provided details relating to the Weighted,

Unweighted and 2 resolutions, so we have also explicitly stated:

• Com - Total number of communities in the graph

• Good Com % - The percentage of communities that contain no edges that are

incorrect.

• Bad Com % - The percentage of communities that contain one or more edges

that are incorrect.
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A.0.1 W DATASET UNWEIGHTED, RESOLUTION 1.0

S-val S=1

Figure A.1: W Dataset Results - BRD of 91% Highlighted
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S-val S=2

Figure A.2: W Dataset Results - BRD of 91% Highlighted
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S-val S=3

Figure A.3: W Dataset Results - BRD of 91% Highlighted
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A.0.2 X DATASET UNWEIGHTED, RESOLUTION 1.0

S-val S=1

Figure A.4: X Dataset Results - BRD of 91% Highlighted
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S-val S=2

Figure A.5: X Dataset Results - BRD of 91% Highlighted
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S-val S=3

Figure A.6: X Dataset Results - BRD of 91% Highlighted
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A.0.3 Z DATASET UNWEIGHTED, RESOLUTION 1.0

S-val S=1

Figure A.7: Z Dataset Results - BRD of 91% Highlighted
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S-val S=2

Figure A.8: Z Dataset Results - BRD of 91% Highlighted
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S-val S=3

Figure A.9: Z Dataset Results - BRD of 91% Highlighted
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A.0.4 Y DATASET UNWEIGHTED, RESOLUTION 1.0

S-val S=1

Figure A.10: Y Unweighted Dataset Resolution 1.0 - BRD of 91% Highlighted
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S-val S=2

Figure A.11: Y Unweighted Dataset Resolution 1.0 - BRD of 91% Highlighted
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S-val S=3

Figure A.12: Y Unweighted Dataset Resolution 1.0 - BRD of 91% Highlighted
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A.0.5 Y DATASET UNWEIGHTED, RESOLUTION 0.1

S-val S=1

Figure A.13: Y Unweighted Dataset Resolution 0.1 - BRD of 91% Highlighted
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S-val S=2

Figure A.14: Y Unweighted Dataset Resolution 0.1 - BRD of 91% Highlighted
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S-val S=3

Figure A.15: Y Unweighted Dataset Resolution 0.1 - BRD of 91% Highlighted
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A.0.6 Y DATASET WEIGHTED, RESOLUTION 1.0

S-val S=1

Figure A.16: Y Weighted Dataset Resolution 1.0 - BRD of 91% Highlighted
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S-val S=2

Figure A.17: Y Weighted Dataset Resolution 1.0 - BRD of 91% Highlighted
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S-val S=3

Figure A.18: Y Weighted Dataset Resolution 1.0 - BRD of 91% Highlighted
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A.0.7 Y DATASET WEIGHTED, RESOLUTION 0.1

S-val S=1

Figure A.19: Y Weighted Dataset Resolution 0.1 - BRD of 91% Highlighted
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S-val S=2

Figure A.20: Y Weighted Dataset Resolution 0.1 - BRD of 91% Highlighted
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S-val S=3

Figure A.21: Y Weighted Dataset Resolution 0.1 - BRD of 91% Highlighted

284


	INTRODUCTION
	KEY CONCEPTS IN DIGITAL FORENSIC SCIENCE
	CHALLENGES WITHIN DIGITAL FORENSIC SCIENCE
	OBJECTIVES
	THESIS SUMMARY

	CONTEXT ANALYSIS
	INTRODUCTION
	THE CONTEXT ANALYSIS COMPONENTS
	IDENTIFICATION
	INTERPRETATION
	VERIFICATION
	ACTIVITY ANALYSIS

	LITERATURE REVIEW
	TEMPORAL VERIFICATION â•ﬁ SYNCHRONISATION
	TEMPORAL VERIFICATION â•ﬁ VALIDITY
	INTRA-SESSION ACTIVITY ANALYSIS - SINGLE-LAYER
	INTRA-SESSION ACTIVITY ANALYSIS - MULTI-LAYER
	SESSION-TO-SESSION ACTIVITY ANALYSIS

	RESEARCH QUESTION AND METHOD
	The Research Issues
	Methods in this Thesis

	CONCLUSION

	SESSION-TO-SESSION ANALYSIS
	INTRODUCTION
	INTERNET HISTORY ARTEFACTS
	SEQUENCE OR AGGREGATE
	SESSIONS AGGREGATES
	BINARY COMPONENTS VERSUS INTEGER COMPONENTS
	SESSION-TO-SESSION COMPARISON
	SELECTING THE TIME THRESHOLD
	ACCURACY OF THE SESSION SELECTION METHODS
	DATASETS USED IN THE EXPERIMENTS
	SELECTION OF SUITABLE DATA
	THE DATASETS USED IN THIS RESEARCH
	STATISTICAL CORRELATION WITH THE DATASETS
	STANDARD DEVIATION AND `NORMALITY' OF THE DATASETS
	DATASET DISSEMINATION ISSUES

	ACCURACY OF THE SESSION-TO-SESSION COMPARISON METHOD
	THE T-VAL
	THE S-VAL
	THE C-VAL
	THE AMBIGUITY PROBLEM

	MANIPULATING THE `DIALS'
	THE W DATASET
	THE X DATASET
	THE Z DATASET
	THE Y DATASET
	THE CORRECT, INCORRECT AND AMBIGUOUS MATCHES

	EVALUATION

	ZERO-KNOWLEDGE INTERNET HISTORY SESSION FEATURE EXTRACTION
	INTRODUCTION
	SHORT SESSIONS AND LONG SESSIONS
	THE W DATASET SHORT/LONG SESSIONS
	THE X DATASET SHORT/LONG SESSIONS
	THE Y DATASET SHORT/LONG SESSIONS
	THE Z DATASET SHORT/LONG SESSIONS
	EVALUATION OF THE SHORT/LONG SESSIONS

	SHORT-ONLY AND LONG-ONLY COMPONENTS
	IDENTIFYING COMPONENTS BASED UPON AN EXTERNAL POPULARITY REFERENCE
	LOCAL POPULARITY
	GLOBAL POPULARITY
	COMPARING LOCAL POPULARITY AGAINST GLOBAL POPULARITY
	GROUPING RELATIVE POPULARITY
	REGIONAL POPULARITY AS A CONSIDERATION
	HISTORIC POPULARITY AS A CONSIDERATION

	OTHER APPROACHES
	GROUP BY TYPE
	GROUP BY KNOWN
	TEMPORAL GROUPING
	SPATIAL GROUPING

	EVALUATION OF EFFECTIVE FEATURE EXTRACTION
	SESSION LENGTH AS A FEATURE
	THE GROUPS
	DEGREES OF CONFIDENCE WHEN MATCHING MULTIPLE GROUPS
	OTHER METHODS


	GRAPHICAL REPRESENTATION AND USE OF SESSION-TO-SESSION ANALYSIS
	INTRODUCTION
	GRAPHICAL REPRESENTATIONS OF SESSION-TO-SESSION COMPARISONS
	SESSION-TO-SESSION COMPARISONS
	DIRECT AND INDIRECT RELATIONSHIPS
	SESSION-TO-SESSION GROUPS

	MEASURING THE ACCURACY OF GROUPING
	COMMUNITY DETECTION
	MEASUREMENT CRITERIA
	EXPERIMENTAL RESULTS FOR DATASETS
	OVERALL COMMENTS ON ALL FOUR DATASETS
	PLOTTING THE ACCURACY OF THE GROUPING METHODS

	GRAPHING THE RESULTS OF THE GROUPING AT THE `BEYOND REASONABLE DOUBT' LEVEL
	W DATASET GRAPHS
	Y DATASET GRAPHS
	Z DATASET GRAPHS
	X DATASET GRAPHS
	OVERALL COMMENTS ON THE GRAPHS

	ILLUSTRATING THE EFFECT OF THE S-VAL AND T-VAL ON THE NETWORK GRAPHS
	USING COMMUNITIES TO IMPROVE PERFORMANCE
	PATTERNS OF LIFE
	INVESTIGATIVE REASONING
	TESTING THE INVESTIGATIVE HYPOTHESIS
	DISCOVERY OF LIFESTYLE INFORMATION

	CONCLUSIONS

	CONCLUSIONS
	CONTRIBUTIONS
	DISCUSSION
	FUTURE WORK
	NORMALITY OF BEHAVIOUR
	COMMUNITIES
	CATEGORISING A SESSION
	DISPLAY AND PRESENTATION
	SEQUENTIAL ANALYSIS

	FINAL COMMENTS

	REFERENCES
	RESULTS AND TABLES
	W DATASET UNWEIGHTED, RESOLUTION 1.0
	X DATASET UNWEIGHTED, RESOLUTION 1.0
	Z DATASET UNWEIGHTED, RESOLUTION 1.0
	Y DATASET UNWEIGHTED, RESOLUTION 1.0
	Y DATASET UNWEIGHTED, RESOLUTION 0.1
	Y DATASET WEIGHTED, RESOLUTION 1.0
	Y DATASET WEIGHTED, RESOLUTION 0.1


