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ABSTRACT 
 

Fatty acid is the main substance in food diet and constitutes the major energy source. The 

absorption and metabolism of fatty acids provide the energy supply for biological activities in the 

human body. Mathematical models may be used to describe the absorption and metabolism 

processes of fatty acids in different organs in the human body

 

One of the main challenges in computational biology is to build a suitable macro-scale 

mathematical model for fatty acids concentrations in the blood stream. In this thesis, several 

models in the literature are modified by considering the transport in the absorption process and 

the metabolism in the blood of substances. An absorption delay is included in an interactive 

system of insulin-glucose-fatty acids model in Chapter 3. Data from existing literature was used 

in determining parameters, such as transfer rate, related to these models using inverse problem 

technique. 

 

A significant process in the triglyceride absorption is the hydrolysis reaction which releases fatty 

acids molecules for human activities. Modelling the hydrolysis process is difficult due to the 

complex reaction in the digestive system. In this study a general form of compartment model is 

presented and one specific example is provided through the use of a “regulator” built into the 

compartment model. A multi-objective optimisation problem is resulted from this study and 

various parameters solved along with a set of in vitro data as demonstrated in Chapter 4. 

 

In the absorption process, the substance needs to be transported through absorptive epithelial 

cells into the blood vessel. The diffusion and reaction at the cellular level have uncertainties 

unknown to the biologists. In this thesis, the transport of fatty acids in the absorptive epithelial 

cell is modelled by a reaction-diffusion system at the cellular model in Chapter 5 and the missing 

information on the membrane of the epithelial cell is treated as uncertainty in the model. The 

Monte Carlo method is used to study these uncertainties. 

 

Numerical experiments demonstrated the use of three models, with suitable parameters, may 

describe the absorption and metabolism of fatty acids in different organs in the human body. 
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𝐶𝑖𝑛𝑡 : Nutrients concentration in the blood 

𝐶𝑠    : Drug concentration in the stomach 

𝐶𝑖    : Drug concentration in the intestine 
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1. Chapter 1          INTRODUCTION 

 

 

 

 

 

 

The absorption and metabolism processes are important biological processes. The relevant 

physiology can be found in related research [3, 126, 162]. There is also much experimental work 

[44, 119, 204] in the validation of the physiology. It is well known that experimental biology is 

overwhelmed with data. Quantitative methods provide suitable techniques to deal with data. 

Some early quantitative work can be found in [11, 27, 89]. The data-based method is widely 

available for quantitative analysis of population dynamics and related subjects [144]. Data 

analysis in molecular biology allows statistical and graphical description of the molecular 

movement and chemical reactions [205].  

 

Apart from the above quantitative methods of handling data, biologists and mathematicians also 

wish to model biological phenomena by means of computational simulation. Many mathematical 

models have been developed for different problems. For example, the diffusion process may be 

used to understand the movement of red cells in the blood [176]. The simple epidemic model as 

presented in [14] can be used to describe susceptible population that are to be infected 

imminently, and some continuum models can be used for the understanding of tumour growth 

[15, 88].  Experimental data may be used to determine parameters of such mathematical model. 

Data fitting via the inverse problem [66, 188, 189] is one technique that may be adopted by 
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biologists and mathematicians in constructing models. Such combined use of mathematical 

methods, data and models is usually referred to as computational biology [73, 79, 201]. 

Significant advances in computational biology have taken place due to the development of robust 

numerical methods [29, 111, 153, 184], computational equipment [42, 45, 83], capability of 

handling data [80, 92, 177], understanding of data-analytical methods and theoretical knowledge 

of biological systems. 

 

This thesis limits the study to the absorption and metabolism processes. In this chapter, the basic 

equations related to the absorption and metabolism of three different types of nutrients are 

discussed.  A brief discussion is also given of the related numerical methods and software. An 

outline of the methodology to be employed, and the objectives and layout of this thesis are 

presented. 

 

1.1. The Absorption Process 

 

The absorption process involves assimilating substances into cells or across the tissues along 

relevant regions of an organ. In the digestive system, various substances are absorbed by the 

human tissue through different enzymes and pathways.  The study of the absorption process 

brings significant influence and development in various branches of biological research. The 

absorption of proteins and carbohydrates provides an understanding of how tissue and organ 

functions are maintained [54, 96]. Such knowledge is widely applied in the food production 

industry [168]. The study of absorption of drugs/medicine into the bloodstream is a related 

subject and considered as part of pharmacokinetics [196]. On the other hand, the absorption of 

lipids is closely related to the study of diabetes [114], heart diseases [90], and food supplements 

[140], amongst others. 
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1.1.1. Absorption of protein and carbohydrate 

 

Protein is a nutrient necessary for all human activities and plays a significant role in body growth 

and maintenance. The absorption of protein can be divided into two phases [20]. The first phase 

takes place in the stomach where an enzyme called pepsin is secreted from the cell lining along 

the tissue wall. Pepsin can be used to degrade protein molecules into smaller amino acids or 

peptide molecules. The second phase takes place in the small intestine where the breakdown of 

protein molecules continues leading to the transport of amino acids through the epithelial cells. 

These amino acids have dimension small enough to be able to penetrate through the internal 

surface of the small intestine. From this point afterwards, they enter the bloodstream through  

capillaries. 

 

A carbohydrate is a biological molecule obtained by combining carbon, hydrogen and oxygen 

atoms. Carbohydrate performs numerous roles in living tissues.  There are three main types of 

carbohydrates: starches, sugars and dietary fibre. Starches and sugars are regarded as energy-

yielding carbohydrate molecules because they can be digested completely and can provide the 

organ with 4 calories of energy per gram of concentration once they are absorbed [147]. In 

contrast, fibre cannot be fully digested due to the lack of enzymes to breakdown its bigger 

molecules, and is usually eliminated through excretion. Note that the digestible carbohydrates are 

starches and sugars which are broken down into the simplest molecule by the enzymes released 

from the small intestine. These digested starches and sugars are ready to be absorbed once they 

begin to move along the lumen in the small intestine.  If the carbohydrates are not fully absorbed, 

they can be eliminated from the body. In addition, the lactose, a type of sugar, may also be 

excreted if there is not enough demand from the human body or due to a lack of enzyme to digest 

it. 

 

There are several models developed to interpret the rate of food digestion through glucose 

absorption [105, 136]. Let 𝐶𝑖𝑛𝑡(𝑡) be the glucose concentration in the blood, the kinetics for the 

glucose absorption can be described as  
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𝑑𝐶𝑖𝑛𝑡(𝑡)

𝑑𝑡
= 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑢𝑝𝑡𝑎𝑘𝑒 − 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑   (1.1)  

 

This equation is used to describe the glucose kinetics in the small intestine as discussed in [9, 10, 

35]. Equation (1.1) provides an essential balance description of the glucose concentration change 

with respect to time due to the uptake of a meal containing glucose subtracting the absorbed 

glucose.   

 

There are several extensions in recent years to the above model in Equation (1.1) through 

modification of the resulting ordinary differential equation (ODE) [134, 141, 157] describing 

concentrations of certain substances. However, some nutrients depend on the transport of flows 

in regions like the stomach and the small intestine [69]. Such models cannot describe the 

absorption of lipids or fatty acids due to the complexity of fatty acids transport in the small 

intestine [81]. Much research has focused on the compartment model for glucose instead of fatty 

acids absorption due to its complexity [105, 136, 199]. A proper mathematical description is 

needed by combining the experience of models for protein absorption and the feature of lipid 

absorption. 

 

1.1.2. The absorption of drug 

 

Unlike the study of the digestive system for absorption of daily food, the research on absorption 

of drugs is for medical use, where the profiles of drugs may be changed accordingly by adjusting 

relevant factors that are involved in the absorption process. 

 

The drug absorption mainly takes place in stomach and small intestine [6, 17].  The acidity (pH) 

environment is important for drug absorption. The pH value in the stomach can increase from 

about 1.5 to 7 when food is eaten. After 10 minutes, the pH value drops to 5, and continuously 

decreases to 3 after 3 hours from the time the food was ingested. The transport of food into the 

small intestine can also lead to a drop of the pH value in the jejunum, typically from 6.1 to 4.5  

about 1 to 2 hours after the food intake. Other parts of the small intestine and the large intestine 

do not show a dramatic change of pH value after the meal, due to the transfer time of food 
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particles from one compartment to the other in the intestine. Therefore it can be deduced that the 

maximal absorption of drug molecules is in the jejunum over a period of 3- 5 hours, in the pH 

values range from 4.5 – 7 [5]. 

 

Besides the pH values in the small intestine, there are various other factors that allow 

pharmacokinetic models to control the drug effects. The rate of tablet dissolution relies on the 

surface area of the solid and the diffusion of molecule [52]. The bioactivity of a drug may inhibit 

the function of proteins in the tissue, and the effect of drug is closely related to whether the 

enzyme exists in the tissue or organ. 

 

As part of the pharmacokinetic study, the human drug oral absorption kinetics is usually 

described by a system of ODEs [13]. Under fasting condition, the gastric emptying and intestinal 

transiting of drugs can be approximately described by first-order kinetics [49]. A typical drug 

absorption model relies on the concept of compartments [156]. In the macroscopic model, a 

coarse partitioning of the digestive system leads to three compartments, namely the stomach, the 

small intestine and the blood stream, as depicted in Figure 1.1. Note that the arrows are pointing 

in one direction without a reverse arrow due to the direction of substance transport. 

 

Figure 1.1 The schematic view of drug absorption 
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Let 𝐶𝑠 ,  𝐶𝑖  and 𝐶𝑝𝑙  represent the amounts of drug in the stomach, intestine and the amount 

absorbed as reflected in the plasma, respectively. Here 𝑘𝑠, 𝑘𝑖, 𝑘𝑎 and 𝑘𝑒𝑙 are first-order transport 

rate of gastric emptying, intestinal transit, absorption, and elimination from plasma, respectively.  

To describe the drug transport in a model system, the technique of physiologically based 

pharmacokinetic (PBPK) modelling method can be applied in an ODE system. The first PBPK 

model was developed in 1996 [72], and now is widely used in drug transport research. In the 

PBPK model, the multi-compartment system is built, with compartments representing organs or 

tissue and may have interconnections corresponding to blood or lymph flows. The drug transport 

into a tissue is rate-limited by either perfusion or permeability. Under this limitation, the rate of 

entry to tissue for the quantity of drug is simply equal to the transport rate times the 

concentration of drug in the incoming compartment. The concept of the compartment in the 

PBPK model represents a unique substance concentration in different organs, and the same 

application can be found in [156]. The transit rate in the adjacent compartments can be defined 

as a constant. In this case represented in Figure 1.1, the flow transport rate is defined as 

𝑘𝑠, 𝑘𝑖, 𝑘𝑎 and 𝑘𝑒𝑙 and the model can be built as follows: 

 

{
  
 

  
 

𝑑𝐶𝑠

𝑑𝑡
= −𝑘𝑠𝐶𝑠

𝑑𝐶𝑖

𝑑𝑡
= 𝑘𝑠𝐶𝑠 − (𝑘𝑖 + 𝑘𝑎)𝐶𝑖

𝑑𝐶𝑝𝑙

𝑑𝑡
= 𝑘𝑎𝐶𝑖 − 𝑘𝑒 �𝐶𝑝𝑙

     (1.2) 

 

The compartment model as described in Equation (1.2) provides a macroscopic view on the 

concentration of substrates. Note that such model has not taken into account metabolism and 

other organs connected to the plasma compartment.  
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1.1.3. The absorption of lipids 

 

Lipids are organic compounds including fats, waxes, monoglycerides, diglycerides, triglycerides 

amongst others. The molecules of a lipid can be used for energy storage and signalling transport 

inside the tissue. They are also acting as one of the components of the membrane structure. The 

digestion of lipids mainly concerns the absorption of triglyceride, which is a unit of fat with a 

structure of three fatty acids linked to a glycerol molecule [164]. The key point in the digestion 

and absorption of fat is the solubility of a substance. The solubility of lipids is relatively poor in 

the aqueous environment of the digestive tract, but the digestive enzyme lipase is water-soluble. 

As a result, lipase can only work at the surface of fat globules as the triglyceride molecules are 

transported in the form of an emulsion, which is a mixture of more than one liquid. The word 

“emulsion” comes from the Latin word for “milk”, as milk is an emulsion of fat and water, 

amongst other components. In an emulsion, the enzyme liquid is dispersed in the triglycerides. 

This emulsion contains both a dispersed and a continuous phase with an “interface” boundary 

between the two phases.  In the emulsion form, the triglycerides can come into contact with the 

lipase enzyme that results in a hydrolysis process during which molecules of water are split into 

hydrogen cations and hydroxide anions. For triglyceride, the lipase enzyme acts at the ester bond 

in its structure, hydrolysing the bond and “releasing” the fatty acids. The relatively small fatty 

acids molecules can pass through the epithelial cells in the small intestine. In this way, units of 

fat can be absorbed and enter the blood vessels [43]. The hydrolysis process follows a similar 

compartment model as described above. Chapter 4 provides an example to illustrate the idea. 

 

In the entire absorption system, the transport rate in the small intestine is highly affected by the 

metabolic process after the substance enters the blood vessel [41]. For example consider the liver, 

a significant organ in the body that has a wide range of functions, including enzyme synthesis, 

production of biochemical and various metabolism processes.  Most triglycerides enter the liver 

after being absorbed from the small intestine and transported in the capillaries. In the blood 

vessel, the triglyceride can release fatty acids by metabolism process which is presented in the 

next section. It is therefore necessary to link the details of metabolism to the absorption model in 

this research. In this thesis an attempt is made to link some of the details pertaining to 

metabolism with the absorption compartment model in Chapter 3.  
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1.1.4. The releasing process for fatty acids in absorption 
 

A triglyceride (TAG or TG) is an ester derived from glycerol and three fatty acids. As the main 

constituent in vegetable oil and animal fat, the triglyceride functions in the body as a source of 

energy [164].  Usually triglycerides are stored in adipose tissue or fat cells. The fat cells can 

release triglyceride molecules for the energy use in the human body, but the triglyceride cannot 

be used directly in the absorption process.  The triglyceride has to release fatty acids which 

contain energy for the human activity.  Also the triglyceride itself converts to diglyceride, 

monoglyceride or glycerol. The structure of triglyceride is shown in the Figure 1.2.  

 

 

Figure 1.2 The structure of triglyceride 

 

In the structure of triglyceride, the molecule is divided into two parts: glycerol molecule and 

three molecules of fatty acids. In the hydrolysis process, the ester bonds between glycerol and 

fatty acids are disconnected due to the reaction of lipase enzyme. In this way the fatty acids can 

be released in the absorption process. The triglyceride becomes diglyceride which contains two 

fatty acids molecules and glycerol, or monoglyceride which contains one molecule of fatty acid 

and glycerol. This process is known as hydrolysis. 

 

In this study, the mathematical model is built regarding to the absorption of fatty acids. In 

Chapter 3 the dynamics of fatty acids in the blood vessel is considered in the absorption and 

metabolism system in human body. The ODE model considers the rate of change of free fatty 

acids concentration in the venous and arterial blood sample. In Chapter 4 a set of in vitro data is 
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considered. The hydrolysis reaction of triglyceride is controlled in the experiment by biologists. 

An ODE system is built regarding to the concentration of triglyceride, diglyceride, 

monoglyceride and fatty acids in the reaction. In Chapter 5 a PDE model is built considering the 

lipid transport in the absorptive cell. In the absorptive cell, the fatty acids and monoglyceride can 

enter the cell and form the triglyceride, then triglyceride moves into the blood vessel and releases 

the free fatty acids. This PDE model can be built by considering the fatty acids dynamics in 

Chapter 3, and the reaction inside the cell is similar to the reaction in the hydrolysis model in 

Chapter 4. In this way, the absorption of fatty acids can be represented by means of qualitative 

method. 

 

1.1.5. Linkage between models and data 

 

The mathematical model described in Equation (1.2) involves physical parameters known as 

absorption rates. These parameters may be constants or time dependent and may be determined 

by means of computational method [100]. Recently models for intestinal permeability or 

absorption [97, 109, 202] have shown a rapid development. The use of experimental data in 

determining these physical properties through the use of inverse problems is still an uncommon 

routine process amongst biologists, not mentioning non-linear models and many generic 

stochastic optimisation methods involved in the process of inverse problems.  

 

In this thesis, the computational framework for inverse problems and the relevant optimisation 

methods as described in Chapter 2 is to be built and explored for the absorption and metabolism 

process of fatty acids. With these understandings of absorption process, mathematical models 

can be proposed using experimental data describing the lipid digestion. Using this framework, 

the absorption details can be quantitatively represented and the rate of digestion can be retrieved 

from the use of measurement.  
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1.2. The metabolism process 

 

Metabolism refers to the chemical transformations of substances within the cells of living organs. 

The metabolism allows one organ to reproduce and grow, and also react to its environment.  It is 

usually classified into two types: catabolism and anabolism. The catabolism refers to the 

breakdown process of big molecules inside the body. In the catabolism, the metabolism reaction 

can release energy for adenosine triphosphate (ATP) generation. The anabolism uses energy to 

form new compounds like proteins and nucleic acids.  It is well known that the absorption and 

metabolism are closely related in the digestive system. Most substances in food need to be 

absorbed before the metabolism can take place in the tissue. Also many metabolism processes 

are necessary in order to break down the bigger molecules in the small intestine ready for the 

absorption process. Similar to the absorption process, the metabolism of proteins, carbohydrates 

and lipids have different pathways and chemical reactions [21]. In computational biology, the 

catabolism and anabolism processes are usually described by ODE systems.  

 

An example of such ODE model for the metabolism of food diets is the glucose-insulin 

regulatory system [107, 115, 117]. The human body needs to maintain its glucose concentration 

level. The insulin is the main inhibitor for the glucose kinetics in blood vessels [116]. The insulin 

and glucose relation may be used to characterise the metabolism of the human body. Let 𝐶𝐺 and 

𝐶𝐼 be the glucose and insulin concentration at time 𝑡. The rate of change of the concentration for 

glucose and insulin may be defined as    

 

{

𝑑𝐶𝐺

𝑑𝑡
= 𝐺𝑝𝑟𝑜 − 𝐺𝑢𝑡𝑖

𝑑𝐶𝐼

𝑑𝑡
= 𝐼𝑝𝑟𝑜 − 𝐼𝑐𝑙𝑒

      (1.3) 

 

where 𝐺𝑝𝑟𝑜, 𝐺𝑢𝑡𝑖 indicates the glucose production and utilization, respectively. 𝐼𝑝𝑟𝑜, 𝐼𝑐𝑙𝑒 indicates 

insulin production and insulin clearance in the blood, respectively.  
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In this chapter, there are two types of compartment models for the absorption and metabolism 

process. In an absorption model such as Equation (1.2), the compartment indicates different 

sections of a body within which the concentration of substance is equal according to assumption. 

In this case, the mass transport is controlled by a flow rate and the ODE system represents the 

rate change of concentration of a unique substance in different compartment. In a metabolism 

process such as Equation (1.3), the compartments are used to describe the concentration of 

different substances which are involved in a chemical reaction. The rate change of concentration 

is proportional to the substance in the chemical reaction. More examples can be found in Chapter 

3. 

 

There are many models for the metabolism of glucose calibrated by experimental results [47, 105, 

107]. In contrast, the compartment model for lipid metabolism may be more complicated due to 

its complexity of chemical reaction in the blood [57, 91]. In this thesis, one aim is to build a 

novel model of fatty acids containing the absorption process and the metabolism process. 

 

 

1.3.  The transport of fatty acids in cellular level 

 

The movement of smaller compounds of nutrients in a cell is a complex process which includes 

certain biological mechanisms such as signalling, diffusion, chemotaxis, haptotaxis, reorientation 

due to the surrounding tissue fibres, cell-cell interaction, and many others [197]. There are also 

some mechanical considerations such as law of balance, mechanical forces, pressure, etc. [60, 

133 ]. In the study of cellular kinetics as described in [65, 82, 145], the models are mainly for 

describing the cell migration through the extracellular matrix (ECM). The ECM is a collection of 

extracellular molecules secreted by cells, and it can be regarded as the outer environment for cell 

movement. These kinetic models do not provide any description inside the cell. A complete 

model describing the physiology inside the cell needs to be developed in order to provide better 

computational understanding of the process at the cellular level. This thesis attempts to provide 

an early study of fatty acids movement inside the epithelial cell, which forms an essential part of 

the lipids absorption process [8]. 
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In this thesis, a reaction-diffusion system is built to represent the transport of lipid in the 

epithelial cell environment. The diffusion and the hydrolysis reaction inside the cell are 

considered in the intestinal epithelial cell. The study at cellular level provides a microscopic 

view of absorption process. The novelty of this model at the cellular level is the inclusion of a 

reaction term inside the cell that can be linked to the hydrolysis rate in the macroscopic kinetic 

model and the inverse problem as detailed in Chapter 4.   

 

1.4. Aims and objectives of this thesis 

 

The aim of this thesis is to extend existing compartment models by combining absorption and 

metabolism at the macroscopic level in order to best fit experimental data, to examine absorption 

at the cellular level based on a modified term in the partial differential equations (PDEs).  

Another aim is to explore various suitable numerical techniques in the studies related to inverse 

problems and data fitting.  Finally, a first attempt in the understanding of effects on the outcome 

of absorption and metabolism due to several uncertainties which appear in the boundary 

conditions due to missing information and data is also included.  

 

The main objectives of the thesis are as follows: 

 

i. Extend the macroscopic compartment model to include the effect of metabolism for the 

fatty acid kinetics. 

 

ii. Develop the concept of a regulator for the standard hydrolysis model for lipid metabolism. 

 

iii. Propose a reaction-diffusion model for the fatty acids transport in the cellular model.  

 

iv. Apply numerical techniques of handling in vivo and in vitro data for inverse problems.  

 

v. Examine “Stochastic outcome” of the cellular model due to uncertain input. 
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1.5. Outline of the thesis  

 

The remaining part of the thesis is organised as follows. In Chapter 2, related numerical methods 

and mathematical tools as applied in this research are introduced. The chapter begins with the 

concept of compartment model and the reaction-diffusion equations. The algorithm of inverse 

approach is presented in this chapter in preparation for the inverse problem to be presented in the 

following chapter.  

 

In Chapter 3, a model for the fatty acids absorption and metabolism is developed to describe the 

fatty acids concentration data in the blood vessel. In this chapter, the existing compartment 

models are introduced [158]. There are modifications of these compartment models linking the 

fatty acids concentration to the absorption process.  

 

Chapter 4 focuses on a significant stage of the lipid metabolism: the hydrolysis and esterification. 

The importance of these two processes [26] is explained and the related ODE models are built in 

the chapter. Modification of the model through the incorporation of Michaelis-Menten kinetics 

[113] is motivated in this chapter. The multi-objective optimisation problem was addressed by 

means of Quantum-behaved Particle Swarm Optimization (QPSO) method. A computational 

analysis of the weights used in the multi-objective function is provided. 

 

Chapter 5 considers the absorption process at the cellular scale level. A partial differential 

equation (PDE) system is built to model the absorptive cell: the epithelium in the small intestine. 

A diffusion reaction system is developed indicating the movement of lipid molecules inside the 

cell. As the chemical reaction is the same as the esterification process described in Chapter 4, the 

esterification term in hydrolysis model is assumed as the reaction in the PDE model. As the 

membrane of epithelial cells has irregular structure and the feature is still unclear for biologists 

[172], the missing information and data are described as uncertainty on the boundary condition. 

By applying the Monte-Carlo method in the computational work, the confidence interval for lipid 

can be computed as the estimation of concentration of lipid inside the cell.  
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Finally, in Chapter 6, some conclusions are drawn which summarise the main work of the thesis 

and its overall direction. Various suggestions are also given for the direction of future work.  
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2.  Chapter 2       Mathematical Preliminaries 

 

 

 

 

 

 

This chapter gives the mathematical tools and concepts that are used in this thesis. In Section 2.1, 

the compartment concept and ODE for absorption and metabolism are discussed. Section 2.2 

provides background of the reaction-diffusion phenomenon and the related PDEs used in the 

cellular model. Section 2.3 gives a brief introduction of methods in the inverse problem. Finally 

a brief description is given of the use of uncertainty analysis in the PDE model in an attempt to 

understand the effect of missing information in the absorption process. 

  

2.1. The compartment model and ODE systems 
 

Compartment models are often used to describe the macroscopic view of the kinetics in 

biological systems [194]. There are two definitions of compartment in computational biology 

[173, 193]. First a compartment is used to represent different substances involved in a chemical 

reaction. Second a compartment may refer to unique nutrients in different physical sections such 

as stomach or intestine in the absorption process. The compartments for part of the absorption 

can be indicated in the schematic view as below: 
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Figure 2.1 A sketch for mass balance system 

 

Figure 2.1 indicates the mass flow for tissue in the absorption process. The absorptive organ such 

as stomach or small intestine can be considered as a mass balance system in the mathematical 

model. The substance in the compartment may have an outflow out of the system, and the 

nutrient in the compartment is also involved in other process such as metabolism in the small 

intestine. By assuming the volume of the compartment as 𝑉, the concentration of nutrient as 𝐶,   

the area of the interface of compartment as 𝐴. The mass balance equation can be written as 

below: 

 

𝑉
𝑑𝐶

𝑑𝑡
= −𝑘1𝐴𝐶 + 𝑆1     (2.1) 

 

where the 𝑘1 is transfer rates from the compartment to the outer environment 

 

In the model of Equation (2.1), a compartment system is built based on the physiologically based 

modelling. The term 𝑆1 can be assumed as other chemical reactions in the digestion system. In 

the ODE model the different volume can be accounted for the physiologically based 

pharmacokinetic modelling (PBPK) [74]. In this study, the concentration of substance in the 

digestion system is considered in the mathematical model, and the values of parameter 𝑘1 in 

Equation (2.1) are identified by inverse approach in this study by coupling with experimental 

data. The source term 𝑆1 is assumed according to other chemical reactions in the metabolism 

process. 
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For the chemical reaction in the digestion process, the concentration of one nutrient in actual 

organs is described in the form of compartment. The model development process begins with 

defining the targets tissues in which the transport exists. Then the physiological parameters are 

defined representing the flow direction and rate. In this system, the time-dependent biological 

processes such as absorption are described as a system of ordinary differential equations. The 

parameters in the model are derived from physiological principles. The absorption system in this 

thesis can be built following these features of physiologically based pharmacokinetic models. 

 

 

Another application of the compartment model is metabolism. Consider the reaction 

 

𝑁2𝑂5
𝑘
→𝑁𝑂2 + 𝑂2     (2.2) 

 

which takes place in a complicated metabolism process. One can use the concept of 

concentration as a compartment, as described before, which results to three compartments for the 

reaction in Equation (2.2). Compartment A indicates the compound  𝑁2𝑂5 . Compartment B 

indicates the compound 𝑁𝑂2, and Compartment C indicates the compound 𝑂2. The connection 

between the three components is shown in Figure 2.2. 
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Figure 2.2 Compartments in a chemical reaction 

 

Define 𝐶𝐴, 𝐶𝐵 and 𝐶𝑐  as the concentrations of  𝑁2𝑂5, 𝑁𝑂2 and 𝑂2, respectively. In the Figure 2.2, 

each compartment indicates different substances in a chemical reaction. There are many 

compartment models that describe the metabolism process which contains more than one 

reactants and productions [107, 143]. The kinetics for different substances related to each other 

as they are involved in a chemical reaction. The definition of compartment in this case is 

different from that in Equation (2.1) which only considers specific nutrient in different tissue. 

The chemical reaction may change the concentration of various nutrients in this compartment 

model. The kinetic equations are generally derived using law of mass action [99]. In this theory 

the rate of the reaction in Figure 2.2, i.e. the rate with which one molecule of 𝑁2𝑂5  is 

transformed into 𝑁𝑂2 and 𝑂2 is proportional to the amount of  𝑁2𝑂5. The ODE system can be 

built as below: 

 

𝑑𝐶𝐴

𝑑𝑡
= −(𝑘𝐴𝐵 + 𝑘𝐴𝐶)𝐶𝐴     (2.3) 

𝑑𝐶𝐵

𝑑𝑡
= 𝑘𝐴𝐵𝐶𝐴        (2.4) 

𝑑𝐶𝐶

𝑑𝑡
= 𝑘𝐴𝐶𝐶𝐴        (2.5) 
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where the reaction rate is given by 𝑘𝐴𝐵 and 𝑘𝐴𝐶.  

 

As the metabolism and absorption are closely related in the human digestive system, both 

processes are considered simultaneously in the model building. The nutrients in the food such as 

lipids are transported into blood compartment by absorption, and then these substances can have 

a metabolism reaction in the blood vessel. In this way the compartments may have different 

meaning in the model development. In the absorption part, one compartment indicates the transit 

place in different organs. In the blood vessel part, compartment can represent the different 

substances, some are absorbed from absorption stage and other compartments indicate the 

nutrients existing in the blood vessel such as enzymes or insulin. 

 

More complicated examples exist of using several ODEs and a generalisation of model in 

Equations (2.3) to (2.5). They can be written as a linear ODE system 

 

𝑑𝑪

 𝑑𝑡
= 𝑨𝑪      (2.6) 

 

Where𝑪  = (𝐶1, 𝐶2, … , 𝐶𝑁)
𝑇  ,  𝑨  is a matrix, and 𝑁  is the number of compartments. Initial 

condition such as 𝑪(0) = (𝐶1(0), 𝐶2(0),… , 𝐶𝑁(0))
𝑇 is required in order to have a well-posed 

problem. Typically the eigenvalues and eigenvectors are required. For example, if 𝐴  has n 

distinct eigenvalues, the differential equation has the following general solution: 

 

𝑪(𝑡) = 𝑐1𝑒
𝜆1𝑡𝒖𝟏 + 𝑐2𝑒

𝜆2𝑡𝒖𝟐 +⋯𝑐𝑛𝑒
𝜆𝑛𝑡𝒖𝒏 

 

The parameters 𝜆1, 𝜆2…𝜆𝑛 are the eigenvalues of matrix A, and 𝒖𝟏,𝒖𝟐…𝒖𝒏 are the eigenvectors,  

c1, c2…cn are constants. From the analytical solution form Equation (2.6) it can be seen that the 

eigenvalues and eigenvectors are key in obtaining the exact solution in such differential 

equations. Analytical techniques such as finding the eigenvalues of 𝑨 exist for solving Equation 

(2.6) [104, 203]. 
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In this thesis, numerical techniques are considered. There are typical numerical integration 

methods include Euler’s method, Runge-Kutta methods [31], etc. On the other hand, the 

mathematical software Matlab has a range of differential equation solvers for initial value 

problems. There are some examples for these solvers such as ode34, ode113, ode15s. The work 

in Chapter 3 relies on a 4
th

 order Runge-Kutta method written in Matlab.  

 

2.2. The reaction-diffusion equation 

 

The reaction-diffusion systems are mathematical models describing the distribution of substances 

under the influence of two factors: local chemical reactions and diffusion which leads to the 

spread out of substances in space. 

 

The reaction-diffusion systems are initially used to describe the substance reaction in chemistry 

[4, 53]. It can also represent the dynamics of population in biology [178], especially for the 

tumour growth [63]. In this study, the reaction-diffusion is used to model the transport in the 

epithelial cell. In the absorption process, digested food is able to pass into the blood vessels in 

the wall of the small intestine through the process of diffusion.  

 

The absorption of fatty acids includes complex processes in the epithelial cell. The movement of 

molecule in the cellular level can be studied from just diffusion in the epithelial cell initially. 

One can start the analysis from the simple example of glucose diffusion at cellular level. The 

glucose absorption at the cellular level refers to transport from the lumen of the small intestine as 

shown in Figure 2.3. The layer of membrane between blood vessel and epithelial cells is called 

basolateral membrane and the opposite side is apical membrane. The glucose can enter the 

epithelial cell with the help of protein transporters [136], which provide a gradient for inflow into 

epithelial cells. In the basolateral membrane, the glucose has a flow out of the cell to the blood 

vessel. 



Chapter 2 

 

21 

 

 

Figure 2.3 The transport of glucose through epithelial cell. 

 

In modelling the epithelial cell as shown in Figure 2.3, the domain can be assumed in one 

dimension as the flow into and out of the cell in one direction. The domain can be taken by 

considering the rough shape of epithelial cell [137].  The flow in the membrane of a cell requires 

a gradient of the concentration to be imposed on the boundary condition as shown in Figure 2.4. 

 

 

 

Figure 2.4 The domain for the cellular model of glucose transport 
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The length of an epithelial cell is set as 𝐿. The flow of glucose molecules into the cell is from the 

apical membrane which is along the boundary at 𝑥 = 0, and out of the cell from the basolateral 

membrane, which is the boundary at 𝑥 = 𝐿. A standard mathematical model used to describe the 

concentration changes with respect to time is the diffusion equation [4]. The equation is given as: 

 

 
𝜕𝐶𝑔𝑙𝑢

𝜕𝑡
= 𝐷

𝜕2𝐶𝑔𝑙𝑢

𝜕𝑥2
      (2.7) 

 

However this equation does not provide a full interpretation of the actual chemical reaction 

within the epithelial cell. In order to provide an insight into the possible process of chemical 

reactions, a reaction term is to be encapsulated into the PDE in order to describe the possible 

missing movement of molecules inside the cell. The equation for transport to be investigated in 

this thesis can now be written as below: 

 

𝜕𝐶𝑔𝑙𝑢

𝜕𝑡
= 𝐷

𝜕2𝐶𝑔𝑙𝑢

𝜕𝑥2
+ 𝑆(𝐶𝑔𝑙𝑢, 𝑥, 𝑡)    (2.8)  

 

The boundary condition and initial condition are defined by considering the dynamics of 

concentration along the membrane of the cell, as shown below: 

 

𝜕𝐶𝑔𝑙𝑢(𝑥=0,𝑡)

𝜕𝑥
= 𝑓1(𝐶𝑔𝑙𝑢, 𝑡)    (2.9) 

𝜕𝐶𝑔𝑙𝑢(𝑥=𝐿,𝑡)

𝜕𝑥
= 𝑓2(𝐶𝑔𝑙𝑢, 𝑡)    (2.10) 

   𝐶𝑔𝑙𝑢(𝑥, 0) = 𝐶0(𝑥)               (2.11) 

 
𝐶𝑔𝑙𝑢(𝑥, 𝑡) is a state variable that indicates concentration of glucose at position 𝑥 at time 𝑡. 𝐷 is 

the diffusion coefficient. In the boundary condition, 𝐶𝑔𝑙𝑢(𝑥 = 0, 𝑡) and 𝐶𝑔𝑙𝑢(𝑥 = 𝐿, 𝑡) describe 

the concentration of glucose along 𝑥 = 0 and 𝑥 = 𝐿 in Figure 2.4.  
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In the case of glucose transport at the cellular level, there is no chemical reaction inside the cell 

[85]. The source term can be set as non-reaction equation in the model (𝑆(𝐶𝑔𝑙𝑢, 𝑥, 𝑡) = 0). The 

existence and uniqueness of solution in such reaction-diffusion equation can be found in [36].    

 

The reaction term in Equation (2.8) may differ in different areas of computational biology. 

Examples of reaction terms from population dynamics of certain species include Fisher’s 

equation and Newell-Whitehead-Segel equation can be found in [64, 76]. The reaction-diffusion 

equations are also widely used in the cancer invasion [71].  In this thesis a reaction diffusion 

model is built for fatty acids transport at cellular level based on the physiological knowledge. 

 

2.3. Inverse problems for absorption and metabolism 

 

Problems described in Section 2.1 and 2.2 are known as direct problems. These are problems 

with a given equation supplemented with suitable initial and boundary conditions. Very often 

rates of transport in Equation (2.1) to (2.11) are unknown parameters. In order to build the model 

using experimental data, the concept of inverse problem is needed. In contrast to the direct 

problem in which the cause is known and consequences need to be calculated, the inverse 

problem has the consequence being known and the causes such as parameters in the model are 

computed. These unknown parameters can be inversely determined by combining experimental 

data and differential equations. The process of computing unknown parameters with data and the 

model is known as solving an inverse problem. 

In an inverse problem, the unknown parameters in the model may be represented in the vector 

form 𝑷 = (𝑝1, 𝑝2…𝑝𝑛)
𝑇 , where 𝑛  is the number of parameters. Consider the model for 

absorption, such as Equation (2.6), which is rewritten as  

𝑑𝑪(𝑡;𝑷)

𝑑𝑡
= 𝑨(𝑷)𝑪(𝑡; 𝑷)     (2.12) 

 

where 𝑪(𝑡; 𝑷) is the concentration of substances in the absorption process.  𝑨(𝑷) is a matrix 

which depends on the parameters. The aim of solving an inverse problem is to find an optimal 

parameter vector 𝑷 such that  
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𝑚𝑖𝑛𝑷𝛹[𝑷]       (2.13) 

where 

𝛹[𝑷] = ‖𝑪(𝑡; 𝑷) − �̃�‖
2
        (2.14) 

 

Here �̃� is the measurement such as experimental data for the absorption. 𝑪(𝑡; 𝑷) is the solution 

of the inverse problem using the parameter vector in the above optimisation problem. 

 

In this thesis, the methods for the inverse approach are mainly used to construct absorption and 

metabolism processes for fatty acids. The methods such as multi-objective optimisation are 

widely applied in the inverse determination of the parameter in biological models. The 

challenges in the application of inverse problem in computational biology include the uncertainty 

in the data and the under description of physiology in the mathematical model [59]. All these 

problems need to be solved by suitable inverse approach method and the appropriate 

assumptions in the model. 

 

There are several gradient-based deterministic methods used in the inverse approach [56, 151]. 

Two of them which are considered to be the fundamental techniques for the gradient method are 

steepest descent method (SDM) and the conjugate gradient method (CGM). 

 

As one of the simplest gradient based method, the aim of SDM is to find the local minimum of 

objective function 𝛹[𝑷] and the respective parameter  𝑷 is the output of solving the inverse 

problem. To minimise Equation (2.14), define 𝛻𝛹 as the gradient of a differentiable objective 

function within a given region. The SDM assumes that the decrease of 𝛻𝛹 would be fastest by 

direction of  − 𝛻𝛹.  

 

Let 𝑷𝑘  represent the 𝑘𝑡ℎ  iterative approximation of the minimisation problem, the iterative 

equation of the SDM can be defined as  

 

𝑷𝑘+1 = 𝑷𝑘 − 𝛽𝑘𝛻𝛹 (𝑷𝑘)      (2.15) 
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where 𝑘 is the iteration number, 𝛻𝛹 (𝑷𝑘) defined as the gradient of the Equation (2.14), 𝛽𝑘 is 

the step size of the update formula. The iteration terminates when ‖𝛻𝛹(𝑷𝑘)‖ < 𝜀 . 

 

The details of the SDM can be shown as following: 

            Given 𝑷0 

 

 Initialize:𝑘 = 0, 𝑮0 = 𝛻𝛹(𝑷0), 𝑫0 = −𝑮0;  

 

  Do while (‖𝑮𝑘‖ > 𝜀) 

 

  Define the step size: 𝛽𝑘 

 

  Obtain the new point: 𝑷𝑘+1 = 𝑷𝑘 + 𝛽𝑘𝑫𝑘 ; 

 

  Calculate the gradient: 𝑮𝑘+1 = 𝛻𝛹(𝑷𝑘+1) ; 

 

  Identify the direction of search: 𝑫𝑘+1 = −𝑮𝑘+1; 

 

  𝑘 = 𝑘 + 1; 

 

End 

 

In the SDM method, the step size 𝛽𝑘 is changing in each loop. It is clear that in order to find the 

point where 𝛹(𝑷𝑘) is a minimum, the directional derivative at that point should be zero, i.e. 

 

𝑑

𝑑𝛽𝑘
(𝛹(𝑷𝑘+1)) = ∇𝛹(𝑷𝑘+1)𝑇

𝑑

𝑑𝛽𝑘
(𝑷𝑘+1) = −∇𝛹(𝑷𝑘+1)𝑇∇𝛹(𝑷𝑘) = 0 

 

Therefore the 𝛽𝑘  must be selected so that the ∇𝛹(𝑷𝑘)  and ∇𝛹(𝑷𝑘+1)  are orthogonal. The 

computation of ∇𝛹(𝑷𝑘) can be easy if the analytical solution of ∇𝛹 is given. If the problem is 



Chapter 2 

 

26 

 

nonlinear, it may require some computational technique such as the finite difference method. The 

SDM is easy to apply as each loop does not require large computational work. It is also stable in 

searching the minimum point if it exists [159]. For problems which are badly scaled such as 

some non-differentiable functions, SDM relies heavily on the choice of the starting point. On the 

other hand, SDM is suggested for solving problem when one has certain knowledge of where the 

minimum is. Note that there are limitations in applying SDM to ill-posed problems. As a result 

CGM may be used as an alternative.  

 

The CGM is another gradient-based method that widely used in the optimisation. In contrast to 

SDM, the CGM does not give the direction of search beforehand in the algorithm. [142]. 

  

The CGM is given as below: 

 

Initialize:𝑘 = 0, 𝑮0 = 𝛻𝛹 (𝑷0) , 𝑫0 = −𝑮0;  

 

 Do while (‖𝑮𝑘‖ > 𝜀) 

 

  Define the step size: 𝛽𝑘 

 

  Obtain the new point: 𝑷𝑘+1 = 𝑷𝑘 + 𝛽𝑘𝑫𝑘 ; 

 

  Calculate the gradient: 𝑮𝑘+1 = 𝛻𝛹(𝑷𝑘+1) ; 

 

  Calculate the conjugate coefficient:  𝛾𝑘 =
(𝑮𝑘+1)

𝑇
𝑮𝑘+1

(𝑮𝑘)
𝑇
𝑮𝑘

; 

 

  Identify the direction of search: 𝑫𝑘+1 = −𝑮𝑘+1 + 𝛾𝑘𝑫𝑘; 

 

  𝑘 = 𝑘 + 1; 

 

End 
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The SDM only needs to compute step size 𝛽𝑘  in each loop, but CGM needs to consider 

conjugate coefficient  𝛾𝑘 which is more computationally expensive in practise as it needs to store 

vector in each loop in the algorithm, but the SDM may need many iterations to compute a local 

minimum with a required accuracy [56]. Both gradient-based methods have a better performance 

for linear system as the gradient can be accurately estimated. For the nonlinear or multi-objective 

optimisation problem,  stochastic methods may be considered to find the optimal parameters. 

 

In addition to gradient type of methods, stochastic methods are increasingly being used in 

optimisation [22, 97]. The main idea of using a stochastic strategy is to include a wider class of 

objective functions that are not continuous or differentiable. In this chapter, two classic 

stochastic methods are discussed: the genetic algorithms (GA) and particle swarm optimisation 

(PSO). 

 

The GA was originally proposed by Holland [84]. The optimal parameter search begins with a 

random population in the search domain and continues for generations. The objective function in 

Equation (2.13) is defined as fitness which is calculated in the algorithm. The GA is presented as 

below: 

 

Choose the initial population of individuals; 

 

 Evaluate the fitness of each individual in the population; 

 

 Do While(stopping criterion is not satisfied) 

 

  Select the best-fit individuals for reproduction; 

 

  Breed new individuals through crossover and mutation operations to give birth  

 to offspring; 

 

  Evaluate the individual fitness (objective function) of new individuals; 
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Replace the individual fitness (objective function) according to the above 

evaluation  

 

  Replace least-fit population with new individuals; 

 

End 

 

In the GA method, the fitness function is the objective function defined in the inverse problem. 

The fitness function represents the difference between simulation results and the measurements. 

In the replacing stage in GA method, the individuals with better performance in fitness functions 

are selected and the search can go closer to the optimal solution.  Searching for the optimal 

solution with a large population of individuals often requires very expensive fitness function 

simulation; therefore how to define a fitness function is also important for the computational 

efficiency. 

 

The PSO was developed by Eberhart and Kennedy in 1995 [55]. The idea was inspired by social 

behaviour of bird flocking. The method involves a set of population particles such that each 

particle can be seen as a potential solution of the optimisation problem. The fitness function of 

each particle is evaluated in the algorithm. The key factor in PSO is the estimation of the velocity 

for particle 𝑖  at 𝑘  th estimation (𝑽𝑖(𝑘)) which is computed by combining the best particle 

location with minimum fitness function and global best optimal particle obtained from previous 

iteration. The updated position for the next iteration can be computed as 

 

𝑿𝑖(𝑘 + 1) = 𝑿𝑖(𝑘) + 𝑽𝑖(𝑘)     (2.16) 

 

The PSO method is shown in the following algorithm: 

 

Define the personal best position for particle 𝑖 is denoted as 𝑷𝑖 which is the optimal objective 

function in each loop. The global best position of all particles is denoted as 𝑷𝑔 indicating the best 

solution in all previous search. 
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Initialize the position 𝑿𝑖, 𝑷𝑖, 𝑷𝑔and velocities of population. 

 

 Do while (𝑘 < 𝑘𝑚𝑎𝑥) 

 

  For each particle 𝑖 = 1,2… ,𝑀 

 

   Evaluate the fitness function 𝑓(𝑿𝑖(𝑘)) according to Equation (2.16) 

 

  If 𝑓(𝑿𝑖(𝑘)) < 𝑓(𝑷𝑖(𝑘)) then 

 

   𝑷𝑖(𝑘) = 𝑿𝑖(𝑘); 

 

  If 𝑓(𝑷𝑖(𝑘)) < 𝑓(𝑷𝑔(𝑘)) 

 

   𝑷𝑔(𝑘) = 𝑷𝑖(𝑘); 

 

  End for 

 

  For each particle 𝑖 = 1,2… ,𝑀 

 

   Update the Velocity 𝑽𝑖(𝑘); 

 

   Update the position 𝑿𝑖(𝑘 + 1) by Equation (2.16); 

 

  End for  

 

End do 

 



Chapter 2 

 

30 

 

The process of updating the velocity controls the performance of the PSO method. Consider a 

PSO system with M particles 𝑿 = {𝑋1, 𝑋2, …𝑋𝑀} and every particle is regarded as a volume-less 

body in the D-dimensional space  Xi ∈ Ω ⊆ ℜD. Define the D-dimensional position and velocity 

for particle 𝑖 at time 𝑘 as  𝑿𝑖(𝑘) = (𝑋𝑖,1(𝑘),… , 𝑋𝑖,𝐷(𝑘)) and 𝑽𝑖(𝑘) = (𝑉𝑖,1(𝑘),… , 𝑋𝑖,𝐷(𝑘)). The 

optimisation problem is defined as  

 

min
𝑋

𝑓(𝑋) 

The personal best position for particle 𝑖 is denoted as 𝑷𝑖(𝑘) = (𝑃𝑖,1(𝑘),… , 𝑃𝑖,𝐷(𝑘)) and can be 

considered as the best previous position. The global best position of all particles is denoted as 

𝑷𝑔(𝑘) = (𝑃𝑔,1(𝑘), … , 𝑃𝑔,𝐷(𝑘)), 𝑔𝜖{1,2…𝑀}. The personal best position can be defined as  

 

𝑷𝑖(𝑘) = {
𝑋𝑖(𝑘)

𝑃𝑖(𝑘 − 1)

𝑖𝑓 𝑓(𝑋𝑖(𝑘)) < 𝑓(𝑃𝑖(𝑘 − 1))

𝑖𝑓 𝑓(𝑋𝑖(𝑘)) ≥ 𝑓(𝑃𝑖(𝑘 − 1))
 

 

The global best position of the swarm is solved by 

 

𝑔 = 𝑎𝑟𝑔 min
1≤𝑖≤𝑀

(𝑓(𝑷𝑖(𝑘))) 

 

Then the velocity of a particle is updated by the equation 

 

𝑉𝑖,𝑗(𝑘 + 1) = 𝑉𝑖,𝑗(𝑘) + 𝑐1𝑟1 (𝑃𝑖,𝑗(𝑘) − 𝑋𝑖,𝑗(𝑘)) + 𝑐2𝑟2(𝑃𝑔,𝑗(𝑘) − 𝑋𝑖,𝑗(𝑘)) 

 

where 𝑖 = 1,2, …𝑀. 𝑗 = 1,2…𝐷. For the optimisation problem in this thesis, the dimension 𝐷 

represents the number of parameters that need to be optimised in the inverse approach. 𝑐1 and 𝑐2 

are constants known as acceleration coefficients. 𝑐1 indicates the maximum step size towards the 

personal best position, and 𝑐2  indicates the maximum step size towards the global best position. 

𝑟1 and 𝑟2 are random numbers distributed uniformly in (0,1) .  

 

The PSO method has been widely used for problems for which it is difficult to compute their 

gradients and is suitable for large parameter space and candidate solutions. Several variants of 
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the classical PSO method can be found in the literature [40, 110, 180, 181].  As an example, the 

Quantum- Behaved Particle Swarm Optimisation is discussed here.  

 

The Quantum-Behaved Particle Swarm Optimisation is a modified version of PSO. It is 

motivated from quantum mechanics and dynamical analysis of PSO [40]. As a relatively new 

version of PSO, the QPSO algorithm used a strategy which depends on a quantum delta potential 

well model to sample around the previous best points [69, 180].  In quantum physics, the state of 

a particle can be depicted by its wave function 𝜑(𝑥, 𝑡). Then in a QPSO system, the hypothesis is 

made that each particle is in a quantum state and is formulated by its wave function instead of the 

position and velocity which are in PSO.  In a QPSO system personal best solution 𝑷𝑖(𝑘) and 

global best position 𝑷𝑔(𝑘)  are also needed in the computation and the update of the particle’s 

position is controlled by the following equation: 

 

𝑿𝑖(𝑘) = 𝒑𝑖(𝑘) + 0.5𝑳𝑖(𝑘) 𝑙𝑛 (
1

𝑢𝑖(𝑘)
)         (2.17) 

 

where 𝑢𝑖(𝑘) is a random number uniformly distributed in (0,1);  𝑃𝑖(𝑘) is the local attractor and 

defined as 

 

𝒑𝑖(𝑘) =  𝜑𝑖(𝑘)𝑷𝑖(𝑘) + (1 − 𝜑𝑖(𝑘))𝑷𝑔(𝑘)    (2.18) 

 

where 𝜑𝑖(𝑘) is a random number uniformly distributed in (0,1). 

 

In Equation (2.17), the 𝐿𝑖(𝑘)is computed by 

 

𝑳𝑖(𝑘) = 2𝛽|𝑷𝑖(𝑘) − 𝑿𝑖(𝑘)| 

 

Then the algorithm is implemented in the following procedures. 
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The personal best position for particle 𝑖 is denoted as 𝑷𝑖(𝑘) = (𝑃𝑖,1(𝑘),… , 𝑃𝑖,𝐷(𝑘)) and can be 

considered as the best previous position. The global best position of all particles is denoted as 

𝑷𝑔(𝑘) = (𝑃𝑔,1(𝑘), … , 𝑃𝑔,𝐷(𝑘)), 𝑔𝜖{1,2…𝑀} 

 

Let 𝑷𝑘 = {𝑷𝑖(𝑘); 𝑖 = 1,2……𝑀} be a set of approximate parameter vectors approximating 𝑷. 

Each member of the set 𝑷𝑘 depends on the personal best position,𝑷𝑖(𝑘) , of the 𝑖th approximate 

parameter vector and the global best position, 𝑷𝑔(𝑘), of all approximate parameter vectors. The 

update of 𝑷𝑖(𝑘)  follows the QPSO method as described in [188] leading to a new set of 

approximate parameter vectors denoted as 𝑿𝑘 = {𝑿𝑖(𝑘); 𝑖 = 1,2……𝑀}. The general steps of 

the algorithm are shown below. 

 

Initialize the population of  𝑿0  and the personal best population 𝑷𝑖(𝑘); 

 

Do while k < kmax 

 

  For each particle i = 1,2…M 

 

   Evaluate the fitness 𝜑(𝑿𝑖(𝑘)) 

 

   If  𝜑(𝑿𝑖(𝑘)) < 𝜑(𝑷𝑖(𝑘))   then 

 

   𝑷𝑖(𝑘) = 𝑿𝑖(𝑘)   

 

   If 𝜑(𝑷𝑖(𝑘)) < 𝜑(𝑿𝑖(𝑘))    then 

 

   , 𝑷𝑔(𝑘) = 𝑿𝑖(𝑘)  

  End  

 

 Compute the mean best position; 
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 For each particle 𝑖 = 1,2…𝑀 

 

Use the mean best position to compute 𝑷𝑖(𝑘) and then 𝑿𝑖(𝑘) according to Equation (2.17) 

and (2.18) 

 

 End 

 

End do   

  

Compared to the gradient-based methods, the QPSO has its advantages on the computation time 

and convergence. For the SDM, it is suggested that [159] the method is appropriate when one has 

some knowledge about the interval where the minimum located. The SDM is generally 

considered to be a poor choice for an optimisation and it may be used in conjunction with other 

optimizing methods to obtain a better convergence result.  As an improvement of SDM, the 

CGM has a regulation process inside every loop of the algorithm. As a conclusion, the gradient-

based method has fast convergence, while the inherent difficulties with the gradient-based 

methods are the dependence on the initial guess. The other disadvantage for gradient-based 

methods is the demand for complicated gradient computation, especially for the non-linear 

problem.  

 

 The stochastic method such as GA and PSO gives a different type for searching the optimal 

result. In a genetic algorithm, the concept of candidate solutions is introduced. The iterative 

process of selection of the best solution in the candidate solutions leads the optimisation process 

towards a better solution. However, GA does not scale well with the increase of complexity of 

the problem. This means the optimisation problem must be tractable to evolutionary search and 

be broken down into the simplest representation to fit the mutation and operator inside the GA. 

For specific optimization problems, other optimization algorithms may be more efficient than 

GA in terms of speed of convergence. An alternative method is PSO. The PSO algorithm is a 

computational method that iteratively improves candidate parameters with measurement in the 

inverse approach. The PSO method allows fewer assumptions about the problem when compared 

to gradient-based methods and it does not need the gradient of the problem be optimized. As a 
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development for PSO method, the QPSO considers the quantum mechanism of the particles in 

the iterative method.  The update equation for each generation of particles is given in Equation 

(2.17).  According to the global convergence criterion in [195], one can conclude that the QPSO 

method is a global convergent algorithm whereas the original PSO is not. Also the QPSO does 

not need to compute velocity vector which is compulsory in the PSO method. The experimental 

results also indicates that for many well-known benchmark functions the QPSO has a better 

convergence when compared to PSO method [188 ,189]. 

 

In this thesis, the QPSO is used in the inverse problem in Chapter 3 and Chapter 4. 𝑷𝑘 in the 

algorithm represents the unknown parameters in the ODE system.  

 

 

2.4.  The uncertainty study and Monte Carlo method 

 

There are two sources of uncertainties in absorption and metabolism process. First the 

incomplete model used in the absorption and metabolism. For example the activity of enzymes 

related to the function of villi [171] is not described in the model [155]. Second the errors  

introduced into the experimental data during nutrients administration [61].  

 

In this thesis, the uncertainty of the movement of molecules along the membranes of epithelial 

cells is discussed. As shown in Figure 2.3, the membrane of intestinal epithelial cells which is 

linked to intestinal lumen in apical side has a finger-like projection called villi [37]. Many 

enzymes in form of nutrients lie on the surface of villi [171], and the activities of enzymes 

attached to the villi vary in terms of individuals [122]. Due to this unclear information in 

biological experiment, the uncertainty is assumed in the cellular model. In the reaction-diffusion 

equations for epithelial cells, the uncertainty of molecule movement on the villi membrane takes 

place at the boundary condition of PDEs at 𝑥 = 0, which is defined as Neumann boundary 

condition in this thesis: 

 

𝜕𝐶(0,𝑡)

𝜕𝑥
= 𝑝1𝐶(0, 𝑡) + 𝜖𝐶(0, 𝑡)     (2.19) 
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where  𝑝1  is the first-order kinetic parameter in this equation and 𝐶(0, 𝑡)  is the substance 

concentration such as lipids or fatty acids on the boundary. The 𝜖𝐶(0, 𝑡)  handles the 

uncertainties in the boundary condition. 

 

Probability Density function 

 

In a random experiment, one needs to assign a probability to each measurable subset of the 

possible outcomes of the randomness in the simulation. When considering the probability 

distribution for the random samples, the difference between discrete and continuous random 

variables should be distinguished. In a discrete distribution, the possibility to each possible value 

is defined. For a continuous case, probabilities can be nonzero only if they refer to intervals.  

Most often, the equation used to describe a continuous probability distribution is called a 

probability density function. The randomness of  ϵ in Equation (2.19) often follows a probability 

density function in the uncertainty analysis [102]. In statistics, the probability density function 

(PDF) is a function that describes the relative likelihood of a random variable to take on a given 

value. Consider an example of uniform distribution: random variable 𝑋 is in an interval with 

minimum 𝑎 and maximum 𝑏, and 𝑋 is equally probable to be any number in interval (𝑎, 𝑏), then 

the PDF of X’s distribution is: 

 

𝑓(𝑥) = {
1

𝑏−𝑎
 

0

 𝑓𝑜𝑟 𝑎 ≤ 𝑥 ≤ 𝑏
        𝑓𝑜𝑟 𝑥 < 𝑎 𝑜𝑟 𝑥 > 𝑏

     (2.20) 

 

where 𝑓(𝑥)  indicates the probability density at a particular value of  𝑥 . The integration of 

Equation (2.20) equals to one, indicating the probability of all possible values for X is one.  

 

 

 

Expected Value 

 

For any probability density distribution, the expected value 𝐸(𝑌) is defined as  

𝐸(𝑌) = ∫ 𝑥𝑓(𝑥)
+∞

−∞

𝑑𝑥 
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The above definition is defined as the expect value for a continuous random variables with the 

identified distribution. The sample of data set is usually used in the uncertainty analysis. In this 

study, the sampling distribution is to describe the randomness in the uncertainty analysis. A 

sample is a set of observable random variables 𝑋1, 𝑋2…𝑋𝑁, The number 𝑁 is called the sample 

size [148]. Then the sample of variables can be written as  

 

𝒀 = (𝑋1, 𝑋2…𝑋𝑁)       (2.21)  

 

The sample of  𝒀 is called identically distributed if every 𝑋𝑖 has the same probability distribution 

[148]. Note that in a sample, the 𝑋𝑖 need not be independent or identically distributed. For a 

sample with finite population, the population mean can be used to calculate the expect value of 

the sample. In probability theory, the law of large numbers is usually applied in the expected 

value analysis. According to this theorem, the average of the result obtained as the number of 

trials tends to infinity tends to the expected value. For example, one has 𝑁 is the sample size in 𝒀. 

If 𝑁  is an extremely large number, the average values of 𝑋1, 𝑋2…𝑋𝑁  is defined as expected 

values or mean of such PDF. The expected value of sample of  𝑌 is represented as 𝐸(𝒀), which 

means:  

 

𝐸(𝒀) =
𝑋1+𝑋2+⋯𝑋𝑁

𝑁
      (2.22) 

 

where 𝑁 is the sample size.  

 

The law of large number is significant in the application as it considers a long-term result for the 

mean of some random events.  It is assumed in the law that the average of the results obtained 

from a large size of sample should be closer to the expected value, and it trends to become closer 

if the sample size is larger.  

 

Variance 

 

 The variance of sampling probability distribution is defined as: 
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𝑉𝑎𝑟(𝒀) = 𝐸([𝒀 − 𝜇]2)     (2.23) 

 

where μ is the mean values of samples  𝒀.  From Equation (2.23) it can be seen that variance 

measures how far a set of numbers is from the average number. In the uncertainty analysis, the 

mean and variance of samples can be calculated to measure the uncertainty in computational 

work and more details are represented in Chapter 5.  

 

The randomness for uncertainty may have various probability density distributions. One example 

provided in this thesis is the normal distribution. The normal (or Gaussian) distribution is a 

common continuous probability distribution and often used in the natural and social sciences to 

represent real-valued random variables whose distribution are not known [7, 137]. The 

probability density of the normal distribution is: 

 

𝑓(𝑥|𝜇𝑛, 𝜎𝑛) =
1

𝜎𝑛√2𝜋
𝑒
−
(𝑥−𝜇𝑛)

2

2𝜎𝑛
2

     (2.24)     

 

Here 𝜇𝑛 is the mean of distribution and   𝜎𝑛
2 is the variance.  The notation of normal distribution 

in Equation (2.24) is written as 𝒩(𝜇𝑛 , 𝜎𝑛
2). 

 

 

Monte Carlo method 

 

 

With the PDF of random variables in Equation (2.19), the parameter uncertainty can be defined 

with appropriate probability distribution. The uncertainty analysis can be processed by means of 

Monte Carlo method.  The Monte Carlo method is an algorithm that provides repeating random 

sampling to generate simulation results. To be specific, the samples are generated by repeating 

random sampling with a normal distribution in this study, which means: 

 

𝒀1 = ( 𝜖1, 𝜖2… 𝜖𝑁)      (2.25) 
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Each 𝜖 is a random number with normal distribution. 𝒀1 is the samples with all possible random 

variables in this simulation. 𝑁 is the sample size which means the number of repeating sampling. 

With 𝒀1 obtained in Equation (2.25), there are 𝑁 possible values for 𝜖 in boundary condition of 

the model in Equation (2.19).  The Monte Carlo method requires for  𝑁 simulations of model to 

obtain 𝑁 numerical results in reaction diffusion models. The numerical results can reflect the 

uncertainty in the boundary condition. A schematic view can be seen as below: 

 

   

Figure 2.5 Sketch of the Monte-Carlo method for the uncertainty of parameter in the model. 

 

In this thesis, the output 𝒁  indicates the sample of substance concentration in the reaction-

diffusion model. The sample size of  𝒁 is same as the size of  𝒀1. The features of 𝒁 is affected by 

the uncertainty in sample 𝒀1. In this thesis the normal distribution samples are used which is the 

standard way in many biological applications [7]. More details are discussed in Chapter 5. 

 

2.5. Summary 
 

In this section, related mathematical tools used in this thesis are presented. Section 2.1 provides a 

discussion of compartment models and their application in the absorption and metabolism 

processes. A typical compartment model describing the absorption and metabolism is usually 

written in the form of ODE. Section 2.2 provides a discussion of the reaction-diffusion system 

which can be used as cellular model for substance movement in the epithelial cells of small 

intestine. Next the inverse approach applied in this thesis is discussed in Section 2.3. Finally in 

Section 2.4, the uncertainty analysis in PDE model is explained as well as the Monte Carlo 

method.    
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3. Chapter 3  A modified model for the fatty 

acids absorption and metabolism 

 

 

 

 

 

Chapter 1 explains the concept of a compartment and its application in medical biology. 

Typically a compartment may be used to represent the concentration of fatty acids in the 

absorption process, or may be used to represent different chemical compounds. In this chapter, a 

compartment model is applied to the absorption and metabolism process of fatty acids.  

 

The fatty acid concentration in the plasma usually shows a large fluctuation in a short period of 

time in response to various human activities [68]. The key factor in the concentration regulation 

is the inhibition of hormone-sensitive lipase by insulin [62].  After the hydrolysis of 

chylomicron-triglyceride (TAG) by lipid protein in adipose tissue, there seems to be regulation 

of the change of the fatty acids concentration due to esterification by adipocytes and release into 

plasma as free fatty acids [130]. Note that fatty acids may or may not take effect along the 

pathway of esterification [163], and both hydrolysis and esterification are affected by the 

metabolism process in the blood. 
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Several compartment-based metabolism models describing fatty acid kinetics exist in the 

literature [13, 24, 124, 138]. The model provided by Srinicasan et al [174] built a four 

compartment model describing the concentration of glucose, fatty acids and insulin in different 

physical sites. Boston [25] presented a two compartment model in 2004 to describe fatty acids 

and glucose kinetics for an individual cow and speculated that such model might be useful for 

modelling fatty acid kinetics in humans. A modified version of Boston’s model was developed 

by adding insulin compartment following a range of experimental protocol [12, 119]. Some other 

models [43, 101] have been built for glucose and insulin compartments in human body and may 

be used to determine dose-response curves. Much of the work in the literature paid attention to 

the stability of the ODEs and the interaction between different chemicals.  

 

As far as metabolism is concerned, much of the research concentrated on the chemical reactions 

within blood vessels. The compartment models as described above are used to model such 

chemical activities without taking account of the absorption process before the substance enters 

blood vessel. Both metabolism and absorption are physiologically and computationally complex. 

Therefore fully coupling them would lead to a very difficult computational problem. In this 

chapter, the main concern is to consider two tasks. Firstly, a linear time-dependent compartment 

model for absorption is built to describe the mass flow transit in different compartments. 

Experimental data is used to identify mass transfer rate of fatty acids using an inverse problem 

approach. Secondly a novel non-linear compartment model is introduced to compute the 

absorption and the metabolism processes of fatty acids. 

 

3.1. The inverse problem for multi-compartment absorption model 

 

Food is digested in the stomach forming a thick fluid known as chyme which enters the 

duodenum where mixing with enzymes takes place. This mixed fluid passes along the small 

intestine releasing fatty acids on the way.  Here absorption of fatty acids will take place by 

‘diffusing’ through small intestine wall full of epithelial cells and reaching blood capillaries in 
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the end. A multi-compartment model may be built such that each compartment represents part of 

the digestive system. Concentration of substances in each compartment may be modelled 

through suitable means of transfer from one compartment to another.  

 

Note that there is a time lag between fatty acids appearing in the plasma and the intake of food 

supplement. This elapsed time represents the time required for (i) transfer of food from 

oesophagus to the stomach and eventually into the intestine for absorption, (ii) food dissolution 

in the delivery system, (iii) the action of some inhibition reactions, (iv) delay of enzyme 

activation and (v) molecule transfer through the absorbing site tissues. Due to these reasons the 

appearance of free fatty acids in the plasma is delayed and this situation is known as the 

absorption delay [139]. 

 

Hence it is important to develop a model, which governs concentration of fatty acids in the 

absorption phase, without requiring excessive knowledge of the underlying digestion process. In 

order to achieve this, a transit compartment absorption model [161] before the plasma 

compartment may meet this requirement. 
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Figure 3.1 Schematic view of the fatty acid flowing through the chain of transit compartments 

 

Figure 3.1 depicts a simple compartment system containing several transit compartments after 

considering the physiological remarks discussed above. Fatty acids are released from 

triacylglycerol and appear in the first transit compartment where the concentration of fatty acid is 

denoted as 𝐶1. The food passes through different compartments and the concentrations of fatty 

acids in the 𝑛th compartment is denoted as 𝐶𝑛. The flow between these transit compartments is 

assumed to have the same rate 𝑘𝑡𝑟 . The rate of change of concentration in different 

compartments 
𝑑𝐶𝑖

𝑑𝑡
, 𝑖 = 1.2… . 𝑛  can now be modelled by a system of differential equations as 

given by Equation (3.1). 
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𝑑𝐶1
𝑑𝑡

= −𝑘𝑡𝑟𝐶1 

𝑑𝐶2
𝑑𝑡

= 𝑘𝑡𝑟𝐶1 − 𝑘𝑡𝑟𝐶2 

…………                                                                 (3.1) 

𝑑𝐶𝑛
𝑑𝑡

= 𝑘𝑡𝑟𝐶𝑛−1 

 

This ODE system indicates a delay for the transfer or release of the fatty acid and requires a non-

zero initial condition for 𝐶1  and zero initial condition for the rest. In this thesis, the initial 

condition of 𝐶1 is related to the experimental data.  The analytic solution of 𝐶𝑛 can be obtained 

as 

 

𝐶𝑛(𝑡) = 𝛤
(𝑘𝑡𝑟𝑡)

𝑛

𝑛!
𝑒−𝑘𝑡𝑟𝑡       (𝑛 ≠ 1)       (3.2)                                     

 

where  𝛤 is a constant. A typical number of transfer compartments are used in [139] was 𝑛 =

8 .The initial condition for the first compartment is denoted as  𝐶0  which is typically from 

literature or experiment [179]. The value of  𝐶0 is the same as 𝛤 in Equation (3.2). The transfer 

rate in this absorption delay system is associated with the maximum absorption time [161] and 

can be defined as 

𝑘𝑡𝑟 =
𝑛 + 1

𝑇𝑚𝑎𝑥
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To investigate the feature of the time-dependent profile in Equation (3.2), the values of the 

parameters can be defined as 𝑇𝑚𝑎𝑥 = 360 𝑚𝑖𝑛, 𝛤 = 1 𝑚𝑜𝑙 ∙ 𝐿−1 ∙ 𝑚𝑖𝑛−1 , 𝑛 = 9 .The 

concentration of the substances (𝐶𝑛(𝑡)) can be plotted as below: 

 

Figure 3.2 The delay function for the absorption 

From above figure it is obvious that the concentration of 𝐶𝑛(𝑡) is very close to zero in the first 60 

minutes, the increase of the concentration has a delay and started from about 70 minutes. The 

feature of absorption can be represented from the dynamic of 𝐶𝑛(𝑡) and it can provide an inflow 

into the plasma compartment.  

 

Figure 3.3  The transport into plasma compartment with absorption delay 
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Fatty acids are transported from the last compartment to the plasma compartment. The 

absorption delay function can describe the source for inflow to the plasma compartment and the 

absorption rate of fatty acid into plasma is denoted as 𝑘1. The absorption delay can provide an 

inflow into the plasma compartment and the similar application can be found in [161].  The 

decrease of fatty acids is due to metabolism with the rate of change given by 𝑘2. The analytic 

solution of the last small compartment can be used towards the plasma compartment and the 

equation governing the kinetics of fatty acids in plasma can be written as  

𝑑𝐶𝑝𝑙

𝑑𝑡
= 𝑘1𝐶𝑛 − 𝑘2𝐶𝑝𝑙                                  (3.3) 

 

If 𝑘1 and 𝑘2 are known, Equation (3.3) subject to a suitable initial condition 𝐶𝑝𝑙(0) is a 

direct problem. If  𝑘1 and 𝑘2 are unknown, the aim is to determine the two parameters 𝑘1 

and 𝑘2 in Equation (3.3) using experimental data.  

The experimental data as provided in [179] was adopted in the numerical tests below. The 

data involved 14 healthy female volunteers aged between 29 to 70 years old who were 

prevented from smoking, alcohol and unaccustomed exercise for 24 hours before the study.  

The meal which contains 60g fat and 13g protein was given to volunteers at 0 min and 

blood samples were taken from artery and venous vein at 30 minute intervals for the first 

two hours and 60 minute intervals in the next four hours. There are two sets of data as 

provided in [179]: the fatty acids concentrations in the artery and the venous blood vessel, 

respectively. 

 

The aim of the inverse problem as described in Chapter 2 is to find the optimal parameter 

vector 𝑷∗ = (
𝑘1
∗

𝑘2
∗) such that 

min
𝑃

Ψ(𝑷∗) 

where 

𝛹(𝑷) = ‖𝐶𝑝𝑙(𝑡; 𝑷) − �̃�‖
2
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Here  �̃� is the experimental data in [179].  𝐶𝑝𝑙(𝑡; 𝑷) is the numerical solution of the direct 

problem evaluated at 𝑷.  The problem in Equation (3.3) is a linear differential equation and 

there are only two unknown parameters in the inverse problem. The gradient-based 

method is appropriate as it suits linear problems and gives a quick approach in the inverse 

problem [142]. The conjugate gradient method is used to solve the minimisation problem 

which involves updating the approximate solution 𝑷𝑘 = (
𝑘1
𝑘2
) where the superscript 𝑘 is 

the iteration number in the conjugate gradient method. The norm of the gradient of least 

square error function ‖∇𝛹( 𝑷𝑘)‖  is computed in the conjugate gradient method. A direct 

problem is governed by Equation (3.3) with 𝑷𝑘. The direct problem is solved by means of a 4
th

-

order Runge-Kutta method. When  𝑷𝑘 converges to  𝑷∗ the concentration 𝐶𝑝𝑙(𝑡; 𝑷
∗) in veins and 

in arteries are computed and plotted along with the experimental data in Figures 3.4 and 3.5, 

respectively.  

 

 

Figure 3.4 The concentration of fatty acids in veins. 
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Figure 3.5 The concentration of fatty acids in arteries. 

 

It can be found that the non-esterified fatty acids (NEFA) concentration has a dramatically 

decrease initially and then gradually increase according to the experimental data. The fatty acids 

have a smaller concentration in arteries than in veins due to the metabolism in the transportation 

through tissues in the biological experiment [179]. At convergence the values of ‖∇𝛹( 𝑷𝑘)‖ are  

 9.9 × 10−11 and  9.6 × 10−11 respectively, and 𝑷 ∗ can be seen as the optimized parameter for 

this model. 

 

Note that the number of small compartments may affect the value of gradient of error 

function ∇𝛹( 𝑷𝑘). A comparison is made with the numerical tests for concentration of fatty acids 

in veins with different compartment number 𝑛  as exist in Table 3.1.  To evaluate the error 

between the simulation result and the measurement for fatty acids arterial blood vessel, define 

that : 
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δ =
‖𝑪( 𝑷𝑘) − 𝑪 ̃‖

2

‖ 𝐶 ̃‖
2  

 

where 𝑪( 𝑷𝑘) is the computational simulation with optimal parameters, 𝑪 ̃ is the experimental 

data for fatty acids concentration in the arterial blood. It is seen from numerical result that 𝑛 may 

affect the numerical results in the inverse approach. 

 

𝑛 k1(𝑚𝑖𝑛
−1) k2(𝑚𝑖𝑛

−1) δ 

8 0.0032 0.0018 12.53% 

10 0.0034 0.0017 12.82% 

12 0.0041 0.0114 13.89% 

 

Table 3.1 The numerical tests with different compartment number 

 

A comparison between the estimated concentration and the experimental data is made in the 

above results. It is seen from the table that with different theoretical compartment assumptions, 

the parameters have a slight difference in the inverse approach. Also the approach accuracy is 

affected by this theoretical number. Therefore it can be summarised that there are two factors 

which affect the accuracy of the above absorption compartment model. First the value of 𝑛 in the 

model, representing the number of compartments has to be finite integer which may affect the 

accuracy of the inverse approach. Second the absorption delay does not include any metabolism 

process in the blood vessels. This is due to incompleteness of the model as discussed earlier. A 

modification is considered in the section below. 

 

3.2. The interactive system of insulin-glucose-fatty acid model 

 

The absorption model in Section 3.1 describes the transfer of fatty acids in the absorption 

compartment, but the metabolism reaction in the last plasma compartment is neglected in 

Equation (3.3). In this section, a metabolism process involving insulin-glucose-fatty acids 

regulation is taken to an example.  
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The metabolism of fatty acids in the blood is controlled by the glucose-insulin system in the 

human body [149].  The insulin is a strong inhibitor for hydrolysis of TAG [67] and the glucose 

can provide energy coupled with fatty acids [149]. There are many studies about this metabolism 

system [1, 150, 166] and a general existing model for glucose-insulin-fatty acids system is 

presented in the next section.  

 

3.2.1. Existing models for glucose-insulin-fatty acids system 

 

To investigate the glucose-insulin system, one of the most developed models is the model 

proposed by Bergman [16].  There are three compartments representing plasma insulin, remote 

insulin and plasma glucose concentrations. According to the assumption, plasma insulin enters a 

“remote compartment” where it becomes active in accelerating glucose disappearance into the 

periphery and liver, and inhibiting the glucose production. Over the years, researches in an 

attempt to link the glucose-insulin system with the dynamics of fatty acids have taken place [150, 

166]. There are several researchers who considered how the insulin inhibits glucose-fatty acid 

regulation [23, 187]. In 2008, Roy [157] built a multi-compartment model containing the 

concentration of insulin, glucose and free fatty acid. There are six compartments defined in 

Roy’s model including glucose, fatty acids, insulin and three remote compartments for these 

substances. A schematic view of Roy’s model is shown in Figure 3.6.  
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Figure 3.6 The schematic view of existing model of insulin, glucose and fatty acids. 
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It is assumed in section 2 that these reactions can be considered as a mass balance equation, the 

volume of each compartment indicates the concentration of one substance in the tissue and the 

chemical reactions are added to the mass balance system in the Figure 3.6. The volume is 

assumed to be equal in each compartment in [157]. Let 𝐶𝐼 and 𝐶𝑋 be the concentrations of insulin 

in plasma and the remote compartment for insulin respectively. By applying the law of mass 

action, two ODEs for these compartments can be written as below: 

  

𝑑𝐶𝐼

𝑑𝑡
= −𝑛𝐶𝐼      (3.4) 

𝑑𝐶𝑋

𝑑𝑡
= −𝑝2𝐶𝑋 + 𝑝3(𝐶𝐼 − 𝐼𝑏)     (3.5) 

 

In Equation (3.4), the decrease of insulin is due to the transport into remote compartment 𝐶𝑋 and 

𝐶𝑌 , therefore it has 𝑛 = 𝑝3 + 𝑝𝐹3. Here 𝐼𝑏  is the basal plasma insulin concentration which is 

usually taken as a constant in the equation. The basal concentration used in a biological sense 

refers to a minimal level that is necessary for health or life [206]. The constant rate 𝑛 indicates 

the clearance of the insulin in plasma. The parameters 𝑝2  and 𝑝3  control the appearance and 

disappearance respectively in the remote insulin compartment 𝐶𝑋.  

 

In Figure 3.6, 𝐶𝐺 , 𝐶𝑌 , 𝐶𝐹  and 𝐶𝑍  indicates the concentration of glucose, remote insulin 

compartment, fatty acids concentration, and remote fatty acids compartment, respectively. In the 

assumption of this model, the concentration of glucose is inhibited by the remote compartment 

instead of the insulin itself, and the fatty acid is involved in the glucose dynamic change. The 

equation for glucose 𝐶𝐺  is described as below: 

 

𝑑𝐶𝐺

𝑑𝑡
= −𝑝1𝐶𝐺 − 𝑝4𝐶𝑋𝐶𝐺 + 𝑝6𝐶𝐺𝐶𝑍     (3.6) 

 

Here p1 = k5 + k6, 𝑝4 = k3 + k4 and 𝑝6 = k13 + k14 in the model in Figure 3.6. The flow rate 

from glucose compartment to periphery and liver is represented by 𝑝1. The inhibition influence 

of insulin is governed by parameter 𝑝4 and the influence from remote fatty acids compartment is 

governed by 𝑝6.  
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For fatty acid, the remote insulin dynamics regulates the hydrolysis of TAG, and then inhibits the 

free fatty acid in the blood. The remote compartment for insulin is described as: 

 

𝑑𝐶𝑌

𝑑𝑡
= −𝑝𝐹2𝐶𝑌 + 𝑝𝐹3(𝐶𝐼 − 𝐼𝑏)     (3.7) 

 

The parameter 𝑝𝐹2  represent the decrease of the concentration in this compartment, and the 

insulin in plasma can enter this remote compartment at the rate of  𝑝𝐹3. The 𝐼𝑏 indicates the basal 

insulin concentration. 

 

The fatty acid concentration in plasma is affected by substances in the blood. The adipose tissue 

can release fatty acid from its storage, and the absorption and transport in body also provide a 

source term 𝑢3(𝑡) for fatty acid compartment. The circulatory system connects to the periphery 

environment. This indicates some metabolism process and chemical reaction to release energy 

for the balance of human biological system would take place. The rate of change of fatty acid 

concentration change is governed by the equation: 

 

𝑑𝐶𝐹

𝑑𝑡
= −𝑝7𝐶𝐹 − 𝑝8𝐶𝑌𝐶𝐹 + 𝑝9(𝐶𝐺)𝐶𝐹𝐶𝐺 + 𝑝7𝐹𝑏 + 𝑢3(𝑡)  (3.8) 

 

In this equation, 𝐹𝑏 represents the basal fatty acid concentration and 𝑝8 = k9 + k10. The fatty 

acids release from lipid is controlled by 𝑝9(𝐺), and it is assumed to be a function of glucose 

concentration and defined as: 

𝑝9(𝐶𝐺) = 𝑎𝑒−𝑏𝐶𝐺       (3.9) 

 

Here 𝑎 and 𝑏 are constants. In Equation (3.8), the rate at which fatty acids is taken by external 

compartment is assumed to be 𝑝7 and the consumption in fatty acid compartment has a rate of 𝑝8.  

 

This model also includes a remote compartment for fatty acids which can affect the glucose 

uptake in the liver and peripheral tissues. The dynamics is governed by the equation: 

 

𝑑𝐶𝑍

𝑑𝑡
= −𝑘2𝐶𝑍 + 𝑘1(𝐶𝐹 − 𝐹𝑏)    (3.10) 
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where 𝑘2 = 𝑘13 + 𝑘14 + 𝑝10  and 𝑘1 = 𝑝11 It can be seen that the parameter transformation in 

the equation can be summarised as: 

 

 

p1 k5 + k6 

p4 k3 + k4 

p6 k13 + k14 

p7 k11 + k12 

p8 k9 + k10 

p9 k7 + k8 

 

    Table 3.2  The parameter transformation 

 

The parameters in the ODEs were determined by numerical and experimental tests as shown in 

[157]. The values are given in Table 3.3.  

 

Parameter Value 

p1 6.8 ∗ 10−2 𝑚𝑖𝑛−1 

p2 3.7 ∗ 10−2 𝑚𝑖𝑛−1 

p3 1.2 ∗ 10−5 𝑚𝑖𝑛−1 

p4 1  𝑢𝑚𝑜𝑙−1𝐿 𝑚𝑖𝑛−1 

p5 0 𝑚𝑖𝑛−1 

p6 6.1 ∗ 10−5𝑢𝑚𝑜𝑙−1𝐿 𝑚𝑖𝑛−1 

p7 3 ∗ 10−2𝑚𝑖𝑛−1 

p8 4.5 𝑢𝑚𝑜𝑙−1𝐿 𝑚𝑖𝑛−1 

𝒂 2.1 ∗ 10−4 𝑢𝑚𝑜𝑙−1𝑚𝑖𝑛−1 

B 5.5 ∗ 10−3 𝑢𝑚𝑜𝑙−1 

k1 2 ∗ 10−2 𝑚𝑖𝑛−1 

k2 3 ∗ 10−2 𝑚𝑖𝑛−1 
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pF2 1.7 ∗ 10−1 𝑚𝑖𝑛−1 

pF3 1 ∗ 10−5 𝑚𝑖𝑛−1 

 

    Table 3.3  Parameter of the model in [157] 

 

The kinetic model described in this section relates to the metabolism process in blood. However, 

this model does not include the absorption of fatty acids into plasma. This is an important 

contribution to the fatty acid concentration in plasma [179] and cannot be ignored from the 

metabolism process. The mass transfer 𝑢3(𝑡) into fatty acids compartment may be 

assumed in Equation (3.8), but this cannot provide details of absorption of fatty acids. To 

improve this limitation of the model, some modifications are made in the following section. 

       

3.2.2. The modification of the model  

 

In Section 3.2.1, the metabolism process is modelled without describing the absorption of fatty 

acids in the blood vessel, which can be modified by considering an absorption process. It is 

described in Section 3.1 that the absorption process for fatty acids can be described by a transit 

compartment model in Equation (3.1). By adding these transit compartments into the fatty acids 

compartments in Section 3.2.1, the modified model can be represented in a schematic view as 

below: 



Chapter 3 

 

55 

 

 

 

Figure 3.7  Schematic view of small compartments added to the metabolism process. 

 

The compartments 𝐶𝑍 , 𝐶𝐹 represent the fatty acids remote fatty acids compartment and the fatty 

acids in plasma, which is same as the compartment defined in Section 3.2.1. The small 

compartments represent the absorption process which has been defined in Section 3.1. In Figure 

3.7, the mass transfer term into 𝐶𝐹  has been replaced by a set of transit compartments that 

describe the fatty acids transport in the absorption process. Therefore the system represented in 

Figure 3.6 can be summarised as below: 

 

𝑑𝐶𝐼

𝑑𝑡
= −𝑛𝐶𝐼      (3.11) 

𝑑𝐶𝑋

𝑑𝑡
= −𝑝2𝐶𝑋 + 𝑝3(𝐶𝐼 − 𝐼𝑏)     (3.12) 

𝑑𝐶𝐺

𝑑𝑡
= −𝑝1𝐶𝐺 − 𝑝4𝐶𝑋𝐶𝐺 + 𝑝6𝐶𝐺𝐶𝑍     (3.13) 
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𝑑𝐶𝑌

𝑑𝑡
= −𝑝𝐹2𝐶𝑌 + 𝑝𝐹3(𝐶𝐼 − 𝐼𝑏)     (3.14) 

𝑑𝐶𝑍

𝑑𝑡
= −𝑘2𝐶𝑍 + 𝑘1(𝐶𝐹 − 𝐹𝑏)     (3.15) 

𝑑𝐶𝐹

𝑑𝑡
= −𝑝7𝐶𝐹 − 𝑝8𝐶𝑌𝐶𝐹 + 𝑝9(𝐶𝐺)𝐶𝐹𝐶𝐺 + 𝑝7𝐹𝑏 + 𝑢3(𝑡)  (3.16) 

 

 

As the analytical solution for 𝐶𝑁 is calculated in Equation 3.2. The source term to fatty acids 

compartment  𝑢3(𝑡) in Equation (3.16) can be modified and defined as:  

 

 

𝑢3(𝑡) = 𝑝𝑡𝑟𝛤
(𝑘𝑡𝑟𝑡)

𝑛

𝑛!
𝑒−𝑘𝑡𝑟𝑡    (3.17) 

 

In the assumption of absorption delay model in [161], the 𝑘𝑡𝑟 can be assumed according to the 

mean transit time. If the experiment duration last for 360 minutes in the lab, the ktr  can be 

defined as below: 

 

𝑘𝑡𝑟 =
𝑛+1

360
      (3.18) 

 

In the next section, the data used in Section 3.1 can be used for the inverse problem to determine 

the unknown parameters ptr and n in Equation (3.17).  By assuming 𝑛 = 3, 𝑝𝑡𝑟 = 1, 𝛤 = 100 

before the approach, the feature of concentration change for 𝑢3(𝑡) can be seen as below: 
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Figure 3.8   The profile of u3(t) 

 

From the above figure the profile of 𝑢3(𝑡) can represent the absorption delay phenomenon for 

the metabolism system in the blood. The rate increases slowly at first and rises dramatically two 

hours after the absorption starts. This absorption delay feature explains the decrease of fatty 

acids initially in the experimental data. It means the metabolism controls the dynamic change for 

fatty acids before the absorption rate reaches a relatively high level in the blood vessel. In 

contrast to the linear model presented in Section 3.1, the modified model can describe detailed 

transport and reaction in absorption and metabolism process for fatty acids. The approximations 

of the two models involved in the inverse problem are compared in Section 3.3.  

 

3.2.3.  The inverse problem for the modified model 

 

According to the condition in Fielding’s experiment [179], the data is measured for the fatty 

acids concentration in plasma.  Then the numerical simulation of fatty acids compartment 𝐶𝐹 in 
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the modified model can be used for approximating the measurement in the experiment. The 

initial condition used in the ODE may be taken from those of the experimental condition. 

 

The initial condition for the model can be defined easily for some compartments that are closely 

related to the data pool, but some theoretical remote compartments that are assumed in the model 

need to be assumed based on a specific case of the measurement. In Fielding’s [179] experiment, 

the glucose is not measured in the data, therefore the initial condition is defined as in Roy’s [157] 

numerical simulation. As the initial condition for insulin is given in the experiment, and the 

measurement of fatty acids is obtained from lab, the initial condition for insulin and fatty acids 

are defined in terms of experimental data. For the remote compartment for insulin, glucose and 

fatty acids, the absorption delay can leads to a zero initial condition according to the assumption 

in the mathematical model. 

 

In this way, the initial conditions of the model adapted from [157, 179] are defined as below: 

 

𝐶𝐺(0) = 370 𝑢𝑚𝑜𝑙/𝐿     (3.19)  

𝐶𝑌(0) = 0 𝑢𝑚𝑜𝑙/𝐿     (3.20)  

𝐶𝐹(0) = 765.73 𝑢𝑚𝑜𝑙/𝐿    (3.21)  

𝐶𝑍(0) = 0 𝑢𝑚𝑜𝑙/𝐿     (3.22)  

𝐶𝐼(0) = 9.29 𝑢𝑚𝑜𝑙/𝐿     (3.23)  

 𝐶𝑋(0) = 0 𝑢𝑚𝑜𝑙/𝐿     (3.24)  

 

As the balanced concentration of inhibitor, the insulin basal concentration is defined in the same 

way as the initial condition in the experiment. This means: 

 

𝐼𝑏 = 𝐼(0) = 9.29 𝑢𝑚𝑜𝑙/𝐿    (3.25) 

 

For the basal concentration for fatty acids compartment  𝐹𝑏 in Equation (3.15), the value of  𝐹𝑏 

represents a balanced concentration of fatty acids in steady states for human body, which is not 

given in the experimental data. Also the basal fatty acids concentration has a big difference for 
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individuals [135].  In this computational exercise, different values of 𝐹𝑏(0, 25, 50, 75, 100) are 

used in the inverse approach to determine the unknown parameters. 

 

In the inverse problem, the experimental data is the same as the measurement in Section 3.1 in 

[179]. The objective function has been defined in Chapter 2. As the fatty acids concentration is 

modelled in an interactive system in Equation (3.16), the gradient of this non-linear system is 

difficult to simulate and computationally expensive in the inverse approach. Therefore some 

stochastic methods such as QPSO method can be applied to obtain the unknown parameters in 

the model.  

 

In the QPSO method, the initialisation of the first generation of parameter vectors is defined in a 

specific interval. For a given number of iterations in the update process, this interval gives the 

lower and upper boundaries of the search-space. The smaller length of this search-space leads to 

a higher accuracy of the optimisation as the computational work can focus on a smaller interval 

for candidate solutions and then become more efficient.  In this study a wide range for parameter 

initialisation (ptr ∈ [0, 100] and n ∈ [0, 100]) is test at first to give a rough guess for a smaller 

search-space. With these simulation tests in QPSO method, the updated best position for 

parameters is found to be located in a smaller interval ((ptr ∈ [0, 1]  and n ∈ [0, 6] )). As 

parameters converge quickly to this small interval even with a large search-space, the new 

initialisation choice can be set in the QPSO method with a smaller interval to ensure the 

computation work can be efficiently applied in the inverse approach. 

 

The mathematical model is described in Equation (3.11) to (3.16), and QPSO method is applied 

in Matlab code. The direct problem is solved by 4
th

 order of Runge-Kutta method. The numerical 

result is shown as follows: 
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Figure 3.9 The concentration of fatty acid 

 

In Figure 3.9 the star points describe the experimental data as the measurement and the curves 

represent the numerical simulations of fatty acids compartment with different basal concentration 

in the model. When the basal concentration is assumed range from 0 to 75, the simulation can fit 

the measurement well. When 𝐹𝑏 = 100, the computation simulation (red curve) does not present 

the dynamics accurately, especially when t=100 min. It can be deduced that the basal 

concentration of fatty acids affected the minimum of the fatty acid concentration in this reaction, 

and large basal concentration is not suitable for Fielding’s [179] experiment. 

 

To investigate the influence of basal fatty acids concentration in the inverse approach, the 

different 𝐹𝑏 are tested in Figure 3.9. As another benchmark, the objective function with different 

basal concentrations represented the result of optimisation process. Let 𝑃𝑒𝑟𝑟 be the percentage of 

approximation error in the measurement 

 



Chapter 3 

 

61 

 

𝑃𝑒𝑟𝑟 = ∑
1

𝑁
|
𝑪𝑖(𝑡;𝑷)−  𝑪 ̃𝑖

  𝑪 ̃𝑖
|𝑁

𝑖=1      (3.26) 

 

The 𝐶𝑖(𝑡; 𝑷)  indicates the computational simulation with optimal parameters and  𝐶 ̃𝑖  is the 

measurement. 𝑁 is the number of experimental data and 𝑃𝑒𝑟𝑟 represnts how far the numerical 

result is from the data. The smaller 𝑃𝑒𝑟𝑟  indicates a better approximation of inverse approach. 

The optimal parameter and the value of 𝑃𝑒𝑟𝑟 are listed as below 

 

𝐹𝑏 𝑝𝑡𝑟 𝑛 𝑃𝑒𝑟𝑟  

 

0 

 

0.749439657613942 

 

 

3 

 

 0.062388209529882 

 

25 

 

0.707162516177295 

 

 

3 

 

0.067633061863528 

 

50 

 

0.811871818488958 

 

 

4 

 

0.068404417619363 

 

75 

 

0.763152632905667 

 

 

4 

 

0.082551075001087 

 

100 

 

0.580381436588291 

 

 

3 

 

 0.154027123429660 

 

Table 3.4 The unknown parameter and the error function in the inverse approach. 

 

From the table above, it is obvious that when 𝐹𝑏 = 100, the 𝑝𝑡𝑟 has the smallest value and the 

objective gives the worst result among all the simulations. This indicates that if the basal 

concentration of fatty acids exceeds a specified benchmark, the appearance rate from the source 
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term would become slow and it can affect the accuracy of inverse approach. As a comparison, 

when 𝐹𝑏 are given values which are less than 100, the flow rate from source term range from 0.7 

to 0.9 and the 𝑃𝑒𝑟𝑟 is less than 10%, indicating an acceptable inverse determination for biologists. 

 

In the optimisation process, the initialisation of parameters is carefully chosen in the QPSO 

method to ensure the efficiency of the computational work. In a wide range of search-space, the 

optimisation solution usually converges to a small interval, which means a small perturbations in 

parameters cannot leads to a large fluctuation for error function with the QPSO method.  

 

3.3.  The comparison of two models for fatty acids concentration  
 

 

In this chapter, the same experimental data has been used in two different models: First one is the 

linear absorption model presented in Section 3.1. Second one is the modified model by 

combining absorption and metabolism process and presented in Section 3.2. The approximations 

of these two models can be compared by computing the 𝑃𝑒𝑟𝑟 defined in Equation (3.26). 

  

Let 𝑃𝑒𝑟𝑟−𝑙𝑖𝑛 be the percentage of approximation error in linear absorption model in Section 3.1, 

and 𝑃𝑒𝑟𝑟−𝑚𝑜𝑑  be the percentage of error in nonlinear model in Section 3.2. The basal 

concentration of fatty acids 𝐹𝑏 in the nonlinear model is chosen as 25. It can be seen that: 

 

 𝑃𝑒𝑟𝑟−𝑙𝑖𝑛  𝑃𝑒𝑟𝑟−𝑚𝑜𝑑 

0.143475627820439 0.067633061863528 

 

Table 3.5 The comparison of error functions of two models. 

 

It can be seen from table 3.5 that the modified non-linear model has smaller error percentage in 

the measurement, which indicates a better approximation for fatty acids in the inverse problem. 

The second model in Section 3.2 describes both the absorption and metabolism process for fatty 

acids and the metabolism of fatty acids is involved in an insulin-glucose regulation system. This 

novel model can provide a physiological-based system for fatty acids concentration and can 

develop the accuracy of data fitting in the inverse problem, which has been proved in this section.   
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3.4. Summary 
 

This chapter proposed a model by coupling the metabolism and absorption process for fatty acids. 

The existing model is extended for fatty acids concentration in the blood. The modified model 

provides a better data fitting performance in contrast to the linear absorption model in the inverse 

problem. This novel model provides a first attempt to combine an absorption delay assumption in 

the metabolism of fatty acids in the blood. The inverse approach gives a proper estimation of 

absorption rate for fatty acids.  

 

These models in this chapter provide a macroscopic view of fatty acids concentrations in the 

plasma. There are more chemical reactions, such as the hydrolysis and esterification of fatty 

acids, involved in the absorption and metabolism process. Next chapter the attention is paid on 

the hydrolysis process in the fatty acids absorption. The experience of compartment model can 

be used for the model building in the next chapter. 
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4. Chapter 4 A mathematical model for the 

hydrolysis of triglyceride 

 

 

 

 

 

As introduced in Chapter 1 fatty acids have to be released through hydrolysis from triglyceride 

(TAG) molecules before it can be absorbed. There were many studies related to this essential 

reaction in biology [33, 39, 146]. On the other hand, there were many mathematical models [78, 

103, 131] describing hydrolysis which are usually linear. There were many other theoretical 

models where parameters have not been calibrated through experiments. Much work was related 

to the stability of the solution of the models. In this chapter there are three main discussions: 

First a general form of the hydrolysis model is adopted to describe the dynamics of lipids and 

fatty acids in the hydrolysis process incorporating possible model error or unknown reaction by 

introducing a regulator into the ODE system. Second a specific regulator example for an olive oil 

emulsion is determined through experimental data and is examined. Finally the resulting inverse 

problem is solved using QPSO technique.  
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4.1. The stepwise hydrolysis process 

 

The hydrolysis, or lipolysis, refers to the process of releasing fatty acids from TAG. There are 

several substances involved in the hydrolysis, including TAG, monoglyceride(MG), 

diaglyceride(DG), glycerol and fatty acids(FA).  The hydrolysis of ester bonds in TAG is the 

principal phase in the intestinal absorption of TAG. In the hydrolysis phase, the reaction is 

controlled by lipase enzyme, and the pancreatic lipase can act on the ester bonds in TAG and 

lead to the formation of DG or MG [112]. In the first phase, the TAG converts to DG and 

releases one fatty acid. In the second phase, the DG converts to MG and releases one fatty acid. 

All these reactions lead to a stepwise process. The reverse reaction of hydrolysis, which is 

known as esterification, may take place at the same time in the human body. The free fatty acids 

may attach to the ester bonds of DG or MG to form the TAG molecules. During these processes, 

the optimal pH and the position of ester bonds may lead to different hydrolysis or esterification 

rate as these factors may affect the activity of enzyme [32]. 

 

In the hydrolysis process, TAG is stepwise converted into DG, MG and glycerol accompanied 

with the liberation of a fatty acid at each step.  To build a compartment model indicating these 

reactions, define the compartment TAG, DG, MG, glycerol and fatty acids with concentration    

𝐶𝑇𝐺, 𝐶𝐷𝐺, 𝐶𝑀𝐺 , 𝐶𝐺𝐿𝑌 and 𝐶𝐹𝐴, respectively. Figure 4.1 depicts a compartment system containing 

several compartments that represent the concentration of substances based on the physiological 

remarks as mentioned above. 
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 Figure 4.1 Schematic view of the triglyceride hydrolysis through the compartment 

The hydrolysis leads to the breakdown of TAG to release fatty acids molecules. The rates of this 

reaction for each step are assumed to be 𝑘1, 𝑘3  and 𝑘5 . Meanwhile, the TAG is formed by 

combining DG or MG with fatty acids, which is known as the process of esterification. 

Esterification and hydrolysis are, in essence, reversals of one another, and the reverse reaction 

rate is assumed to be 𝑘2,  𝑘4 and 𝑘6 as presented in Figure 4.1 . 

 

Some mathematical models have been analysed for the hydrolysis considering the enzyme 

reaction [94, 170, 183]. The model in [38] presented a three compartment model including 

glycerol, fatty acids and TAG. The hydrolysis process is simply assumed as one step. This model 

is extended in [123] where the hydrolysis has two steps and the model has four compartments 

including fatty acids, TAG, DG and MG.  The recent developed model in [200] provides a six 

compartment model by adding glycerol and water molecule in the hydrolysis process. All these 

models assumed the hydrolysis rate  𝑘1, 𝑘3  and 𝑘5  as constant in the hydrolysis process. 

Typically these models are ODE system which can be summarised as below: 

 

𝑑𝐶𝑇𝐺

𝑑𝑡
= −𝑘1𝐶𝑇𝐺 + 𝑘2𝐶𝐷𝐺𝐶𝐹𝐴      (4.1) 

𝑑𝐶𝐷𝐺

𝑑𝑡
= 𝑘1𝐶𝑇𝐺 − 𝑘2𝐶𝐷𝐺𝐶𝐹𝐴 − 𝑘3𝐶𝐷𝐺 + 𝑘4𝐶𝑀𝐺𝐶𝐹𝐴                           (4.2) 
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𝑑𝐶𝑀𝐺

𝑑𝑡
= 𝑘3𝐶𝐷𝐺 − 𝑘4𝐶𝑀𝐺𝐶𝐹𝐴 − 𝑘5𝐶𝑀𝐺 + 𝑘6𝐶𝐺𝐿𝑌𝐶𝐹𝐴     (4.3)  

  
𝑑𝐶𝐺𝐿𝑌

𝑑𝑡
= 𝑘5𝐶𝑀𝐺 − 𝑘6𝐶𝐺𝐿𝑌𝐶𝐹𝐴      (4.4) 

𝑑𝐶𝐹𝐴

𝑑𝑡
= 𝑘1𝐶𝑇𝐺 − 𝑘2𝐶𝐷𝐺𝐶𝐹𝐴 + 𝑘3𝐶𝐷𝐺 − 𝑘4𝐶𝑀𝐺𝐶𝐹𝐴 + 𝑘5𝐶𝑀𝐺 − 𝑘6𝐶𝐺𝐿𝑌𝐶𝐹𝐴   (4.5)  

   

 

In this ODE system, 
𝑑𝐶𝑇𝐺

𝑑𝑡
,
𝑑𝐶𝐷𝐺

𝑑𝑡
,
𝑑𝐶𝑀𝐺

𝑑𝑡
,
𝑑𝐶𝐺𝐿𝑌

𝑑𝑡
 and 

𝑑𝐶𝐹𝐴

𝑑𝑡
 represent the rates of concentration change 

of TAG, DG, MG, glycerol and fatty acids. In these mathematical models, the reverse reaction 

such as esterification of DG or MG is neglected in the model. The reaction terms and the number 

of equations in these ODE models have big difference due to various experimental conditions. In 

the next section, a general form of hydrolysis model is proposed by combining all substances 

involved in the TAG hydrolysis. Unknown terms described as regulators are added to the ODE 

system. These regulators can be adjusted for missing reaction in the hydrolysis process. 

4.2. A general form of the hydrolysis model  

 

To consider a general form for the hydrolysis process, the missing information in the ODE model 

needs to be adjusted. There are many enzymatic reactions in the hydrolysis that directly or 

indirectly affect the reaction rate to form fatty acids. For example, the fatty acids molecules are 

attached to the lipid molecules with ester bonds in the molecule structure. The enzyme needs to 

react on the ester bonds to release fatty acids molecules. Also the enzyme itself needs to be 

active before becoming involved in the hydrolysis reaction. Therefore defining some regulators 

in the ODE model may be necessary to describe the missing information.  

 

In order to take account of the effects due to (i) activation of main enzymes and their eventual 

action on the triglycerides, (ii) the optimal pH and temperature that provide the environment for 

the reaction, (iii) the action of some inhibition reactions, (iv) design of the experiment and (v) the 

individual difference in the blood sample if it is in vivo test, unknown regulator terms are 

included in the model in Equations (4.6) to (4.10).   
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𝑑𝐶𝑇𝐺

𝑑𝑡
= −𝑘1𝐶𝑇𝐺 + 𝑘2𝐶𝐷𝐺𝐶𝐹𝐴 + 𝜎1(𝐶𝑇𝐺 , 𝐶𝐷𝐺 , 𝐶𝑀𝐺 , 𝐶𝐺𝐿𝑌, 𝐶𝐹𝐴, 𝑡)    (4.6) 

𝑑𝐶𝐷𝐺

𝑑𝑡
= 𝑘1𝐶𝑇𝐺 − 𝑘2𝐶𝐷𝐺𝐶𝐹𝐴 − 𝑘3𝐶𝐷𝐺 + 𝑘4𝐶𝑀𝐺𝐶𝐹𝐴 + 𝜎2(𝐶𝑇𝐺 , 𝐶𝐷𝐺 , 𝐶𝑀𝐺 , 𝐶𝐺𝐿𝑌, 𝐶𝐹𝐴, 𝑡) (4.7)  

 
𝑑𝐶𝑀𝐺
𝑑𝑡

= 𝑘3𝐶𝐷𝐺 − 𝑘4𝐶𝑀𝐺𝐶𝐹𝐴 − 𝑘5𝐶𝑀𝐺 + 𝑘6𝐶𝐺𝐿𝑌𝐶𝐹𝐴 

+𝜎3(𝐶𝑇𝐺 , 𝐶𝐷𝐺 , 𝐶𝑀𝐺 , 𝐶𝐺𝐿𝑌, 𝐶𝐹𝐴, 𝑡)  (4.8)  

 
𝑑𝐶𝐺𝐿𝑌

𝑑𝑡
= 𝑘5𝐶𝑀𝐺 − 𝑘6𝐶𝐺𝐿𝑌𝐶𝐹𝐴 + 𝜎4(𝐶𝑇𝐺 , 𝐶𝐷𝐺 , 𝐶𝑀𝐺 , 𝐶𝐺𝐿𝑌, 𝐶𝐹𝐴, 𝑡)    (4.9) 

𝑑𝐶𝐹𝐴

𝑑𝑡
= 𝑘1𝐶𝑇𝐺 − 𝑘2𝐶𝐷𝐺𝐶𝐹𝐴 + 𝑘3𝐶𝐷𝐺 − 𝑘4𝐶𝑀𝐺𝐶𝐹𝐴 + 𝑘5𝐶𝑀𝐺 − 𝑘6𝐶𝐺𝐿𝑌𝐶𝐹𝐴   

+𝜎5(𝐶𝑇𝐺 , 𝐶𝐷𝐺 , 𝐶𝑀𝐺 , 𝐶𝐺𝐿𝑌, 𝐶𝐹𝐴, 𝑡)   (4.10)  

 

 𝜎𝑖 refer to unknown regulators for each compartment . As each substance affects each other 

directly or indirectly,  𝜎𝑖 depends on all the substances and time. 

 

This model now contains all substances involved in hydrolysis. The regulator terms 𝜎𝑖  take 

account of the effects due to possible missing reactions and data measurement. In the next 

section, an application of this model is carried out with a set of in vitro data. The hydrolysis 

model is modified to include an enzymatic reaction. 

 

 

4.3. A modification based on the enzymatic reaction 

 

As a regulator in the model 𝜎  may be used to represents the enzymatic reaction in the hydrolysis 

process. To illustrate the function of an enzyme, an enzymatic kinetic, first proposed in [121] and 

known as Michaelis-Menten kinetics, can be described in a basic enzymatic reaction as below:   

 

𝑆 + 𝐸

        𝑘1          
→      

       𝑘−1       
←      

𝑆𝐸
       𝑘2       
→      𝑃 + 𝐸                                                       (4.11) 

Here  𝑘1    , 𝑘−1, 𝑘2 are constants. The reaction says that one molecule of substance 𝑆 combines 

with one molecule of enzyme 𝐸 to form one molecule of complex 𝑆𝐸, which eventually produces 

one molecule of product 𝑃 and one molecule of 𝐸. 
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The concentration of above substances can be defined as 𝐶𝑆, 𝐶𝐸 , 𝐶𝑆𝐸  and 𝐶𝑃, respectively. By 

applying the law of mass action, and ODE system can be built as below:  

 

𝑑𝐶𝑆

𝑑𝑡
= −𝑘1𝐶𝐸𝐶𝑆 + 𝑘−1𝐶𝑆𝐸      (4.12) 

𝑑𝐶𝐸

𝑑𝑡
= −𝑘1𝐶𝐸𝐶𝑆 + (𝑘−1 + 𝑘2)𝐶𝑆𝐸     (4.13) 

𝑑𝐶𝑆𝐸

𝑑𝑡
= 𝑘1𝐶𝑆𝐸𝐶𝑆 − (𝑘−1 + 𝑘2)𝐶𝑆𝐸     (4.14) 

   
𝑑𝐶𝑃

𝑑𝑡
= 𝑘2𝐶𝑆𝐸             (4.15) 

 

subject to the initial conditions  

 

 

𝐶𝑆(0) = 𝑠0, 𝐶𝐸(0) = 𝑒0, 𝐶𝑆𝐸(0) = 0, 𝐶𝑃(0) = 0                                         (4.16) 

 

Adding Equation (4.13) and Equation (4.14) leads to 

 

 
𝑑𝐶𝐸
𝑑𝑡

+
𝑑𝐶𝑆𝐸
𝑑𝑡

= 0 → 𝐶𝐸(𝑡) + 𝐶𝑆𝐸(𝑡) = 𝑒0 

 

 

Using the above relation, the system of ODE reduces to only two, involving 𝐶𝑆 and 𝐶𝑆𝐸, namely 

 

 

 
𝑑𝐶𝑆

𝑑𝑡
= −𝑘1𝑒0𝐶𝑆 + (𝑘1𝐶𝑆 + 𝑘−1)𝐶𝑆𝐸                                         (4.17) 

 
𝑑𝐶𝑆𝐸

𝑑𝑡
= 𝑘1𝑒0𝐶𝑆 − (𝑘1𝐶𝑆 + 𝑘−1 + 𝑘2)𝐶𝑆𝐸                                    (4.18)  

with 

 

𝐶𝑆(0) = 𝑠0, 𝐶𝑆𝐸(0) = 0        (4.19) 

 

Under the assumption in [121], the enzyme concentration is much less than the substance 

concentration, the complex concentration remains stable in a short reaction time as all enzyme 
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molecules have been involved in the reaction. This is known as Michaelis–Menten equilibrium 

and the rate change of 𝐶𝑆𝐸 equals to 0, which indicates: 

 

𝑘1𝑒0𝐶𝑆 − (𝑘1𝐶𝑆 + 𝑘−1 + 𝑘2)𝐶𝑆𝐸 = 0     (4.20) 

It can be obtained that  

 

𝐶𝑆𝐸 =
𝑘1𝑒0𝐶𝑆

𝑘1𝐶𝑆+𝑘−1+𝑘2
      (4.21) 

 

Substitute Equation (4.21) into Equation (4.15) 

 

 
𝑑𝐶𝑃

𝑑𝑡
=

𝑃1𝐶𝑆

𝑃2𝐶𝑆+P3
           (4.22) 

 

where 𝑃1 = 𝑘2𝑘1𝑒0, 𝑃2 = 𝑘1, 𝑃3 = 𝑘−1 + 𝑘2, which are all constants in the Equation (4.22). The 

Michaelis-Menten kinetic provides the dynamic for reaction production with enzyme involved in 

it. It represents the function of enzyme and has been applied to many biological models [50, 95, 

169] including the hydrolysis models [19, 46]. In this section, the Michaelis-Menten kinetics can 

be used as regulator terms in the general forms of hydrolysis model as the feature of enzyme can 

be appropriately described in the ODE system. 

 

An in-house set of in vitro experimental data provided by Institute of Food Research (IFR) was 

used to provide a numerical approximation of the modified model. The experiment involved an 

olive oil emulsion (about 5mg/ml) stabilised with sodium caseinate (2 mg/ml) which was 

digested in individual tubes with porcine lipase( 0-180 minutes). The emulsion is a mixture of 

two or more lipids and the caseinate is a complex for a family of proteins which are commonly 

found in milk. The porcine lipase is the enzyme that activates the hydrolysis process in the lab. 

 

The experimental data is shown as below: 

 

Time/min Fatty acid [mg/L] TAG[mg/L] DG[mg/L] MG[mg/L] 

0 0.060248 3.44784 0.35599 0.011523 
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2.5 0.143353 2.7173 0.454372 0.022032 

5 0.201921 2.63131 0.526373 0.036352 

10 0.330118 2.43299 0.707849 0.045228 

20 0.476237 2.38568 0.865891 0.06626 

40 0.725705 1.70638 0.932213 0.130605 

60 0.761048 1.42584 1.1929 0.146772 

120 0.886076 0.97226 1.244026 0.153829 

180 0.943472 0.79464 1.468038 0.15868 

 

Table 4.1  The experimental data in hydrolysis process 

 

 As in the experiment, the enzyme porcine lipase lacks the ability to cleave the MG into fatty 

acids and glycerol. It means that the concentration of glycerol in Equation (4.6) to (4.10) can be 

neglected and the last equation for the glycerol can be removed along with other rate constants 

associated with glycerol concentration. Also the reverse reaction due to the esterification is small 

enough to be ignored in the mathematical model. Therefore the reaction can be simplified to a 

reaction shown as below: 

 

 

 

  Figure 4.2 Schematic view of the hydrolysis process in the experiment 
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In Figure 4.2, the TAG is an ester derived from one glycerol and three fatty acids. The 

experiment that mentioned above only focused on the breakdown of TAG into DG, MG and fatty 

acids. The lipase enzyme can bind to the ester bond of TAG, which leads to the releasing of fatty 

acids, which indicates that the regulator terms in mathematical models can be defined in terms of 

enzymatic kinetic and the Michaelis–Menten kinetics can be applied. Similar application can be 

found in the literature [75]. The linear reaction term can lead to the hydrolysis for the triglyceride 

and the enzymatic reaction is handled by the regulators in the model.  

 

 Note that in the system of Michaelis–Menten kinetics [75], the assumption indicates that the 

parameters in the kinetic represent the reaction rates, and the value of parameter needs to be 

positive according to the chemical reaction. For triglyceride equation, the concentration of 

substances are not produced in the hydrolysis process, which cannot be explained by the 

Michaelis–Menten kinetics directly, therefore the values of parameters are obtained by the 

inverse approach instead of biological explanation . 

 

With above modifications of the general form, the modified model is given as below: 

 

𝜕𝐶𝑇𝐺

𝜕𝑡
= −𝑘1𝐶𝑇𝐺 +

𝑘7𝐶𝑇𝐺

𝐶𝑇𝐺+𝑘8
     (4.23) 

𝜕𝐶𝐷𝐺

𝜕𝑡
= 𝑘1𝐶𝑇𝐺 − 𝑘3𝐶𝐷𝐺 +

𝑘9𝐶𝐷𝐺

𝐶𝐷𝐺+𝑘10
    (4.24) 

𝜕𝐶𝑀𝐺

𝜕𝑡
= 𝑘3𝐶𝐷𝐺 +

𝑘11𝐶𝑀𝐺

𝐶𝑀𝐺+𝑘12
     (4.25) 

𝜕𝐶𝐹𝐴

𝜕𝑡
= 𝑘1𝐶𝑇𝐺 + 𝑘3𝐶𝐷𝐺 +

𝑘13𝐶𝐹𝐴

𝐶𝐹𝐴+𝑘14
    (4.26) 

 

Here the aim is to determine 10 parameters 𝑷 =

(

 
 
 

𝑘1
𝑘3
𝑘7
𝑘8
⋮
𝑘14)

 
 
 

 in Equation (4.23) to (4.26). The method 

in inverse problem is needed to obtain such information along with the experimental data. 
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4.4. The inverse approach 

 

In this section, an inverse problem is solved with modified model and the experimental data in 

Table 4.1. The numerical method introduced in Chapter 2 is applied in this problem. As the 

hydrolysis process includes more than one substance in the reaction, a multi-objective 

optimisation problem is solved in the inverse approach and the weights of different substances 

are given in this optimisation. A novel way of identifying these weights is constructed by 

analysing the feature of chemical reaction in the lab and numerical tests of weights values. There 

are three tasks in this section. First the error function for the multi-objective function is built by 

combining all substances in the reaction. Second the optimisation is divided into two phases: 

optimise the TAG concentration at first and then consider the DG, MG and fatty acids 

concentration. Finally the prediction of reaction can be tested with the obtained parameters in the 

inverse problem   

 

4.4.1. The analysis of weight in the multi-objective optimisation 

 

The aim of the inverse problem is to find the optimal parameter vector 𝑷∗ =

(

 
 
 

𝑘1
∗

𝑘3
∗

𝑘7
∗

𝑘8
∗

⋮
𝑘14
∗ )

 
 
 

 by solving 

the minimisation problem 

 min
𝑃

𝛹(𝑷∗) 

 

The substance concentrations in Equation (4.23) to (4.26) is denoted as 𝐶𝑇𝐺(𝑡; 𝑷) 

𝐶𝐷𝐺(𝑡; 𝑷), 𝐶𝑀𝐺(𝑡; 𝑷)and  𝐶𝐹𝐴(𝑡; 𝑷) . The inverse problem technique is to construct an error 

function denoted by 

 

𝛹(𝑷 ) = 𝜔1‖𝐶𝑇𝐺(𝑡; 𝑷 ) − 𝐶𝑇�̃�(𝑡)‖
2
+ 𝜔2‖𝐶𝐷𝐺(𝑡; 𝑷 ) − 𝐶𝐷�̃�(𝑡)‖

2
+ 𝜔3‖𝐶𝑀𝐺(𝑡; 𝑷 ) −

𝐶𝑀�̃�(𝑡)‖
2
+ 𝜔4‖𝐶𝐹𝐴(𝑡; 𝑷 ) − 𝐶𝐹�̃�(𝑡)‖

2
     (4.27) 
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where 𝐶𝑇�̃�(𝑡), 𝐶𝐷�̃�(𝑡), 𝐶𝑀�̃�(𝑡), 𝐶𝐹�̃�(𝑡) are the experimental data and 𝜔𝑖 are the different weights 

for each objective in this optimization.  𝜔𝑖 is the weight for different objective functions of TAG, 

DG, MG and fatty acids. The 𝜔𝑖 has 

 

∑ 𝜔𝑖
4
𝑖=1 = 1      (4.28) 

 

The aim of the inverse approach is to minimise the error function 𝛹(𝑷 ) with multi-objective 

optimisation, 𝐶(𝑡; 𝑷) is the solution of the direct problem defined in Equation (4.23) to (4.26) 

with a given value of  𝑷. As described in Chapter 2, the QPSO can be applied to find the optimal 

parameters for this minimisation. 

 

According to the form of the Equation (4.27), this is a typical multi-objective optimisation 

problem. It can be seen in the Equation (4.28) that the value of 𝜔𝑖 need to be determined before 

applying inverse approach, but for this multi-objective analysis, there is no specific preference 

for the 2-norm error of four substances as the concentrations for different lipids are equally 

important from a biological view, therefore the different values of 𝜔𝑖 need to be tested in the 

numerical simulation.  

 

As the chemical reaction follows the process presented in Figure 4.2, it can be seen that the TAG 

concentration is constantly decreasing which leads to the increase of other lipids. At the starting 

point of the metabolism process involved in the experiment only TAG exists. In the hydrolysis 

process DG, MG and fatty acids are produced. Therefore it is natural to define weights for DG, 

MG and fatty acids to be equal. It is defined as 

 

 ω2 = ω3 = ω4 = ω      (4.29) 

 

The Equation (4.28) is viewed as 

 

𝜔1 + 3ω = 1     (4.30) 
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where 𝜔1 = 𝛽 , ω is obtained as  

 

𝜔 =
1−𝛽

3
      (4.31) 

 

In this way the choice of weights in Equation (4.27) is reduced to  𝛽  only. With different values 

of 𝛽, the optimal parameters can be determined with the minimum error function in Equation 

(4.27). With application of QPSO method introduced in Chapter 2, the  parameter value with 

corresponding error function values are shown below with   𝛽 changing from 0.1 to 0.8. In the 

QPSO method, the same iteration number (𝑘𝑚𝑎𝑥 = 1000 ) is used initially for different 𝛽 values 

in this multi-objective problem for each simulation. A wide range for initialisation for all 

parameters are used in the QPSO algorithm, then a smaller interval for each parameter is tested 

based on the results from the large search-space. The gradient-based method such as SDM is 

then used to check if the optimal parameters from QPSO method are the optimum in the inverse 

approach. It is found that with a large search-space in QPSO method the parameters all converge 

to a smaller interval even with a random initialisation in this space, which indicates a good 

convergence for this system.  

 

𝛽 0.1 0.2 0.3 0.4 

𝛹(𝑷 ) 0.165633029 0.377122 0.250197 0.61611 

𝑘1    0.001837363 -0.010923409 -0.01439261   0.0167888 

𝑘3 0.2159649856 0.3893087306 0.4018080891 0.06509283 

𝑘7 0.011859164 -0.239990524 0.053960516 4.09187E-05 

𝑘8 -3.460806065 6.99922874 -3.989699992 -1.043699505 

𝑘9 1.499675998 1.30885094 1.281637558 0.35804974 

𝑘10 5.626514768 2.047998312 1.878148536 6.006201616 

𝑘11 4.896738545 -0.933206279 6.907048929 -3.6429716 

𝑘12 -2.725959385 0.1387126 -2.102293013 5.627447666 

𝑘13 -2.265500013 -2.946433229 -2.235752097 -1.112701393 

𝑘14 6.18484457 4.442532483 3.246452121 6.93238111 
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𝛽 0.5 0.6 0.7 0.8 

𝛹(𝑷 ) 0.642513 0.644276 0.643547 0.655057 

𝑘1 0.089621460 0.1345975472 0.134938551 0.136322390 

𝑘3 0.5051400084 0.0363963162 0.034460981 0.041193668 

𝑘7 0.504058488 0.946903784 1.055687723 1.061378167 

𝑘8 4.946578491 6.077493444 6.926996344 6.89363348 

𝑘9 -3.322153932 0.022432169 0.021945104 0.023579508 

𝑘10 0.51632245 -1.102568008 -1.141036809 -1.084711158 

𝑘11 -3.755308792 -2.076939237 1.127960795 -2.802246863 

𝑘12 2.228855131 6.490074439 -3.843806574 6.463038662 

𝑘13 -3.031248959 0.046771595 0.047143212 0.057755256 

𝑘14 6.402257572 -0.783372551 -0.78328057 -0.715458489 

 

Table 4.2 The estimated parameter values from the inverse approach  

 

The Table 4.2 indicates the result of error function defined in Equation (4.27) and the parameters 

which lead to the corresponding error. It can be found that k1 and k3 are positive values as the 

TAG and DG have hydrolysis leading to the decrease of the concentration which converts to 

other lipids.  

 

Note that for the parameters for the non-linear term in the ODE model, the parameters may have 

a negative value from Table 4.2. The Michaelis-Menten kinetic in a chemical reaction indicates 

that the parameter in the dynamic need to be positive to satisfy the biological background, but 

parameters in this model are identified according to the experimental data instead of theoretical 

biological model. The complex enzymatic reaction and noises in the experimental data may lead 

to a big difference for these parameters. Therefore the negative value for parameters is allowed 

in this study. From the comparison, it can be found that when 𝛽  is getting large, the 
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approximation is losing accuracy, especially when 𝛽 is more than 0.5. Figures 4.3 to 4.6 show 

the results of numerical estimation and the data when 𝛽 is equal to 0.6, 0.7 and 0.8.  

 

 

Figure 4.3 The concentration of Triglyceride with in vitro data 
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Figure 4.4 The concentration of diglyceride with in vitro data 

 

Figure 4.5 The concentration of monoglyceride with in vitro data 
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Figure 4.6 The concentration of fatty acids with in vitro data 

 

The 𝛽  is the weight of triglyceride concentration in the optimisation process and the larger 

weight means the more importance in the optimisation process, but it can also lead to the loss of 

accuracy for DG, MG and fatty acids as can be shown in Figures 4.3 to 4.6. Therefore it can be 

concluded that the large weight for triglyceride may have disadvantage of inaccuracy of other 

substances. For Figure 4.6, it can be seen that the differences among weight equal to 0.6, 0.7, and 

0.8 do not have a good approximation. Therefore it is not appropriate to define a too large weight 

( 𝛽 > 0.4) for TAG as it may affect the accuracy for the inverse approach for data of other lipids. 

Then next the small values of 𝛽  can be analysed in Figures 4.7 to 4.10. 
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Figure 4.7 The concentration of triglyceride with small 𝛽  in multi-optimisation 

 

Figure 4.8 The concentration of diglyceride with small 𝛽  in multi-optimisation 
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Figure 4.9 The concentration of monoglyceride with small 𝛽 in multi-optimisation  

 

 

 

Figure 4.10 The concentration of fatty acids with small 𝛽  in multi-optimisation 
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It can be summarised from Figures 4.7 to 4.10 that when 𝛽 =0.1, the curve fitting for TAG is 

acceptable. In contrast to 𝛽 =0.2 and 0.3, it has the smallest objective error and it can be seen as 

the optimal result for this multi-objective problem.  

 

It can be seen from above figure that the different values for parameters in Table 4.2 leads to a 

different approximation results. However, when parameters for a specific substance’s data are 

close with different weights in multi-objective optimisation, the data fitting all gives similar 

results. For example, for the numerical results for substances concentration with 𝛽 = 0.7 and 

𝛽 = 0.8  in Figure 4.2, the errors between experimental data and numerical results are almost 

same, and the parameters do not have a big difference in Table 4.1. This indicates that the 

optimisation results can be almost equal where the parameters are close, which indicates that 

parameters are identifiable from the experimental data in this study. The similar conclusion can 

be found in related literature [129]. Even though the optimisation gives acceptable results when β 

is small in the above study, it may lead to a relatively large error to estimate 10 parameters 

simultaneously in this research. In the next part, the estimated parameters can be split into two 

groups. The experimental data for TAG can easily determine the optimal parameters in part of 

the ODE equations. Therefore fewer parameters can be optimised with experimental data to 

avoid the possible parameter identifiability problem.  

 

4.4.2.   The role of TAG in the inverse approach 

 

For most cases, the weighted values for different substances can be tested by the above method, 

but for this special case in Equations (4.23) to (4.26), the TAG concentration is not affected by 

DG, MG and fatty acid density. This indicates that the parameters in Equation (4.37) can be 

obtained purely dependent on TAG data for this model. The inverse problem can be divided into 

two phases: firstly 𝑘1, 𝑘7, 𝑘8 are determined to optimise the triglyceride concentration, then the 

other parameters can be obtained with measurement of DG, MG and fatty acid. This optimisation 

process fully considers the physiological reaction in the chemical reaction. The performance of 

this optimisation has a better data fitting result for TAG concentration in contrast to the typical 
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optimisation method in the above section. The details of the optimisation process are described 

in this section. 

 

In the first stage, the error function 𝜑𝑇𝐺  is defined as  

 

𝛹𝑇𝐺  = ‖𝐶𝑇𝐺(𝑡; 𝑷 ) − 𝐶𝑇�̃�‖
2
 

 

When we apply QPSO method in Equation (4.23) and TAG data in Table 4.1,   the resulting 

optimal parameter is  

 

𝑷 = (

𝑘1
𝑘7
𝑘8

) = (
 0.001078630790470

0.012641123024406

−3.450745861588872

) 

 

With the parameter determined, the comparison between numerical result and measurement can 

be checked as below: 

 

 

Figure 4.11 The concentration of triglyceride in single objective optimisation 
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The rate change of concentration of triglyceride is purely dependent on the parameter 𝑘1, 𝑘7, 𝑘8, 

therefore it can be concluded that the result in Figure 4.11 is the same as the multi-objective 

optimisation in Equation (4.41) when 𝛽 = 1. All the computation effort is used for the single 

objective regardless of the accuracy of three other substances. Therefore the comparison can be 

made between the result in Figure 4.11 and the result in Table 4.3.  

 

𝛹𝑇𝐺  Value 

Numerical result in Figure 4.11 0.273552584889044 

Numerical result in Table 4.3 when 𝛽 = 0.1 0.442305609111378 

Numerical result in Table 4.3 when 𝛽 = 0.2 1.411283534099235 

Numerical result in Table 4.3  when 𝛽 = 0.3 0.443217130062414 

Numerical result in Table 4.3 when 𝛽 = 0.4 0.959798338809792 

Numerical result in Table 4.3  when 𝛽 = 0.5 0.682994390616921 

Numerical result in Table 4.3  when 𝛽 = 0.6 0.669194243328586 

Numerical result in Table 4.3  when 𝛽 = 0.7 0.658058116877952 

Numerical result in Table 4.3  when 𝛽 = 0.8 0.657638056121929 

 

Table 4.3 The error function for Triglyceride with different weight in multi-objective 

optimisation 

 

It is obvious that the accuracy for TAG has a big advantage in the single objective optimisation. 

Another conclusion from table 4.3 indicates that a bigger weight for triglyceride does not lead to 

smaller 2-norm error when comparing  𝛽 more than 0.5 and equal to 0.1. This may because the 

error for DG and MG has affect the accuracy of TAG optimisation. 

 

In the second phase of inverse approach, the objective function for other lipids can be defined as  

 

  𝛹(𝑷 ) = 

𝜖1‖𝐶𝐷𝐺(𝑡; 𝑷 ) − 𝐶𝐷�̃�(𝑡)‖
2
+ 𝜖2‖𝐶𝑀𝐺(𝑡; 𝑷 ) − 𝐶𝑀�̃�(𝑡)‖

2
+ 𝜖3‖𝐶𝐹𝐴(𝑡; 𝑷 ) − 𝐶𝐹�̃�(𝑡)‖

2
  (4.32) 
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As for these three substances, the DG can be seen as the starting point for the reaction. Specially, 

the DG can release the fatty acids and itself convert to MG. Therefore as a key substance in the 

lipolysis, the value of DG weight can be analysed. Then the 𝜖𝑖 can be assumed as 

 

𝜖1 = 𝛾   ,𝜖2 = 𝜖3 =
1−𝛾

2
     (4.33) 

 

Same as the investigation for triglyceride weight, the different value of 𝛾 is tested for the 

numerical approximation and the result is shown in the table 

𝛾 0.1 0.2 0.3 0.4 

𝛹(𝑷 ) 0.193928867 0.165334 0.150912 0.13273 

𝑘3 0.2982565586 0.141373 0.1816438 0.1357425 

𝑘9 2.34556682 0.538391 0.890705 0.50044 

𝑘10 6.551638617 2.510537 3.598836 2.389329 

𝑘11 8.214225969 8.535141 -9.79047 -6.91689 

𝑘12 -3.245260232 -6.60183 5.999756 5.686707 

𝑘13 -3.312617434 -2.11552 -2.83532 -2.05523 

𝑘14 6.595936159 9.376749 9.708228 9.430163 

 

𝛾 0.5 0.6 0.7 0.8 

𝛹(𝑷 ) 0.115717 0.102553 0.082642 0.070869 

𝑘3 0.079271 0.13908 0.08096 0.177106 

𝑘9 0.193578 0.557188 0.20565 0.993732 

𝑘10 1.13656 2.698881 1.221399 4.242805 

𝑘11 6.584783 -9.63703 -6.94672 7.726727 

𝑘12 -9.5509 8.001426 9.59085 -4.98429 

𝑘13 0.950856 -2.19456 0.688616 2.404318 

𝑘14 -9.09094 9.875942 -6.63739 -9.76059 

 

Table 4.4 The numerical result for other parameters 
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It is shown that with the increase of 𝛾 the objective function is decreasing. As in the Figure 4.12 

to 4.14, though the value of objective function has a better accuracy from Table 4.5, the 

improvement in the curve is only obvious for DG concentration, the MG and fatty acid do not 

have a big difference from the result. This indicates that this 𝛾 test can be a good search for 

optimisation of DG concentration. 

 

 

 

Figure 4.12 The concentration of diglyceride with 𝛾 = 0.1 and 𝛾 = 0.8 in optimisation 
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Figure 4.13 The concentration of monoglyceride with 𝛾 = 0.1 and 𝛾 = 0.8 in optimisation 

 

Figure 4.14 The concentration of fatty acids with 𝛾 = 0.1 and 𝛾 = 0.8 in optimisation 
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From the above result, the MG and fatty acid is not affected by the change of 𝜎 as much as the 

TAG. Define the error function for lipids as: 

 

𝛹DG = ‖𝐶𝐷𝐺(t; 𝑷 ) − 𝐶𝐷�̃�(t)‖
2
     (4.34) 

𝛹MG = ‖𝐶𝑀𝐺(t; 𝑷 ) − 𝐶𝑀�̃�(t)‖
2
     (4.35) 

𝛹FA = ‖𝐶𝐹𝐴(t; 𝑷 ) − 𝐶𝐹�̃�(t)‖
2
     (4.36) 

 

The table 4.6 lists the error function for different substances with different 𝛾. 

 

𝛾 0.1 0.2 0.3 0.4 

𝛹𝐷𝐺  0.305691073 0.29658 0.299094 0.293578 

𝛹𝑀𝐺  0.041990437 0.038846 0.038436 0.0388 

𝛹𝐹𝐴 0.115930756 0.096865 0.099137 0.097123 

 

 

𝛾 0.5 0.6 0.7 0.8 

𝛹𝐷𝐺  0.27962 0.295347 0.281888 0.313971 

𝛹𝑀𝐺  0.038091 0.038788 0.035707 0.037097 

𝛹𝐹𝐴 0.107065 0.101054 0.102431 0.097947 

 

Table 4.5 The objective function for different weights 

It can be observed in the table that when 𝛾 is too small or two large (  𝛾 = 0.1 and 𝛾 = 0.8), the 

numerical result for 𝛹𝐷𝐺  does not have a good performance ( 𝛹𝐷𝐺 > 0.3) when compared to 

other weight. Another conclusion can be drawn from numerical tests that the larger weight for 𝜎 

does not always lead to a better accuracy for diglyceride, when compared to the 𝛹𝐷𝐺  when 

𝛾 = 0.5 and  𝛾 = 0.6 . 
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In this part, the optimisation process is divided into two parts: firstly a multi-objective 

optimisation problem is solved by considering all the substance concentration simultaneously. 

Secondly the parameters are divided into two groups: The TAG concentration is considered to 

optimise the parameters for Equation (4.23) first. With the determined parameters k1, 𝑘7, 𝑘8, the 

parameters for DG, MG,FA can be optimised. In this way the optimisation can have a better 

accuracy from the numerical results, but the disadvantage is also obvious. In the second step of 

the method, splitting parameters into more groups may not give a better result. For example for 

Equation (4.24), if the DG concentration is considered in a single-objective optimisation problem 

and the parameter k1, 𝑘3, 𝑘9, 𝑘10 are optimised and determined with the experimental data for DG, 

the optimisation for TAG and MG may be affected as parameter k1, 𝑘3 also control the Equation 

(4.23) and (4.25). Therefore there are only two stages for the inverse approach in this numerical 

example for an acceptable optimisation for a computational application.   

 

 

4.4.3.   The prediction of reaction 

 

As a function of mathematical model for biologists, the above system can be used to predict the 

dynamic of concentration with an appropriate description in the model. The optimal parameter 

when 𝛾 = 0.5 is chosen and the reaction time is extended to 720 minutes. The result is shown  

below. 
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Figure 4.15 The prediction for triglyceride concentration 

 

The hydrolysis reaction is catalysed by the lipase enzyme and the prediction of the substance 

concentration is affected by the activity of lipase. The function of the lipase is directly related to 

the concentration of triglyceride on the interface of emulsion. For this experiment, the activity of 

enzyme reaches a maximum when the lipase is fully contacted with the triglyceride molecules. 

The free fatty acids and other lipids monotonically increase along with time. The free fatty acids 

may form triglyceride again and make the triglyceride reach a balance of concentration. The rate 

of the triglyceride decrease then gradually tends to zero and all the substances have a steady state 

in this model. 
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Figure 4.16 The prediction for diglyceride concentration 

 

Figure 4.17 The prediction for monoglyceride concentration 
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Figure 4.18 The prediction for fatty acids concentration 

  

From Figure 4.15 the TAG concentration represents a monotonic decrease in a longer reaction 

period, but the tendency becomes slow and the concentration gets close to zero and remains 

stable. The rate change of TAG also describes the whole reaction which includes the other lipids 

concentration and fatty acid. The MG and DG do not have transformation from triglyceride and  

also remain stable after 400 minutes. The increase of fatty acids also have a small rate of change 

in a long reaction time. The prediction of the concentration from computational simulation can 

be associated to the lab condition in the experiment. As the enzyme in the reaction does not 

process the esterification reaction for process, the substance concentration cannot have a heavy 

fluctuation after the hydrolysis reaction. The prediction from the model can  fit well the 

physiologycal features of chemical reaction in the experiment, and the inverse approach can 

provide an appropriate estimation for the reaction rate of hydrolysis. 
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4.5. The summary  

 

This chapter proposes a novel model for TAG hydrolysis in the absorption process. The 

contribution of this hydrolysis model includes a first attempt to develop a regulator term in the 

compartment model to describe the possible unknown reactions in the stepwise hydrolysis 

process. A modification is made to the general form of the hydrolysis model to include the 

enzymatic reaction in the experiment. The multi-objective optimisation problem is addressed in 

the inverse problem by taking account of the physiology itself. 

 

This hydrolysis model is designed for a macroscopic view of chemical reaction for lipid. In the 

metabolic pathway for human, the enzyme is usually stored inside the cell. Therefore a diffusion-

reaction PDE model for the intestinal cell may be needed to represent the digestive system 

precisely. More details are presented in the next chapter. 
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5. Chapter 5 Some aspects of uncertainties in 

fatty acids absorption at cellular level 

 

 

 

At the cellular level, analysis of absorption often refers back to the knowledge of cell biology.  

Understanding how cells work is fundamental in biological science. The research of cell biology 

is related to the cell proliferation [175], genetic biology [18] and cancer research [152], amongst 

others. In this thesis, the model developed in the cell is to be linked up with the macroscopic 

kinetic absorption phenomenon of TAG and fatty acids at a smaller level. By combining the MG 

and fatty acids through the esterification process inside the cell into the cellular transportation 

model, one can use it to estimate and predict lipid dynamics at the cellular level.   

  

In this chapter, the movement of molecules in and out of the cell is studied. For the main 

absorption tissue, the intestinal epithelial cell is the pathway for all digested molecules before 

entering the metabolic system. The mathematical model describing the movement of lipids inside 

the epithelial cell can be used to understand the transport phenomena which are represented by a 

reaction diffusion system of PDEs [65, 82]. The membrane of epithelial cell, which is 

represented as the boundary conditions in the PDEs, has different kinds of proteins with various 

functions [185]. The shape of membrane is irregular and the surface of membrane differs a lot 
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for individuals [122]. Such information is too complicated to be included in the model and could 

lead to uncertainties in the boundary conditions. 

 

5.1. The relation between cellular transport and absorption 

 

As mentioned in Chapter 1 the transport of substances in absorption process takes place in the 

epithelial cells of small intestine. Epithelium, or epithelial cell, is one of the most basic cell types 

in animal tissue and organ. It does not contain blood vessels, but the cell can transport substance 

from connective tissue through basement membrane [58]. Epithelial cells cover the inner and 

outer linings of body cavities, such as the stomach and the urinary tract. As the barrier between 

the outside world’s contaminants and the body, these cells replicate often to replace damaged or 

dead cells [167].  In this thesis, the study for epithelial cell is limited to the absorption process in 

the small intestine tissue and attention is paid to the TAG transport inside the intestinal epithelial 

cell.  

 

The analysis of fatty acids absorption in blood vessels is modelled by means of a compartment 

model with a delay function in Chapter 3. The change of fatty acids concentration in such 

analysis is mainly due to the inhibition of insulin and the hydrolysis of TAG. The simplified 

ODE model as described in Chapter 3 assumes the absorption process without considering the 

transport of fatty acids at the cellular level. This limitation may be addressed by building a model 

in terms of the concentration of lipid when it goes into the blood vessel through the epithelial 

cells along the small intestine. A schematic view of the lipid transport pathway is shown in 

Figure 5.1. 
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Figure 5.1 The schematic view of lipid transport 

 

After the transport into the intestinal epithelial cell, the MG and fatty acids are released from the 

TAG molecule and move out of the cell [112]. A TAG molecule has to pass through some layers 

such as submucosa and serosa [93]. At this stage molecules can then transport through to the 

capillary and finally reach the blood vessel [136]. Therefore it can be concluded that the TAG is 

mainly controlled by the transport through epithelial cells in the small intestine. The function and 

structure of epithelial cell is the key factor in the mathematical model for cellular transport of 

TAG. 

     

5.2. The TAG absorption in intestinal epithelial cells 

 

TAG’s transport in the blood and intestine is facilitated by the transport proteins and enzymes in 

the body. Microscopic studies concluded that the triglyceride particles, which range in diameters 

from  0.3 − 0. 6𝜇𝑚, cannot pass through apical membrane to enter the intestinal epithelial cell 

[165]. The TAGs are mainly digested by the lipase and become the emulsion particles (or 

micelles) in the small intestine lumen. In this process, the lipase activates the hydrolysis reaction 
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of TAG and the production of emulsion which consists of a complex of MG and fatty acids. Both 

the MG and fatty acids are taken up from the intestinal lumen and migrated into the epithelial 

cells of the small intestine. Once inside the epithelial cell, an esterification process of producing 

TAG happens around the Golgi part of the cell. These procedures are depicted as in Figure 5.2: 

 

 

 

Figure 5.2 The pathway of triglyceride transport inside epithelial cell of small intestine. 
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After the formation of TAG in the epithelial cell, these molecules can move out of the cell by 

active transport [182]. The next site for TAG movement is the capillary near the outer wall of 

small intestine. In this way, the TAG can be transferred and circulated in the blood vessel where 

metabolism takes place. The adjacent epithelial cells do not have communication to each other, 

therefore the molecule transport inside the cell only has one direction from apical membrane to 

basolateral membrane, the PDE model for the diffusion inside the cell can be simplified to a one-

dimension problem in this case.    

 

Within the intestinal cells, there are many factors that may affect the rate of the movement of 

lipids and fatty acids in this transport process. These factors include the structure emulsion form, 

the binding proteins in the membrane, the functions of a cell and the activation of enzymes inside 

the cell. In the next section, a mathematical model is built by considering these factors in the 

TAG absorption.  

 

5.3. Modelling lipid transport inside the epithelial cell 

 

The general reaction-diffusion model for an epithelial cell is discussed in Chapter 2 and an 

example of glucose transport is considered in Equation (2.7). However the TAG transport inside 

the cell is more complicated as the hydrolysis and esterification reactions are involved [125]. 

Some modifications using the concept of regulator in the model need to be considered in this 

section. 

 

As shown in Figure 5.2, the apical membrane of epithelial cell contains small, finger-like 

structures known as villi. The villi link the lumen of small intestine and the inner enviroment of 

epithelial cells. This complex structure of villi can be simplified to a regular domain and the 

membrane property is represented by the boundary condition.  For substance transport inside the 

cell, the domain can be assumed to be one-dimensional and the transport can be represented in 

the figure below: 
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Figure 5.3 The cellular transport for lipid 

 

As the distribution of substances inside the cell is considered. The compartmental model in 

Chapter 3 cannot be applied in this study. The PDE model describing diffusion and reaction of 

substances inside the cell is discussed in this chapter. The length of the epithelial cell is set as  L. 

The flow of substances into the cell is from the apical membrane, which is along the left 

boundary at  𝑥 = 0 , and out of the cell from the basolateral membrane, which is the right 

boundary at 𝑥 = 𝐿. The TAG molecules from basolateral site can enter the blood vessel and be 

involved in the metabolism which is presented in Chapter 3. A standard mathematical model 

used to describe the concentration changes with respect to time is the diffusion equation [178]. 

Consider the concentration 𝐶𝑖(𝑥, 𝑡)  as one of the substances inside the cell, the equation of 

transport can be written as: 

 

𝜕𝐶𝑖

𝜕𝑡
= 𝐷

𝜕2𝐶𝑖

𝜕𝑥2
       (5.1) 

 

Equation (5.1) describes a diffusion model for molecular movement inside the epithelial cell. 

However, as revealed in Figure 5.2, the lipid molecules inside the cell undergo an esterification 

reaction that should also be taken into account for the transport of molecules. A source term in 

the PDE model is probably the best way to encapsulate the esterification reaction inside the cell. 
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5.3.1. The inclusion of esterification in the transport model 

 

Define the concentration of TAG, MG and fatty acids as 𝐶𝑇𝐺 , 𝐶𝑀𝐺  and 𝐶𝐹𝐴, respectively. Let 𝑆𝑇𝐺, 

𝑆𝑀𝐺 and 𝑆𝐹𝐴 be  additional reaction terms which are also known as regulators here. The regulator 

may be used to provide a regulation to any missing process in physics. The PDE models can be 

written as below  

 

𝜕𝑡𝐶𝑇𝐺 = 𝐷𝑇𝐺∇
2𝐶𝑇𝐺 + 𝑆𝑇𝐺      (5.2) 

 

𝜕𝑡𝐶𝑀𝐺 = 𝐷𝑀𝐺∇
2𝐶𝑀𝐺 + 𝑆𝑀𝐺        (5.3) 

 

𝜕𝑡𝐶𝐹𝐴 = 𝐷𝐹𝐴∇
2𝐶𝐹𝐴 + 𝑆𝐹𝐴      (5.4) 

 

where 𝐷𝑇𝐺 , 𝐷𝑀𝐺  and 𝐷𝐹𝐴  are the diffusion coefficients of molecules, and 𝑆𝑇𝐺 , 𝑆𝑀𝐺  and 𝑆𝐹𝐴  are 

the source terms.  

 

When substances enter the cell, one molecule of MG binds to two molecules of fatty acids to 

form the TAG. This is the same as the esterification process described in Chapter 4 and the 

reaction is given as below: 

𝑀𝐺 + 2  𝐹𝑎𝑡𝑡𝑦 𝐴𝑐𝑖𝑑
𝑘1
→ 𝑇𝐴𝐺       (5.5) 

 

In the ODE model the compartment model can be built by applying the law of mass action. For 

the reaction-diffusion model in Equation (5.2) to (5.4), the regulators 𝑆𝑇𝐺  , 𝑆𝑀𝐺 , 𝑆𝐹𝐴  aim to  

incorporate all of the missing processes and chemical reactions inside the cell. For simplicity 

these source terms can be taken to present the esterification term in the ODE model. By applying 

the law of mass action to Equation (5.5), the reaction diffusion model in 1-D becomes: 

 

 
𝜕𝐶𝑇𝐺

𝜕𝑡
= 𝐷TG

𝜕2𝐶𝑇𝐺

𝜕𝑥2
+ 𝑘1𝐶𝑀𝐺𝐶𝐹𝐴

2      (5.6) 
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𝜕𝐶𝑀𝐺

𝜕𝑡
= 𝐷𝑀𝐺

𝜕2𝐶𝑀𝐺

𝜕𝑥2
− 𝑘1𝐶𝑀𝐺𝐶𝐹𝐴

2     (5.7) 

 

𝜕𝐶𝐹𝐴

𝜕𝑡
= 𝐷𝐹𝐴

𝜕2𝐶𝐹𝐴

𝜕𝑥2
− 𝑘1𝐶𝑀𝐺𝐶𝐹𝐴

2      (5.8) 

 

where 𝑘1 is the esterification rate of the reaction inside the cell. Here 𝑘1 represents the rate that 

fatty acids binding to the ester bonds, which can be assumed to have a close value with the 

reaction rate for MG in the hydrolysis model in Chapter 4 (𝑘1 = 0.17). Some other parameters in 

the reaction-diffusion model are presented in the next section.  

 

5.3.2. A numerical example 

 

In the diffusion-reaction cellular model, the diffusion coefficients represent the level of mass 

diffusivity. There are many factors which control the diffusion of molecules, such as the 

temperature, pH values and reaction inside the cell [106, 198]. To represent the effect of these 

factors, Manitz et al. [118] built a two-dimensional multi-layer diffusion model, and some 

models have been used for describing unsaturated fatty acids diffusion [160]. According to the 

literature related to lipid diffusion [108, 190], the diffusion coefficient of lipid is around 

10−10𝑐𝑚2/𝑠 to 10−8𝑐𝑚2/𝑠. The diffusion coefficients as provided in the literature are: 

  

 

𝐷TG = 36 𝜇𝑚2/ℎ     (5.9) 

  𝐷MG = 36𝜇𝑚2/ℎ     (5.10)  

  𝐷FA = 54 𝜇𝑚2/ℎ     (5.11) 

 

This set of diffusion coefficients are the same as those in [120] and are used in the current 

numerical example described here. 

  

The domain is assumed to be one dimension and the length of cells determines the size of 

domain. In 1987, Brown [28] estimated the size of the epithelial cell of human lens (a structure 
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in the eye) in vivo. The study found that the epithelial cells range from 4-21μm . Large 

differences exist in mean cell size between individuals. An appropriate shape of the epithelial 

cell is taken to consider the domain size and is defined as   

 

𝑥 ∈ [0 , 4] 

 

It is almost the size of an intestinal epithelial cell in μm scale. 

 

The initial conditions are based on the concentrations of molecules inside a real cell.  In 1998, 

Bas Teusink did an experiment and found that the concentration of substance was slightly less 

than 0.4 mM inside and was approximately 100 mM outside the cells [186]. The initial condition 

in this study can be assumed as a constant value 0.4 mM for MG and fatty acids and 0.6 mM per 

unit length for TAG concentration. Hence the initial conditions are assumed to be  

 

CTG(x, 0) = 0.4 mmol/μm    (5.12) 

𝐶𝑀𝐺(𝑥, 0) = 0.4 mmol/μm    (5.13) 

𝐶𝐹𝐴(𝑥, 0) = 0.6 mmol/μm    (5.14) 

 

From Figure 5.3 it is considered that on the apical membrane of the epithelial cell ( 𝑥 = 0  ), the 

TAG cannot enter the epithelial cell, which means that the TAG has a zero-flux boundary 

condition along the apical membrane. This zero flux boundary condition also applies to MG and 

fatty acid along the 𝑥 = 𝐿  where the substances do not have communication with exterior 

environment. The gradient of TAG concentration across the basolateral membrane is 

proportional to the concentration itself. This gives a Neumann boundary condition.  The MG and 

FA have a transport into the epithelial cell at the apical membrane ( 𝑥 = 0  ). As the inflow is 

connected to the absorption pathway in the human digestive system, the assumption from 

macroscopic absorption model can be used to describe the mass flow before the epithelial cell 

part. The absorption delay phenomenon in Chapter 3 can be assumed for MG and FA along 

𝑥 = 0 as a theoretical time-dependent profile representing the concentration on the other side of 

the apical membrane. The boundary conditions used in the numerical example are summarised as 

below:  



Chapter 5 

 

103 

 

 

𝜕𝐶𝑇𝐺(0, 𝑡)

𝜕𝑥
= 0 

𝜕𝐶𝑇𝐺(𝐿, 𝑡)

𝜕𝑥
= 𝑘4𝐶𝑇𝐺(𝐿, 𝑡) 

𝜕𝐶𝑀𝐺(0, 𝑡)

𝜕𝑥
= 𝑘2

(𝑘𝑡𝑟𝑡)
𝑛

𝑛!
𝑒−𝑘𝑡𝑟𝑡 

𝜕𝐶𝑀𝐺(𝐿, 𝑡)

𝜕𝑥
= 0 

𝜕𝐶𝐹𝐴(0, 𝑡)

𝜕𝑥
= 𝑘3

(𝑘𝑡𝑟𝑡)
𝑛

𝑛!
𝑒−𝑘𝑡𝑟𝑡 

𝜕𝐶𝐹𝐴(𝐿, 𝑡)

𝜕𝑥
= 0 

 

Table 5.1 The boundary condition for reaction diffusion model  

 

The lipids and fatty acids go in and out of the cell in the process of absorption, the membrane on 

both sides controls the transport rate across the membrane. In Table 5.1 the rate across the 

boundary  for TAG is assumed to satisfy the first order dynamics in terms of substances 

concentration. The  constant 𝑘4 is related to the uptake ability of membrane for intestinal cells. In 

Nada’s research [78], the uptake of fatty acid and lipid was measured at 23°𝐶 and the uptake of 

lipids complex by cells were recorded along with time. The parameter in the boundary condition 

for this cellular model can be assumed to be the same as the uptake rate for epithelial cell. Hence 

the parameter in boundary conditions are assumed as  

 

 𝑘4 = 0.32  𝜇m−1     (5.15) 

 

The boundary condition for MG and FA on the boundary x = 0 is related to the delay function 

from macroscopic absorption process in Chapter 3. According to the application of delay 

function in [161], the transfer rate ktr  is controlled by the absorption time T and theoretical 

compartment number n:  𝑘𝑡𝑟 =
𝑛+1

𝑇
   (  𝑚𝑖𝑛−1) . The delay function describes the concentration 

of substances on the membrane and the transport rate along the boundary is taken from Nada’s 

research [78] by considering the uptake rate by cell and assumed as  

 

𝑘2 = 0.2  𝑚𝑚𝑜𝑙 ∗   𝜇𝑚−2   (5.16) 

𝑘3 = 0.4  𝑚𝑚𝑜𝑙 ∗   𝜇𝑚−2    (5.17) 

 

In this section, the initial and boundary conditions are described along with the assumption of 

other related biological coefficients in the model. The numerical tests can be seen as a 
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computational estimation for TAG absorption at cellular level. The delay for arriving to the small 

intestine lumen is faster than arriving the blood vessel compartment and the theoretical 

compartment number is set as n = 2 and the absorption time is set as T = 10min   (
1

6
ℎ) 

 

5.4. The numerical methods for the cellular model 
 

For the reaction diffusion system in the study, the finite difference method is applied in the 

numerical simulation. Consider one of the concentration in Equation (5.2) to (5.4) written as  

 

𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2
+ 𝑆      (5.18) 

 

Here C refers to one lipid substance in the epithelial cell. Using a forward difference at time tn 

and a second-order central difference for the space derivative at position xi, the Equation 

becomes 

 

 
𝐶𝑖
𝑛+1−𝐶𝑖

𝑛

∆𝑡
= 𝐷

𝐶𝑖+1
𝑛 −2𝐶𝑖

𝑛+𝐶𝑖−1
𝑛

∆𝑥2
+ 𝑆𝑛    (5.19) 

 

where ∆t is the step size for time and ∆x is the step size for space, and i = 1,2,3…M .Then the 

Equation (5.19) can be written as: 

 

𝐶𝑖
𝑛+1 = 𝐻𝐶𝑖+1

𝑛 + (1 − 2𝐻)𝐶𝑖
𝑛 + 𝐻𝐶𝑖−1

𝑛 + ∆𝑡𝑆𝑛   (5.20) 

 

where 

 

𝐻 =
𝐷∆𝑡

∆𝑥2
 

 

The discretisation scheme of Equation (5.20) can be used for all substances in the reaction 

diffusion system, but may be different for the boundary conditions. For the TAG boundary 

condition in Table 5.1, the zero flux boundary condition at x = 0 (i = 1 in the space scheme) can 

be discretised as: 
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𝐶2
𝑛−𝐶0

𝑛

2∆𝑥
= 0       (5.21) 

 

Substitute Equation (5.21) to Equation (5.20) when 𝑖 = 1, one can obtain 

 

 

𝐶1
𝑛+1 = 2𝐻𝐶2

𝑛 + (1 − 2𝐻)𝐶1
𝑛 + ∆𝑡𝑆𝑛    (5.22) 

 

 

For the TAG concentration on the x = L (i = M in the space scheme), the TAG molecule has a 

flow out of the cell from the basolateral membrane, and the Neumann boundary condition can be 

discretised as : 

 

𝐶𝑀+1
𝑛 −𝐶𝑀−1

𝑛

2∆𝑥
= 𝑘4𝐶𝑀

𝑛      (5.23) 

 

Substitute into Equation (5.20), one can obtain  

 

 

𝐶𝑀
𝑛+1 = 2𝐻𝐶𝑀−1

𝑛 + (1 − 2𝐻 + 2∆𝑥𝑘4𝐻)𝐶𝑀
𝑛 + ∆𝑡𝑆𝑛    (5.24) 

 

 

The boundary condition for MG and fatty acids is defined in a similar form. For the boundary 

condition at x = 0, the boundary condition for MG and fatty acids can be summarised as: 

 
𝜕𝐶(𝑥=0,𝑡)

𝜕𝑥
= 𝑓(𝑡)      (5.25) 

 

It can be discretised as: 

 
𝐶2
𝑛−𝐶0

𝑛

2∆𝑥
= 𝑓(𝑡)       (5.26) 

 

Substitute into Equation (5.20) when i = 1, one can obtain 

 

 

𝐶1
𝑛+1 = 2𝐻𝐶2

𝑛 + (1 − 2𝐻)𝐶1
𝑛 − 2∆𝑥𝐻𝑓(𝑡) + ∆𝑡𝑆𝑛  (5.27) 

 

 

The MG and fatty acids have a zero flux boundary condition at x = L, the discretisation is the 

same as the TAG concentration at x = 0, and can be defined as: 

  

𝐶𝑀
𝑛+1 = 2𝐻𝐶𝑀−1

𝑛 + (1 − 2𝐻)𝐶𝑀
𝑛 + ∆𝑡𝑆𝑛   (5.28) 
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The convergence of finite difference method in the model 

 

To test the convergence of the finite difference method, the algorithm can be applied with 

different spatial and temporal mesh sizes. In this study, the spatial interval is defined as 

 x ∈ [0, 4]um and the temporal interval is defined as t ∈ [0,
1

6
]  hours. When the grid points for 

spatial is fixed as 41, which means ∆x = 0.1 um, different grids point for time discretisation can 

be used in the simulation.  The concentration of TAG in the time discretisation is taken with the 

grid point  gt
𝑖 = 2𝑖 ∗ 103 + 1 (i = 2,3…8). The grid point Gt = 29 ∗ 103 + 1 is assumed as the 

most accurate numerical result and the convergence of this method according to temporal mesh 

sizes can be tested by computing the 2-norm error between the simulation with  gt
𝑖 grid point in 

finite difference method and the simulation with Gt grid point in the finite difference method. 

Take TAG concentration for example, the computation can be done for  

 

E𝑖 = ‖𝐶𝑇𝐺(𝑤𝑖𝑡ℎ gt
𝑖  𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑠𝑎𝑡𝑖𝑜𝑛) − 𝐶𝑇𝐺(𝑤𝑖𝑡ℎ Gt 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑠𝑎𝑡𝑖𝑜𝑛)‖

2
 

 

The numerical result can be seen in the following table. 

 

Grid point E𝑖 

22 ∗ 103 + 1 1.64 ∗ 10−4 

23 ∗ 103 + 1 8.17 ∗ 10−5 

24 ∗ 103 + 1 4.06 ∗ 10−5 

25 ∗ 103 + 1 1.99 ∗ 10−5 

26 ∗ 103 + 1 9.65 ∗ 10−6 

27 ∗ 103 + 1 4.51 ∗ 10−6 

28 ∗ 103 + 1 1.93 ∗ 10−6 

 

Table 5.2 The 2-norm error for different temporal mesh sizes 
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It can be found in Table 5.2 that the error for TAG concentration is decreasing with the 

increasing of the grid point number, which means the numerical simulation converges to the 

finest mesh size. The temporal interval is defined as t ∈ [0,
1

6
]  hours .When the mesh size ∆t is 

in Ο(10−2) (gt = 22 ∗ 103 + 1) , the order of error E𝑖 is in  Ο(10−4), and when the mesh size ∆t 

is in Ο(10−3) (gt = 2i ∗ 103 + 1, i = 3,4,5) , the order of error Ei is in  Ο(10−5). To investigate 

the order of error of convergence in time for the numerical method, the value of  

ln(temporal grid points) against ln(errors) can be plotted based on the data obtained in Table 

5.2. The figure can be seen as below: 

 

 

 

Figure 5.4 ln(temporal grid points) against ln(errors) 

 

It is shown in Figure 5.4 that the ln(temporal grid points) against ln(errors) line is essentially 

linear from the numerical results. The absolute value of the slope in Figure 5.4 indicates rate of 

convergence of the method. By applying the polyfit function in MATLAB the absolute value of 
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slope is 1.06, which indicating the scheme has a first order convergence in time in this simulation 

test. 

 

To evaluate the influence of step size in space, the temporal mesh size in the finite difference 

method can be fixed (Gt = 29 ∗ 103 + 1 ). Different spatial grid points (  gx
𝑗
= 2𝑗 ∗ 10 + 1 

(j = 2,3…5).) are tested in the algorithm and the comparison can be made with the finest spatial 

grid point (Gx = 26 ∗ 10 + 1). As the mesh sizes are different in space for each case, one point 

for TAG concentration at x = L, t =
1

6
 can be taken and the error can be defined as  

 

E𝑗 = |𝐶𝑇𝐺(𝑥 = 𝐿)(𝑤𝑖𝑡ℎ gx
𝑗
 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑠𝑎𝑡𝑖𝑜𝑛) − 𝐶𝑇𝐺(𝑥 = 𝐿)(𝑤𝑖𝑡ℎ Gx 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑠𝑎𝑡𝑖𝑜𝑛)| 

 

The numerical result can be seen in the following table. 

 

Spatial Grid point E𝑗 

22 ∗ 103 + 1 2.44 ∗ 10−6 

23 ∗ 103 + 1 6.04 ∗ 10−7 

24 ∗ 103 + 1 1.44 ∗ 10−7 

25 ∗ 103 + 1 2.88 ∗ 10−8 

 

Table 5.3 The 2-norm error for different spatial mesh sizes 

 

It is clear that with more spatial grid points in the algorithm, the smaller error can be obtained for 

the point  𝑥 = 𝐿 (𝐿 = 4 𝑢𝑚). When the mesh size ∆x is in Ο(10−5) (gx = 22 ∗ 103 + 1), the 

order of error E𝑖 is in  Ο(10−6), and when the mesh size ∆x is in Ο(10−6) (gt = 25 ∗ 103 + 1) , 

the order of error Ei is in  Ο(10−8). The order of the error converges to the finest solution fast 

with a smaller mesh size for space. The value of  ln(spatial grid points) against ln(errors) can 

be plotted based on the data obtained in Table 5.3. The figure can be seen as below: 
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Figure 5.5 ln(spatial grid points) against ln(errors) 

 

In Figure 5.5 the ln(errors)  is almost linearly decrease against ln(spatial grid points) , the 

absolute value of the slope is 2.13 based on the simulation data, which indicating the scheme has 

a second order convergence in space in this simulation test. The above test indicates that this 

finite difference method can converge to the finest mesh size for ∆x and ∆t with different tests of 

special and temporal mesh sizes. As the error is found to be very small in the above test, grid 

points are defined as  gt = 22 ∗ 103 + 1 and gx = 41. 

 

To evaluate the convergence of the finite difference scheme, the simulation can be tested by 

changing both spatial and temporal mesh size.  The temporal grid point number is defined as 

 gt
𝑖 = 4i ∗ 104 + 1 (𝑖 = 1,2…6) and the spatial grid point number is defined as  gx

𝑗
= 2j ∗ 50 +

1 (𝑗 = 1,2…6). Computational results at same location along 𝑥  axis are taken ( 𝑥 = 0,
1

4
𝐿,

1

2
𝐿,

3

4
, 𝐿). The root-mean-square of the difference between the values on the coarser mesh and the 

values on the finer mesh is computed and can be defined as 
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𝐸ℎ = √
1

5
∑(𝐶𝑇𝐺( x = xn, gt

ℎ+1,  gx
ℎ+1) − 𝐶𝑇𝐺( x = xn, gt

ℎ ,  gx
ℎ))2

5

𝑛=1

  

 

where xn indicates the same location in spatial axis  ( 𝑥 = 0,
1

4
𝐿,

1

2
𝐿,

3

4
, 𝐿). The numerical result 

can be seen in the following table. 

 

 

 

Coarse mesh Fine mesh 𝐸ℎ 

 gt
1 = 41 ∗ 104 + 1 

 gx
1 = 21 ∗ 50 + 1 

 gt
2 = 42 ∗ 104 + 1 

 gx
2 = 22 ∗ 50 + 1 

2.44 ∗ 10−6 

 gt
2 = 42 ∗ 104 + 1 

 gx
2 = 22 ∗ 50 + 1 

 gt
3 = 4i ∗ 104 + 1 

 gx
3 = 2j ∗ 50 + 1 

0.62 ∗ 10−6 

 gt
3 = 43 ∗ 104 + 1 

 gx
3 = 23 ∗ 50 + 1 

 gt
4 = 44 ∗ 104 + 1 

 gx
4 = 24 ∗ 50 + 1 

0.16 ∗ 10−6 

 gt
4 = 44 ∗ 104 + 1 

 gx
4 = 24 ∗ 50 + 1 

 gt
5 = 45 ∗ 104 + 1 

 gx
5 = 25 ∗ 50 + 1 

0.04 ∗ 10−6 

 gt
5 = 45 ∗ 104 + 1 

 gx
5 = 25 ∗ 50 + 1 

 gt
6 = 46 ∗ 104 + 1 

 gx
6 = 26 ∗ 50 + 1 

0.01 ∗ 10−6 

 

Table 5.4 The root-mean-square of the difference with different mesh size 
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Figure 5.6 𝑙𝑛(ℎ) against 𝑙𝑛(𝐸ℎ) 

 

It can be found from above table and figure that the root-mean-square has a smaller value with a 

finer mesh size for both gx and gt. The estimate of the error goes down by approximately a factor 

of 4 each time by computing ln (ℎ) against 𝑙𝑛(𝐸ℎ) , indicating the finite difference scheme meets 

the demand for convergence in this non-linear problem.   

 

5.5. A computational experiment  
 

With the mathematical model and coefficients defined in Section 5.3, the computational 

simulation can be implemented with MATLAB. The absorption time T is defined as 10 minutes 

and the theoretical compartment number n is chosen from Chapter 3 and defined as n = 2. The 

substance concentrations at 𝑡 = 0, 2.5 min , 5 min and 10 min are computed and shown as below: 
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Figure 5.7 The concentration of MG at t=0 and 2.5 min 

 

Figure 5.7 describes the concentration of MG inside the cell at t=0 and 2.5 min. The initial 

condition defines the MG concentration is a constant at 𝑡 = 0. The Neumann boundary condition 

at 𝑥 = 0 provides a flow of concentration into the cell, but it has delay feature from absorption 

process, therefore the concentration of MG near the apical membrane increases slowly initially.  
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Figure 5.8 The concentration of MG at t=5 and 10 min 

 

The concentration of MG increases monotonically inside the cell, but with a larger rate between 

t=5min and t=10 min. As the flow rate into the cell from apical membrane begins to have a 

strong inflow after the delay phenomenon, the concentration of MG increase dramatically after 

2.5 mins of the absorption. 
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Figure 5.9 The concentration of fatty acids at t=0 and 2.5 min 

 

In contrast to MG concentration, the fatty acids concentration has a larger transport rate from 

the apical membrane. The concentration in such boundary increases faster from t=0 to t= 2.5 

minutes compared to the MG concentration. 
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Figure 5.10  The concentration of fatty acids at t=5 and 10 min 

 

From t=5 min to t=10 min, the fatty acids concentration on the boundary increase from about 

0.69 𝑚𝑚𝑜𝑙/𝑢𝑚 to about 0.77 𝑚𝑚𝑜𝑙/𝑢𝑚. The larger diffusion coefficient and faster inflow rate 

into the cell leads to a larger concentration difference inside the epithelial cell for FA than the 

MG profile.   
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Figure 5.11 The concentration of TAG at t=0 and 2.5 min 

 

In contrast to MG and fatty acids, the TAG has a zero flux boundary condition along 𝑥 = 0. The 

TAG concentration has a flow out of the cell at 𝑥 = L. The concentration of the boundary 

decrease from 0.4 𝑚𝑚𝑜𝑙/𝑢𝑚 at 𝑡 = 0 to about 0.27𝑚𝑚𝑜𝑙/𝑢𝑚  at 𝑡 = 2.5 𝑚𝑖𝑛. 
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Figure 5.12 The concentration of TAG at t=5 and 10 min 

 

Figure 5.12 indicates the TAG concentration inside the cell from t=5 to t= 10 min. It can be seen 

from the Figure 5.12 that the concentration along 𝑥 = 0 has a slight decrease during this period 

from about 0.4 𝑚𝑚𝑜𝑙/𝑢𝑚  to 0.32 𝑚𝑚𝑜𝑙/𝑢𝑚  mmol. The concentration of TAG inside is 

affected by the transport and esterification reaction inside the cell during this period. 

 

 

5.6.  The fatty acids concentration with uncertainty in boundary 

condition 

 

As is shown is Figure 5.1, the basolateral membrane of epithelial cell contains a small, finger-

like structures known as intestinal villi. The villi link the lumen of small intestine and the inner 

enviroment of epithelial cells. The MG and fatty acid need to pass through the villi structure and 

then enter the intestinal cell. The intestinal villi consist of some brush border membrane. It can 
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increase the surface area of the intestinal walls, which can highly extend the surface for 

absorption and provide a higher force for substance to enter the epithelial cell [77].  There are 

many nutrients and enzymes lying on the surface of villi [171]. The activity of enzymes attached 

to the villi are various in terms of individuals [122]. Due to these complexity and missing 

information from physiological knowledge, the gradient for substances passing through the 

membrane into the cell, which is the boundary condition in the model, exhibits uncertainties. 

 

As described in Chapter 2 that the uncertainty can be represented by assuming  unknown random 

terms in the boundary condtion. The coefficients in the boundary condition as defined in 

Equation (5.15) to (5.17) thus take the form  

 

 𝑘4 = 0.32      (5.29) 

𝑘2 = 0.2 + 𝜎3     (5.30) 

𝑘3 = 0.4 + 𝜎4     (5.31) 

 

The constant part in the coefficients is defined in Section 5.3.2. The unknown random terms 𝜎3  

and 𝜎4 are introduced into the model to represent uncertainties of coefficients. 

 

 

5.6.1. The Monte Carlo simulation with normal distribution in 
uncertainty at t=10 min 

 

In this section, the random uncertainty term is assumed to have a normal distribution which is 

described in Chapter 2. The normal (or Gaussian) distribution is a common continuous 

probability distribution and often used in the natural and social sciences to represent real-valued 

random variables whose distribution are not known [7, 137]. The probability density of the 

normal distribution is: 

 

𝑓(𝑥|𝜇𝑛, 𝜎𝑛) =
1

𝜎𝑛√2𝜋
𝑒
−
(𝑥−𝜇𝑛)

2

2𝜎𝑛
2

     (5.32)     
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Here 𝜇𝑛 is the mean of distribution and   𝜎𝑛
2 is the variance.  The notation of normal distribution 

is written as 𝒩(𝜇𝑛 , 𝜎𝑛
2). In this section one example is defined to have a normal distribution 

with mean value equal to 0 and variance equal to 0.01 for randomness, which indicate 

 
𝜎3 = 𝜎4 = 𝒩(0, 0.01)      (5.33) 

 

The uncertainty in boundary condition is studied by means of Monte Carlo method.  The Monte 

Carlo method provides a repeated sampling with normal distribution in uncertainty.  In this 

section, the  PDE model in Equation (5.6) to (5.8) is computed when 𝑁 = 512 times with the 

uncertain parameters in boundary condition defined in Equation (5.29) to (5.31). Other values of 

𝑁 were also tested in the next section. The concentration of MG and fatty acids at t=10 minutes 

along the cell is shown in the following figures. 

 

  

Figure 5.13 The concentration of MG at t=10 min 
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Figure 5.14 The concentration of FA at t=10 min 

 

Figure 5.14 indicates the concentration of MG and FA along the cell. There are 512 simulations 

in this Monte Carlo simulation. It can be seen that the concentration of the FA and MG has a big 

difference near the apical membrane (x = 0). It means that the randomness in the parameter can 

provide various gradients for MG and FA inflow into the cell. Even though the TAG has zero-

flux boundary condition near the apical membrane, the uncertainty for MG and FA concentration 

can also affect the interactive system and leads to the differences for TAG concentration. This 

can be seen in the following figure. 
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Figure 5.15 The concentration of TAG at t=10 min 

 

From above figure it can be seen that the TAG concentration inside the cell is also affected by 

the randomness of the inflow gradient from MG and FA, especially near the apical membrane. 

As the normal distribution provides a large range for the possible concentration in this absorption 

system, an estimated interval is needed to predict the TAG concentration with uncertainty MG 

and FA inflow gradient. 

 

5.6.2. The confidence interval for triglyceride 
 

The concept of confidence interval was introduced by a paper of Jerzy [128]. The confidence 

interval is a type of interval estimate for a sample. The definition of confidence interval defined 

as below: 
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Let 0 < 𝛽 < 1, 𝜒  be a set of samples. The random interval ( 𝑎(𝜒) , b (𝜒) ) is called a 100(1 −

𝛽)% confidence interval for 𝜃 if 

 

𝑃(𝑎(𝜒) < 𝜃 < 𝑏(𝜒)) = 1 − 𝛽 

 

Note: 𝑎(𝜒) and 𝑏(𝜒) are not allowed to depend on 𝜃.  

 

The random interval ( (𝜒) , 𝑏(𝜒) ) is an estimator. The corresponding interval estimate is ( 𝑎(𝜒), 

𝑏(𝜒) ) . Usually  𝛽 = 0.05, or 0.01,giving a 95% or 99% confidence interval.  In statistics, a 

confidence interval is a kind of interval estimation for samples, but it does not represent any 

single sample and is expressed by a percentage. For example, a 95% confidence interval means 

the statistician is 95% confident that the values in the samples are in this interval.   There are 

many factors which can affect the confidence interval including sample size, population 

variability and level of interval.  

 

In this study, the confidence interval of substance concentration can represent the influence of 

uncertainty in the boundary condition.  As the boundary condition has a normal distribution 

perturbation, the confidence interval for concentration is calculated with the formula for normal 

distribution which is based on central limit theory. 

 

The process for computing confidence intervals is quite simple if the sample is obtained. Assume 

there is a normal distribution 𝒩(𝜇, 𝜎2) has mean value 𝜇 and variance 𝜎2, and 𝑋1, 𝑋2, …𝑋𝑛 has 

this 𝒩(𝜇, 𝜎2) distribution.  

 

(�̅� − 𝑧𝛽/ 2
𝜎

√𝑛
, �̅� + 𝑧𝛽/ 2

𝜎

√𝑛
) 

 

 

is a 1 − 𝛽  confidence interval for 𝜇  and n is the number of samples which is the repeated 

simulations in Monte Carlo method. The �̅� is the mean value of sample and 𝑧𝛽 is obtained from 

the equation Φ(𝑧𝛽) = 1 − 𝛽, where Φ is the value of  the cumulative distribution function of the 
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normal distribution [154]. As the 95% confidence interval for concentration is considered in this 

study and Φ(1.96) = 1 −
5%

2
= 97.5%, the value of 𝑧𝛽/ 2 is equal to 1.96 for this analysis. And 

the �̅�, 𝜎  and 𝑛  is from the samples from Monte Carlo simulations. 

 

For this uncertainty defined in Equation (5.33), the confidence interval provides estimations for 

the concentration of fatty acids and the monoglycerides inside the cell, and the confidence 

interval for triglyceride can evaluate the influence of uncertain inflow into the epithelial cell. 

 

5.6.3. The length of confidence interval for triglyceride concentration 

 

As the FA and MG have uncertainty on the apical membrane, the effect of this uncertain inflow 

on the TAG concentration inside the cell is the key factor in the absorption process. The brush 

border structure on the apical membrane provide the randomness in the boundary condition at 

x = 0 . The concentration of TAG near the basolateral membrane can be measured by the 

confidence interval on the boundary at x = L. By assuming same simulation number (N = 512), 

the length of confidence interval for TAG in different locations of the cell at t = 10 min can be 

seen as below: 

 

Location Length of confidence interval 

x = 0 3.29 ∗ 10−5 

x =
1

4
𝐿 

2.96 ∗ 10−5 

x =
1

2
𝐿 

2.35 ∗ 10−5 

x =
3

4
𝐿 

1.79 ∗ 10−5 

x = 𝐿 1.33 ∗ 10−5 

 

Table 5.5 The length of confidence interval at different location of the cell 
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From above table the confidence interval for TAG at some specific locations in the cell is 

presented. The length of the confidence interval indicates a higher uncertainty near the apical 

membrane. The length of the confidence interval inside the cell at different location along x axis 

can be plotted and shown in the following figure. 

 

 

 

Figure 5.16 The length of confidence interval for TAG inside the cell 

 

It can be seen from the figure that the length of confidence interval has a maximum value at 

x = 0, which indicates a large uncertainty near the apical membrane.  This is due to the random 

parameters in the boundary conditions for MG and FA, and these uncertainties indirectly affect 

the concentration of TAG as the esterification process leads to the production of TAG inside the 

cell. As the TAG has a flow out of the basolateral membrane, the confidence interval at x = L for 

TAG provides the effect of brush border effect in the cellular transport. A good estimation for 

TAG can be obtained with a small length of confidence interval for biologists.  
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The length of confidence interval is closely related to the sample size which is the number of 

simulations in Monte Carlo method in this study. The sample size study is significant to consider 

the reliability of sample and the confidence interval.  In 2012, Cock investigated how to obtain 

the sample size information from the confidence interval [87] and Robert and Casella reviewed 

the computation methods and found that the classic Monte Carlo integration is inadequate for 

sample size determination due to the computational requirement. [88] In this thesis, different 

sample sizes in Monte Carlo simulation are used to compute the confidence interval. In the 

computational experiment, the increase of simulation number can obviously decrease the length 

of the confidence interval and it can be seen in the following figure.  

 

 

 

 

  Figure 5.17 The confidence interval for fatty acids with difference sample sizes 
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In Figure 5.17 the x axis is the logarithm of the sample size to base 2 (i.e. with 512 simulations 

the log2𝑁 = 9  ) and the y axis is the length of confidence interval. The length exhibits a 

dramatic decrease from 128 simulations to 32768 simulations. This conclusion can also apply to 

confidence interval of other substances such as MG and FA.  

 

5.6.4.  The accumulated flux for triglyceride concentration 

 

In the definition of the cellular model in Equation 5.2 to 5.4, the triglyceride can pass through the 

basolateral membrane which is described at x = L.  The uncertainty is defined for the parameters 

at x = 0 and handles the inflow into the epithelial cell.  The influence for outflow on the other 

side of the boundary can be considered in this study. In this section the accumulated flux for 

TAG concentration on x = L is computed to evaluate the uncertainty of inflow into the cell. 

 

In the transport for a substance inside the cell, the flux is defined as a rate of flow of a substrate 

per unit area. The dimension for flux is [quantity][time]−1[𝑎𝑟𝑒𝑎]−1. In this study, the particle 

flux [51] is considered and the rate of transfer of TAG particles through the basolateral 

membrane. The problem is defined in one-dimension and the unit of flux at x = L (𝑓𝑇𝐺) can be 

defined as  [𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 ][𝑢𝑚]−1[𝑚𝑖𝑛]−1. 

 

Therefore the accumulated flux in this study can focus on the how many TAG molecules pass 

through the membrane in a unit area. The accumulated flux per unit area can be defined as : 

 

q = ∫𝑓TG dt        (5.34) 

 

q  integrates flux over time and can be described as an accumulated flux per unit area for 

triglyceride concentration.   

 

For the state of the basolateral membrane, it is assumed that the concentration of TAG has a flow 

out of the cell from 𝑥 = 𝐿 .  It can be considered that the flux goes from regions of high 

concentration to regions of low concentration.  In the finite difference method in Section 5.4, the 

spatial grid point defines the concentration for TAG at 𝑥 = 𝐿 as 𝐶𝑀 (𝑀 = 41 in this example). 
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The difference across the membrane needs to be considered by using a fictitious point 𝐶𝑀+1, then 

the flux per unit area is related to the concentration gradient in membrane and in a finite 

difference form it can be assumed as  

 

𝑓𝑇𝐺 =
𝐶𝑀+1−𝐶𝑀−1

2∆𝑥
     (5.35) 

 

CM−1 indicates a close neighbour point for the membrane and the fictitious point CM+1 represents 

the concentration of TAG outside the domain. The length between these two points is 2∆x in the 

finite difference method in this case.  According to the definition for boundary condition and  

Equation (5.23) the flux per unit area can be defined as  

 

𝑓𝑇𝐺 = 𝑘4𝐶𝑀      (5.36) 

 

This is the flux. For the accumulated flux in Equation (5.23) , the time interval can be divided as 

(0, ∆t, 2∆t, …n∆t) in the discretisation process and the integral for Equation (5.23) can be 

approximated as  

 

𝑞 = ∫𝑓𝑇𝐺 𝑑𝑡 = ∑ ∆𝑡𝑘4𝐶𝑀(𝑡𝑖)
𝑛
𝑖=1     (5.37) 

 

 

The Equation (5.37) can be used to measure the level of accumulated flux for TAG passing the 

basolateral membrane for unit area in this study and the uncertainty for the outflow from the cell.  

In Equation (5.30) and (5.31), the randomness is added to the parameter for the inflow rate into 

the cell and the random number is assumed to have a normal distribution with mean value equal 

to 0. The accumulated flux can be computed without randomness for parameters 𝑘2 and 𝑘3.  As 

in Section 5.5, the grid points in the finite difference method are defined as  n = 4001 and 

M = 41. The accumulated flux with constant k2 and k3 is  

 

𝑞𝑐 = 0.04129      (5.38) 
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By considering the parameters with randomness in the parameters in the inflow gradient for MG 

and FA, the accumulated flux for TAG can be accumulated. Considering the simulation time 

𝑁 = 8192 in the Monte-Carlo method and that the maximum time is 10 minutes, there are 

samples of accumulated flux can be obtained and the sample size is 8192.  The frequency of 

values in the sample can be computed by dividing intervals into different sections. For example, 

divide the x-axis with different parts with 0.001 interval size ( [0   0.001], [ 0.001   0.002 ] 

[ 0.002   0.003 ] … [ 𝑞𝑚𝑎𝑥 − 0.001        𝑞𝑚𝑎𝑥  ]  ). The standard deviation of the sample is 

2.7 ∗ 10−6 and the frequency of the value of 𝑞 in each interval can be computed and considered 

as a likelihood of distribution. The similar application can be found in [2].  

 

 

 

Figure 5.18 The frequency of the accumulated flux for TAG 

 

The expect value for the accumulated flux per unit area in the Monte-Carlo method is 0.0413 

mmol. The expect value is close to the result with constant parameters in Equation (5.38). As the 
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randomness in the parameter follows a normal distribution, if the output for uncertainty is 

reasonable, the probability distribution for output and input should have similar characteristics 

[2]. It is found from Figure 5.18 that the expect value for accumulated flux does not make a big 

difference for parameters without randomness. Also the likelihood distribution for accumulated 

flux is almost symmetric from the above figure. All these results indicate a good simulation for 

the output uncertainty for the mathematical model.  

 

 

5.7. Summary 
 

In this chapter, the lipid and fatty acids transport at the cellular level is described by using a 

reaction-diffusion system. The source term in the PDEs is introduced to encapsulate the 

esterification reaction inside the epithelial cell of the small intestine. This model is solved by 

finite difference method in the computational simulation to model the concentration inside the 

cell changing along with time. In Section 5.5 the missing information in the model and biological 

experiment is represented as uncertainty in the boundary condition. The Monte Carlo method is 

applied to obtain the samples of fatty acids concentration.  

 

This reaction-diffusion model is used for substance transport inside the absorptive intestinal cell. 

This PDE system considers the effect of exterior influence of the blood vessel in the boundary 

condition. The uncertainty study provides a first attempt to describe the missing information in 

the cellular model.  
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6. Chapter 6 Conclusion 

 

 

 

 

 

 

This chapter contains a summary of the research work of this thesis, along with some suggestions 

for future work. 

 

6.1. Summary of the Work 
 

 

This study focuses on the absorption and metabolism of triglyceride. Three models were built to 

represent the lipid digestion. The first model considers the absorption delay phenomenon in 

human digestive system. The transit compartments before the plasma compartment were 

assumed to handle the delay for transport of fatty acids. The inverse approach can provide the 

optimal parameter that indicates the transfer rate from delay compartment to plasma. This 

absorption delay can be coupled with the metabolism of fatty acids in the blood vessel. A 

modified model is built by considering the absorption and metabolism process for fatty acids. 

The parameters in the model are taken from literature or inverse approach. 
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This novel model extends a macroscopic compartment model to include the effect of metabolism 

and absorption for fatty acids kinetics. The modified system provides a description of fatty acids 

dynamics in the blood vessel, and has a better data fitting performance compared to the linear 

absorption model in the inverse problem. The absorption rate inside the body is accurately 

approximated in the model. The outcome of the parameter estimation provides a novel way of 

measuring the absorption rate for fatty acids. 

 

The second model looks at the hydrolysis process of triglyceride in the absorption process.  The 

hydrolysis is the reaction that the triglyceride releases fatty acid molecules before it is involved 

in metabolism in humans. Based on the chemical reaction among TAG, DG, MG and fatty acids, 

an ODE system was built for the dynamics of substances in this reaction.  A set of in vitro data 

was used as the measurements in the inverse problem. With QPSO method in the inverse 

approach, the optimal parameters in the model were obtained and the different weights in the 

multi-objective optimisation were investigated in the computational analysis. With the 

parameters obtained in the inverse approach, the prediction from the numerical estimation 

indicates that the substances can remain in a stable state with a longer reaction time. 

 

The contribution of the hydrolysis model includes a first attempt to propose a general form of 

compartment model describing the stepwise hydrolysis and esterification process for triglyceride. 

This novel compartment model contains all significant reactions amongst TAG, DG, MG and 

fatty acids, and a regulator term is defined in the ODE system handling the complex enzymatic 

reactions or model error. In a numerical exercise with a set of in vitro data, the modified model 

from general form is used in the inverse problem. The multi-objective optimisation problem is 

addressed by a constructive way of considering both the error function in inverse approach and 

the physiological understanding in the data.  

 

The third model gives diffusion reaction system for the triglyceride transport at the cellular level. 

In the PDE system, the domain size, initial condition and boundary condition are defined based 

on the features of epithelial cells, and the 1-D problem is solved by the finite difference method. 

To illustrate the missing information in the model, the uncertainty was assumed in the boundary 

condition. The confidence interval of the substance concentration was computed with samples 
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obtained by  Monte Carlo method. The computational work about the uncertainty can provide an 

estimated interval of substance concentration for biologists.  

 

This model provides a first attempt to develop a microscopic system for fatty acids transport 

inside the epithelial cells of the small intestine. The concentrations of TAG, MG and fatty acids 

are studied and PDEs are used in the model. For the diffusion model at cellular level, a source 

term is defined in the PDE system as regulation in the model. The details of reaction inside the 

cell are described in the model by means of regulator in PDEs. In the numerical example, the 

missing information in the model and data is expressed as uncertainty in the boundary conditions. 

This uncertainty is based on full consideration of the cell structure, enzymatic reaction, pH value 

and so on. This novel idea of uncertainty is mathematically represented by randomness in the 

parameters of the model. The Monte Carlo method is used to calculate the possible substance 

concentration in the cell. These stochastic outcomes provide a prediction for lipids transport 

inside the cell.  

 

 

6.2. The contribution of the work 
 

 The contributions of the work are listed below: 

 

 A macroscopic metabolism compartment model for fatty acids concentration in the blood 

vessel was supplemented with absorption knowledge. The resulting ODE system 

combines the absorption and metabolism processes. 

 

 A general form of compartment model for triglyceride hydrolysis and esterification was 

built. The concept of a regulator in the model is developed to include and describe the 

enzymatic reaction and missing information in the model. 

 

 A reaction-diffusion model for the fatty acids transport at the cellular level was 

developed. The source term was used in the model as a regulation to any missing 

processes in physics. 
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 Numerical techniques of handling in vivo and in vitro data for the inverse problem were 

refined. The multi-objective optimisation problem was discussed in terms of the 

physiological knowledge in the chemical reaction. 

 

 The missing information of cellular model was examined by using uncertainty in the 

boundary condition. “Stochastic outcome” of the model in terms of these uncertainty 

input was studied. 

 

6.3. Suggestions for future work 
 

 

There are some suggestions for the research in this thesis. For the compartment model in Chapter 

3, the idea of considering absorption and metabolism process can be used for modelling other 

substances such as glucose or carbohydrate.  More numerical techniques can be applied in the 

inverse problem along with absorption data. The general form of hydrolysis model in Chapter 4 

provides a fundamental system for hydrolysis and esterification processes. Future work can be 

done to use the general form in different experimental data and reaction. The regulator in the 

model can be modified accordingly. Chapter 5 includes a concept to use reaction-diffusion 

system to model the substances transport in the absorptive cell. This concept can be extended for 

absorption of other nutrients in food at cellular level. The idea of defining uncertain coefficients 

in the model can be used to represent effects or noise due to missing information in the physical 

model. The uncertainty study for the epithelial cell can be developed to consider more factors 

that are not included in the model. 

 

The above mentioned model can ultimately be coupled together to provide a coherent numerical 

model for absorption and metabolism through various organs into the cellular scale absorption 

model and eventually into the blood stream.  The absorption and metabolism computational 

system can be built in this way and it would be an important in silico tool generating appropriate 

data to supplement and complement experimental data. It would also be possible to provide 

information on the design of laboratory experiments and the estimation of substance’s 

concentration in different organs in human body. 
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