
Towards Power of Preemption on Parallel
Machines

Babak Takand

A thesis submitted in partial fulfilment of the requirements of the

University of Greenwich for the degree of Master of Philosophy

June 2016

Department of Mathematics,

Faculty of Architecture, Computing, and Humanities,

University of Greenwich,

London, U.K.

To my family.

DECLARATION

I certify that this work has not been accepted in substance for any degree, and is not
concurrently being submitted for any degree other than that of Master of Philosophy
being studied at the University of Greenwich. I also declare that this work is the result
of my own investigations except where otherwise identified by references and that I
have not plagiarised the work of others.

Babak Takand Prof. Vitaly Strusevich Dr. Alan Soper
(Student) (1st Supervisor) (2nd Supervisor)

2

ACKNOWLEDGEMENTS

First and foremost, I would like to extend my gratitude to my supervisors, Prof. Vitaly
Strusevich and Dr. Alan Soper, for their guidance, support, and most importantly for
constantly challenging me to improve.

I would especially like to thank my family, who have always been there for me when
I needed them the most, for their relentless support and encouragement since the very
beginning of my studies.

3

ABSTRACT

Classical scheduling models typically fall in either of two categories: those that allow
interruption of the processing of jobs, and those that do not. In parallel machine
environments, scheduling problems for models which allow parallel processing of jobs
are typically easier to solve, in terms of computational requirements, while these models
are in the majority of cases associated with an improved quality of solutions.

In this thesis, we focus on one of the notion of preemption, a foundational concept in
scheduling, which defines the ability to interrupt the processing of a job and resuming it
at a later time, or in the case of multiple processors, on a different machine. Preemptive
scheduling is limited to the fact that every job in a preemptive schedule may not be
processed by more than one machine at a time. Additionally, we consider the closely
related notion of splitting jobs, where jobs can be processed at the same time by
multiple processors.

We address the issue of power of preemption and power of splitting, defined as the
ratio of the cost function of an optimal non-preemptive schedule over the cost function
of an optimal preemptive schedule, and schedule with splitting jobs respectively. For
serveral parallel machine scheduling models we provide new results, in addition to a
detailed review of the best known results.

4

CONTENTS

1 Introduction 7

1.1 Machine Scheduling: Models and Notation 9

1.1.1 Machine Environments . 10

1.1.2 Job Characteristics . 11

1.1.3 Objective Functions . 12

1.2 Complexity and Approximability . 13

1.2.1 Linear Programming . 16

1.2.2 Integer Programming . 17

1.2.3 Approximation . 19

2 Scheduling on Parallel Machines: Complexity and Approximation 23

2.1 Identical Parallel Machines . 24

2.1.1 Minimizing Makespan . 24

2.1.2 Minimizing Sum of Completion Times 30

2.2 Uniform Parallel Machines . 31

2.2.1 Minimizing Makespan . 31

2.2.2 Minimizing Sum of Completion Times 35

2.3 Unrelated Parallel Machines . 37

2.3.1 Minimum Makespan In Open Shop 37

2.3.2 Minimizing Makespan . 40

2.3.3 Minimizing Sum of Completion Times 45

3 Power of Preemption 48

3.1 Power of Preemption on Identical Machines 49

3.2 Power of Preemption on Uniform Machines 51

3.2.1 Makespan . 51

3.2.2 Makespan for a Fixed Number of Uniform Machines 56

5

CONTENTS

3.2.3 Minimizing Sum of Completion Times 58

3.3 Power of Preemption on Unrelated Machines 60

3.3.1 Minimizing Makespan . 60

3.3.2 Minimizing Sum of Completion Times 63

4 Power of Limited Preemption 64

4.1 Identical Machines . 64

4.1.1 Minimizing Makespan . 64

4.2 Uniform Machines . 67

4.2.1 Complexity . 67

4.2.2 Power of single preemption on two uniform machines 71

4.2.3 Power of single preemption on m uniform machines 72

4.2.4 Parametric Analysis of the Power of Limited Preemption for
Three Uniform Machines . 80

4.3 Unrelated Machines . 84

4.3.1 Single Preemption on two Unrelated Machines 86

5 Power of Splitting 89

5.1 Review of Job Splitting . 89

5.2 Identical Machines . 91

5.2.1 Makespan . 91

5.2.2 Total Completion Time . 98

5.3 Power of Splitting on Uniform Machines 102

5.3.1 Two Uniform machines . 103

5.3.2 Three Uniform Machines . 107

6 Conclusion 112

6.1 Contributions . 112

6.2 Future Work . 113

REFERENCES 115

6

CONTENTS

“It is obvious that our industrial technology, our use of intricate ma-

chines and immense amounts of power, seem to us to be characteristic of

our age. We live, we say, in an age of machines. They give us our mo-

bility, our communications, our potential destructiveness, our comfort, and

our “preoccupation with things”, if indeed it is fair to charge us with that

obsession. Machines are used incidentally by the biologist and the physi-

cian also in the physiological manipulations and enquiries which give us

our health and long lives. And all of these complicated devices are the fruit

of sciences that could never have reached their present stage of development

without the highly artificial and abstract language of mathematics.”

- Lyman Bryson

7

CHAPTER 1

Introduction

The notion of scheduling is concerned with the timely allocation of resources, so that

certain tasks can be performed. Examples of scheduling problems can be found in a

variety of cases, with the nature of tasks and resources depending on the domain in

which the problem applies. Resources may come in the form of machines in a man-

ufacturing plant, storage space in a warehouse, processors and memory of computing

systems, communication channels, staff in organizations, whilst others resources in-

clude airport runways and cashier tills in consumer stores. In these examples, as well

as other cases where scheduling problems can be found, resources are limited in nature,

and are essential to the completion of processes. Processes, also referred to as tasks

or jobs throughout the literature, consist of a number of operations which consume

resources provided by the system. For instance, in the manufacturing plant example

given earlier, a process would consist of the fabrication and assembly of an end prod-

uct. The process in this case is considered complete when all stages of manufacturing

have finished, hence the end product is complete. In an analogous manner, a computer

program can be considered as a single process defined by a set of instructions which

consume a certain amount of resources (processor time and memory), with the program

being considered complete when the last instruction is performed.

Generally scheduling problems are expressed in terms of a set of jobs, and a set of

machines to which jobs are to be allocated. Such an allocation of jobs to machines is

the essential definition of a schedule. Schedules are considered feasible if all constraints

which are defined by the problem are satisfied. Scheduling problems are associated with

a particular objective which the problem ultimately aims to optimize. This objective

is expressed mathematically as a function of some resource defined in a problem of

interest, hence termed objective function. Solving a scheduling problem is achieved by

providing an algorithm which outputs either an optimal schedule, or approximates the

optimal solution for computationally complex problems where an exact solution would

8

CHAPTER 1. INTRODUCTION

require an impractical amount of time. Algorithms consist of a series of steps, each

containing some basic operations. For some input set, these steps are performed in a

preordained sequence, such that an output set is produced. For scheduling problems,

the output of a scheduling algorithm is a feasible schedule which has an optimal or

near optimal value of the problem’s objective criterion.

Interest in scheduling algorithms from an academic standpoint emerged in the 1950s,

initially as a means of increasing the effectiveness of management in workshops and

production lines, by lowering the cost of production and increasing throughput. About

a decade later, the emergence of early operating systems for computers signified a new

era in scheduling, as the very limited resources of early computers brought forward the

need for fast and effi cient scheduling algorithms for the management of their resources.

Despite the exponential increase in processor speeds and other resources such as volatile

and non-volatile memory in modern computer systems, scheduling algorithms still have

a prominent role at the heart of any modern operating system. Similarly, with the rise of

distributed computing scheduling algorithms for packet-switching networks, since their

emergence in the early 1960s, have become essential for all digital communications.

As a matter of fact, in this modern age, there is an immense number of network

infrastructure devices across the globe, which utilize extremely effi cient scheduling

algorithms to effectively balance loads amongst communication channels. As mentioned

earlier, certain scheduling problems have a great amount of complexity: The number

of steps required by some algorithm which finds a feasible schedule with the optimal

objective criterion value, increases so vastly in comparison to the problem size, that

solving such a problem would seem not only impractical, but often infeasible by the time

frame which is require to provide a solution. For such computationally hard problems,

algorithms have been devised which provide a schedule which approximates the optimal

objective value, or utilizes some type of methodology -a heuristic- to provide a solution,

which although may not be close to optimal, is produced in a minimal amount of time,

often polynomially proportionate to the problem size, and the solution is acceptable

from a practical standpoint.

In this thesis we draw our attention to scheduling models on multiple machines

which work in parallel. The first results for this type of problems are provided by

McNaughton (1959), who considers the case in which all machines are exactly alike,

i.e. identical. In the same work, McNaughton introduces the concept of preemption on

parallel machines, where the processing of a job is allowed to be interrupted in order

to be processed on a different machine. The performance gain of using preemption as

opposed to schedules where preemption of jobs is not allowed has been vastly inves-

tigated for several decades for identical machines as well as variations of the problem

9

CHAPTER 1. INTRODUCTION

where machines are non-identical, and have various processing capabilities.

For a number of classical parallel machine models, we perform an analysis of pre-

emptive and job splitting schedules for scheduling problems with the makespan and

total flow time objectives. In the next sections of this chapter, we introduce essential

concepts, notation, algorithms and the theory behind them, in order to provide the

theoretical framework for our findings in Chapter 5.

1.1 Machine Scheduling: Models and Notation

In this thesis we are concerned with a family of classical scheduling problems on parallel

machines, in which the processing of jobs defined by the problem may take place on

multiple machines. Generally, all the scheduling problem of consideration are defined

by a set of jobs N = {J1, J2, . . . , Jn} which are to be processed on a set of machines
M = {M1,M2, . . . ,Mm}, with the objective of optimizing some objective function Φ.

For problems of our consideration, jobs are associated with a processing time pij, such

that if some job Jj, 1 ≤ j ≤ n, is assigned to a machine Mi, 1 ≤ i ≤ m, job

Jj, 1 ≤ j ≤ n, would require pij amount of time. For the description of scheduling

problems in this thesis, we use the representation scheme of Graham, Lawler, Lenstra

and Kan (1979) for machine scheduling problems, where the three field notation α | β | γ
is used. Under this scheme, field α represents the machine environment, field β the job

characteristics and finally, field γ encapsulates the objective function of the problem.

A summary of the notation used throughout this thesis is provided next:

• N : Set of jobs {J1, J2, . . . , Jn} .
• n : Number of jobs.

• j : Job index, 1 ≤ j ≤ n.

• M : Set of machines {M1, . . . ,Mm} .
• m : Number of machines.

• i : Machine index, 1 ≤ i ≤ m.

• pij : Processing time of job Jj, 1 ≤ j ≤ n, on machine Mi ∈M.

• si : Speed of machine Mi.

• Cj : Completion time of a job Jj, 1 ≤ j ≤ n.

10

CHAPTER 1. INTRODUCTION

1.1.1 Machine Environments

The machine environment of a scheduling problem is defined by the value of field α

in scheduling notation. This essentially provides a description of the configuration in

which machines operate. Typically two classes of machine environments are observed

in classical scheduling problems. Environments where each job consists of a single op-

eration are classified as single-stage, whist machine environments in which jobs consist

of multiple operations, where each operation requires a specific machine, are defined as

multi-stage. Each of these machine environment classes depend on the capabilities of

the machines: In single-stage environments with multiple machines, all machines are

capable of performing the same functions, while in multi-stage systems each machine is

specialized and only has specific functions, thus may only complete certain operations

of a given job.

For single-stage machines, it is assumed that all machines are available for process-

ing at the start of the schedule. Those environments are:

• Single machine, for α = 1: Due to the presence of only one machine, all jobs are

processed on the same machine, thus the processing time of any job Jj, 1 ≤ j ≤ n,

is given by pj.

• Identical parallel machines, for α = Pm, m > 1: There are multiple machines

in this environment which are identical in all aspects, thus jobs may be processed

on any of the machines without their processing time being affected, hence the

processing time of some job Jj, 1 ≤ j ≤ n, running on any machine Mi, 1 ≤ i ≤
m, is given by pj.

• Uniform parallel machines, for α = Qm, m > 1. In this environment ma-

chines are identical in all aspects, but operate at various speeds, thus each ma-

chine Mi, is associated with a processing speed si. As a result the processing

time of jobs is dependent on the machine on which it has been allocated, thus

the processing time of some job Jj, 1 ≤ j ≤ n, on machine Mi is given by pj/si.

• Unrelated parallel machines, for α = Rm, m > 1. Machines in this environ-

ment are non-identical, and perform operations at different rates. In this case,

the processing time of each job depends on the machine on which it has been al-

located, such that the processing time of job Jj, 1 ≤ j ≤ n, assigned to machine

Mi is given by pij.

In the multi-stage, or shop, systems each job consist of a number of operations, and

each machine is capable of processing one of these operations. This type of machine

11

CHAPTER 1. INTRODUCTION

environments is representative of industrial processes such as assembly lines, where an

end product has to undergo several stages of different types of processing. Variations

in shop environments arise from requirements in the processing sequence of jobs and

their operations. Shop environments may fall under one of the following special cases,

or their extensions:

• Open Shop, for α = Om: In this shop environment, each job Jj, 1 ≤ j ≤ n,

consists of m operations oij (i = 1, ..,m), where oij must be processed on machine

Mi, while there are no restriction in the order in which operations are processed.

• Flow Shop, for α = Fm: Similarly to open shop, jobs in the flow shop envi-

ronment consist of m operations oij to be processed by machine Mi, but with

restrictions regarding the sequence in which operations are processed. In this

case oi+1,j may only begin processing on machine Mi+1 after operation oij has

completed processing on machine Mi. The precedence constraints of operations

in flow shop imply that each job is required to be processed by all machines in

the environment and a job may not be processed by more than one machine at a

time.

• Job Shop, for α = Jm: Scheduling problems in this machine environment are

a generalization of flow shop problems, as in this case the number of operations

for each job are arbitrary. Similarly to flow shop, there is a sequence in which

the operations of each job can be performed, although the sequences may differ

for different jobs.

In the multi-stage, or shop, systems can be further combined with any of the single

stage systems, by increasing the number of machines which are capable of performing

some operation. Although in this work we are only concerned with single-stage machine

environments, we overview these multi-stage systems, as the solution to several single-

stage problems is derived from the solutions to problems of this type.

1.1.2 Job Characteristics

In various scheduling problems, there may be various properties or limitations asso-

ciated with the set of jobs. These characteristics are represented in field β of the

three-field notation. For problems where multiple characteristics are associated with

the set of jobs, these characteristics are represented by defining β := β1, β2, . . . , βξ,

where each β1, β2, . . . , βξ represent one of the ξ characteristics associated with the set

12

CHAPTER 1. INTRODUCTION

of jobs. Field β is simply left blank if no job characteristics, other than the default

ones, have been defined for the problem. Several job characteristics which are used

throughout this thesis are given below:

• Release times (ri): Release times indicate the point in time a job becomes
available for processing, i.e. a job cannot be processed before its release time.

If this value is not present in a scheduling problem’s description, it is assumed

that jobs are available for processing at the beginning of the schedule (jobs are

released at time 0).

• Precedence Constraints (prec): When present in field β, this characteristic
indicates that there is some form of dependence between jobs in the schedule.

If job Jj, 1 ≤ j ≤ n, has precedence over job Jk, then the processing of job Jk
cannot begin until job Jj is completed.

• Preemption (pmtn): Preemption indicates that the processing of a job may be
interrupted at any time in order to be resumed later on the same, or different

machine in the case of parallel machines. For parallel machine environments, job

in preemptive schedules can be processed by only one machine at a time.

• Splitting (split): This job characteristic indicates that any single job may be
processed simultaneously by multiple machines. Splitting are in some sense sim-

ilar to preemptive jobs, differing only in the fact that jobs of this type can be

processed by any number of machines at any given time.

• Unit length jobs (p = 1): This value of field β indicates that all jobs have equal

processing times.

In this work, we mainly investigate scheduling problems with preemption and split-

ting characteristics. For preemptive problems we particularly focus on scheduling prob-

lems where the number of preemptions is limited.

1.1.3 Objective Functions

For scheduling problems the optimality criterion defined in field γ of the three field

notation is given as some function of the completion time of jobs in the problem. For

some job Jj, 1 ≤ j ≤ n, the completion time of the job is given by Cj, which represents

the time at which job Jj, 1 ≤ j ≤ n, has satisfied its processing requirement, such that

all operations of the job have completed processing. In this thesis we consider two of

the most commonly encountered objective functions which are given next:

13

CHAPTER 1. INTRODUCTION

• Makespan (γ = Cmax): One of the principal objectives in machine scheduling

is that of minimizing the makespan, i.e. the total duration of time in which jobs

are being processed. For single machine environment the makespan objective is

only of interest when there are setup times associated with the sequence in which

jobs are processed; if no setup times are present the makespan of a schedule

is equal to the sum of the processing times of all jobs. On parallel machines,

makespan minimization can be interpreted as a fair load balancing scheme across

all machines. The makespan of a schedule is given by:

Cmax = max {Cj | 1 ≤ j ≤ n} .

• Sum of Completion Times (γ =
∑
Cj): Another common objective criterion

which has been broadly investigated in the literature. As the value of γ implies,

the objective of problems of this type is the minimization of the Total Flow Time,

given as
n∑
j=1

Cj.

This objective function is identical to the weighted sum of completion times

(
∑
wijCj) objective, if there are no weights associated with assigning jobs to

machines.

1.2 Complexity and Approximability

Computational problems may be considered as questions, which are defined by a set

of parameters, and the relation its solution has with input variables. Initially we

distinguish between a problem and a problem instance: An instance emerges from the

assignment of certain values to the parameters of a problem. Solving a computational

problem requires the design of an algorithm, i.e. a clear step by step procedure which

produces the solution within a finite number of steps. Assessing the quality of an

algorithm raises the following question: Which are the properties that we are interested

in for some algorithm? The most common answer to this question is time. Indeed,

one of the most desirable features of an algorithm is the time it consumes to provide a

solution. The speed of an algorithm, although it may be the most important property, is

certainly not the only one, as there are various other resources which may be limited in

a computing machine. Similarly to time, space (memory) which an algorithm consumes

can be a significant factor in the performance of some algorithm. In a broader sense,

the measurement of complexity which may be of interest can vary in accordance to

14

CHAPTER 1. INTRODUCTION

the requirements and nature of the problem, and the computational machine which

is used. As an example, on a parallel computer, i.e. a computational machine where

multiple processors are involved in the solution of the same problem, for instance by

using some message passing interface, a feature of interest is the number of messages

which are exchanged between processors.

Computational complexity of an algorithm is generally defined by the amount of a

certain resource the algorithm consumes to solve a problem. The amount of resources

consumed by an algorithm to provide a solution to some computational problem can

greatly depend on the input, thus is instance related. Therefore for the majority of

cases, a more reliable approach is to measure the worst-case complexity of an algorithm.

The benefit of this approach is that worst-case complexity provides a form of guarantee

of the performance of an algorithm across all instances of a problem.

Time complexity of an algorithm is given as a function f(L) of the problem size

L, which is an integer value representing the number of inputs (or the size of the

input set). The size of a problem instance depends on the number of digits which are

required to express the instance. In turn, the number of digits depends on the encoding

scheme by which the problem is described. Typically, computational problems are

assumed to be given in binary encoding, where each decimal number k is represented

by 1 + blog2 kc number of digits. An alternative encoding scheme is unary encoding,
where each number is represented by a string of 1s, thus integer k under this encoding

would be represented by k digits. Regardless of the nature of the problem of interest,

and the algorithm chosen for its solution, it is expected that the time required, in

essence the number of steps, will increase as the problem size increases, thus larger

problem instances will require more time than smaller instances. Similar functions are

required for any other measurement of complexity we may be interested in. The choice

of the parameter which defines the problem size, depends entirely on the nature of the

problem. For example in many of the scheduling problems we document in this thesis,

the problem size is equivalent to the number of jobs that require to be scheduled.

When considering the time complexity of an algorithm, we are mainly interested

in the growth rate of the complexity, hence we investigate the asymptotic behavior

of the algorithm for large values of L. Using the Big-O notation, time complexity is

represented as O (g (L)) where the relation O (g (L)) = f (L) holds for some positive

constant c such that f (L) ≤ cg (L).

Determining the complexity of a computational problem is fairly different for that

of determining the complexity of an algorithm. For some computational problem,

such as scheduling problems, we seek to determine the worst-case complexity of the

15

CHAPTER 1. INTRODUCTION

best possible algorithm for the problem, amongst the set of all algorithms, known or

unknown, which find a solution to the problem. In order to study the complexity of

computational problems and algorithms, it is necessary to describe a computational

model, i.e. a mathematical analogue of a computational machine which provides all

the functionality resources necessary for computations we are interested in. The model

adopted by complexity theory is the Turing Machine. This model is particularly well

suited to handle a specific type of computational problems, known as decision-making

problems; the answer to such a problem would be either “yes” or “no”. It must be

noted that the encoding which is used to express a problem, can have a considerable

impact on its size.

The complexity classification of an algorithm and subsequently a computational

problem, is determined by the limited computational resource (in essence time and

space) which is required for computation using a computational model (a deterministic

or non-deterministric Turing machine). For time complexity, algorithms are considered

to be good if g(L) is polynomial to the value of L, and is defined as a polynomial time

algorithm. Computational problems for which polynomial time algorithms exist, are

said to be polynomially solvable on a deterministic Turing machine. Such problems

belong to complexity class P are considered to be “easy”in terms of computation.

For a large number of decision making problems, it is possible to check the validity

of their solutions using a polynomial time algorithm. Problems with this characteristic

are said to belong to class NP , which may also be defined as the set of all decision mak-

ing problems of which the solutions can be found and verified by a non-deterministic

polynomial time (NP) algorithm, which includes all decision making problems (prob-

lems with a yes/no answer). It is apparent that P ⊆ NP as the validity of an answer

for any problem in P can be also verified in polynomial time. Class NP is of par-

ticular importance as it includes a variety of useful and practical problems, for which

no algorithm has been found which can provide the solution in polynomial time, and

thus are considered diffi cult in term of computation. For such problems, a polynomial

algorithm is highly unlikely to be obtained unless P = NP , which is the essence of the

well-known P vs NP problem which was initially described in the mid 1950s, and has

been of particular interest to researchers for many decades; it is generally conjectured

that P 6= NP , although to date no proof to this statement has been given.

One of the most prominent ways of obtaining the complexity classification of a

computational problem, is by using the notion of polynomial reducibility. This notion

can be generally described as such: Let A and B be two problems with input instances

IA and IB respectively. Then A is polynomially reducible to B if there is a algorithm R

16

CHAPTER 1. INTRODUCTION

which converts input instances of A to input instances of B in polynomial time. In other

words, R has input IA and output IB and runs in polynomial time. The importance of

a polynomial reduction lies in the following property: If there is a polynomial reduction

from A to B, then A is at most as hard as B, thus intuitively, B is at least as hard as

A. This notion was initially introduced by Cook (1971) and extended further by the

considerable contribution of Karp (1972).

Problems in NP which can be reduced to from every other problem in that class,

are termed NP -complete, thus may be informally stated to be at least as hard as

every other problem in NP . In essence, NP-complete problems are the most diffi cult

problems in class NP , for which no polynomial algorithm has been found. A set of

problems which are known to be at least as hard as the hardest problem in NP are

defined as the set of NP -hard problems. Note that every NP-complete problem is also

NP-hard, and NP-hard problems may not necessarily be in class NP .

Polynomial solvability and NP-completeness greatly depend on the encoding scheme

in which the problem is expressed. For certain problems, if the encoding is changed

from binary to unary, the complexity of the problem decreases as the length of the input

increases, thus reducing the restrictions on the running time of a polynomial algorithm.

Optimization problems which are solved in polynomial time under unary encoding, are

termed NP-complete in the ordinary sense. Alternatively, problems which remain NP-

complete even under unary encoding, are termed strongly NP-complete. Similarly, an

NP-hard problem is called NP-hard in the strong sense if its decision making version is

strongly NP-complete; otherwise, the problem is called NP-hard in the ordinary sense.

1.2.1 Linear Programming

Linear Programming is the process of finding the optimal value of a linear function,

so that the obtained value satisfies a finite set of constraints which are given in the

form of linear equalities or inequalities, i.e., linear programming describes a model

for maximizing or minimizing a linear function under some linear constraints. In the

context of optimization, linear programming is a technique that deals with problems

of allocating limited resources in a system of competing activities in an optimal way

(as well as other problems of similar configuration). Considered as one of the most

important mathematical discoveries of the mid 20th century, linear programming is

widely used by industry.

Linear programming problems are known to be solvable in polynomial time. The

proof of the complexity classification of linear programming is due to Khachiyan (1980),

17

CHAPTER 1. INTRODUCTION

who showed that the ellipsoid method, initially introduced by Shor (1972), can be

used for solving linear programming problems in polynomial time. Furthermore, lin-

ear programming is also extensively used for modeling and solving a large number of

combinatorial problems, which may not be directly associated with the methodology.

Thus, the ellipsoid algorithm, or the more recent interior points method may be used

for effi ciently solving many combinatorial problems. Early formulation of linear pro-

gramming problems make use of the Simplex algorithm due to Dantzig et al. (1955).

The simplex algorithm has proven to be very effective in solving most linear program-

ming problems, although it has a worst-case exponential time complexity. Many of

the problems, including scheduling problems we study in this thesis can be reduced to

linear programming problems.

1.2.2 Integer Programming

In linear programming problems, the value of the decision making variables is allowed

to be continuous, in the sense that they may take fractional values. In many, perhaps

more realistic cases, fractional decision values may not be feasible. This is a charac-

teristic of many optimization problems consisting of indissoluble entities, such as the

non-preemptive problems described in Chapter 2. In such cases it may be necessary

to restrict some or all of decision making variables to integer values. If all decision

variables are required to be integers, the problem is called an Integer-Programming

problem (IP). Integer programming problems are NP-hard, as a proof due to Papadim-

itriou (1981) demonstrates, all IP problems are reducible to the well-known NP-hard

knapsack problem.

Assignment Problem:

We now provide a machine scheduling interpretation of the Linear Assignment

Problem (LAP): Suppose that a set jobs N = {1, 2, . . . , n} is required to be assigned
to a set of machines M = {M1,M2, . . . ,Mm}, where n ≤ m, in such a way that at

most one job is assigned to each machine. Additionally, there is a cost cij associated

with the assignment of a job Jj, 1 ≤ j ≤ n, to a machine Mi ∈ M. The objective is

to obtain an assignment such that the total cost is minimized.

For convenience the cost values are arranged in a cost matrix C = (ci,j)n×m such

that

C :=

c1,1 c1,2 . . . c1,m

c2,1

.

cn,1 cn,m

 .

18

CHAPTER 1. INTRODUCTION

The objective is to obtain a set of n elements, so that exactly one element from each

row and at most one element from each column are selected. This problem is also

commonly referred to as the rectangular assignment problem, and can be expressed as

the following integer programming problem:

Minimize
n∑
j=1

m∑
i=1

cijxij

Subject to:
n∑
j=1

xij ≤ 1 , for 1 ≤ i ≤ m;

n∑
i=1

xij = 1 , for 1 ≤ j ≤ n;

xij ∈ {0, 1} , for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

(1.1)

Note that xij in is a binary decision making variable which indicates the assignment

of job Jj, 1 ≤ j ≤ n, to machine i, where xij = 1 if job Jj, 1 ≤ j ≤ n, is assigned on

machine Mi, and xij = 0 otherwise. The rectangular assignment problem is polyno-

mially solvable. Specifically, Bourgeois and Lassale (1971) provide a polynomial time

algorithm which obtains a solution to the problem as formulated in (1.1) in O(n2m)

time. A special case of the problem where n = m , such that the problem has a square

cost matrix of size n×n, is solvable in O (n3) time by the Hungarian algorithm due to

Kuhn (1955).

Knapsack Problem:

Given a knapsack of a certain weight capacity W and a set of n items, where each

item j has a weight wj and a value pj, the objective is to maximize the total value

of the items which are placed in the knapsack, without exceeding its weight capacity.

This problem can be expressed by the following IP formulation:

Maximize
n∑
j=1

pjxj

Subject to:
n∑
j=1

wjxj ≤ W , for 1 ≤ j ≤ n;

xj ∈ {0, 1} , for 1 ≤ j ≤ n;

The knapsack problem is one of the combinatorial optimization problems shown to

be NP-complete by Karp (1972).

19

CHAPTER 1. INTRODUCTION

Matching Problem:

Given an undirected graph G, defined by a set of vertices V , and a set of edges E,

so that G = (V,E), find a matching N .

Definition 1.1. A Matching N , of graph G , is a subset of edges E, such that no

vertex V is incident to more than one edge in N .

Matching problems are among the most essential problems in combinatorial opti-

mization. A number of scheduling problems which are discussed in this thesis can be

reduced to the Maximum Matching problem in Bipartite Graphs.

Definition 1.2. A matching N is said to beMaximum if for any other matching N ′,
|N | ≥ |N ′| .

Definition 1.3. A graph G in which the set of vertices can be divided into two disjoint
subsets, is termed a Bipartite Graph.

Maximum Bipartite Matching:

Given a bipartite graph consisting of sets A and B, and set of edged E, so that

G = (A ∪B,E), find a maximum matching S ⊂ A×B.

A matching gives an assignment of nodes in A to nodes in B. Each element of

A may be matched to certain elements in B, with the objective of maximizing the

number of matchings. This problem has a polynomial reduction to the well-known

Network Flow problem, which is solvable in O (mn) time by the algorithm due to Ford

and Fulkerson (1955).

1.2.3 Approximation

There are various approaches to dealing with computational problems which are con-

sidered hard, i.e. problems for which it is highly unlikely that a polynomial time

algorithm which provides the solution can be found and are often infeasible to solve to

optimality within a reasonable amount of time. An approach to obtaining a solution

for such problems comes in the form of heuristic algorithms, which typically provide

fast, practical solutions to some computationally hard problems, often in linear time,

and satisfy certain practical requirements. The downside of heuristics is that solution

quality is often sacrificed for the speed in which they can be provided, and as such, an-

swers obtained by heuristic algorithms might greatly deviate from an optimal solution.

For computationally hard problems it is often desirable to have a provable guarantee

20

CHAPTER 1. INTRODUCTION

of the quality of the answer. This has lead to extensive research in approximation

algorithms which obtain an approximate solution within a factor of the optimal, and

do so in polynomial time.

Consider a scheduling problem to minimize a cost function Φ (S) ≥ 0, where S

denotes any feasible schedule for that problem. For a schedule SH obtained by an

approximation algorithm H and an optimal schedule S∗, the approximation ratio of

algorithm H is given by Φ
(
SH
)
/Φ (S∗). We denote by ρ the worst case ratio, or ratio

guarantee of algorithm H such that

Φ
(
SH
)

Φ (S∗)
≤ ρ.

As the approximation ratio of algorithm H is bounded by ρ, where ρ ≥ 1, we know

that any solution obtained by H is guaranteed to be at most ρ times the optimal value.

Thus, H is called an ρ-approximation algorithm.

Definition 1.4. If there is an approximation algorithm for some NP-complete problem
such that ρ remains constant across all possible instances, the algorithm is referred to

as a constant-factor approximation algorithm.

An approximation scheme for an optimization problem is defined by an approxima-

tion algorithm Hε, which receives as input a problem instance and a value ε > 0, and

returns an ε-approximate solution in polynomial time with respect to ε. A Polynomial

Time Approximation Scheme (PTAS) is a set of algorithms, which given any problem

instance and any positive ε, provide an ε-approximate solution in polynomial time,

with respect to the size of the problem instance, thus the approximation ratio can be

as small as 1 + ε. If the solution from a PTAS is obtained in time which is also polyno-

mial with respect to 1/ε, then it is defined as a Fully Polynomial Time Approximation

Scheme (FPTAS).

For NP-hard problems, obtaining a PTAS or an FPTAS is the ideal result of ap-

proximation, but is not always possible. In order to determine if a PTAS exits for a

given NP-hard problem, Papadimitriou and Yannakakis (1988) introduce the concept

of linear reduction (L-reduction). An L-reduction of optimization problems A to a B

has the following characteristics:

• There is a function R which transforms instances of A into instances of B, such
that R (IA) = IB, where IA and IB are input instances of A and B respectively,

such that the inequality

Φ (S∗ (IB)) ≤ a · Φ (S∗ (IA)) ,

21

CHAPTER 1. INTRODUCTION

holds for some positive constant a, where Φ (S∗ (I)) is the optimum cost (cost of

the optimum solution) of instance I.

• For any feasible solution S (IB), with cost Φ (S (IB)), there is a feasible solution

S (IA), such that

|Φ (S (IA))− Φ (S∗ (IA))| ≤ b · |Φ (S (IB))− Φ (S∗ (IB))| ,

for some positive constant b.

Papadimitriou and Yannakakis (1988) prove that if an optimization problem A is

reducible to an optimization problem B for which there is a polynomial approximation

algorithm with performance guarantee ρ = 1 + ε, then there is a polynomial time

approximation algorithm for A with ρ = 1+abε. Which implies that if there is a PTAS

for B then there is also a PTAS for A.

The complexity class of approximable (APX) problems, includes all problems for

which there is a constant factor approximation algorithm. The most diffi cult problems

in this class are the APX-complete problems, for which no PTAS has been found, and

is unlikely to be found unless P = NP . Similarly to the earlier description of class

hardness, problems which are at least as hard as an APX-complete problem, are called

APX-hard.

Subset-sum Problem:

Consider the following decision version of the Subset-sum problem, as described

by Garey and Johnson (1979): Given a positive integer E, a set R = {1, 2. . . . , r} ,
and a positive integer ej, for each j ∈ R, does there exist a subset R′ ⊆ R such that∑

j∈R′ ej = E?

The optimization version of the Subset-sum problem can be defined as

Maximize
∑r

j=1 ejxj

Subject to: ∑r
j=1 ejxj ≤ E , for 1 ≤ j ≤ r;

xj ∈ {0, 1} , for 1 ≤ j ≤ r,

(1.2)

where E and ej, j ∈ R, are all positive integers. Since the decision version of the

above problem is an NP-complete problem, the Subset-sum problem of the form (1.2)

is known to be NP-hard in the ordinary sense. This problem allows an FPTAS which,

22

CHAPTER 1. INTRODUCTION

for a given positive ε, either finds an optimal solution x∗j ∈ {0, 1} , j ∈ N , such that∑
j∈R

ejx
∗
j < (1− ε)E,

or finds an approximate solution xεj ∈ {0, 1} , j ∈ R, such that

(1− ε)E ≤
∑
j∈R

ejx
ε
j ≤ E.

The fastest known FPTAS is due to Keller et al. (2003), which requires no more

than O
(
min

{
n/ε, n+ 1

ε2
log
(
1
ε

)})
time.

23

CHAPTER 2

Scheduling on Parallel Machines:
Complexity and Approximation

For the problems for minimizing the makespan and the total flow time on identical,

uniform and unrelated machines, in this chapter we provide a review of the known

results of exact and approximate solutions to these problems. Throughout each of the

following sections, without loss of generality, is it assumed that jobs are numbered

according to the longest processing time first (LPT) rule, where jobs are numbered in

non-increasing order of their processing times so that

p1 ≥ p2 ≥ . . . ≥ pn. (2.1)

Alternatively, certain problems require jobs to be ordered according to the shortest

processing time first (SPT) rule. If jobs are numbered according to the SPT rule, then

they are numbered in non-decreasing order of their processing times, so that

p1 ≤ p2 ≤ . . . ≤ pn (2.2)

For a set of jobs Q ⊆ N , define

p (Q) =
∑
Jj∈Q

pj.

In particular, p (∅) = 0 and

p (N) =
n∑
j=1

pj.

24

CHAPTER 2. SCHEDULING ON PARALLEL MACHINES: COMPLEXITY AND
APPROXIMATION

2.1 Identical Parallel Machines

2.1.1 Minimizing Makespan

Consider the problem of obtaining a schedule S∗ with the minimum makespan on m

identical parallel machines. A schedule S for this problem is defined by a partition of

the set of jobs N into m subsets N1, N2, . . . , Nm, so that jobs in Ni are scheduled on

machine Mi. Let p (Ni) represent the sum of processing times of jobs in Ni. In this

case, the value of makespan for a non-preemptive schedule Snp is given by

Cmax (Snp) = max {p (Ni) | 1 ≤ i ≤ m} .

It is easy to verify that for any feasible schedule S, the makespan is at least as long as

the processing time of any job, so that

Cmax (S) ≥ pj, 1 ≤ j ≤ n. (2.3)

Due to the assumption that jobs are always numbered according to the LPT rule in

(2.1), bound (2.3) is simply given as

Cmax (S) ≥ p1. (2.4)

Consider a schedule where all machines are busy processing some job throughout

the duration of the schedule, such that no machine becomes idle before all jobs are

processed. In this case, the total processing time p (Ni) of every machine Mi is given

by the average machine load T , where

T =
1

m
p (N) . (2.5)

It is easy to see that (2.5) is a lower bound for the makespan of any feasible schedule,

so that

Cmax (S∗) ≥ T. (2.6)

Thus, due to (2.4) and (2.6), the general expression for the lower bound for the value

of the makespan is given by

Cmax (S∗) ≥ max {p1, T} . (2.7)

This bound holds for both the preemptive and non-preemptive versions of this problem,

25

CHAPTER 2. SCHEDULING ON PARALLEL MACHINES: COMPLEXITY AND
APPROXIMATION

while for the preemptive version, i.e. problem Pm |pmtn|Cmax, this bound is tight for
any optimal schedule.

An optimal schedule for problem Pm |pmtn|Cmax is obtained in polynomial time
by applying the algorithm due to McNaughton (1959) to any instance of this problem.

This algorithm, which is commonly referred to as McNaughton’s wrap-around method,

considers the segmentation of the total processing time p (N) into m intervals. The

length of these intervals depends on where the maximum is achieved on the right hand

side of (2.7). A description of the algorithm by McNaughton is given next.

Algorithm WrapAround [McNaughton (1959)]

INPUT: an instance of problem Pm |pmtn|Cmax

OUTPUT: An optimal preemptive schedule S∗p

Step 1. Calculate bound c = Cmax (S∗) in accordance to (2.7).

Step 2. Form a temporary single-machine schedule S1, by assigning jobs in an ar-

bitrary sequence to a hypothetical machine A /∈ M, in the time interval I :=

[0, p (N)].

Step 3. Split S1 intom pieces, such that the firstm−1 pieces have length c and them-

th piece has length p (N)−(m− 1) c. Assign the jobs, and job fractions processed

on A in the time interval Ii = [(i− 1) c, (i · c)] to be processed on machineMi for

1 ≤ i ≤ m − 1. Assign jobs and job fractions which are processed on A in the

time interval Im = [(m− 1) c, p (N)], to be processed on machine Mm.

Step 4. Stop.

Algorithm WrapAround finds an optimal preemptive schedule in O (n+m) time,

with at most m− 1 preempted jobs.

For further purposes, it is convenient to introduce the following classification of the

instances of the problem.

Definition 2.1. An instance of the problem on m parallel identical machines is said

to belong to Class 1, if Cmax
(
S∗p
)

= p1; otherwise, it said to belong to Class 2.

For the non-preemptive version of this problem, obtaining a feasible schedule is

NP-hard. Specifically, for the problem with two identical machines, Lenstra and Kan

(1979) demonstrate that problem P2 | |Cmax can be polynomially reduced from prob-

lem partition described in Section 1.2. It follows that for m ≥ 3, this problem is

26

CHAPTER 2. SCHEDULING ON PARALLEL MACHINES: COMPLEXITY AND
APPROXIMATION

strongly NP-hard, as it can be polynomially reduced from the 3-partition problem.

As a result, it is unlikely that this problem will be solved in polynomial time. Because

problem Pm | |Cmax has no known algorithm which can find a feasible schedule with

optimal makespan in polynomial time, approximation algorithms for this problem have

been extensively studied.

The earliest approximation is the List Scheduling (LS) algorithm due to Graham

(1966). The algorithm follows the process of initially creating a list L of jobs, then
sequentially assigning each job to the first available machine, whilst removing each

assigned job from the list. The algorithm terminates when there are no more jobs left

in L. Graham’s List Scheduling algorithm is described next.

Algorithm LS [Graham (1966)]

INPUT: an instance of problem Pm | |Cmax

OUTPUT: A non-preemptive schedule SLS

Step 1. Form an arbitrary ordered list L of jobs.

Step 2. When a machine becomes available, take the first job in L and assign it to
the machine. Remove the assigned job L.

Step 3. While there are jobs left in L, repeat Step 2.

Step 4. Stop.

Algorithm LS finds a feasible schedule SLS in O (nm) time. Furthermore, the

makespan of schedule SLS is shown to be at most 2−1/m times the optimal makespan.

The proof for the worst-case performance ratio of Algorithm LS is shown in the follow-

ing theorem due to Graham (1969).

Theorem 2.1 (Graham (1969)). For problem Pm | |Cmax, Algorithm LS finds a sched-
ule SLS such that the bound

Cmax
(
SLS

)
Cmax (S∗)

≤ 2− 1

m
, (2.8)

holds, and this bound is tight.

Proof: Assume that Jk is the job that terminates schedule SLS. Job Jk starts

processing at time t and completes at time Ck = Cmax. No machine is idle before time

27

CHAPTER 2. SCHEDULING ON PARALLEL MACHINES: COMPLEXITY AND
APPROXIMATION

t = Cmax
(
SLP

)
−pk, hence we deduce that p (N) ≥ mt+pk. Thus from (2.6) we obtain

a lower bound

Cmax (S∗) ≥ t+
pk
m
. (2.9)

Due to (2.3) and (2.9), we have that

Cmax(S
LS) = t+ pk =

(
t+

pk
m

)
+

(
m− 1

m

)
pk

≤ Cmax (S∗) +
m− 1

m
Cmax (S∗) ,

as required.

The tightness of (2.8) can be shown by considering an instance of Pm | |Cmax where
there are n = m (m− 1) + 1 jobs, such that p1 = p2 = . . . = pn−1 = 1 and pn = m.

Constructing the list in the order of its numbering, algorithm LS creates a schedule

SLS such that Cmax
(
SLS

)
= 2m− 1, while an optimal assignment of jobs to machines

exists which yields a schedule S∗ where Cmax (S∗) = m. Therefore

Cmax
(
SLS

)
Cmax (S∗)

= 2− 1

m
.

for illustration, consider a tight instance of this problem for m = 3. The structure

of an optimal schedule S∗ for this instance is shown in the following table.

p1 p2 p3 p4 p5 p6 p7 Cmax(S
∗) S∗

N1 N2 N3

1 1 1 1 1 1 3 3 7 1, 2, 3 4, 5, 6

(2.10)

An application of Algorithm LS to this instance yields a schedule SLS of the fol-

lowing structure.

p1 p2 p3 p4 p5 p6 p7 Cmax(S
LS) SLS

N1 N2 N3

1 1 1 1 1 1 3 5 1, 4, 7 2, 5 3, 6

(2.11)

A version of the list scheduling algorithm due to Graham (1969), where the elements

of the list L are sorted according to the LPT rule in (2.1). This algorithm is shown

next:

Algorithm LPT-LS [Graham (1966)]

28

CHAPTER 2. SCHEDULING ON PARALLEL MACHINES: COMPLEXITY AND
APPROXIMATION

INPUT: an instance of problem Pm | |Cmax

OUTPUT: A non-preemptive schedule SLPT

Step 1. Form a list of jobs L, sorted in non-increasing order of their processing speeds,
according to (2.1).

Step 2. When a machine becomes available, take the first job in L and assign it to
the machine. Remove the assigned job L.

Step 3. While there are jobs left in L, repeat Step 2.

Step 4. Stop.

Note that the only difference between LPT-LS and LS algorithms is found in Step

1. Algorithm LPT-LS is shown to deliver an improved worst-case performance ratio in

comparison to an arbitrarily ordered list. This is demonstrated next:

Lemma 2.1. Suppose that in a schedule SLPT , job Jj, 1 ≤ j ≤ n, is sequenced as the

h− th job on the machine of its allocation. Then

pj ≤
1

h
Cmax (S∗) . (2.12)

Theorem 2.2. For some job Jk ∈ N which terminates schedule SLPT , and is sequenced

as the h− th job on the machine of its allocation, then

Cmax
(
SLPT

)
Cmax (S∗)

≤ h+ 1

h
− 1

hm
, (2.13)

holds, and this bound is tight for h ≥ 3.

Proof: Suppose that job Jk begins processing at time t. Due to Lemma (2.1),

pk ≤
1

h
Cmax (S∗) .

The bound (2.9) holds, which gives

Cmax
(
SLPT

)
= t+ pk =

(
t+

pk
m

)
+
m− 1

m
pk

≤ Cmax (S∗) +

(
1− 1

m

)
1

h
Cmax (S∗) ,

which proves Lemma (2.1).

29

CHAPTER 2. SCHEDULING ON PARALLEL MACHINES: COMPLEXITY AND
APPROXIMATION

This bound is tight for all h ≥ 3. For h = 2, the bound is given by

Cmax
(
SLPT

)
Cmax (S∗)

≤ 4

3
− 1

3 (m− 1)
.

Thus applying (2.13) with h = 3, yields the inequality

Cmax
(
SLPT

)
Cmax (S∗)

≤ 4

3
− 1

3m
,

which gives a global worst-case bound on the performance of LPT.

The tightness of this bound is demonstrated by considering an instance for

Pm | |Cmax:
p1 = p2 = 2m− 1

p3 = p4 = 2m− 2

. . .

p2k−1 = p2k = 2m− k
. . .

p2m−1 = p2m = m

p2m+1 = m.

Using this problem instance, an LPT schedule SLPT can be obtained, such that

Cmax
(
SLPT

)
= 4m − 1, while the optimal schedule S∗, due to (2.7), yield makespan

Cmax (S∗) = 3m . Therefore we obtain

Cmax
(
SLPT

)
Cmax (S∗)

=
4

3
− 1

3m
.

For m = 3, algorithm LPT-LS yields a schedule SLPT

A variant of Algorithm LS suggested by Graham (1969), schedules the k longest

jobs optimally, then applies Algorithm LS to the remaining jobs. This approach gives

a ratio guarantee of 1+(1− 1/m) / (1 + bk/mc) . Thus for a fixed number of machines,
there is a PTAS for different values of k, although this yields O

(
nkm

)
running time.

Another approach to approximating a solution for Pm | |Cmax, is by considering
it as a Bin-Packing problem. The bin-packing problem can be described as such:

Given a set of bins U := {U1, U2 , . . . , Um} where each bin Ui has capacity ui, and a
list of elements L := {1, 2, . . . , n} where each element j has size vj. The objective
of this problem is to find an arrangement of items into bins which uses the minimum

number of bins. It may be apparent at this stage, that bin packing and the problem

30

CHAPTER 2. SCHEDULING ON PARALLEL MACHINES: COMPLEXITY AND
APPROXIMATION

of minimizing the makespan share similar objectives.

The Multifit heuristic due to Coffman (1993), finds via binary search the minimum

capacity of the m bins into which n items can be placed using the first-fit decreasing

(FFD) heuristic, where in each iteration of the algorithm, the largest unassigned item

into the first bin in which it fits. For a number of k binary search iterations, Multifit is

shown to have a ratio guarantee of ρ+ 2−k, where ρ ≤ 1.22. The value of ρ for Multifit

is improved to 1.2 due to Friesen (1987).

2.1.2 Minimizing Sum of Completion Times

Consider the problem of finding a schedule which minimizes the sum of completion

times, denoted by P | |
∑
Cj. A solution to this problem is defined by a partition of

N into m disjoint subsets N1, N2, . . . , Nm, where Ni is the set of jobs to be processed

by machine Mi. Furthermore, every machine Mi is associated with a list Li, which
determines the sequence in which jobs are processed by Mi.

Let tj denote the contribution of the processing time of job Jj, 1 ≤ j ≤ n, to

the value of the objective function. The contribution of a job for Identical machines

is determined by the position from last in which the job is processed by a machine.

Consider the following example: A machine Mk, processed its set of jobs Nk in the

sequence given by Lk := {J1, J2, J3}, where the processing time of Jr, r ∈ Nk, is given

by pr. As J1 is processed in the third position from the rear of Lk, we have that t1 = 3.

The contribution of the rest of the jobs is similarly determined.

The contribution of a job defines the number of times its processing requirements

will be present in the total value of the objective function, so that the value of the

objective function is given by
n∑
j=1

Cj =
n∑
j=1

tjpj.

In the single machine version of this problem denoted by 1 | |
∑
Cj, the value of the

objective function is minimized if jobs are scheduled in the SPT (2.2) order. Hence,

if all jobs in N are added to list L in the SPT order, then the first job will have the
shortest processing time, so that the order of L is given by

L :=
{
Jn, J(n−1), . . . , J1

}
, (2.14)

where jobs are numbered according to LPT (2.1). In this case, for job Jj, 1 ≤ j ≤ nj,

has contribution tj = (n− j) + 1.

31

CHAPTER 2. SCHEDULING ON PARALLEL MACHINES: COMPLEXITY AND
APPROXIMATION

For identical parallel machines, Conway et al. (1967) present a modified version of

Algorithm LS, where the list of jobs in Step 1 of the algorithm is sorted according

to the SPT rule. This algorithm constructs an optimal schedule S∗ where each job is

assigned to machine (j − 1) mod (m), and the contribution of each job Jj, 1 ≤ j ≤ nj

is given by tj = dj/me. Thus the value of the objective function is given by

n∑
j=1

Cj (S∗) =
n∑
j=1

pj

⌈
j

m

⌉
.

The running time of the modified Algorithm LS by Conway et al. (1967) is O (n log n),

where O (n log n) time is required for sorting jobs in the SPT order.

Allowing preemption for this problem does not reduce the value of the objective

function. The proof of this statement is due to McNaughton (1959), who shows that

for the problem of minimizing the weighted sum of completion times, denoted by

P | |
∑
wjCj introducing preemption does not yield a schedule which improves the

value of the objective function. Hence for identical machines, interest is only drawn

towards the non-preemptive version of this problem.

2.2 Uniform Parallel Machines

2.2.1 Minimizing Makespan

Consider the problem on uniform machines. An instance I of this problem is defined

by a list of n processing times Pn, and a set ofm machinesMm, so that I = (Pn,Mm).

As discussed in Section 1.1, in the uniform machine environment, each machine Mi is

associated with a processing speed si. Without loss of generality, in this section and

throughout the rest of this thesis we assume that machines are numbered according

to the fastest machine first (FM) rule, i.e., machines are numbered in non-increasing

order of their processing speeds, so that

s1 ≥ s2 ≥ . . . ≥ sm. (2.15)

Given an instance I = (Pn,Mm), for each u, 1 ≤ u ≤ m, we denote the total speed

of the u fastest machines by s (Mu), where

s (Mu) =
u∑
i=1

si.

32

CHAPTER 2. SCHEDULING ON PARALLEL MACHINES: COMPLEXITY AND
APPROXIMATION

In the preemptive version of this problem, i.e., problem Qm |pmtn|Cmax, for some
instance I where n ≥ m, as shown in Brucker (2007), a necessary condition for process-

ing all jobs in the interval [0, T], is

p (N) = p1 + p2 + . . .+ pn ≤ s1T + s2T + . . .+ smT = s (M)T

or
p (N)

s (M)
≤ T.

Furthermore, as p (Ni) /s (Mi) is a lower bound on the length of a schedule for the

jobs J1, . . . Ji, the inequality

p (Ni)

s (Mi)
≤ T, 1 ≤ j ≤ (m− 1)

must hold. Thus, the makespan of an optimal preemptive schedule S∗p (I) is given by

Cmax
(
S∗p (I)

)
= max {Tu|1 ≤ u ≤ m} , (2.16)

where Tu is the average machine load obtained by assigning the u largest jobs on the

u fastest machines, so that

Tu =
p (Nu)

s (Mu)
, (2.17)

where

Tm =
p (N)

s (M)
. (2.18)

Note that for the case n < m, only the n fastest machines need to be considered.

For further purposes, it is convenient to introduce the following classification of the

instances of the problem.

Definition 2.2. An instance of the problem on m parallel uniform machines is said

to belong to Class u, if Cmax
(
S∗p
)

= Tu, where 1 ≤ u ≤ m.

An optimal schedule for problem Qm |pmtn|Cmax, can be found in polynomial time.
A plethora of algorithms are present throughout the literature which solve this prob-

lem in various degrees of speed. An optimal schedule is obtained via an adaptation

of McNaughton’s wrap-around algorithm. Following the generalization of the lower

bounds described by McNaughton for the problem on identical machined, to the case

of uniform machines, Hovarth, Lam and Sethi (1977) provide the longest remaining

processing time on fastest machine (LRPT-FM) rule, where at any given point the job

with the longest remaining processing time is assigned to the fastest available machine.

33

CHAPTER 2. SCHEDULING ON PARALLEL MACHINES: COMPLEXITY AND
APPROXIMATION

The level pj (t) of a job Jj, 1 ≤ j ≤ n, is defined as the remaining processing time

of the job after time t. At time t, procedure Assign(t) is called, which obtains a partial

assignment of jobs to machines. This partial assignment remains until a time f > t is

reached, at which point the process is repeated.

Procedure Assign(t) [Hovarth, Lam and Sethi (1977)]

INPUT: A set of jobs J ⊆ N , where pj (t) > 0, for every j ∈ J, and a set of machines
M

OUTPUT: A partial assignment of jobs to machines up to time t.

Step 1. Find set L, so that L := {j | pj (t) = max {pj (t) | 1 ≤ j ≤ n}}

Step 2. Define r := min {|M| , |L|}

Step 3. Assign jobs in L to be jointly processed on the r fastest machines inM.

Step 4 Define J := J \ L

Step 5. Remove the r fastest machines fromM.

Algorithm LRPT-FM [Hovarth, Lam and Sethi (1977)]

INPUT: an instance I of problem Qm |pmtn|Cmax.

OUTPUT: An optimal preemptive schedule S∗p (I).

Step 1. Define t = 0;

Step 2. Run procedure Assign(t);

Step 3. Determine t1 = min {f | f > t} so that there is a job which terminates at
time s.

Step 4. Determine t2 = min {f | f > t} so that there are jobs k, l with pk (t) > pl (t)

and pk (f) > pl (f)

Step 5. Define t = min {t1, t2} ;

Step 6. Repeat Step 2 while there is a job Jj, 1 ≤ j ≤ n, so that pj (t) > 0

Step 7. Construct the schedule

Step 8. Stop.

34

CHAPTER 2. SCHEDULING ON PARALLEL MACHINES: COMPLEXITY AND
APPROXIMATION

As an example, consider a case with two machines M1 and M2, with corresponding

speeds s1 and s2 such that s1 > s2. At the time whichM1 completes the processing of a

job at time t, any job which has not completed processing by that time on machineM2,

is transferred toM1. In a more general case withm machines, every time some machine

Ml completes processing a job at time t, the longest job which is being processed by

any of the slower machines, is transferred to Ml.

The LRPT-FM based algorithm obtains an optimal solution in O (mn2) time, and

requires a virtually unlimited number of preemptions. A more case-based algorithm is

proposed by Gonzalez and Sahni (1978), which not only obtains an optimal solution

in a considerably improved O(n + m logm) time, but also requires a maximum of

2 (m− 1) preemptions in order to construct a schedule.

As a generalization of the problem on identical machines, problem Qm | |Cmax
is NP-hard. As a result, various approximation techniques are applied to provide

considerably satisfactory solutions. Of those, an adaptation of the LPT list scheduling

algorithm has been one of the earliest approaches to approximating the solution. The

modifications to this algorithm are designed to accommodate the variance of speeds

in uniform machine environments. In this algorithm due to Liu and Liu (1974), the

list of jobs L is initially ordered according to the LPT rule (2.1). Jobs are assigned to
machines by assigning the first unassigned job in L to the fastest available machine.

Algorithm QLPT [Liu and Liu (1974)]

INPUT: An instance of problem Qm | |Cmax.

OUTPUT: A non-preemptive schedule SLPT .

Step 1. Form a list of jobs L in accordance to the LPT rule.

Step 2. Assign the first job in L to the machine on which it has the earliest completion
time. Remove that job from L

Step 3. Repeat Step 2 until all jobs in L have been scheduled.

Algorithm QLPT requires O (n log n+ nm) time, where O (n log n) time is re-

quired for sorting the list.

The performance of LPT on uniform machines has been a subject of academic inter-

est for several decades, with incremental improvements of the bounds due to Gonzalez,

Ibarra and Sahni (1977),Dobson (1984) and Friesen (1987). The best known results on

the worst-case ratio are due to Kovács (2006), who shows that

1.54 ≤ ρLPT ≤ 1.577.

35

CHAPTER 2. SCHEDULING ON PARALLEL MACHINES: COMPLEXITY AND
APPROXIMATION

2.2.2 Minimizing Sum of Completion Times

The problem of minimizing the sum of completion times on uniform machines, denoted

by Qm ||
∑
Cj, closely resembles its counterpart on identical machines, and is solvable

in polynomial time. The solution we explore in this section is due to Brucker (2007).

Similarly to the identical machine case, the algorithm which is used for finding an

optimal schedule, takes into account the contribution of the processing time of each

job in the objective function. This is achieved by considering a schedule as a partition

of the set of jobs N in m disjoint sets N1, N2, . . . , Nm which define the set of jobs

to be processed by each of the m machines. Furthermore, there is a sequence Ii of

jobs associated with each Ni. In this case, for a sequence of r jobs Ii such that Ii =

(Jj1 , Jj2 , . . . , Jjr), the contribution to the objective function from the jobs assigned to

machine Mi is given by

pj1
r

si
+ pj2

r − 1

si
+ . . .+ pjr

1

si
,

which indicates that in an optimal schedule, the jobs of set Ni must be scheduled

on Mi according to the SPT rule. The contribution of the processing time of a job

Jj, 1 ≤ j ≤ n, in this problem is denoted by tj, such that

tj =
k

si
,

where k indicates the position from the end of a sequence in which a job is assigned to

a machine. In order to construct an optimal schedule, it is only necessary to obtain a

non-decreasing sequence of the n smallest of tj from the set{
1

s1
,

1

s2
, . . . ,

1

sm
,

2

s1
,

2

s2
, . . . ,

2

sm
,

3

s1
, . . .

}
,

Such that, if tj = k
si
, then job Jj, 1 ≤ j ≤ n, is scheduled as the k-th last job on machine

Mi due to jobs being numbered in non-increasing order of their processing speeds, i.e.

p1 ≥ p2 ≥ . . . ≥ pn. The following algorithm obtains an optimal solution for the

non-preemptive problem of minimizing the makespan in O(n log max {n,m}) time.

Algorithm Q-NonPreempt (Brucker (2007))

INPUT: An instance of problem Q | |
∑
Cj.

OUTPUT:An partition of set N in m sequenced sets N1, N2, . . . , Nm which define and

optimal non-preemptive schedule S∗np.

Step 1. Scanning machines in the order of their numbering, for each machine i define

36

CHAPTER 2. SCHEDULING ON PARALLEL MACHINES: COMPLEXITY AND
APPROXIMATION

an empty sequence Ii, and define wi = 1
si
.

Step 2. Find the largest machine index z with wz = min {wi|1 ≤ i ≤ m}, and append
job j to the last available position in sequence Ii. Define wi = wi + 1

sj
.

Step 3. Repeat Step 2 until all jobs have been scheduled.

The solution to the preemptive problem of minimizing the sum of completion times

on uniform machines, denoted by Qm |pmtn|
∑
Cj, is obtained via an algorithm which

utilizes an adapted version of the SPT rule. In this case, jobs are initially sorted in

non-increasing order of their processing times and each successive job is scheduled pre-

emptively such as to minimize its completion time. Thus, job n is initially scheduled

on the fastest machine M1 until its completion time C1 = pn/s1, then job n − 1 is

processed by machine M2 in the time interval [0, C1], until its preempted and the re-

maining processing time being assigned to machine M1, etc. In essence, this algorithm

begins by assigning the smallest job on the fastest machine in the schedule, then incre-

mentally shifting the remaining processing time of jobs towards the fastest machines.

Algorithm Q-SPT [Labetoulle et al. (1982)]

INPUT: An instance of problem Q |pmtn|
∑
Cj.

OUTPUT: An optimal preemptive schedule S∗p .

Step 1. Define time α = 0, and determine the smallest job k which has not fulfilled

its processing requirement pk.

Step 2. Define time t = pk/s1.

Step 3. Schedule every job ν ≤ k and ν ≥ max {1, i−m+ 1} , on machine M1+k−ν

for the time interval [α, α + t], and reduce the remaining processing requirement

of job ν by t · s1+k−ν , such that pν = pν − t · s1+k−ν .

Step 4. Define α := α + t. Repeat Step 2 until job 1 has fulfilled its processing

requirement.

Algorithm Q-SPT due to Labetoulle et al. (1982), finds an optimal schedule in
O (n log n+mn) time, requiring at most (m− 1) (n−m/2) preemptions.

37

CHAPTER 2. SCHEDULING ON PARALLEL MACHINES: COMPLEXITY AND
APPROXIMATION

2.3 Unrelated Parallel Machines

2.3.1 Minimum Makespan In Open Shop

Consider the preemptive open shop problem of minimizing the makespan, denoted by

O |pmtn|Cmax, as described in Section 1.1. This problem plays an auxiliary role in our
consideration of the problem on unrelated parallel machines. Recall that in open shop

problems, every job consists of a number of operations. Furthermore, each operation

oij of a job Jj, 1 ≤ j ≤ n, may be only processed by a machine Mi. The processing

time of operation oij is denoted by pij. It is easy to see that the amount of time a job

Jj, 1 ≤ j ≤ n, will be present in the system, is determined by the sum of processing

times of its operation. When preemptions are allowed, the lower bound for the value

of the makespan is obtained by observing the conditions for feasibility of a schedule.

In this case, a feasible schedule S may not terminate before any job in the schedule

has fulfilled its processing requirement on all machines, thus for a feasible schedule S,

the relation

Cmax (S) ≥ max

{
m∑
i=1

pij|j ∈ n
}
,

holds. Additionally, in any schedule S, jobs cannot be completed on all machines

earlier than any machine can complete all of its jobs, thus

Cmax (S) ≥ max

{
n∑
j=1

pij|1 ≤ i ≤ m

}
.

Due to the above, the general lower bound of the makespan for the preemptive open

shop problem is given by

Cmax (S) ≥ max

{
max

{
m∑
i=1

pij|j ∈ n
}
,max

{
n∑
j=1

pij|1 ≤ i ≤ m

}}
, (2.19)

and this bound is tight.

Throughout the literature, various algorithms have been used to solve

Om |pmtn|Cmax. Gonzalez and Sahni (1976) provide two algorithms for this problem,
the first of which utilizes maximum edge matchings in bipartite graphs, and obtains

an optimal solution in O (r2) time, where r is the number of initial operations. Their

second algorithm, which is based on a refinement of their initial algorithm, obtains

an optimal solution in O (r (min {r,m2}+m log n)) time, which improves the time of

their original algorithm in problem instances where m ≤ r/ log n. A seminal algorithm

38

CHAPTER 2. SCHEDULING ON PARALLEL MACHINES: COMPLEXITY AND
APPROXIMATION

utilizing matrices and decrementing sets, based on the Longest Alternate Processing

Time first (LAPT) rule, provided by Pinedo (2012) for the non-preemptive version

of this problem denoted by Om | |Cmax, is shown to obtain optimal schedules for the
two-machine preemptive open shop problem O2 |pmtn|Cmax.

The solution for problem Om |pmtn|Cmax is presented next. The problem is solved
by finding a decomposition of a ∆-doubly stochastic matrix into the weighted sum

of permutation matrices, followed by assembling an optimal schedule based on that

decomposition. Before we proceed, it is essential that we define the following:

Definition 2.3. A square (h × h) matrix A = (αi,j) is called doubly stochastic if
every αi,j in the matrix satisfies the following requirements:

0 ≤ αi,j ≤ 1
h∑
i=1

αi,j = 1, 1 ≤ j ≤ h

h∑
j=1

αi,j = 1, 1 ≤ i ≤ h

Definition 2.4. A doubly stochastic matrix is called a permutation matrix if αi,j ∈
{0, 1}, for every 1 ≤ j ≤ h and 1 ≤ i ≤ h.

Definition 2.5. A line describes either a row or a column of matrix. For a square
(h× h)-matrix, a diagonal describes a set of elements, which do not belong to the
same line.

Next we outline the theorem which was described initially by Birkhoff (1946) and

discovered independently by von Neumann (1953), where they show that a ∆-doubly

stochastic matrix can be decomposed into a linear combination of permutation matri-

ces. This theorem is particularly important as it directly implies that the problem of

minimizing a linear function defined for a set of elements, can be solved as a linear

programming problem.

Theorem 2.3 (Birkhoff (1946), von Neumann (1953)). It is possible to decompose
a ∆-doubly stochastic matrix A into a linear combination of permutation matrices

39

CHAPTER 2. SCHEDULING ON PARALLEL MACHINES: COMPLEXITY AND
APPROXIMATION

Π1,Π2, . . . ,Πk such that

A =
u∑
k=1

δkΠk,

u∑
k=1

δk = ∆,

0 ≤ δk ≤ ∆, 1 ≤ k ≤ u.

By considering the Birkhoff-von Neumann theorem, as well as the above definitions,

the solution to O |pmtn|Cmax is described. Initially the original processing times are
placed into an (m× n) matrix P = (pij). The value of ∆ is computed such that

∆ = max

{
max

{
m∑
i=1

pij|j ∈ n
}
,max

{
n∑
j=1

pij|1 ≤ i ≤ m

}}
.

Define h = m+n, and construct a ∆-doubly stochastic matrix A of the following form:

A =

(
Pm×n Dm

Dn Bn×m

)
,

where Dm and Dn are (m×m) and (n× n) diagonal matrices, with the value of each

off-diagonal element equal to zero. The diagonal elements are chosen in order to provide

the total sum of each m first rows, and of each n first columns of matrix A equal to ∆.

Matrix B can be found by subsequently making lines of matrix A have sums equal to

∆.

The following algorithm finds a desired decomposition of a ∆-doubly stochastic

matrix:

Algorithm Birkhoff-von Neumann

INPUT: A ∆-doubly stochastic matrix A.

OUTPUT: A decomposition of matrix A.

Step 1. Define k = 1.

Step 2. Find diagonal R (A) without zero elements. Let δ be the smallest element of

R (A) .Define δk = δ. Find permutation matrix Πk =
(
πki,j
)
where πki,j = 1 if αi,j

belongs to R (A) .

Step 3. Subtract δ from each element of the diagonal R (A), call the obtained matrix

A again. If A is not the zero matrix, then it is ∆′-doubly stochastic, where

40

CHAPTER 2. SCHEDULING ON PARALLEL MACHINES: COMPLEXITY AND
APPROXIMATION

∆′ ≤ ∆, define k = k+ 1 and repeat Step 2. Otherwise if matrix A is zero, stop.

Following the above decomposition of matrix A, we can proceed with the construc-

tion of an optimal schedule for the original O |pmtn|Cmax problem. This is achieved
by splitting the time interval [0,∆] into a number of u sub intervals, where in each of

these sub intervals, jobs are processed on each of the machines.

Algorithm O-Match

INPUT: A linear decomposition of matrix A

OUTPUT: An optimal preemptive schedule for problem O |pmtn|Cmax.

Step 1. Split time interval [0,∆] into u sub-intervals I1, I2, . . . , Iu, such that

I1 = [0, δ1],

I2 = [δ1, δ1 + δ2] ,

. . . ,

Iu =

[
u−1∑
k=1

δk,
u∑
k=1

δk

]
,

where
u∑
k=1

δk = ∆.

Step 2. Starting from k = 1 to k = u, for permutation matrix Πk =
(
πki,j
)
, if πki,j = 1

for i ≤ m and j ≤ n, then job Jj, 1 ≤ j ≤ n, is processed on machine Mi during

the time interval Ik.

The running time of this algorithm depends on the time required for finding a

diagonal, which can be done in polynomial time, as the problem of finding a diagonal

is related to the assignment problem described in Section 1.2.

2.3.2 Minimizing Makespan

Consider the problem of minimizing the makespan on unrelated machines. In this

case, the processing time of each job is machine dependent, thus is represented by a

matrix P = (pij)m×n. When preemption is allowed, jobs may be processed by multiple

machines, subject to the consideration that no job is processed by more than one

machine at a time. Furthermore, for a preemptive schedule Sp, let tij represent the

41

CHAPTER 2. SCHEDULING ON PARALLEL MACHINES: COMPLEXITY AND
APPROXIMATION

amount of time a job Jj, 1 ≤ j ≤ n, is processed by machine Mi, so that if j has

fulfilled its processing requirement, then

m∑
i=1

tij
pij

= 1.

Finding an optimal schedule for the preemptive version of this problem, can

be achieved in polynomial time. This is demonstrated in a two-stage solution to

Rm |pmtn|Cmax, due to Lawler and Labetoulle (1987), which consists of solving two
polynomially solvable problems. In the first stage of the solution, Lawler and La-

betoulle (1987) find the optimal value for the makespan by solving the following linear

programming formulation of the problem.

Minimize C

Subject to: ∑m
i=1

tij
pij

= 1, for 1 ≤ j ≤ n,

∑n
j=1 tij ≤ C, for 1 ≤ i ≤ m

∑m
i=1 tij ≤ C, for 1 ≤ j ≤ n

tij ≥ 0 for 1 ≤ j ≤ n, 1 ≤ i ≤ m

(2.20)

In the above LP formulation, C corresponds to the value of the makespan. The

first set of constraints in (2.20) ensure the completion of all jobs, while the second set

of constraints ensure that all machines will complete jobs assigned to them before time

C.

Let C∗ and t∗ij be the corresponding values of the variables, obtained by solving

(2.20). Then there is an optimal schedule S∗p , so that Cmax
(
S∗p
)

= C∗. As C∗ is

minimal, we obtain

C∗ = max

{
max

{
m∑
i=1

t∗ij | 1 ≤ j ≤ n

}
,max

{
n∑
j=1

t∗ij | 1 ≤ i ≤ m

}}
. (2.21)

It is apparent that (2.21) closely resembles the value of the makespan for problem

Om |pmtn|Cmax given in (2.19). In the second stage of the solution, Lawler and La-
betoulle (1987) find an optimal schedule by solving Om |pmtn|Cmax with processing

42

CHAPTER 2. SCHEDULING ON PARALLEL MACHINES: COMPLEXITY AND
APPROXIMATION

times t∗ij.

The non-preemptive version of this problem, denoted by Rm | |Cmax, is a general-
ization of the problem of finding a non-preemptive schedule on uniform machines, and

as a result is NP-hard. The computationally hard nature of this problem has prohib-

ited the development of polynomial time algorithms which can solve this problem to

optimality, this has lead researchers in the past several decades to develop a variety of

approximation methodologies for obtaining near-optimal results for this problem. For

this problem, a list scheduling-based algorithm by Davis and Jaffe (1981) was shown

to produce a schedule within 2
√
m the optimum makespan. For the problem on two

unrelated machines, Potts (1985) shows that a heuristic based on linear programming

and enumeration obtains surprisingly near optimal results. The process of obtain-

ing a non-preemptive schedule with the Linear Programming and Enumeration (LPE)

heuristic described by Potts, consists of two stages: Initially a linear programming

problem is solved in order to obtain a partial schedule, then brute-force enumeration

is used to construct the remaining schedule. The problem of minimizing the makespan

for Rm ||Cmax is defined in the following integer programming formulation due to Potts
(1985):

Minimize Cmax

Subject to: ∑n
j=1 pijxij ≤ Cmax , for 1 ≤ i ≤ m,

∑m
i=1 xij = 1 , for 1 ≤ j ≤ n,

xij ∈ {0, 1} , for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

For the first stage of the solution, Potts considers a relaxation of the integrality

constraint for the decision making variable. Thus, by considering 0 ≤ xij ≤ 1, the

above IP formulation is effectively transformed into a linear programing problem, which

43

CHAPTER 2. SCHEDULING ON PARALLEL MACHINES: COMPLEXITY AND
APPROXIMATION

is provided next:

Minimize Cmax

Subject to: ∑n
j=1 pijxij ≤ Cmax , for 1 ≤ i ≤ m,

∑m
i=1 xij = 1 , for 1 ≤ j ≤ n,

xij ≥ 0 , for 1 ≤ i ≤ m, 1 ≤ j ≤ n,

xij ≤ 1 , for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

(2.22)

The above formulation closely resembles that of Lawler and Labetoulle for the

preemptive version of the makespan problem on unrelated machines in (2.20) , where

tij = pijxij, but with the essential difference that there is no constraint limiting the

execution of jobs by one processor at a time. Following this LP formulation, a partial

schedule is obtained by observing the value of the assignment variable: For each job

Jj, 1 ≤ j ≤ n, if the value of xij is equal to 1, then j is scheduled on machine Mi.

Jobs which do not satisfy this condition, i.e. they have partial assignments to multiple

machines, are called fractional jobs. Potts further shows that for any instance of this

problem where n ≥ m− 1, there are at most m− 1 fractional jobs.

In the second stage of the solution, the final schedule is obtained by appending

fractional jobs to the end of the final schedule. The final assignment of these fractional

jobs is determined by enumerating all possible assignments. The LPE heuristic runs in

polynomial time, as in the second stage of the solution, a maximum of mm−1 schedules

are generated and compared, while in the first stage, LP problems also require poly-

nomial time. For the problem with two unrelated machines, R2 | |Cmax, LPE finds a
schedule SLPE in O (n) time, so that its worst-case performance ratio is given by the

inequality
Cmax

(
SLPE

)
Cmax (S∗)

≤ 1 +
√

5

2
,

44

CHAPTER 2. SCHEDULING ON PARALLEL MACHINES: COMPLEXITY AND
APPROXIMATION

and is tight for an instance with two jobs, where for some p > 0,

p1,1 =

(
−1 +

√
5
)
p

2
,

p1,2 = p,

p2,1 = p,

p2,2 =

(
1 +
√

5
)

2
.

Furthermore, Potts proves that for the general case with m machines, where m ≥ 3,

the worst-case performance ratio of LPE is

Cmax
(
SLPE

)
Cmax (S∗)

≤ 2.

In the same paper, Potts also provides the LPE′ heuristic: A modified version of

LPE, where having obtained a fractional job Jk after an initial application of LPE, the

heuristic is then applied to a modified version of the problem which has the constraint

that Jk is assigned to the machine on which it has the smallest processing time. Fi-

nally the better of the two schedules produced by each application of LPE is selected.

Heuristic LPE ′ finds a schedule in O (n) time, and its worst case ratio is given by

Cmax
(
SLPE

′)
Cmax (S∗)

≤ 3

2
.

Following the same principle of linear programming relaxation of integer program-

ming problems, Lenstra, Shmoys and Tardos (1990) show that the fractional solution

obtained from (2.22), can be rounded to a satisfactory integral approximation in poly-

nomial time. In essence, this removes the need for enumeration in the LPE heuristic,

thus removing the exponential dependence on the number of machines. The results

by Lenstra, Shmoys and Tardos (1990) are based on a rounding technique which is

presented next: Consider a set of jobs Ni (t) that require to be processed for no more

than t amount of time on machine Mi, and a setMj (t) of machines that can process

job Jj, 1 ≤ j ≤ n, in no more than t time. Furthermore each machine is associated

with a deadline di and each job is constrained to be processed for a maximum of t

amount of time on every machine. Thus the feasibility of a schedule is determined by

simply checking if the criteria of the problem have been satisfied.

Theorem 2.4 (Lenstra, Shmoys and Tardos (1990)). For a matrix of processing times
P = (pij)m×n,, a vector of machine deadlines

~d = (d1, d2, . . . , dm), where D represents

the maximum deadline, so that D = max {di | 1 ≤ i ≤ m}, and a time duration t, if

45

CHAPTER 2. SCHEDULING ON PARALLEL MACHINES: COMPLEXITY AND
APPROXIMATION

the linear program LP
(
P, ~d, t

)
, given by

Minimize D

Subject to: ∑n
j=1 pijxij ≤ di , for 1 ≤ i ≤ m, 1 ≤ j ≤ ni (t)

∑m
i=1 xij = 1 , for 1 ≤ j ≤ n, m ∈Mj (t)

xij ≥ 0 , for 1 ≤ i ≤ m, 1 ≤ j ≤ ni (t) ,

(2.23)

has a feasible solution, then any vertex x̃ of this polytope can be rounded to a feasible

solution x̄ of the integer program IP
(
P, ~d, t

)
, given by

Minimize D

Subject to: ∑n
j=1 pijxij ≤ di + 1 , for 1 ≤ i ≤ m, 1 ≤ j ≤ ni (t)

∑m
i=1 xij = 1 , for m ∈Mj (t) , 1 ≤ j ≤ n,

xij ∈ {0, 1} , for 1 ≤ i ≤ m, 1 ≤ j ≤ ni (t) ,

and this rounding can be done in polynomial time.

Algorithm R-ROUND (Lenstra, Shmoys and Tardos (1990))

INPUT: A problem instance for Rm ||Cmax

OUTPUT: An approximate schedule Snp for this problem.

Step 1. Solve (2.23) and obtain a feasible solution vertex x̃.

Step 2. For each job Jj, 1 ≤ j ≤ n, and machine Mi, 1 ≤ i ≤ m, if xij = 1, assign j

to Mi.

Step 3. Define a set of fractional jobs F ⊂ N , such for every j ∈ F , 0 < xij < 1 and

1 ≤ i ≤ m. Construct bipartite graph G′ on vertex set F ∪M.

46

CHAPTER 2. SCHEDULING ON PARALLEL MACHINES: COMPLEXITY AND
APPROXIMATION

Step 4. Find a maximum matching N in H.

Step 5. Assign fractional jobs to machines according to matching N .

Step 6. Stop.

The R-ROUND procedure finds a non-preemptive schedule Snp with makespan ar-

bitrarily close to twice the optimum, so that

Cmax (Snp)

Cmax (S∗)
≤ 2.

2.3.3 Minimizing Sum of Completion Times

Following the trend on identical and uniform machines for the problem of minimizing

the total completion times when machines are unrelated, is polynomially solvable. The

polynomial time solvability of this problem, denoted by Rm | |
∑
Cj, is demonstrated

by Brucker (2007), where this problem is reduced to an assignment problem. Similarly

to the problem with uniform machines, if in an optimal schedule machine Mi has been

assigned r jobs in the sequence Ii := {j1, j2, . . . , jr}, where 1 ≤ j ≤ n, then the

contribution of each job in Ii to the makespan is given by:

rpij + (r − 1) pij2 + . . .+ pijr .

The numbering of position in which jobs are processed on a machine, is given in a

non-increasing order, such that the first job to be processed on machine Mi is assigned

to the r-th position (from the end of the schedule) and the last job to be processed

by Mi is assigned to position 1. The problem is subsequently solved as an assignment

problem, where each job Jj, 1 ≤ j ≤ n, has to be assigned to a position on one of the

m machines. Optimal solutions from this assignment problem, are associated with the

following property: If a job is assigned to a position k > 1 on machine Mi, then there

is a job assigned to position k − 1 on the same machine. Alternatively scheduling job

Jj, 1 ≤ j ≤ n, in position k − 1 would improve the total cost of the assignment. Let

xikj denote a 0-1 decision making variable, so that xikj = 1 if job Jj, 1 ≤ j ≤ n, is

scheduled k-th to last on machine Mi and xikj = 0 otherwise. The problem can then

47

CHAPTER 2. SCHEDULING ON PARALLEL MACHINES: COMPLEXITY AND
APPROXIMATION

be formulated as an integer programming problem. This is given next.

Minimize
m∑
i=1

n∑
j=1

n∑
k=1

kpijxikj

Subject to:
m∑
i=1

n∑
k=1

xikj = 1 , for 1 ≤ j ≤ n,

n∑
j=1

xikj ≤ 1 , for 1 ≤ i ≤ m, k ∈ N

xikj ∈ {0, 1} , for 1 ≤ i ≤ m, 1 ≤ j ≤ n, k ∈ N

This formulation corresponds to the weighted matching problem in bipartite

graphs, where each of the n jobs has to be matched to one of nm positions, as each

machine may process a total of n jobs. Each matching of a job Jj, 1 ≤ j ≤ n, to a

position ik is associated with a cost kpij. The objective is to obtain a matching which

minimizes the total cost. This is a classical problem of combinatorial optimisation,

which is called the minimum weight matching problem, that is known to be solvable

in polynomial time.

An interesting problem arises when preemption is allowed. The preemptive version

of the total flow time problem on unrelated machines, denoted by Rm |pmtn|
∑
Cj,

is known to be strongly NP-hard due to Sitters (2005), as this problem has a polyno-

mial reduction from the 3-dimentional matching problem, which is known to be

strongly NP-hard due to Karp (1972). The complexity classification of this preemptive

problem is a considerable contrast to other preemptive scheduling models, as it is the

only known classical machine scheduling problem where the introduction of preemption

actually increases the complexity of the problem. Furthermore, Sitters (2008) shows

that the problem is also APX-hard, thus no PTAS may be obtained for this problem,

unless P = NP .

48

CHAPTER 3

Power of Preemption

In the previous chapter we presented a number of scheduling problems on parallel ma-

chines. As one may observe, a large number of problems benefit from the introduction

of preemption, as preemptive problems often benefit from reduced complexity, and

reduce the overall value of objective functions.

Consider an instance of a scheduling problem to minimize an objective function Φ

on m parallel machines. For the corresponding problem, the power of preemption is

defined as the maximum ratio Φ
(
S∗np
)
/Φ
(
S∗p
)
across all instances of the problem. The

power of preemption is denoted by ρm. The power of preemption determines what can

be gained regarding the maximum completion time if preemption is allowed.

In order to determine the exact value of ρm for a given problem, and to give that

concept some practical meaning,the following should be done:

(i) demonstrate that the inequality

Φ
(
S∗np
)

Φ
(
S∗p
) ≤ ρm (3.1)

holds for all instances of a given problem;

(ii) demonstrate that the value of the of ρm is tight by exhibiting instances for which
(3.1) holds as an equality; and

(iii) for problems which are NP-hard, develop a polynomial-time algorithm that finds
a heuristic non-preemptive schedule Snp, such that

Φ
(
S∗np
)

Φ
(
S∗p
) ≤ Φ

(
Snp
)

Φ
(
S∗p
) ≤ ρm.

49

CHAPTER 3. POWER OF PREEMPTION

3.1 Power of Preemption on Identical Machines

When machines are identical, consider the power of preemption for the problem of

minimizing the makespan, so that for some schedule S, Φ (S) = Cmax (S). Thus for

this problem the power of preemption is given by

Cmax
(
S∗np
)

Cmax
(
S∗p
) ≤ ρm.

As shown in Section 2.1, an optimal preemptive schedule S∗p is obtained via Mc-

Naughton’s wrap-around algorithm in linear time. Furthermore the value of the optimal

preemptive makespan is given by (2.7). For this problem, only instances where there

are no less jobs than machines are considered, as for the case n < m, only the problem

with n machines needs to be considered.

In Section 2.1.1, two classes of instances are identified, depending on where the

maximum is achieved on the right-hand side of (2.7); see Definition 2.1.

For the Class 2 instances, where the makespan of the preemptive schedule is given

by the average machine load T given in (2.5), i.e. Cmax
(
S∗p
)

= T , the upper bound on

the power of preemption is known to be

ρm ≤ 2− 2

m+ 1
, (3.2)

as proved by Braun and Schmidt (2003) and independently by Lee and Strusevich

(2005).

Braun and Schmidt (2003) show that a non-preemptive schedule which satisfies

(3.2) can be obtained in O (n log n) time by the application of the LPT list scheduling

algorithm described in Section 2.1, while the results by Lee and Strusevich (2005)

indicate that a schedule which satisfies the bound can be obtained in O (n) time.

Indeed, Lee and Strusevich (2005) describe a class of heuristic algorithms that find

a non-preemptive schedule Snp for Class 2 instances of the problem, such that (3.2)

holds. Specifically, a heuristic algorithm is said to belong to Class AP if it creates a

schedule with the following properties:

(i) jobs are split into m subsets N1, N2, . . . Nm, so that jobs in set Ni are scheduled on

machine Mi;

(ii) no machine is idle in the time interval [0, p (Ni)];

50

CHAPTER 3. POWER OF PREEMPTION

(iii) suppose that machine M1 terminates the schedule, and job Jk is the last job

assigned to that machine. Then the starting time of job Jk is smaller that

min {p (Ni) |2 ≤ i ≤ m};

(iv) for the terminating job Jk, the inequality pk ≤ min {p (Ni) |2 ≤ i ≤ m} holds.

Based on the above description, Lee and Strusevich (2005) prove that any schedule

obtained by an AP-class algorithm satisfies (3.2). The proof uses the fact that if the

total processing time of a subset of jobs Ni exceeds (3.2), then the terminating job Jk
can be transferred to a different machine, or can be swapped with a different subset of

jobs, resulting in a schedule with a smaller makespan which satisfies (3.2).

The tightness of (3.2) can be demonstrated by considering an instance with m+ 1

unit length jobs. In this case an optimal non-preemptive schedule is obtained by

scheduling two jobs on one of the machines, while the remaining machines receive one

job each, so that Cmax
(
S∗np
)

= 2. The average machine load for this instance is given

by

T =
m+ 1

m
, (3.3)

which satisfies the inequality p1 < T , hence the makespan of the preemptive schedule

is given by (3.3). Thus, it is apparent that for this instance the power of preemption

is given by

ρm ≤ 2
m+1
m

= 2
m

m+ 1

which satisfies (3.2).

Define g, 0 ≤ g ≤ m− 1, as the smallest integer such that

pg+1 ≤
p (N)−

∑g
j=1 pj

m− g . (3.4)

Notice that for the Class 2 instances g = 0 and for the Class 1 instances g ≥ 1.

For Class 1 of instances, where the makespan of the optimal preemptive schedule

is defined by the processing time of the longest job, so that Cmax
(
S∗p
)

= p1, Rustogi

and Strusevich (2013) show that

ρm ≤
(

2− 2

m− g + 1

)
. (3.5)

51

CHAPTER 3. POWER OF PREEMPTION

Rustogi and Strusevich (2013) further provide an algorithm which finds a non-

preemptive schedule which satisfies either of bounds (3.2) and (3.5), depending on the

input instance. This algorithm is described next.

Algorithm P-nonpreemptive [Rustogi and Strusevich (2013)]

INPUT: An instance of problem Pm | |Cmax

OUTPUT: A non-preemptive schedule S∗np, which satisfies either bound (3.2) or (3.5).

Step 1. Find the m largest jobs and sort them in LPT order.

Step 2. Determine index g, 0 ≤ g ≤ 1, as the smallest index which satisfies (3.4).

Step 3. Obtain a partial schedule by assigning each job Jk, 1 ≤ k ≤ g to machineMk.

Step 4. Complete the partial schedule by applying Algorithm LS (as described in

Section 2.1) to the remaining jobs and machines in the schedule.

This algorithm runs in O (nm) time, provided that the LPT sequence of jobs is

known.

In order to demonstrate the tightness of (3.5), Rustogi and Strusevich (2013) con-

sider an instance with m+ 1 jobs, where there are g ≥ 1 jobs with a larger processing

time of length m − g + 1, and n − g jobs with the processing time m − g. Thus,

the total processing time is given by p (N) = g (m− g + 1) + (m− g + 1) (m− g) =

m (m− g + 1), where p1 = (m− g + 1) . In this case, each of the g longer jobs is as-

signed to an individual machine, while the remaining (m− g) + 1 jobs are processed

on the remaining m − g machines, so that on some machine Ml, g + 1 ≤ l ≤ m,

two jobs will be processed, with the remaining machines processing exactly one job

each. The makespan of the optimal non-preemptive schedule for this instance is

given by Cmax
(
S∗np
)

= 2m − 2g, while the optimal preemptive schedule has length

Cmax
(
S∗p
)

= m− g + 1, thus ρm = (2m− 2g) / (m− g + 1), which satisfies (3.5).

3.2 Power of Preemption on Uniform Machines

In this section, we review the results on determining the power of preemption on

uniform parallel machines.

52

CHAPTER 3. POWER OF PREEMPTION

3.2.1 Makespan

We begin with presenting the latest results by Soper and Strusevich (2014b) for the

power of preemption for the general case of minimizing the makespan on m uniform

machines.

As described in Section 2.2.1, the makespan of an optimal preemptive schedule is

given by (2.16), which is obtained in O(n + m logm) time by an application of the

algorithm due to Gonzalez and Sahni (1978).

Recall that the instances of the problem are classified in accordance with Defini-

tion 2.2. Notice that an instance may belong to several classes simultaneously, if there

is a tie for the maximum value of Tu.

Consider a set of Class m instances, for which the makespan of the preemptive

schedule is given by Tm, as defined in (2.18). Woeginger (2000) shows that for instances

of this type, Algorithm QLPT finds a non-preemptive schedule Snp, so that the bound

ρm ≤ 2− 1

m
, (3.6)

holds and is tight.

Initially, consider the following definitions due to Soper and Strusevich (2014b).

Definition 3.1 (Soper and Strusevich (2014b)). For an instance I = (Ln,Mm), sup-

pose that in a non-preemptive schedule Snp (I) the last completed operation is that of

processing job Jh, 1 ≤ h ≤ n, on machineMk, 1 ≤ k ≤ m. Job Jh is called the terminal

job, and machine Mk the critical machine.

Definition 3.2 (Soper and Strusevich (2014b)). For the problem of minimizing the

makespan on m uniform machines, an instance I is called canonical if for each machine

Mk there exists an optimal non-preemptive schedule such that Mk is the only critical

machine.

For n ≥ m, I represents the set of instances I = (Ln,Mm), such that

• All jobs have equal processing times, i.e. pj = p, 1 ≤ j ≤ n;

• The speeds of the machines are positive integers that for a positive W satisfy

(2.15), so that

s1 ≥ s2 ≥ . . . ≥ sm; 1 ≤ Wsi ≤ m;

m∑
i=1

si =
n+m− 1

W
.

53

CHAPTER 3. POWER OF PREEMPTION

In the following theorem, Soper and Strusevich (2014b) provide the necessary

and suffi cient conditions for tight instances of Class m.

Theorem 3.1 (Soper and Strusevich (2014b)). For an instance I = (Ln,Mm) of Class

m to be tight, it is necessary and suffi cient that I is an instance of set I with n = m.

Non-preemptive schedules for Classm instances, for which (3.6) holds, are obtained

via a modified version of the LPT list scheduling algorithm. This is described next.

Algorithm LPTm (Soper and Strusevich (2014b))

INPUT: A Class m instance I = (Ln,Mm) for problem Qm | |Cmax.

OUTPUT: A non-preemptive schedule SLPT (I) .

Step 1. If required, renumber the jobs so that the m longest jobs are numbered in

accordance with (2.1), while the other jobs are numbered arbitrarily.

Step 2. At any time that a machine becomes available, take the first job in the current
list Ln and assign it to the machine on which it will complete as early as possible.
Remove the assigned job from the list.

Step 3. Repeat Step 2 until all jobs are assigned.

Compared to the full version of the LPT algorithm, the modified Algorithm LPTm

requires only O (m logm+ nm) time, as finding and sorting them longest jobs requires

O (m logm) time.

Although bound (3.6) holds for all instances, irrespective of their class, the upper

bound can be reduced for instances that are known to belong to Class r, 1 ≤ r ≤ m−1.

Soper and Strusevich (2014b) prove that the bound

ρm ≤ max

{
2− 1

r
, 2− 1

m− r

}
, (3.7)

for the power of preemption, holds for any arbitrary instance I of Class r, 1 ≤ r ≤ m−1.

If r is not unique, the value closest to m/2 is selected.

The corresponding non-preemtive schedule can be found by an algorithm presented

below. For r, 1 ≤ r ≤ m − 1, lists L′r and M
′
r are obtained by the removal of the

r longest jobs and r fastest machines from lists Ln and Mm respectively, so that

L′r := {pr+1, . . . , pn} and M
′
r := {Mr+1, . . . ,Mm}. A non-preemptive schedule for

a Class r, 1 ≤ r ≤ m − 1, instance I = (Ln,Mm) for which bound (3.7) holds, is

54

CHAPTER 3. POWER OF PREEMPTION

obtained via the following algorithm, in which Algorithm LPTm is applied to each of

the instances Ir = (Lr,Mr), and I
′
r =

(
L′r,M

′
r

)
.

Algorithm LPTr (Soper and Strusevich (2014b))

INPUT: A Class m instance I = (Ln,Mm) for problem Qm | |Cmax.

OUTPUT: A non-preemptive schedule SLPT (r) (I) .

Step 1. Split Class r instance I = (Ln,Mm) into two instances Ir = (Lr,Mr), and

I ′r = (L′r,M′
r).

Step 2. Run algorithm LPTm for Ir, and I ′r, to find schedules SLPT (Ir) and SLPT (I ′r).

Step 3. Output Schedule SLPT (r) (I), obtained by combining schedules SLPT (Ir) and

SLPT (I ′r).

Algorithm LPTr finds the required schedule in O (m logm+ nm) time.

Consider an instance I for which bound (3.7) is tight. It can be simply observed that

there are two cases for which I is a tight instance, depending on where the maximum

is achieved in (3.7). For the case

ρm = 2− 1

r
, (3.8)

the instance which delivers this bound is given in the following lemma.

Lemma 3.1 (Soper and Strusevich (2014b)). For n ≥ m, and r such that 1 ≤ r ≤ m−1

and 2r ≥ m, there exists an instance I = (Ln,Mm) of Class r, such that (3.8) holds.

Proof: For a given m, take an arbitrary r, such that 1 ≤ r ≤ m − 1 and 2r ≥ m.

Consider an instance I of Class r with m machines, and n = m jobs. The r − 1 faster

machines each have speed 2 so that si = 2, 1 ≤ i ≤ r−1, while the remaining machines

have unit speeds, i.e. si = 1, r ≤ i ≤ m. Furthermore the r longest jobs each have

processing time pj = 1, 1 ≤ j ≤ r, while the remaining jobs have processing time

pj = r/ (2r − 1) < 1, r + 1 ≤ j ≤ m. This yields

Ti =
1

2
, 1 ≤ i ≤ r − 1;

Tr =
r

2r − 1
>

1

2
;

55

CHAPTER 3. POWER OF PREEMPTION

and

Ti =
r

2r − 1
, r + 1 ≤ i ≤ m.

Here, Tr = Tr+1 = . . . = Tm, and r is the index closest to m/2 due to r ≥ m/2.

Thus, instance I belongs to Class r and the makespan of the preemptive schedule is

given by

Cmax
(
S∗p (I)

)
=

r

2r − 1
.

For makespan of an optimal non-preemptive schedule, it holds that

Cmax
(
S∗np (I)

)
= 1.

Thus,
Cmax

(
S∗np (I)

)
Cmax

(
S∗p (I)

) = 2− 1

m− r ,

which satisfies (3.8).

The next lemma demonstrates a tight instance for the case

ρm = 2− 1

m− r . (3.9)

Lemma 3.2 (Soper and Strusevich (2014b)). For n ≥ m, and r such that 1 ≤ r ≤
m− 1 and 2r < m, there exists an instance I of Class r such that (3.9) holds.

Proof: For a given m, take an arbitrary r, such that 1 ≤ r ≤ m − 1 and 2r < m.

Consider an instance I of Class r with m = n jobs. In this instance, the m− 1 fastest

machines have speed equal to 2, so that si = 2, 1 ≤ i ≤ m− 1, while the m-th machine

has speed sm = 1. For a value V such that

V =
m− r

2 (m− r)− 1
,

the processing times of the r longest jobs is given by pj = 2Q, 1 ≤ j ≤ r, with the

remaining jobs having unit length time, so that pj = 1, r + 1 ≤ j ≤ m. This yields

Ti = V, 1 ≤ i ≤ r;

Ti = 2rV+(i−r)
2r+2(i−r) , r + 1 ≤ i ≤ m;

Tm = V.

In this case, T1 = T2 = . . . = Tr, where r is the index closest tom/2 due to r < m/2.

56

CHAPTER 3. POWER OF PREEMPTION

Thus I is a Class r instance and

Cmax
(
S∗p (I)

)
= V.

An optimal non-preemptive schedule for instances of this type is obtained by as-

signing exactly one of the longer jobs to each of the m − 1 faster machines, and the

m-th job is assigned to the slower machineMm. The makespan of this schedule is given

by

Cmax
(
S∗np (I)

)
= 1.

Thus,
Cmax

(
S∗np (I)

)
Cmax

(
S∗p (I)

) = 2− 1

m− r ,

which satisfies (3.9).

3.2.2 Makespan for a Fixed Number of Uniform Machines

For problems on 2 and 3 uniform machines, Soper and Strusevich (2014a) examine the

behaviour of the power of preemption as the speed of the fastest machine increases,

this parametric analysis is performed with respect to the speed of the fastest machine,

for cases where machine speeds can take either of two values.

For problem Q2 | |Cmax, Soper and Strusevich (2014a) distinguish between two
classes of instances for this problem in accordance with Definition 2.2, depending on

the expression which gives the value of the makespan for this problem. Those are:

• Class 1, for which Cmax(S∗p) = p1/s;

• Class 2, for which Cmax(S∗p) = T2, where

T2 =
p (N)

s+ 1
(3.10)

For a Class 1 instance, consider a schedule Snp defined by the sets N1 = {J1}
and N2 = N\ {J1}. Due to p1

s
> p(N) − p1, it is simple to show that Cmax(Snp) =

Cmax(S
∗
p) = p1/s, so that allowing preemption would not reduce the makespan. Due to

this reason, only Class 2 instances of the problem are considered. Soper and Strusevich

(2014a) provide an algorithm which finds a non-preemptive schedule Snp for which the

57

CHAPTER 3. POWER OF PREEMPTION

upper bound

ρ2 ≤
Cmax(Snp)

Cmax(S∗p)
≤ Φ(s), (3.11)

holds, where

Φ(s) =

2(s+1)
3s

, if 1 ≤ s ≤ 4
3

s+1
2
, if 4

3
≤ s ≤ 2

s+1
s

if s ≥ 2

. (3.12)

Furthermore, a similar approach is used for the problem with 3 uniform machines.

Given a problem instance of Q3 | |Cmax, where there are two faster machines, so that
s1 = s2 = s, s ≥ 1, and s3 = 1, Soper and Strusevich (2014a) show that for Class 1

instances, where Cmax(S∗p) = p1/s, the power of preemption is bounded by (3.12). All

instances of Class 2 will also belong to Class 1, since p1+p2
2s
≤ p1

s
. For Class 3, the power

of preemption for the three-machine problem with two fast machines, where

Cmax
(
S∗p
)

=
p (N)

2s+ 1
,

the power preemption is shown to be bounded by Φ̃ (s), such that

Φ̃(s) =

2s+1
2s
, if 1 ≤ s ≤ 3

2
2s+1
3
, if 3

2
≤ s ≤ 2

2(2s+1)
3s

if s ≥ 2.

. (3.13)

For the version of the three uniform machine problem with two slower machines,

such that s1 = s, s ≥ 1, and s2 = s3 = 1, Soper and Strusevich (2014a) show that for

Class 1 instances, where Cmax
(
S∗p
)

= p1/s, the power of preemption ρ3, is bounded by

ρ3 ≤
{

4
3
, if 1 ≤ s ≤ 2

3s+2
3s
, if s ≥ 2,

.

Moreover, for Class 2 instances of the problem with two slower machines, where

Cmax
(
S∗p
)

=
(p1 + p2)

(s+ 1)
,

it is proven that the power of preemption is bounded by

ρ3 ≤
Cmax(Snp)

Cmax(S∗p)
≤
{

s+1
2
, if 1 ≤ s ≤ 2

s+1
s
, if s ≥ 2

.

58

CHAPTER 3. POWER OF PREEMPTION

Finally, for Class 3 instances, where the makespan of the preemptive schedule is

given by the average machine load, so that

Cmax
(
S∗np
)

=
p (N)

s+ 2
,

it is proven that for the case where p2 ≥ 1
3
p(N), the power of preemption is bounded

by

ρ3 ≤

s+1
2
, if 1 ≤ s ≤ 2

s+1
s
, if 2 ≤ s ≤ 1

2

(√
13 + 1

)
= 2. 302 8

s+2
3

if 1
2

(√
13 + 1

)
≤ s ≤ 3.

s+2
s

if s ≥ 3

while for the case where p2 ≤ 1
3
p(N), the bound is given by

ρ3 ≤

s+2
2s
, if 1 ≤ s ≤ 5

4
2(s+2)
5

, if 5
4
≤ s ≤ 3

2
s+2
s+1

if 3
2
≤ s ≤ 2

s+2
3

if 2 ≤ s ≤ 3
s+2
s

if s ≥ 3

.

3.2.3 Minimizing Sum of Completion Times

Consider the problem of minimizing the sum of completion times. Given an optimal

non-preemptive schedule S∗np and an optimal preemptive schedule S
∗
np for this problem,

the power of preemption is defined as the supremum of the ratio∑
Cj
(
S∗np
)∑

Cj
(
S∗p
) ≤ ρm

across all instances. For the general case on m unrelated machines, Epstein et

al. (2016) show that the power of preemption for this problem is bounded by R '
1.39795 . . ., so that

ρm ≤ R ' 1.39795 (3.14)

In order to obtain this bound, Epstein et al. (2016) consider the following: As

the value of the power of preemption is defined as the supremum of an infinite set of

values, a tight instance may not necessarily exist. In such cases, there is a sequence of

instances whose sequence of cost ratios approaches ρm. A sequence of this type is called

a tight sequence. Let I be an instance of a tight sequence such that each instance in

59

CHAPTER 3. POWER OF PREEMPTION

the sequence is a good input with equal numbers of unit-length jobs and machines.

Definition 3.3 (Epstein et al. (2016)). An instance I with n unit-length jobs and m
machines is called a good input if it satisfies the following conditions:

(i) n ≥ m;

(ii) machine M1 has speed s, 1 < s ≤ n, while the speed of each of the remaining

machines M2, . . . ,Mm is 1;

(iii) in the optimal non-preemptive schedule S∗np (I) found by Algorithm Q-
NonPreempt in Section 2.2.2, at least one of the unit speed machines remains
idle.

Epstein et al. (2016) prove that any instance I can be converted into a good input,

without the cost ratio being decreased.

An optimal preemptive schedule S∗p (I) can be found in polynomial time by applying

the preemptive algorithm described in Section 2.2.2 to instance I, for which the optimal

value of the total flow time is

∑
Cj
(
S∗p
)

= s

(
s− 1

s

)n−1
+ n+ 1− s. (3.15)

An optimal non-preemptive schedule S∗np (I) is also obtained in polynomial time, in

this case by applying the non-preemptive algorithm described in Section 2.2.2. Epstein

et al. (2016) show that the resulting optimal value of the objective function is given by

∑
Cj
(
S∗np
)
≤ n− s

2
+

1

2
, (3.16)

where in the case in which machines have integer speeds, (3.16) holds as an equality.

With respect to (3.15) and (3.16), the following expression the upper bound of the

power of preemption is obtained

ρm ≤ sup
1≤s≤n

n− s
2

+ 1
2(

s−1
s

)n+1
+ n+ 1− s

. (3.17)

The maximum in the right hand side of (3.17) is achieved by a tight sequence where

the number of unit-sized jobs, n, goes to infinity. In a tight sequence, a good input

instance is defined by a pair (n, s), where n is the number of jobs and machines, while

s ≤ n is the speed of the faster machine. Consider all pairs (n, s) along a tight sequence.

60

CHAPTER 3. POWER OF PREEMPTION

Since 1 ≤ s ≤ n, it follows that the sequence of values s/n is bounded. In this case,

there is a converging subsequence, whose limit is denoted by µ. The instances related

to the ratios s/n of the converging subsequence, also form a tight sequence where the

number of jobs goes to infinity. Thus

ρm ≤ sup
0≤µ≤1

lim
n− µn

2
+ 1

2

(µn)
(
µn−1
µn

)n+1
+ n+ 1− µn

= sup
0≤µ≤1

1− µ
2

µe−
1
µ − µ+ 1

.

The numerical value of function R (µ), where

R (µ) =
1− µ

2

µe−
1
µ − µ+ 1

,

reaches its maximum for µ0 ' 0.7959 . . ., which gives an upper bound R (µ0) on the

power of preemption. The value of R (µ0) is approximately equal to 1.39795

To demonstrate the tightness of (3.14), consider a tight sequence such that instance

Il is associated with a pair of integers (nl, sl). Instance Il is a good input that contains

nl unit-sized jobs and nl machines, such that the speed of the faster machine is sl,

1 ≤ sl ≤ n, while the remaining machines have speed 1. Furthermore

lim
l→∞

sl = +∞; lim
l→∞

nl = +∞; lim
l−→∞

sl
nl

= µ0.

Although bound (3.14) is a global upper bound for the power of preemption for

problem Qm | |
∑
Cj, Epstein et al. (2016) show that the value of the upper bound can

be reduced for a fixed number of machines. Specifically, for the two-uniform machine

problem, Q2 | |
∑
Cj, they prove that bound

ρ2 ≤
6

5
, (3.18)

holds and is tight. Tightness of this bound is demonstrated by considering an

instance with two unit-size jobs and s = 2. In this case it holds that C1
(
S∗np
)

=

C1
(
S∗p
)

= 1/2, C2
(
S∗np
)

= 1 and C2
(
S∗p
)

= 3/4, so that
∑
Cj
(
S∗np
)

= 3/2 and∑
Cj
(
S∗p
)

= 5/4, leading to the cost ratio of
∑
Cj
(
S∗np
)
/
∑
Cj
(
S∗p
)

= 6/5.

61

CHAPTER 3. POWER OF PREEMPTION

3.3 Power of Preemption on Unrelated Machines

3.3.1 Minimizing Makespan

For the problem of minimizing the makespan on unrelated machines described in Sec-

tion 2.3.2, we showed that an optimal preemptive schedule S∗np is found in polynomial

time by the two-stage procedure due to Lawler and Labetoulle (1987), while the prob-

lem of finding a non-preemptive schedule Sp is NP-hard, and the best approximation

results are due to the rounding procedure by Shmoys and Tardos (1993). For this

problem Correa, Skutella and Verschae (2012) give the power of preemption as

ρm =
Cmax

(
S∗np
)

Cmax
(
S∗p
) ≤ 4. (3.19)

They further show that the above bound on the power of preemption holds by

describing a procedure for constructing problem instances, for which the above bound

holds as an equality. This procedure is described next. Given some instance I of the

makespan problem on unrelated machines, the linear programming formulation (2.20)

results in a set of values tij, which as discussed in Section 2.3.2 define the processing

requirement of every job Jj on machine Mi. The LP also results in a value C which

gives the optimal value of the makespan of a preemptive schedule. Based on this linear

programming formulation by Lawler and Labetoulle, Lin and Vitter (1992) show that

the rounding technique of Shmoys and Tardos (1993) for the assignment problem can

be applied to this set of results, in order to obtain a non-preemptive schedule Snp with

makespan at most 4C. This procedure is described next.

Consider an optimal solution xij, C to (2.20), where xij defines the portion of job

Jj assigned to machine Mi, so that xij = tij/pij, and C the makespan of an optimal

preemptive schedule. For some fixed value β > 1, a modified solution x′ij, βC is then

defined, so that

x′ij =

{
x′ij = 0 for pij > βC

x′ij =
xij
Xj

for pij ≤ βC

}
,

where Xj denotes the total portion of Jj which is assigned to machines, for which the

processing time of Jj is at most βC. Consider a set of r machinesMr(j), so that the

processing time of a job Jj is at most βC for any machine Mi(u) ∈ Mr(j), 1 ≤ u ≤ r.

Let xi(u)j denote the portion of Jj assigned to machineMi(u) ∈Mr(j), thus Xj is given

62

CHAPTER 3. POWER OF PREEMPTION

by

Xj =
r∑

u=1

xi(u)j, 1 ≤ j ≤ n, 1 ≤ i ≤ m.

Rounding the modified solution set x′ij with the procedure by Shmoys and Tardos

(1993), yields a set of 0-1 integer values x̂ij ∈ {0, 1}, which are a feasible solution to
(2.20), and thus a feasible solution to Rm | |Cmax, where

n∑
j=1

x̂ijpij ≤
n∑
j=1

x′ijpij + max
{
pij| x′ij > 0

}
≤ β2

β − 1
C.

Observe that the minimum for β2/ (β − 1)C is achieved for β = 2, thus the makespan

of the rounded solution is at most 4C.

In order to demonstrate the tightness of this bound, Correa, Skutella and Verschae

(2012) further describe a procedure of constructing an instance I (β, ε) , 2 ≤ β < 4 and

ε > 0 such that 1/ε is a positive integer, for which bound (3.19) is tight. For an instance

I (β, ε) the makespan of the preemptive schedule is at most (1 + ε)C, and that of a

non-preemptive schedule is at least βC. This procedure, new instances are produced

iteratively, until the desired instance is found. In every iteration the makespan of the

non-preemptive schedule is increased, while the makespan of the preemptive schedule

is kept equal to (1 + ε)C.

Let Iζ , ζ ≥ 0, be an instance obtained at the ζ-th iteration of the procedure by

Correa, Skutella and Verschae (2012). Each instance Iζ = (Nζ ,Mζ) is defined by a

set of nζ jobs Nζ :=
{
Jj(ζ,1), Jj(ζ,2), . . . , Jj(ζ,nζ)

}
and a set of mζ machines Mζ :={

Mi(ζ,1),Mi(ζ,2), . . . ,Mi(ζ,3)

}
.

Algorithm Generate Instance (Correa, Skutella and Verschae (2012))

Step 1. Construct I0 and f0, and let n = 0.

Step 2. Construct and instance Yn+1 consisting of 1/ε copies of instance In, that are

denoted as I ln, for l = 1, 2, . . . , 1/ε, where the copy of machine Mi(n+1) belonging

to I ln is denoted by Mi(n+1;l).

Step 3. Create 1/ε copies of Yn+1, Y k
n+1, k = 1, 2, . . . , 1/ε. Denote the l-th copy of

instance In belonging to instance Y k
n+1 as I

lk
n , and the copy of machine Mi(n+1)

that belongs to instance I lkn as Mi(n+1;l;k).

Step 4. Create 1/ε new jobs, Jj(n+1;k), k = 1, 2, . . . , 1/ε, and let pi(n+1;l;k)j(n+1;k) =

C (β − 1/fn) for all k, l = 1, 2, . . . , 1/ε, and +∞ for all other machines.

63

CHAPTER 3. POWER OF PREEMPTION

The assignment variables for the new jobs are defined as

xi(n+1;l;k)j(n+1;k) =
ε

β − 1/fn
, where k, l = 1, 2, . . . , 1/ε.

Thus the unassigned fraction of each job j (n+ 1; k) equals

fn+1 = 1−
1/ε∑
l=1

xi(n+1;l;k)j(n+1;k)

=
(β − 1) fn − 1

βfn − 1
.

Step 5. Create a new machine Mi(n+2), and define pi(n+2)j(n+1;k) = εC/fn+1 for all

k = 1, 2, . . . , 1/ε, and +∞ for all other machines.

Step 6. Call the instance constructed so far In+1, and increment n.

Step 7. If fn > 1/ (β − 1), repeat Step 2. Otherwise go to Step 8.

Step 8. Make 1/ε copies of In, I ln for l = 1, 2, . . . , 1/ε, and call Mi(n+1;l) the copy of

machine Mi(n+1) of instance I ln.

Step 9. Create a new job j (n+ 1), and define pi(n+1;l)j(n+1) := C (β − 1/fn) and

xi(n+1;l)j(n+1) = ε.

Step 10. Return instance In+1.

3.3.2 Minimizing Sum of Completion Times

Consider the problem of minimizing the total completion time on unrelated machines.

Let
∑
Cj
(
S∗p
)
denote the value of the objective function of an optimal preemptive

schedule, and
∑
Cj
(
S∗np
)
the value of the optimal non-preemptive schedule. As dis-

cussed in Section 2.3.3, this problem has the characteristic property where the non-

preemptive version, i.e. problem Rm | |
∑
Cj is solvable in polynomial time, while the

preemptive version is both NP-hard and APX-hard. For the weighted version of this

problem denoted by Rm | |
∑
wjCj,

Sitters (2008) presents an algorithm that produces a non-preemptive schedule for

which the sum of weighted completion times is no more than 1.81 times the value of

the optimal preemptive schedule, thus the bound for power of preemption ρm is given

by

ρm =

∑
wjCj

(
S∗np
)∑

wjCj
(
S∗p
) < 1.81.

64

CHAPTER 3. POWER OF PREEMPTION

For a given preemptive schedule S, the density function of job Jj defines the speed

at which the job is being processed at time t, and is denoted by fj (t). The mean busy

time, Bj, is defined as the average time at which job Jj is being processed, so that

Bj =

∫ T

0

fj (t) tdt,

where T is any upper bound on the completion time of Jj. Furthermore, the process

time Pj of Jj is defined as the total amount of time that the job is being processed on

all machines. Sitters (2008) proves that for any instance I of R |pmtn|
∑
wjCj, the

inequality

min

(
n∑
j=1

wjPj + wjBj

)
< 1.81 min

(
n∑
j=1

wjCj

)
. (3.20)

holds. Based on this result, Sitters (2008) initially provides a convex quadratic

program for which the optimal value is a lower bound on the left hand side of (3.20),

and shows that any solution Z of the program can be rounded with the application

of randomized rounding, to obtain a feasible non-preemptive schedule for which the

expected sum of weighted completion times is at most Z.

65

CHAPTER 4

Power of Limited Preemption

For scheduling problems with a limited number of preemptions, we denote by θ the

maximum number of preemptions allowed. Moreover, given a θ-preemptive schedule

is defined as a schedule with at most θ preemptions, and is denoted by S(θ). Given a

scheduling problem, the power of limited preemption is defined as the maximum ratio

Φ
(
S∗(θ)

)
/Φ
(
S∗p
)
across all instances of the problem. For a scheduling problem with m

machines, we denote the power of limited preemption by ρ(θ)m .

Φ
(
S∗(θ)

)
Φ
(
S∗p
) ≤ ρ(θ)m (4.1)

4.1 Identical Machines

In this section, we review the results on limited preemptions on identical parallel ma-

chines.

4.1.1 Minimizing Makespan

Consider the problem of minimizing the makespan on identical parallel machines for

the case where only one preemption is allowed. It is easy to see that the two-machine

version of this problem, denoted by P2 |#pmtn ≤ 1|Cmax, can be solved in polynomial
time. This is due to the fact that, as shown by McNaughton (1959), an optimal

preemptive schedule on identical machines requires at most m− 1 preemptions, thus a

single-preemptive schedule for problem for the case m = 2 is bound to be an optimal

preemptive schedule.

66

CHAPTER 4. POWER OF LIMITED PREEMPTION

For three identical machines, the single-preemptive makespan problem is NP-hard.

We prove this statement in the following lemma.

Lemma 4.1. Problem P3 |#pmnt ≤ 1|Cmax is NP-hard in the ordinary sense.

Proof: We provide reduction from the following NP-complete problem.

Subset-Sum: Given r positive integers ej and an integer E such that ej ≤ E and∑r
j=1 ej = 3E, does there exist a subset R′ of the index set R = {1, 2, . . . , r} such that

e(R′) = E?

This problem is version of the subset-sum problem by Garey and Johnson (1979).

Given an instance of Subset-Sum, define the following instance of a decision ver-

sion of problem P3 |#pmnt = 1|Cmax with the set N = {1, 2, . . . , n} :

n = r, pj = ej, j ∈ N.

It is required to verify whether there exists a schedule S(1) with a single preemption

with Cmax
(
S(1)
)
≤ E.

Suppose that Subset-Sum has a solution and R′ is the required subset. Then

assign the jobs j ∈ R′ to machine M1, and schedule the remaining jobs on M2 and M3

by McNaughton’s algorithm. In the resulting schedule there is at most one preemption

(one job between M2 and M3), and each machine completes exactly at time E.

Suppose now that schedule S(1) exists. Since p (N) = 3E, it follows that

Cmax
(
S(1)
)

= E, and each machine is permanently busy processing its job in the

time interval [0, E]. Since there is only one preemption in S(1), there is a machine on

which the jobs are processed without preemption. Without loss of generality assume

that such a machine is machine M3. Then denoting the set of jobs processed on M3 in

schedule S(1) by R′, we obtain a solution to Subset-Sum.

This result can be extended to an arbitrary number of machines. Braun

and Schmidt (2003) claim that for an arbitrary number of machines, problem

Pm |#pmnt ≤ m− 2|Cmax is NP-hard in the strong sense.

Now, we pass to the problem of minimizing the makespan on m identical machines

with a limited number of preemptions.

An optimal preemptive schedule for this problem is obtained in O (n) time with

application of McNaughton’s wrap-around algorithm, requiring at most m−1 preemp-

tions. Braun and Schmidt (2003) prove that the bound

ρ(θ)m ≤ 2
m

m+ θ + 1
(4.2)

67

CHAPTER 4. POWER OF LIMITED PREEMPTION

on the power of limited preemption holds and is tight.

In order to demonstrate the tightness of the above bound, consider an instance I

consisting of m identical machines and n identical jobs, so that

n = m+ θ + 1, (4.3)

and

p1 = p2 = . . . = pn = p. (4.4)

From (4.3) and (4.4), the total processing time of the instance I is given by

p (N) = p · (m+ θ + 1) ,

i.e., for instance I the average machine load given by (2.5) exceeds the processing time

of any individual job in N . Thus, it follows from Definition 2.1 that I belongs to

Class 1 of instances, and

Cmax
(
S∗p (I)

)
=
p (m+ θ + 1)

m
.

Braun and Schmidt (2003) prove that in an optimal θ-preemptive schedule for

instance I, the terminating job Jk is not preempted. Furthermore, the machine which

processes job Jk, may or may not allow preemption. In either case, one of the machines

in the schedule is bound to process two jobs, thus for this instance the optimal θ-

preemptive schedule S∗(θ) (I), has makespan

Cmax
(
S∗(θ) (I)

)
= 2p.

From the above, it is determined that the power of limited preemption for instance I

is given by (4.2).

An algorithm for obtaining θ-preemptive schedules for which (4.4) holds is described

by Jiang et al. (2014). Their algorithm uses a hybrid approach which utilizes List

Scheduling and McNaughton’s wrap around rule. For some instance I, the algorithm

splits at most θ jobs into two fraction. Each fraction is then scheduled on one of the θ

first machines which allow preemption, while the remaining jobs are scheduled following

the list scheduling algorithm on the remaining m − θ machines on which preemption
is not permitted.

Algorithm JH-Pm-θ (Jiang et al. (2014))

68

CHAPTER 4. POWER OF LIMITED PREEMPTION

INPUT: An instance I for problem Pm |#pmtn ≤ θ|Cmax

OUTPUT: A θ-preemptive schedule S(θ) which satisfies (4.2)

Step 1. Compute Cmax (S∗) according to (2.7).

Step 2. Determine job Jδ such that

δ∑
j=1

pj ≥ θRθCmax (S∗) ,

and
δ−1∑
j=1

pj < θRθCmax (S∗) ,

where

Rθ =
2m

m+ θ + 1
.

Then split Jδ into J ′δ and J
′′
δ , with processing times p

′
δ and p

′′
δ respectively, so

that

p′k = θRθCmax (S∗)−
k∑
j=1

pj.

Step 3. Schedule jobs J1, J2, . . . , Jδ−1, J ′k, preemptively on the first θ machines using
McNaughton’s wrap around.

Step 4. Schedule jobs J ′′k , Jk+1, . . . , Jn, by initially assigning each of the m− θ largest
jobs on one of the last m − θ machines. Assign the remaining jobs non-

preemptively on the m− θ machines using List Scheduling.

Step 5. Schedule job J ′′δ so that it is the first job to be processed on the machine on
which it has been assigned.

4.2 Uniform Machines

In this section we present our results on a power of a single preemption on uniform

machines for the problem of minimizing the makespan.

4.2.1 Complexity

For two uniform machines, we consider the problem of finding a schedule with a sin-

gle preemption that minimizes the makespan. Specifically, we show that problem

69

CHAPTER 4. POWER OF LIMITED PREEMPTION

Q2 |#pmnt ≤ 1|Cmax can be solved in polynomial time. In this problem there are two

uniform machines M1 and M2 , with speeds s1 and s2 respectively, such that s1 = s,

s ≥ 1, and s2 = 1. Furthermore, jobs are numbered in LPT order according to (2.1).

As discussed in Section 2.2.1, if there no restriction on the number of preemptions,

problem Q2 |pmnt|Cmax is solvable in O (n) time, and the makespan of the optimal

preemptive schedule is given by (2.16).

Consider the following algorithm for obtaining a schedule S∗(1) with a single pre-

emption for the problem on two uniform machines.

Algorithm Q2(1)

INPUT: An instance I for problem Q2 |#pmtn ≤ 1|Cmax

OUTPUT: An optimal1-preemptive schedule S(1) (I)

Step 1. Compute T2 according to (3.10). If

p1 < sT2,

go to Step 2. Otherwise, assign J1 to M1 and the remaining n − 1 jobs to M2

and go to Step 5.

Step 2. Scanning the jobs in the order of their numbering, find job k such that

k−1∑
j=1

pj < sT2,
k∑
j=1

pj ≥ sT2.

Step 3. Compute

xk = sT2 −
k−1∑
j=1

pj, yk = pk − xk.

If

yk >
1

s

k−1∑
j=1

pj,

go to Step 4; otherwise output the following schedule S(1): on M1 the jobs

1, . . . , k − 1 are processed in any order, followed by a part of job k for xk/s

time units; on M2 a part of job k for yk time units, followed by an arbitrary

sequence of jobs k + 1, . . . , n, and go to Step 5.

Step 4. Compute

y′k =
1

s

k−1∑
j=1

pj, x
′
k = pk − y′k.

70

CHAPTER 4. POWER OF LIMITED PREEMPTION

Output the following schedule S(1): on M1 the jobs 1, . . . , k − 1 are processed in

any order, followed by a part of job k for x′k/s time units; on M2 a part of job k

for y′k time units, followed by an arbitrary sequence of jobs k + 1, . . . , n.

Step 5. Stop.

It is simple to see that Algorithm Q2(1) requires O (n) time. In order to show that

this problem is polynomially solvable, it is suffi cient to prove that a solution produced

by the algorithm is optimal for all problem instances. This is proven in the following

theorem.

Theorem 4.1. Schedule S(1) found by Algorithm Q2Pr1 is optimal for problem

Q2 |#pmnt ≤ 1|Cmax.

Proof: If p1 ≥ sT2 then
p1
s
≥ p (N)

s+ 1
,

so that

p1 (s+ 1) ≥ sp (N) ,

i.e.,
p1
s
≥ p (N\ {J1})

For schedule S(1) found in Step 1, machine M1 terminates at time p1/s, while

machine M2 terminates at time p (N\ {J1}). Thus,

Cmax
(
S(1)
)

= p1/s,

which implies that schedule S(1) is a non-preemptive, optimal schedule for problem

Q2 |pmnt|Cmax, and therefore for problem Q2 |#pmnt ≤ 1|Cmax.

We come to Step 2 if

p1 < sT2.

Since
1

s

n∑
j=1

pj >
1

s+ 1

n∑
j=1

pj = T2,

it follows that job Jk exists.

For schedule S(1) found in Step 3, both machines terminate at time T2. This schedule

71

CHAPTER 4. POWER OF LIMITED PREEMPTION

is feasible since the part of the preempted job Jk completes on M2 at time

yk ≤
1

s

k−1∑
j=1

pj,

while this job starts on M1 at time 1
s

∑k−1
j=1 pj, which produces no clash. Since

Cmax
(
S(1)
)

= T2, schedule S(1) is a non-preemptive optimal schedule for problem

Q2 |pmnt|Cmax, and therefore for problem Q2 |#pmnt ≤ 1|Cmax.

We come to Step 4 if

yk >
1

s

k−1∑
j=1

pj,

which implies that

yk +
xk
s
> T2.

Since

pk = yk + xk > yk +
xk
s
,

we deduce from the LPT numbering of jobs that

p1 ≥ · · · ≥ pk−1 ≥ pk > T2.

Let S ′(1) denote the best schedule for problem Q2 |#pmnt ≤ 1|Cmax, in which the
jobs of set Nk = {J1, · · · , Jk} are processed without preemption. If all these jobs are
assigned to machine M1 then Cmax

(
S ′(1)

)
= 1

s
p (Nk) > T2. If at least one of these

jobs is assigned to be processed on machine M2 then that job must be the shortest job

Jk, so that Cmax
(
S ′(1)

)
= pk > T2. However, none of these schedules is optimal for

problemQ2 |#pmnt ≤ 1|Cmax, since a better schedule can be obtained by preemptively
processing one of the jobs of set Nk.

Take a job J` ∈ Nk. In order to produce a schedule that is better than S ′(1),

we introduce a schedule S(`) which is the best schedule in which job J` is processed

preemptively. In schedule S(`) the jobs of set Nk\ {J`} are processed on M1without

preemption, and job J` is preempted to be processed without clashes onM2 for y′` time

units and on M1 for x′`/s time units, where

y′` =
1

s
p (Nk\ {J`}) , x′` = p` − y′`.

72

CHAPTER 4. POWER OF LIMITED PREEMPTION

In schedule S(`)machine M1 terminates at time

Cmax
(
S(`)
)

= y′` + x′`/s = y′` + (p` − y′`) /s

=
p`
s

+ y′`

(
1− 1

s

)
=
p`
s

+
p (Nk)− p`

s

(
1− 1

s

)
=

p` + (s− 1) p (Nk)

s2

The right-hand side of the above expression increases in p`, thus it takes it minimum

for ` = k.

Clearly, for ` = k we have that Cmax
(
S(`)
)

= y′k + x′k/s < pk and

Cmax
(
S(`)
)

=
1

s

(
k−1∑
j=1

pj + x′k

)
<

1

s

k∑
j=1

pj,

so that Cmax
(
S(`)
)
< Cmax

(
S ′(1)

)
. Since schedule S(1) found in Step 4 is actually

schedule S(`) for ` = k, we deduce that S(1) is optimal for Q2 |#pmnt ≤ 1|Cmax.

We note that the optimal makespan can also be written as

Cmax
(
S(k)

)
=

(
s−1
s

) k−1∑
i=1

pj + pk

s
. (4.5)

For the problem with an arbitrary number of machines, wherem > 2 , it follows from

the equivalent problem onm identical machines that problem Qm |#pmtn ≤ 1|Cmax is
NP-hard.

4.2.2 Power of single preemption on two uniform machines

For problem Q2 |#pmtn ≤ 1|Cmax, Jiang et al. (2014) show that the power of limited
preemption for problems where a single preemption is allowed, is bounded by

ρ
(1)
2 ≤

2s2 + s− 1

2s2
. (4.6)

Consider an instance I of this problem with two unit length jobs J1, J2, such that

p1 = p2 = 1. In this case, it can be simply observed that a feasible schedule S∗(1) (I)

is obtained by scheduling J1 entirely on the fastest machine M1, while the processing

73

CHAPTER 4. POWER OF LIMITED PREEMPTION

time of J2 is split into two fractions p′2 = 1/s and p′′2 = 1− 1/s, where p′2 is assigned to

machine M1 and p′′2 on machine M2, so that Cmax
(
S∗(1) (I)

)
satisfies (4.6).

The following algorithm by Jiang et al. (2014) finds a schedule S∗(1) (I) for which

bound (4.6) holds.

Algorithm JH-Q2(1) (Jiang et al. (2014))

INPUT: An instance I for problem Q2 |#pmtn ≤ 1|Cmax

OUTPUT: A 1-preemptive schedule S1p (I) which satisfies (4.6)

Step 1. Set J1 as the largest job in N , so that p1 = max {pj| 1 ≤ j ≤ n}. Compute
the optimal makespan Cmax (S∗ (I)), according to (2.16)

Step 2. Find job Jk, such that k = min
{
j|
∑j

i=1 pi > s ·R1 · Cmax (S∗ (I))
}
, where

R1 =
2s2 + s− 1

2s2
.

Split Jk into J ′k and J
′′
k so that

p′k = s ·R1 · Cmax (S∗ (I))−
k−1∑
j=1

pj,

and

p′′k = pk − p′k.

Step 3. Assign jobs J1, J2, . . . , Jk−1, J ′k on machine M1, and jobs J ′′k , Jk+1, . . . , Jn, on

machine M2.

Step 4. Stop.

This algorithm runs in O (n) time.

4.2.3 Power of single preemption on m uniform machines

In this section we determine the general bounds for the power of a single preemption

for the problem on m uniform machines.

Consider an instance I = (Ln,Mm) of the makespan problem on m uniform ma-

chines, as defined in Section (2.2). A 1-preemptive schedule S(1) (I) for this problem is

defined by

74

CHAPTER 4. POWER OF LIMITED PREEMPTION

(i) a job J` ∈ N which is processed with preemption on two machines M`′ and M`′′

such that 1 ≤ `′ < `′′ ≤ m; the actual processing times of job J` on these

machines are equal to x`/s`′ and y`/s`′′ , where x` + y` = p`;

(ii) a partition of set N\ {J`} into m subsets N1, N2, . . . , Nm, where the jobs of set Ni

are assigned to be processed on machine Mi, 1 ≤ i ≤ m.

Notice that even in an optimal schedule some of the subsets Ni can be empty, since

it may be counterproductive to assign jobs to very slow machines. It is possible that

for a particular instance it is optimal not to preempt any job, in which case a schedule

S(1) (I) is defined by a partition of set N into m subsets N1, N2, . . . , Nm. If there is

a preempted job J` in schedule S(1) (I) then the jobs assigned to machines M`′ and

M`′′ must be arranged in a such a way that job J` is not processed by more than one

machine at a time

Next, we show that for problem Qm |#pmtn ≤ 1|Cmax, the power of limited pre-
emption is bounded by

ρ(1)m ≤ 2− 2

m
. (4.7)

The following algorithm finds a single-preemptive schedule S(1), such that the bound

Cmax
(
S(1)
)

Cmax
(
S∗p
) ≤ ρ(1)m

holds, and is tight.

Algorithm Qm(1)LPT

INPUT: An instance I for problem Qm |#pmtn ≤ 1|Cmax

OUTPUT: A 1-preemptive schedule S(1) (I) which satisfies (4.7)

Step 1. Compute Cmax
(
S∗p
)

= max {Tu|1 ≤ u ≤ m} and the processing time bound
B = ρ

(1)
m Cmax

(
S∗p
)
. If required, renumber the jobs in accordance with the LPT

rule (2.1) and form the list Ln = (p1, . . . , pn). Define

Ni := ∅, p (Ni) := 0, 1 ≤ i ≤ m.

Step 2. For j from 1 to n do

(a) Take job Jj, the first job in the current list Ln. If there exists a machine Mk

such that p (Nk) + pj ≤ skB, then go to Step 2(b). If p (Ni) + pj > siB for

75

CHAPTER 4. POWER OF LIMITED PREEMPTION

all i, 1 ≤ i ≤ m, then if the preemption has not been used go to Step 2(c);

otherwise, go to Step 2(d).

(b) Update
Nk := Nk ∪ {Jj} , p (Nk) := p (Nk) + pj

and go to Step 2(e).

(c) First, try to process job Jj as the preempted job J`. If two machinesM`′ and

M`′′ such that 1 ≤ `′ < `′′ ≤ m can be selected which satisfy the inequalities

y` + p (N`′′) ≤ s`′′B, (4.8)
x`
s`′

+
y`
s`′′

≤ B, (4.9)

where

x` = s`′B − p (N`′) ,

y` = p` − x`;

then assign job J` to be processed on machine M`′ for x`/s`′ time units and

on machine M`′′ for y`/s`′′ time units. Define

p (N`′) := p (N`′) + x`, p (N`′′) := p (N`′′) + y`.

If the required pair of machines cannot be found, then go to Step 2(d).

(d) Find machine Mk such that

skB − p (Nk) = max {siB − p (Ni) |1 ≤ i ≤ m} (4.10)

and return to Step 2(b).

(e) Remove job Jj from list Ln.

Step 3. In the found schedule S(1) (I) machine Mi processes the jobs of set Ni, 1 ≤
i ≤ m, in an arbitrary order starting from time 0. Additionally, if in the loop in

Step 2, Step 2(c) has occurred, then

(i) assign job J` to be processed on machine M`′′ starting from time 0,

(ii) start the jobs of set N`′′ at time y`/s`′′ , and

(iii) assign job J` to be processed on machine M`′ starting from time p (N`′) /s`′ .

76

CHAPTER 4. POWER OF LIMITED PREEMPTION

Algorithm LPT1 scans the jobs in LPT order and tries to assign each job to the

machine where it can be completed by time B. The first time that such an assignment

is not possible, the corresponding job is assigned to be processed with preemption (see

Step 2(c)). The remaining jobs, if any, are either assigned to be completed by time B

wherever possible, or to a specific machine otherwise.

Theorem 4.2. Given an arbitrary instance I = (Ln,Mm), let S(1) be a schedule created

by Algorithm Qm(1)LPT using at most one preemption. Then

Cmax
(
S(1) (I)

)
Cmax

(
S∗p (I)

) ≤ 2− 2

m
. (4.11)

Proof: The proof is based on the minimal counterexample technique, often used in

worst-case analysis of approximation algorithms. Suppose that the theorem is not true,

i.e., there exists an instance I = (Ln,Mm), which we call the minimal counterexample,

such that
Cmax

(
S(1) (Ln,Mm)

)
Cmax

(
S∗p (Ln,Mm)

) > 2− 2

m
(4.12)

and no job or machine can be removed from the instance without violating the inequal-

ity (4.12).

First consider instances in which the number of jobs is smaller than the number of

machines i.e. instances for which the lists (Ln,Mm) have n < m. LetMn be the list

of machine speeds obtained from listMm by a removal of the m−n slowest machines.

For an instance I, let S∗(1) (I) be an optimal schedule for problem

Q |#pmtn ≤ 1|Cmax. It is clear that in each schedule S∗(1) (Ln,Mm) and S∗p (Ln,Mm) ,

jobs are assigned to at most n fastest machines. Thus,

S∗(1) (Ln,Mm) = S∗(1) (Ln,Mn)

and

Cmax
(
S∗(1) (Ln,Mm)

)
= Cmax

(
S∗(1) (Ln,Mn)

)
,

while in the preemptive case,

Cmax
(
S∗p (Ln,Mm)

)
= max {Tu|1 ≤ u ≤ n < m} = Cmax

(
S∗p (Ln,Mn)

)
.

Since for an instance (Ln,Mm) with n < m the removal of the m − n slowest

machines does not change the value of the power of preemption, the minimal coun-

terexample cannot be one of these instances. Hence, in our search for the minimal

77

CHAPTER 4. POWER OF LIMITED PREEMPTION

counterexample we only need to consider instances in which there are at least as many

jobs as machines.

Suppose that in schedule S(1) (Ln,Mm) job Jh is the terminal job and machine Mk

the critical machine. If h < n then Algorithm Qm(1)LPT assigns some jobs Jj with

j > h after job Jh and they complete (on machines other thanMk) earlier than job Jh.

Suppose that these jobs are removed from the instance, so that Lh = (p1, p2, . . . , ph)

is the corresponding list of the processing times. For the modified instance (Lh,Mm),

we have

Cmax
(
S(1) (Lh,Mm)

)
= Cmax

(
S(1) (Ln,Mm)

)
; Cmax

(
S∗p (Lh,Mm)

)
≤ Cmax

(
S∗p (Ln,Mm)

)
,

so that
Cmax

(
S(1) (Lh,Mm)

)
Cmax

(
S∗p (Lh,Mm)

) ≥ Cmax
(
S(1) (Ln,Mm)

)
Cmax

(
S∗p (Ln,Mm)

) > 2− 2

m
.

Thus, if h < n we deduce that instance (Ln,Mm) cannot be the minimal counterex-

ample, and we must have that h = n. In other words, for the minimal counterexample

(Ln,Mm) Algorithm Qm(1)LPT finds a schedule S(1) (Ln,Mm) that is terminated by

the shortest job Jn. Clearly,

pn ≤
1

n
p (N) ≤ 1

m
p (N) . (4.13)

Suppose that the terminal job Jn is completed on machine Mu, 1 ≤ u ≤ m, and

that its completion time exceeds the bound of B, i.e., p(Nu) > suB.

In schedule S(1), for each machine, find the value Gi such that

B =
p(Ni) +Gi

si
, 1 ≤ i ≤ m; i 6= u. (4.14)

Let us call the value Gi the gap on machine Mi. We can interpret the gap on

a machine as the amount of processing that could be additionally assigned to that

machine so that the machine completes at exactly time B. Define, Gu = 0, so that

there is no gap on the critical machine Mu.

Summing up the equalities (4.14) and the inequality p(Nu) +Gu > suB, we deduce

m∑
i=1

p(Ni) +
m∑
i=1

Gi = p(N) +
m∑
i=1

Gi > B
m∑
i=1

si

=

(
2− 2

m

)
Cmax

(
S∗p (Ln,Mm)

)
Sm.

78

CHAPTER 4. POWER OF LIMITED PREEMPTION

Since Cmax
(
S∗p (Ln,Mm)

)
≥ Tm = p (N) /Sm, we deduce

m∑
i=1

Gi >

(
1− 2

m

)
p(N). (4.15)

If there exists a gap Gi such that Gi ≥ pn, then job Jn can be assigned to machine

Mi and it will be completed before B. Thus, assume that for each non-zero gap Gi the

inequalities Gi < pn ≤ p(N)
n
≤ p(N)

m
hold.

If the preemption had been used before the last job is scheduled, i.e., if J` 6= Jn,

then the number of such non-zero gaps is at most m − 2, since the assignment of job

J` leaves no gap on machine M`′ ; see Step 2(c). It follows from (4.15)(
1− 2

m

)
p(N) <

m∑
i=1

Gi < (m− 2) pn ≤ (m− 2)
p (N)

m
, (4.16)

a contradiction.

Therefore, no preemption has been used prior to scheduling the last job n, and the

number of non-zero gaps is at most m− 1. We know that job Jn cannot be processed

non-preemptively to complete by time B. Suppose that for any pair of machines M ′

and M ′′ the total gap G′ +G′′ on these two machines is less than pn. Since each non-

zero gap is less than pn and any pair of these gaps is in total less than pn, we deduce

from (4.15) that(
1− 2

m

)
p(N) <

m∑
i=1

Gi ≤ (m− 3) pn + pn = (m− 2) pn,

leading to the same contradiction as above.

In the remaining part of this proof we show that job Jn can be processed with a

single preemption, as described in Step 2(c) of the algorithm for J` = Jn. Take a pair

of machines M`′ and M`′′ such that G`′ + G`′′ ≥ pn. In accordance with Step 2(c),

define

xn = G`′ , yn = pn − xn,

which implies that

yn + p (N`′′) = yn + s`′′B −G`′′ = pn + s`′′B − (G`′ +G`′′) ≤ s`′′B,

i.e., condition (4.8) holds, as required.

Assume that p (N`′′) > 0, which means that there is at least one job, say, Ji, assigned

79

CHAPTER 4. POWER OF LIMITED PREEMPTION

to M`′′ such that pi ≥ pn. Compute

xn
s`′

+
yn
s`′′
≤ xn + yn

s`′′
≤ pi
s`′′
≤ p (N`′′)

s`′′
≤ B,

i.e., condition (4.9) also holds.

Now, we only need to consider the case that p (Nu) = 0 for all machines Mu with

u > `′. Notice that for all these machines Gu = suB.

We can take the fastest machine M1 as machine M`′ , since this machine has a non-

zero gap prior to the assignment of job Jn; otherwise, there are at most m−2 non-zero

gaps in schedule S(1) (Ln,Mm) and we can use (4.16) to derive a contradiction.

Thus, we only need to consider the situation that prior to the assignment of job Jn
all machines, from the fastest machineM1, have no assigned jobs. We show that job Jn
can be processed with a single preemption on two fastest machinesM1 andM2. Let us

assign the last job preemptively to machines M1 and M2 and according to Algorithm

LPT1 we make M1 critical. For job Jn, split its processing time into two parts xn and

yn, where xn = s1B−p (N1) and that part of Jn is assigned toM1, while the remaining

part yn = pn − xn is assigned to M2.

To guarantee feasibility, we need to prove that (4.9) holds, i.e.,

xn
s1

+
pn − xn
s2

=
s1B − p (N1)

s1

(
1− s1

s2

)
+
pn
s2
≤ B,

which after multiplying by a factor of s2
s1
> 0, simplifies to

p (N1)

s1

(
1− s2

s1

)
+
pn
s1
−B ≤ 0. (4.17)

We use the fact that pn ≤ p(N)
m
, so that for the left hand side of (4.17) satisfies

p (N1)

s1

(
1− s2

s1

)
+
pn
s1
−B ≤ p (N)

s1

(
1− s2

s1

(
1− 1

m

))
−B.

For this case,

ρ(1)m Tm =
2 (m− 1)

m

p (N)∑m
i=1 si

≤ B,

80

CHAPTER 4. POWER OF LIMITED PREEMPTION

so that

p (N)

s1

(
1− s2

s1

(
1− 1

m

))
−B ≤ p (N)

s1

(
1− s2

s1

(
1− 1

m

))
−2 (m− 1)

m

p (N)∑m
i=1 si

.

Since s1 and s2 are the two fastest machines, it follows that
∑m

i=1 si ≤ (s1 + (m− 1) s2),

so that

p (N)

s1

(
1− s2

s1

(
1− 1

m

))
−B

≤ p (N)

s1

(
1− s2

s1

(
1− 1

m

))
− 2 (m− 1)

m

p (N)

s1 + (m− 1) s2

= − p (N)

ms21 (s1 + (m− 1) s2)

(
(m− 2) s21 − (m− 1)2 s1s2 + (m− 1)2 s22

)
.

To show that (4.17) holds, we demonstrate that

(m− 2) s21 − (m− 1)2 s1s2 + (m− 1)2 s22 ≥ 0. (4.18)

Recall that Algorithm LPT1 assigns all jobs except job Jn to machine M1, so

that these jobs complete at time (p (N)− pn) /s1. Since pn ≤ 1
m
p (N), machine M1

completes no later than time m−1
m

p(N)
s1
. On other other hand, job Jn cannot be assigned

to M2 or to any slower machine to be processed without preemption and to complete

by time B, so that pn
s2
> B. Thus, we have that

m− 1

m

p (N)

s1
≤ B <

pn
s2
≤ p (N)

ms2
,

implies that s1 ≥ (m− 1) s2. Then we can express the ratio of the machine speeds as
s1
s2

= (m− 1)α, where α ≥ 1. Substituting into (4.18), we deduce

(m− 2) s21 − (m− 1)2 s1s2 + (m− 1)2 s22

= (m− 2) (m− 1)2 α2s22 − (m− 1)3 αs22 + (m− 1)2 s22

= (m− 1)2 s22
(
(m− 2)α2 − (m− 1)α + 1

)
= (m− 1)2 s22 ((m− 2)α− 1) (α− 1) ≥ 0,

where the last inequality holds since α ≥ 1 and we are only interested in m ≥ 3. Thus,

Algorithm LPT1 creates a schedule with a simple preemption in which both machines

complete by time B.

81

CHAPTER 4. POWER OF LIMITED PREEMPTION

Having considered all possible cases, we conclude that the minimal counterexample

does not exist and Cmax
(
S(1) (Ln,Mm)

)
≤ B for all instances as required.

To see that the established bound is tight, consider an instance of the problem with

m machines, all of unit speed except machine M1, which has speed m− 1, and m jobs

of unit length, i.e.,Mm = (m− 1, 1, 1, . . . , 1) and Ln = (1, 1, . . . , 1). Clearly,

Cmax
(
S∗p (Ln,Mm)

)
= Tm =

m

2m− 2
.

For this instance, an optimal preemptive schedule requires 2 (m− 1) preemptions,

which is the maximum estimate due to Gonzalez and Sahni (1978).

Algorithm LPT1 will assign at most one job to each of k of the machines

M2, . . . ,Mm, where 1 ≤ k ≤ m − 1, while the remaining m − k jobs are assigned

to machine M1, so that Cmax
(
S(1) (Ln,Mm)

)
= 1. Notice that schedule S(1) (Ln,Mm)

is an optimal non-preemptive schedule and its makespan cannot be reduced if a single

preemption is allowed.

Note that Theorem 4.2 still holds if a looser version of AlgorithmQm(1)LPT is used.

It is suffi cient for the preemption to be used in Step 2(c) at any time, as long as any

machine of the chosen pair is made critical by the preempted job and the preemption

is feasible.

Moreover, note that if Algorithm Qm(1)LPT is modified so that it is run allowing

no preemption and B is redefined as ρ(0)m Cmax
(
S∗p
)
, where ρ(0)m = 2−1/m, then the proof

of Theorem 4.2 can be appropriately adjusted to establish that ρ(0)m = 2 − 1/m is the

power of preemption. This is achieved by using a less restrictive algorithm than those

used for the same purpose in Woeginger (2000) and Soper and Strusevich (2014b).

4.2.4 Parametric Analysis of the Power of Limited Preemp-

tion for Three Uniform Machines

In this section we consider the problem of minimizing the makespan with limited pre-

emption on three uniform machines. The analysis of the power of limited preemption

performed in this section follows the classification of instances for the problem on three

uniform machines by Soper and Strusevich (2014a), as defined in Section 2.2.1.

Consider the instances of this problem that belong to Classes 1 and 2 of this prob-

lem, as defined by Soper and Strusevich (2014a). An instance of this problem is defined

by the list of processing times Ln, and a list of machines M3 = {M1,M2,M3} . We

82

CHAPTER 4. POWER OF LIMITED PREEMPTION

assume that in list Ln, jobs are numbered in such a way that

p1 = max {pj|j ∈ N} , p2 = max {pj|j ∈ N\ {J1}} ,

while the remaining jobs are numbered arbitrarily.

For an instance I = (Ln,M3) of Class r, 1 ≤ r ≤ 2, let ρ(1)3 (Class r) denote the

power of a single preemption for instances of that class. We derive a tight upper bound

on ρ3 (Class r) as a function of the machine speeds s1 ≥ s2 ≥ s3.

Algorithm Q3(1)C[1&2]

INPUT: A Class 2 or 3 instance I = (Ln,M3) for problem Q3 |#pmtn ≤ 1|Cmax

OUTPUT: A 1-preemptive schedule S(1) (I).

Step 1. If I belongs to Class 1, go to Step 2; otherwise, go to Step 3.

Step 2. Find schedule SH(1) ((Ln,M3)) in which job J1 is assigned to be processed

on machine M1, while the remaining jobs are scheduled by Algorithm Q2(1) on

machines M2 and M3. Go to Step 4.

Step 3. Find schedule SH(1) ((Ln,M3)) in which jobs J1 and J2 are scheduled by Al-

gorithm Q2(1) on machines M1 and M2, while the remaining jobs are processed

non-preemptively in any order on machine M3. Go to Step 4.

Step 4. Stop.

Algorithm Q3(1)C[1&2] is analyzed below. Part of the analysis is based on the

parametric bound (4.6) developed in Jiang et al. (2014) for two uniform machines.

Theorem 4.3. For an instance I = (Ln,M3) of Class r, 1 ≤ r ≤ 2, Algo-

rithm Q3(1)C[1&2] takes O (n) time and finds a schedule SH(1) ((Ln,M3)) such that

ρ
(1)
3 (Class r) =

Cmax

(
S∗(1) (Ln,M3)

)
Cmax

(
S∗p (Ln,M3)

) ≤ Cmax

(
SH(1) (Ln,M3)

)
Cmax

(
S∗p (Ln,M3)

) ≤ Φ (s1, s2, s3) ,

(4.19)

where

Φ (s1, s2, s3) =

{
2s22+s2s3−s23

2s22
, if r = 1

2s21+s1s2−s22
2s21

, if r = 2

}
.

The first bound is tight for two fast machines and two slow machines, viz s1 = s2 =

s ≥ s3, and s1 = s ≥ s2 = s3, while the second is tight for all values of the machine

speeds.

83

CHAPTER 4. POWER OF LIMITED PREEMPTION

Proof: Initially, observe that the running time of Algorithm Q3(1)C[1&2] is deter-

mined by the running time of Algorithm Q2(1), and, therefore is linear in n.

For a given instance of Class r, 1 ≤ r ≤ 2, define the lists Lr and Mr, that

contain the r longest jobs and the r fastest machine, respectively. Also define the

lists L′r and M′
r obtained from the lists Ln and M3 by the removal of the r longest

jobs and the r fastest machines, respectively. In other words, L′r = (pr+1, . . . , pn) and

M′
r = (sr+1, . . . , s3).

By definition of a Class r instance, we have that

Cmax
(
S∗p (Lr,Mr)

)
≥ Cmax

(
S∗p (Ln,M3)

)
,

which implies

Cmax

(
S∗p

(
L′r,M

′

r

))
≤ Cmax

(
S∗p (Ln,M3)

)
≤ Cmax

(
S∗p (Lr,Mr)

)
.

For schedule SH(1) (Ln,M3) found by Algorithm Q3(1)C[1&2], we have that

Cmax
(
SH(1) (Ln,M3)

)
= max

{
Cmax

(
SH(1) (Lr,Mr)

)
, Cmax

(
SH(1)

(
L′r,M

′

r

))}
.

It follows that

ρ
(1)
3 (Class r) ≤

Cmax

(
S∗(1) (Ln,M3)

)
Cmax

(
S∗p (Ln,M3)

) =
Cmax

(
S∗(1) (Ln,M3)

)
Cmax

(
S∗p (Lr,Mr)

)
≤

max
{
Cmax

(
SH(1) (Lr,Mr)

)
, Cmax

(
SH(1)

(
L′r,M

′
r

))}
Cmax

(
S∗p (Lr,Mr)

) (4.20)

≤ max

Cmax
(
SH(1) (Lr,Mr)

)
Cmax

(
S∗p (Lr,Mr)

) , Cmax
(
SH(1)

(
L′r,M

′
r

))
Cmax

(
S∗p (L′r,M

′
r)
)
 .

For Class 1, Step 2 of Algorithm Q3(1)C[1&2] guarantees that

Cmax
(
SH(1) (L1,M1)

)
= p1/s1,

i.e.,
Cmax

(
SH(1) (L1,M1)

)
Cmax

(
S∗p (Ln,M3)

) = 1.

Since the remaining jobs are scheduled on machines M2 and M3 optimally with at

84

CHAPTER 4. POWER OF LIMITED PREEMPTION

most one preemption, we have that

Cmax

(
SH(1)

(
L′1,M

′

1

))
= Cmax

(
S∗(1)

(
L′1,M

′

1

))
,

so that

Cmax

(
SH(1)

(
L′1,M

′
1

))
Cmax

(
S∗p
(
L′1,M

′
1

)) =
Cmax

(
S∗(1)

(
L′1,M

′
1

))
Cmax

(
S∗p
(
L′1,M

′
1

)) ≤ 2s22 + s2s3 − s23
2s22

where the last inequality follows from (4.6) applied to the machines with speeds s2 and

s3. It is the power of preemption for two uniform machines derived by Jiang et al.

(2014).

A tight instance for r = 1 is given by a set of three jobs such that L3 =(
p, p s2+s3

2s1
, p s2+s3

2s1

)
andM3 = (s1, s2, s3). It follows that

Cmax
(
S∗p (L3,M3)

)
= Cmax

(
S∗p (L1,M1)

)
=
p1
s1

=
p

s1
= Cmax

(
S∗p

(
L′1,M

′

1

))
,

hence

ρ
(1)
3 =

2s22 + s2s3 − s23
2s22

,

since according to Jiang et al. (2014) the tight example on two uniform machines is

given by two jobs of equal length,.where machines are numbered according to (2.14).

For Class2. r = 2, and Cmax
(
S∗p (Ln,M3)

)
= Cmax

(
S∗p (L2,M2)

)
. Considering the

second term in (4.20). In this case, we have

Cmax

(
S∗p

(
L′2,M

′

2

))
= Cmax

(
SHp

(
L′2,M

′

2

))
since the machine environmentM′

2 consists only of of machine M3, thus

Cmax

(
S∗(1)

(
L′2,M

′
2

))
Cmax

(
S∗p
(
L′2,M

′
2

)) = 1

.To complete the heuristic schedule we optimally assign the two longest jobs on ma-

chines M1 and M2 according to AlgorithmQ2(1) using the single preemption, when

Cmax

(
Sh(1) (L2,M2)

)
Cmax

(
S∗p (L2,M2)

) =
Cmax

(
S∗(1) (L2,M2)

)
Cmax

(
S∗p (L2,M2)

) ≤ (2s21 + s1s2 − s22
)
/2s21.

Hence ρ
(1)
3 ≤ (2s21 + s1s2 − s22) /2s21 for this class. A tight instance is given

85

CHAPTER 4. POWER OF LIMITED PREEMPTION

by a set of 3 jobs with L3 =
(
p, p, p 2s3

s1+s2

)
and M3 = (s1, s2, s3). It fol-

lows that Cmax
(
S∗p (L3,M3)

)
= Cmax

(
S∗p (L2,M2)

)
= 2p/ (s1 + s2), while schedule

S∗(1) (L3,M3) is obtained by scheduling the identical jobs J1 and J2 on machines M1

and M2 by Algorithm Q2Pr1, with the remaining job assigned to machine M3

The parametric analysis of the third class of instances is more intricate and is not

performed as a part of this thesis. We note that for that class, two cases arise depending

on the number of faster machines in the instance.

4.3 Unrelated Machines

In this section we consider the problem of minimizing the makespan in limited-

preemptive schedules on unrelated machines. In particular, for the problem of mini-

mizing the makespan on 2 unrelated machines, we show that the problem of obtaining

a limited preemptive schedule is NP-hard. We prove this statement in the following

lemma.

Lemma 4.2. Problem R2 |#pmnt ≤ 1|Cmax is NP-hard in the ordinary sense.

Proof: We provide reduction from the Partition problem described in Section 1.2.

Given an instance of Partition:, define the following instance of a decision

version of problem R2 |#pmnt = 1|Cmax with two machines A and B and the set

N = {1, 2, . . . , n} of jobs:

n = r + 2;

aj = 2ej, bj = ej, j ∈ R;

ar+1 = 11E, br+1 = 2E;

ar+2 = 6E, br+2 = 4E.

It is required to verify whether there exists a schedule S(1) with a single preemption

with Cmax
(
S(1)

)
≤ 5E.

Suppose that Partition has a solution and R1 and R2 are the required subsets.

Then assign an arbitrary sequence of jobs j ∈ R1 to be processed on machine A in

the time interval [0, 2E], and an arbitrary sequence of jobs j ∈ R2 and job r + 1 to be

processed on machine B schedule in the time interval [2E, 5E]. Job r + 2 is processed

with preemption, in the time interval [0, 2E] on machine B and in the time interval

[2E, 3E] on machine B. For the resulting schedule S1 both machines complete there

86

CHAPTER 4. POWER OF LIMITED PREEMPTION

processing at time 5E. The preemptive processing of job r + 2 is feasible, since

2E

4E
+

3E

6E
= 1.

Suppose now that schedule S(1) exists. First notice that in S(1) either job r + 1 or

job r+ 2 must be processed with preemption. Indeed, in order to complete by time 5E

none of these jobs can be processed without preemption on machine A, and if both are

assigned to be processed non-preemptively on machine B they will complete no earlier

than time 6E.

Suppose job r+ 2 is processed without preemption, and job r+ 2 with preemption.

To complete by time 5E, job r + 2 must be assigned to machine B. Then job r + 1

can be processed on B for at most E time units, which is at most 50% of its overall

processing. No less than 50% of job r + 1 must be performed on machine A, which

makes at least 5.5E units of processing.

Thus, in schedule S1 job r+2 is processed with preemption and job r+2 is processed

on machine B.

Suppose that in S1 job r + 2 is processed on machine A for 3E + x time units and

on machine B for 2E − y time units, where x and y are both positive. To complete
this job by time time 5E we must have that x ≤ y. On the other hand, for feasible

processing of job r + 2 the equality

2E − y
4E

+
3E + x

6E
= 1

must hold, which implies that y = 2
3
x < x; a contradiction.

Now suppose that in S1 job r + 2 is processed on machine A for 3E − x time units
and on machine B for 2E+y time units, where x and y are both positive. To complete

this job by time time 5E we must have that x ≥ y. For feasible processing of job r+ 2

the equality
2E + y

4E
+

3E − x
6E

= 1

must hold, which implies that y = 2
3
x.

Let NA and NB denote the subsets of jobs of set R assigned to be processed in

schedule S1 on machine A and B, respectively. Then for machine B to complete its

jobs by time 5E the inequality(
2E +

2x

3

)
+ 2E + e (NB) ≤ 5E,

87

CHAPTER 4. POWER OF LIMITED PREEMPTION

which implies that e (NB) ≤ E− 2x
3
, so that e (NA) ≥ E+ 2x

3
. Then machine A completes

its jobs no earlier than time

2

(
E +

2x

3

)
+ 3E − x = 5E +

x

3
.

We deduce that for schedule S1 to exist, job r + 2 must be processed on machine

B for 2E time units and on machine A for 3E time units. This implies that in S1,

b (NB) = e (NB) = E, i.e., the sets NA and NB form a solution to Partition.

4.3.1 Single Preemption on two Unrelated Machines

Consider the problem of minimizing the makespan with a single preemption on

two unrelated machines. In the preemptive version of this problem, denoted by

R2 |pmtn|Cmax, an optimal schedule is known to require at most 2 preemptions. Con-

sider an instance I`, where an optimal preemptive schedule S∗p (I`) requires at most

one preemption. As only one preemption is required, instance I` is said to belong to

Class-` instances for problem R2 |#pmtn ≤ 1|Cmax for which

Cmax
(
S∗p (I`)

)
= Cmax

(
S∗(1) (I`)

)
.

In this section we determine the power of preemption for instances of Class `. For

this problem, a set of n jobs is to be scheduled on two unrelated machines M1 andM2,

so that the in the optimal preemptive schedule S∗p (I`) there is only one job which is

preempted between the two machines. We denote this job by Jk.

In a similar approach to the one detailed for the case of two unrelated machines

in Section 2.3.2, we construct the non-preemptive schedule by selecting the best non-

preemptive schedule resulting from rounding the result of the LP solution to the pre-

emptive problem.

Assuming that all other jobs have been optimally scheduled on the machines, a

rounding of the LP relaxation results in two possible schedules S ′np, where Jk is entirely

processed byM1 , and S ′′np, where Jk is processed entirely byM2. Following from Section

2.3.2, let xij, xij ≥ 0, denote the fraction of job Jj processed on machine Mi, so that

m∑
i=1

xij = 1, 1 ≤ j ≤ n

88

CHAPTER 4. POWER OF LIMITED PREEMPTION

In the preemptive schedule S∗p (I`), job Jk is processed for x1kp1k amount of time

on machine M1, and x2kp2k amount of time on machine M2. Recall that in a feasible

schedule, a job may not be processed by more than one machine at a time. Thus,

the total amount of time that the splitting job Jk is processed on machines M1 and

M2 cannot exceed the total duration of the schedule denoted by C, as the alternative

implies that there is a clash of the processing intervals of Jk on the two machines.

Hence we determine that

x1kp1k + x2kp2k ≤ C.

In the rounded, non-preemptive solution, job Jk is entirely on one of the machines,

while the assignment of any remaining jobs is not affected. Thus, if Jk is scheduled

to be processed entirely by machine M1 in a non-preemptive schedule S ′np, the total

processing time of M1 will be increased by x2kp1k, or alternatively, in a schedule S ′′np
where Jk is processed by M2, the total processing time is increased by x1kp2k.

A tight instance for this class can be obtained by solving the following linear pro-

gramming formulation

Maximize: min {x2kp1k, x1kp2k}

Subject to:

x1k + x2k = 1

x1kp1k + x2kp2k ≤ C

xik ≥ 0 , for 1 ≤ i ≤ 2

Hence, we obtain

min {x2kp1k, x1kp2k} ≤ min

{
x2kp1k, (C − x2kp2k)

p2k
p1k

}
,

where the right-hand side takes the smallest value if

x2kp1k = (C − x2kp2k)
p2k
p1k

.

Note that in this case we are only concerned with the assignment of Jk to one of the

machines, as all other jobs have been optimally assigned. Hence, as we are concerned

89

CHAPTER 4. POWER OF LIMITED PREEMPTION

with the different processing times of a single job, it is possible to consider this problem

as a uniform machine problem by expressing the processing time of Jk on machine M2

as a factor of p1k and "machine speed" s, so that

p2k = s · p1k.

Thus, we obtain

x2kp1k = (C − x2kp1ks) s

=
Cs

1 + s2
.

which takes a maximum value of C/2 when s = 1. Hence, we obtain

Cmax
(
SHnp (I`)

)
Cmax

(
S∗p (I`)

) ≤ C + C/2

C

=
3

2
.

A tight instance with three jobs J1, J2,J3, with the following processing requirements:

pi1 pi2 pi3

M1 1 +∞ 1

M2 +∞ 1 1

.

90

CHAPTER 5

Power of Splitting

5.1 Review of Job Splitting

The parallel machine scheduling problems considered in previous chapters follow the

assumption that a job may be processed by only one machine at any given time. In

this chapter we consider a particular type of parallel machine scheduling where that

particular constraint is removed.

When the processing requirement is considered as a total demand of a product in

production planning, it may be arbitrarily split on the machines in order to finish the

processing of all demands as soon as possible. This process is referred to by Potts

and Wassenhove (1992) as lotstreaming or lotsizing and the split parts as continuous

sublots. A problem which arises from the processing of different types of fabric in

the textile industry is studied by Serafini (1996), who provides some polynomial-time

algorithms for minimizing themaximum tardiness and themaximum weighted tardiness

objectives, where each job may be split arbitrarily and processed independently by the

available machines.

For parallel machine scheduling problems with splitting, Xing and Zhang (2000)

prove that if no setup times are present, the problems of minimizing the makespan and

total flow time on identical, uniform and unrelated machines, are solvable in polynomial

time. Specifically, for problems on identical and uniform machines, they show that an

optimal schedule is obtained by splitting each job into m sublots, and assigning these

sublots to each of the m machines in a given instance, so that all sublots of a given job

begin processing at the same time on all machines.

The results by Xing and Zhang (2000) which are essential for the work in this

chapter are presented in the following lemmas.

91

CHAPTER 5. POWER OF SPLITTING

Lemma 5.1 (Xing and Zhang (2000)). For the problems of minimizing the makespan
and sum of completion times, there exists an optimal schedule such that m identical,

uniform, or unrelated machines, complete at the same time.

Lemma 5.1 yields the following results. For identical machines, the makespan of an

optimal splitting schedule S∗split is given by

Cmax
(
S∗split

)
=
p (N)

m
. (5.1)

For uniform machines, the corresponding makespan of an optimal schedule is given by

Cmax
(
S∗split

)
=

p (N)

s (M)
, (5.2)

where

s (M) =
m∑
i=1

si.

The following lemma shows that any scheduling problem with splitting jobs on

identical and uniform machines, can be converted into a single machine scheduling

problem.

Lemma 5.2 (Xing and Zhang (2000)). For the problems of minimizing the makespan
and total completion time on identical and uniform machines, there exists an optimal

schedule, such that each job is split into m sublots, and these m sublots are assigned to

m machines, so that they begin processing and complete at the same time on each of

the m machines.

Based on the above Lemmas, Xing and Zhang (2000) prove that, without setup

times, the problems of minimizing the makespan and sum of completion times, and a

number of other objective functions on identical and uniform machines, are polynomi-

ally solvable. This is formally described in the following theorem.

Theorem 5.1 (Xing and Zhang (2000)). There are polynomial algorithms for schedul-
ing problems of minimizing the makespan and sum of completion times on identical

and unrelated machines with splitting jobs and no setup times.

Furthermore, they show that an optimal splitting schedule on unrelated machines

92

CHAPTER 5. POWER OF SPLITTING

is obtained by solving the following linear programming formulation

Minimize Cmax

Subject to:
m∑
i=1

tij
pij

= 1 , for 1 ≤ j ≤ n

n∑
j=1

tij = Cmax , for 1 ≤ i ≤ m

tij ≥ 0 , for 1 ≤ i ≤ m, 1 ≤ j ≤ n

In the above formulation, tij represents the total amount of time that job Jj spends

on machine Mi.

Following the results by Xing and Zhang (2000), for the objectives of minimizing

the makespan and total completion time on identical, uniform and unrelated machines,

we perform an analysis of the power of splitting.

Similarly to the power of preemption, for some objective function Φ, we define the

power of splitting as the supremum of the ratio Φ
(
S∗np
)
/Φ(S∗split) across all instances

of a given problem. For a problem on m parallel machines, we represent the power of

splitting by τm, so that
Φ
(
S∗np
)

Φ(S∗split)
≤ τm. (5.3)

Moreover, we denote an optimal schedule with splitting jobs by S∗split.

5.2 Identical Machines

5.2.1 Makespan

Consider the problem of minimizing the makespan on m identical machines. Given a

problem instance I, we denote by λ the ratio of the makespan of a preemptive schedule

S∗p over the makespan of a splitting schedule S
∗
split, so that

λ =
Cmax

(
S∗p
)

Cmax
(
S∗split

) . (5.4)

93

CHAPTER 5. POWER OF SPLITTING

Figure 5.1: A split schedule on m parallel idenitcal machines

Recall from (5.1) that the makespan of an optimal splitting schedule on m identical

machines is given by the average machine load; see Figure 5.1. We identify the following

classes of instances, based on the value of λ.

Class 1 Instances

We define Class 1 as the set of instances for which the makespan of an optimal pre-

emptive schedule is given by the length of the largest job, so that

Cmax
(
S∗p
)

= p1.

For this class, the value of λ is given by

λ =
p1
p(N)
m

= m
p1

p (N)

it holds that λ > 1. For instances of this class we further define the following cases:

Case 1.1

If there are at most as many jobs as machines, so that n ≤ m, an optimal assignment

of jobs to machines is achieved by scheduling exactly one job to every machine in the

schedule. Hence, it is easy to see that for a non-preemptive schedule S∗np, we obtain

Cmax
(
S∗np
)

= Cmax
(
S∗p
)

= p1.

94

CHAPTER 5. POWER OF SPLITTING

The power of splitting in this case is given by

τm =
p1
p(N)
m

= λ. (5.5)

Case 1.2

For Class 1 instances where the number of jobs exceeds the number of machines,

so that n > m , given the smallest index g, 0 ≤ g ≤ m − 1, for which (3.4) holds,

Algorithm P-nonpreemptive described in Section 3.1 finds a schedule Snp, so that

Cmax (Snp) ≤
(

2− 2

m− g + 1

)
p (N)−

∑g
j=1 pj

m− g . (5.6)

Lemma 5.3. Given an instance on m identical machines, if n > m and λ > 1, then

there is a g, g ≥ 1 for which (3.4) holds.

Proof: This proof is by contradiction.

Suppose initially that the statement does not hold, so that for n > m and λ > 1

there is a g ≥ 1, such that

pg+1 >
p (N)−

∑g
j=1 pj

m− g . (5.7)

For g = m− 1, we obtain

pm >
p (N)−

∑m−1
j=1 pj

m− (m− 1)

= p (N)−
m−1∑
j=1

pj. (5.8)

It is apparent that (5.8) does not hold, as this implies

pm > pm + pm+1 + . . .+ pn,

which clearly is impossible, as m > n, and all jobs have positive, non-zero processing

times. Therefore, the initial statement holds.

Lemma 5.4. Given an instance on m identical machines, where n > m, λ > 1, and

95

CHAPTER 5. POWER OF SPLITTING

g ≥ 1, then the inequality

p (N)−
∑g

j=1 pj

m− g ≤ p (N)

m
, (5.9)

holds for all g, 1 ≤ g ≤ m− 1.

Proof:

This proof is by induction. For our base case consider g = 1, so that by replacing

the value of g in (5.9), we obtain

p (N)− p1
m− 1

≤ p (N)

m
(5.10)

As per the definition of the class, it is known that

p1 >
p (N)

m
,

hence, for the left hand side of (5.10) we obtain

p (N)− p1
m− 1

≤
p (N)− p(N)

m

m− 1

=
p (N)

m

which satisfies (5.9).

For the next part of this proof, given an index q, 1 ≤ q ≤ g, suppose that

p (N)−
∑q−1

j=1 pj

m− q + 1
≤ p (N)

m
.

For g = (q + 1), we obtain

p (N)−
∑(q+1)−1

j=1 pj

m− (q + 1) + 1
=

p (N)−
∑q

j=1 pj

m− q

=
p (N)−

∑q−1
j=1 pj − pq

m− q (5.11)

By definition of g, the inequality

pg >
p (N)−

∑g−1
j=1 pj

m− g + 1
,

96

CHAPTER 5. POWER OF SPLITTING

holds, so that for (5.11) we obtain

p (N)−
∑q−1

j=1 pj − pq
m− q ≤

p (N)−
∑q−1

j=1 pj −
(
p(N)−

∑g−1
j=1 pj

m−g+1

)
m− q

=

(
p (N)−

∑q−1
j=1 pj

)
(m− q)

(m− q) (m− g + 1)

=
p (N)−

∑q−1
j=1 pj

m− q + 1
,

thus the assumption holds.

From Lemma 5.3 and Lemma 5.4, with respect to (5.6), we determine

Cmax (Snp) ≤
(

2− 2

m− g + 1

)
p (N)−

∑g
j=1 pj

m− g

≤
(

2− 2

m− g + 1

)
p (N)

m

=

(
2− 2

m− g + 1

)
Cmax

(
S∗split

)
.

Hence,

τm ≤ 2− 2

m− g + 1
. (5.12)

Class 2 Instances

This class is defined as the set of all instances on identical machines where the makespan

of the optimal preemptive schedule S∗p is given by the average machine load, which

coincides with the makespan of an optimal splitting schedule S∗split, so that

Cmax
(
S∗p
)

= Cmax
(
S∗split

)
= Tm,

from which we determine λ > 1. Due to this, the bounds for the power of splitting

coincide with that of the power of preemption for instances of this class, so that

τm = ρm ≤ 2− 2

m+ 1
. (5.13)

For all instances of the identical machine problem, the following algorithm finds a

non-preemptive schedule Snp, which satisfies the above bounds.

Algorithm P-split-np

97

CHAPTER 5. POWER OF SPLITTING

INPUT: An instance I of problem Pm | |Cmax.

OUTPUT: A non-preemptive schedule S∗np.

Step 1. Compute λ = Cmax
(
S∗p
)
/Cmax

(
S∗split

)
.

Step 2. If λ > 1 and n ≤ m, run Algorithm LS for instance I.

Step 3. If λ > 1 and n > m, run algorithm P-nonpreemptive for instance I.

Step 4. If λ = 1, run algorithm P-nonpreemptive for instance I.

Step 5. Stop.

Algorithm P-split-np runs in O (nm) time, assuming that jobs are numbered in

LPT order. In the following theorem we prove that P-split-np finds the required

non-preemptive schedules for which, bounds (5.5), (5.12) and (5.13) hold, and also

demonstrate the tighness of these bounds.

Theorem 5.2. Algorithm P-split-np finds a required non-preemptive schedule, for

which bounds (5.5), (5.12) and (5.13) on τm hold for respective classes on instances,

and furthermore these bounds are tight.

Proof:

Consider an instance I1 of Class 1 where n ≤ m. The algorithm finds the re-

quired schedule at Step 2 by running the list scheduling algorithm for I1. In this

case, Algorithm LS assigns exactly one job to each machine, and obtains an optimal

non-preemptive schedule S∗np (I1) with makespan

Cmax
(
S∗np (I1)

)
= p1,

where p1 is the largest job of the instance due to (2.1). Due to Lemma 5.1, an optimal

splitting schedule S∗split (I1) has makespan

Cmax
(
S∗split (I1)

)
=
p (N)

m
,

so that
Cmax

(
S∗np (I1)

)
Cmax

(
S∗split (I1)

) = m
p1

p (N)
= λ,

which satisfies (5.5). Furthermore, the maximum value for λ is achieved for an instance

with a single job, i.e., n = 1, where λ = m.

98

CHAPTER 5. POWER OF SPLITTING

For an instance I2 of Class 1, where n > m, the algorithm finds a required schedule

at Step 3 by running Algorithm P-nonpreemptive. Rustogi and Strusevich (2013) prove

that this obtains a non-preemptive schedule Snp(I2), with makespan

Cmax (Snp (I2)) ≤
(

2− 2

m− g + 1

)
p (N)−

∑g
j=1 pj

m− g .

Due to Lemma 5.4, it is known that

Cmax (Snp (I2))

Cmax
(
S∗split (I2)

) ≤ 2− 2

m− g + 1

which satisfies (5.12). A tight instance for this class is detailed in Section 3.1, for which

Cmax (Snp (I2)) = 2m− 2g

and

Cmax
(
S∗split

)
=

p (N)

m

=
g (m− g + 1) + (m− g + 1) (m− g)

m

=
m (m− g + 1)

m
= m− g + 1,

so that

Cmax (Snp (I2))

Cmax
(
S∗split (I2)

) =
2m− 2g

m− g + 1

= 2− 2

m− g + 1
,

which satisfies (5.12).

For Class 2 instances the algorithm finds a non preemptive schedule S∗np at Step 4,

by running algorithm P-nonpreemptive. Following the tight instance described for this

class in Section 3.1, given an instance with m+ 1 unit length jobs, the algorithm finds

a non-preemptive schedule S∗np with makespan

Cmax
(
S∗np
)

= 2,

99

CHAPTER 5. POWER OF SPLITTING

while the makespan of the splitting schedule S∗split, is given by

Cmax
(
S∗split

)
=
m+ 1

m
,

which yields

Cmax
(
S∗np
)

Cmax
(
S∗split

) =
2

m+1
m

= 2
m

m+ 1

= 2− 2

m+ 1
,

as required.

5.2.2 Total Completion Time

For the problem of scheduling n jobs on m identical machines to minimize the total

completion time Φ (S) =
∑n

j=1Cj (S), let τm be an upper bound on the power of

splitting, so that (5.3) holds across all instances of the problem. An instance I is called

tight if, for that instance, the equality

Φ
(
S∗np
)

Φ
(
S∗split

) = τm.

For the problem on uniform machines, Epstein et al. (2016) introduce the concept

of a tight sequence for the power of preemption, which they define as a sequence of

instances whose sequence of cost ratios approaches ρm, and prove that for the power

of preemption there is a tight sequence in which all jobs are have equal processing

requirements, which may be normalized to have unit lengths, so that pj = 1, Jj ∈ N .

Using the same reasoning as that employed in Epstein et al. (2016) it is straight-

forward to verify that any instance of the problem of minimizing the total completion

time on identical machine can be transformed into an instance in which all processing

times are equal, and that transformation does not increase the power of splitting. This

is due to the fact that both values Φ
(
S∗np
)
and Φ

(
S∗split

)
are linear functions of pj.

Due to this observation, in order to determine a bound on the power of splitting

we only need to consider the instances of the problem for which pj = 1, Jj ∈ N .

Consider the problem of minimizing the total completion time on m identical ma-

chines. As shown in Lemma 5.2, every job Jj is processed on each of the machines for

100

CHAPTER 5. POWER OF SPLITTING

pj/m amount of time. Moreover, fraction of a job is processed within the same time

interval on all of the machines, with all machines terminating at the same time.

For the single machine version of this problem, the value of the total completion

time is given by

Φ (S∗) =
n∑
j=1

pj (n− j + 1) .

Due to the conditions of Lemma 5.2, for m identical parallel machines, we obtain

Φ
(
S∗Split

)
=

1

m

(
n∑
j=1

pj (n− j + 1)

)
(5.14)

=
1

m

(
1

2
n2 +

1

2
n

)
=

1

2
n
n+ 1

m

=
n (n+ 1)

2m
.

For a non-preemptive schedule consider the following two classes of instances based

on the value of the objective function.

Class 1

For instances where there are at most as many jobs as machines, so that n ≤ m, an

optimal non-preemptive schedule is obtained by assigning exactly one job to every ma-

chine, so that all jobs in the schedule start at time 0. In this case, the total completion

time is given by the sum of processing times, i.e.,

Φ
(
S∗np
)

= p (N) (5.15)

In the following theorem we derive the bounds for the power of splitting for instances

of this class.

Theorem 5.3. For the case n ≤ m,

Φ
(
S∗np
)

Φ
(
S∗Split

) = τm ≤ m,

and this bound is tight.

101

CHAPTER 5. POWER OF SPLITTING

Proof:

From (5.14) and (5.15) we obtain

Φ
(
S∗np
)

Φ
(
S∗Split

) =
n

n(n+1)
2m

=
2m

n+ 1
.

Observe that in the above expression, the maximum is achieved for n = 1, so that

τm ≤ m

as required.

To demonstrate that this bound is tight, consider an instance with a single job, i.e.,

n = 1. It follows that Φ
(
S∗np
)

= 1 and Φ
(
S∗Split

)
= 1/m, so that Φ

(
S∗np
)
/Φ
(
S∗Split

)
=

m.

Class 2

Consider the set of instances where the number of jobs exceeds the number of machines,

so that n > m. In Section 2.1.2 we showed that the sum of completion times for a

non-preemptive schedule S∗np is given by

Φ
(
S∗np
)

=
n∑
j=1

⌈
j

m

⌉
. (5.16)

Theorem 5.4. For the case n ≥ m,

Φ
(
S∗np
)

Φ
(
S∗Split

) = τm ≤
4

3
,

and this bound is tight.

Proof:

We split our consideration into two cases.

Case 2.1

In this case the number of jobs is a multiple of the number of machines, so that for

an integer k ≥ 1, n = k ·m.

102

CHAPTER 5. POWER OF SPLITTING

By substituting in (5.16), we obtain

Φ
(
S∗np
)

=

k∑
i=1

mi

=
1

2
km (k + 1)

=
1

2
n (k + 1) .

Thus we obtain

Φ
(
S∗np
)

Φ
(
S∗Split

) =
1
2
n (k + 1)
1
2
nn+1

m

=

= m
k + 1

n+ 1

=
n+m

n+ 1
.

The maximum is achieved for m = n, thus

τm ≤ 2− 2

n+ 1
.

The global bound is achieved for m = n = 2, which gives

τm ≤
4

3
,

as required.

Case 2.2

In this case the number of jobs is given by

n = km+ r

103

CHAPTER 5. POWER OF SPLITTING

where 1 ≤ r ≤ m− 1. By substituting in (5.16), we obtain

Φ
(
S∗np
)

= m

(
k∑
i=1

mi+ r (k + 1)

)
(5.17)

= m

(
r (k + 1) +

1

2
km (k + 1)

)
=

1

2
m (2r + km) (k + 1)

=
1

2
(m+ km) (2r + km)

=
1

2
(n+m− r) (r + n) .

Observe that (5.17) achieves its maximum for

r =
1

2
m,

at which point the value of the objective function is given by

Φ
(
S∗np
)

=
1

8
(m+ 2n)2 .

Thus

Φ
(
S∗np
)

Φ
(
S∗Split

) =
1
8

(m+ 2n)2

1
2
n (n+ 1)

=
1

4n

(m+ 2n)2

n+ 1
.

The global bound is achieved for m = 2 and n = 3, so that r = 1
2
m. This gives

τm ≤
1

4× 3

(3 + 2× 3)2

3 + 1
=

4

3
.

This proves the theorem.

5.3 Power of Splitting on Uniform Machines

So far we have viewed the power of splitting, which for a given problem instance is

defined by the ratio of an objective function of a non-preemptive schedule, over the

objective function of a schedule with splitting jobs. In the previous section we consider

104

CHAPTER 5. POWER OF SPLITTING

this ratio for identical machines. In this section, we investigate the power of splitting

for the problem of minimizing the makespan for the case where machines are uniform.

Recall that in the uniformmachine case, each machineMi is associated with a particular

speed si, so that the process time pj of some job Jj on machine Mj is given by pj/sj.

Throughout the following sections, we assume without loss of generality that jobs are

numbered in non-increasing order of their processing requirement, according to (2.1),

and machines are numbered in non-increasing order of their speeds, according to (2.15).

From Lemma 5.2, it is simple to see that the makespan of an optimal schedule with

splitting jobs Cmax
(
S∗split

)
is equal to the average machine load Tm, so that

Cmax
(
S∗split

)
= Tm =

p (N)

s (M)
, (5.18)

where s (M) is the sum of machine speeds, i.e.

s (M) =
m∑
i=1

si.

In the following sections we determine the power of splitting for a fixed number of

uniform machines.

5.3.1 Two Uniform machines

Consider initially the problem of minimizing the makespan on two uniform machines.

In this problem we have machines M1 and M2, which for simplicity are assumed to

have speeds s1 = s, s ≥ 1, and s2 = 1. From (5.18), the makespan of an optimal

schedule with splitting jobs, and consequently the average machine load, T2, are given

by

Cmax
(
S∗split

)
= T2 =

p (N)

s+ 1
.

Based on the value of λ, as defined in (5.4), we consider the following classes of

instances for this problem.

105

CHAPTER 5. POWER OF SPLITTING

Class 1 Instances

For instances of this class, the makespan of a preemptive schedule, Cmax
(
S∗p
)
, is de-

termined by the size of the largest job in the schedule, so that

Cmax
(
S∗p
)

=
p1
s
.

Hence, the value of λ for instances of this class is given by

λ =
p1
s

T2
> 1.

Lemma 5.5. Given a Class 1 instance of the two uniform machine problem, for the

power of splitting τ 2, it holds that

τ 2 = λ,

and this bound is tight.

Proof:

For instances of this class, an optimal preemptive schedule is obtained by assigning

the largest job, J1, to the fastest machine, M1, while any remaining jobs are assigned

to machine M2. This corresponds to an optimal non-preemptive schedule, hence we

obtain.

Cmax
(
S∗np
)

= Cmax
(
S∗p
)

=
p1
s
.

Hence we obtain

τ 2 =
Cmax

(
S∗np
)

Cmax
(
S∗split

) =
p1
s

T2
= λ,

as required.

Class 2 Instances

For instances of Class 2, the makespan of a preemptive schedule, Cmax
(
S∗np
)
, is given

by the average machine load, T2, so that

λ =
T2
T2

= 1.

For this problem we extend the approach employed by Soper and Strusevich (2014a)

for analyzing the power of preemption for two machines. The algorithm which finds a

non-preemptive schedule is based on the following splitting procedure. For a given set

106

CHAPTER 5. POWER OF SPLITTING

of jobs, the following procedure splits the set into two subsets, with the total processing

time of these subsets being less than two thirds and less than one half of the overall

processing time of the set.

Procedure Split (Soper and Strusevich (2014a))

Input: A set of jobs H = {J1, J2, · · · , Jh} ⊆ N with pj ≤ 2
3
p(H) for 1 ≤ j ≤ h

Output: A partition of set H into two subsets H ′ and H ′′ such that p(H ′) ≤ 2
3
p(H)

and p(H ′′) ≤ 1
2
p(H)

Step 1. If there exists a job Jk such that pk > 1
2
p(H), then define

H ′ := {Jk} , H ′′ = H\ {Jk}

and go to Step 4; otherwise, go to Step 2.

Step 2. If there is a job Jk such that pk > 1
3
p(H) then define

H ′ := H\ {Jk} , H ′′ := {Jk} ,

and go to Step 4; otherwise, go to Step 3.

Step 3. Scanning the jobs in the order of their numbering, determine the job Ju, u > 1

such that
u−1∑
j=1

pj ≤
1

3
p(H),

u−1∑
j=1

pj + pu >
1

3
p(H)

and define

U := {J1, . . . , Ju−1, Ju} .

If

p(U) >
1

2
p(H)

then define

H ′ := U, H ′′ = H\U ;

otherwise, define

H ′ := H\U, H ′′ = U.

Step 4. Stop.

The running time of Procedure Split is O(n). Recall that a non-preemptive schedule

Snp is defined by a partition of the set of jobs, N , into two subsetsN1, N2, where the jobs

107

CHAPTER 5. POWER OF SPLITTING

in each of these sets are assigned to machines M1 and M2 respectively. The following

algorithm due to Soper and Strusevich (2014a) finds a non-preemptive schedule based

on Procedure Split.

Algorithm Q2 (Soper and Strusevich (2014a))

Input: A set of jobs N = {J1, J2, · · · , Jn} to be scheduled on two uniform machines,

where job 1 has the largest processing time, and p1 ≤ sT2

Output: A partition of setN into two subsetsN1 andN2 that define a non-preemptive

schedule

Step 1. If s ≥ 2, define

N1 := N, N2 = ∅

and go to Step 3; otherwise, go to Step 2.

Step 2. Run Procedure Split1 for H = N and obtain the sets H ′ and H ′′. Define

N1 := H ′, N2 = H ′′.

Step 3. Stop.

Theorem 5.5. Algorithm Q2 finds a non-preemptive schedule Snp, such that the bound

τ 2 ≤ φ(s) =

2(s+1)
3s

, if 1 ≤ s ≤ 4
3

s+1
2
, if 4

3
≤ s ≤ 2

s+1
s

if s ≥ 2

, (5.19)

holds, and this bound is tight.

Proof:

Due to the inequality p1 ≤ sT2, for a schedule Snp found in Step 1, we have that

Cmax (Snp) =
p (N)

s

hence we obtain

τ 2 ≤
Cmax (Snp)

Cmax
(
S∗split

) =
p(N)
s

T2
=
s+ 1

s
,

as required.

For the schedule defined by the partition found in Step 2, we have that Cmax (Snp) =

108

CHAPTER 5. POWER OF SPLITTING

max {p (H ′) /s, p (H ′′)}. Thus we obtain

p (H ′)

s
≤ 2

3s
p (N) =

2 (s+ 1)

3s
T2

and

p (H ′′) ≤ 1

2
p (N) =

s+ 1

2
T2.

Observe that for s = 4
3
, the equality

2 (s+ 1)

3s
=
s+ 1

2
,

holds, which is in accordance with (5.19).

Tightness examples of this bound are equivalent to the ones described by Soper and

Strusevich (2014a) in Section 3.2.2.

5.3.2 Three Uniform Machines

Consider the problem of minimizing the makespan on three uniform machines. For

this problem there are three uniform machines M1,M2,M3, with speeds s1, s2 and s3
respectively. From (5.18), we determine that the makespan of an optimal schedule with

splitting jobs is given by

Cmax
(
S∗split

)
= T3 =

p (N)

s1 + s2 + s3
.

Recall from Section 3.2 that an instance I is defined by a set of processing times

Ln and a set of machine speedsMm, so that I = (Pn,Mm) .

Class r Instances

For r, 1 ≤ r ≤ m−1, as per Definition (2.2), the makespan of the preemptive schedule

for an instance I of this class is given by

Cmax
(
S∗p (I)

)
= max {Tr|1 ≤ r ≤ m− 1} ,

where Tr is the average machine load of the r largest jobs on the r fastest machines.

Moreover, for an instance I, consider a partial instance Ir = (Pr,Mr), such that

Pr = {p1, . . . , pr}, and Mr = {M1, . . .Mr}, and a partial instance I ′r = (P ′r,M′
r)

which contains all remaining jobs and machines not in instance Ir, such that P ′r =

109

CHAPTER 5. POWER OF SPLITTING

{pr+1, . . . , pn}, andM′
r = {Mr+1, . . .Mm} .

The following algorithm finds a non-preemptive schedule SCMB in two steps. Ini-

tially, using some heuristicH, two partial non-preemptive schedules SH (Ir) and SH (I ′r)

are obtained for each of the partial instances. Finally the two partial schedules are

combined to produce the non-preemptive schedule for instance I.

Algorithm COMBI

INPUT: A Class r, 1 ≤ r ≤ m− 1 instance I = (Ln,Mm), and a heuristic algorithm

H.

OUTPUT: A non-preemptive schedule SCMB (I).

Step 1. Given an instance I = (Ln,Mm) of Class r, split I into two instances (Lr,Mr)

and (L′r,M′
r).

Step 2. Run heuristic H twice to find schedules SH (Ir) and SH (I ′r).

Step 3. Output schedule SCMB (I) obtained by combining the schedules SH (Ir) and

SH (I ′r) .

Step 4. Stop.

Lemma 5.6. For an instance I where n > m, on three uniform machines M1, M2,

M3, with speeds s1 = s2 = s, and s3 = 1, algorithm COMBI finds a non-preemptive

schedule SCMB (I) such that

τ ≤ max

{
λ,

(
1− s

s+ 1
(λ− 1)

)
φ (s)

}
,

where φ (s) is given by (3.12) and this bound is tight.

Proof:

In Step 1 of the algorithm we obtain instances Ir, I ′r with respective average machine

loads Tr, T ′r, such that

Tr =

∑r
j=1 pj∑r
i=1 si

,

and

T ′r =

∑n
j=r+1 pj∑m
i=r+1 si

.

It is straightforward to check that for an instance of Class r

Tr ≥ T ′r.

110

CHAPTER 5. POWER OF SPLITTING

Moreover, by definition, we have that

λ =
Cmax

(
S∗p (I)

)
Cmax

(
S∗split (I)

) =
Tr
Tm

.

For this proof, we are interested in the maximum value of the ratio

Cmax
(
S∗np (I)

)
Cmax

(
S∗Split (I)

) =
Cmax

(
S∗np (I)

)
Cmax

(
S∗p (I)

) Cmax
(
S∗p (I)

)
Cmax

(
S∗Split (I)

) =
Cmax

(
S∗np (I)

)
Cmax

(
S∗p (I)

) λ.
Observe that for this instance, the makespan of schedule SCMB (I) depends on

which of the two schedules found in Step 2 of the algorithm achieves the maximum

value, so that

Cmax
(
S∗np
)
≤ Cmax (SCMB) = max {Cmax (SH (Ir)) , Cmax (SH (I ′r))} . (5.20)

Consider a parameter κ, κ ≤ 1, such that

κ =
Cmax

(
S∗p (I ′r)

)
Tm

. (5.21)

Thus we obtain

Cmax
(
S∗np (Ir)

)
Cmax

(
S∗p (Ir)

) ≤ Cmax (SH (Ir))

Cmax
(
S∗p (Ir)

) =
Cmax (SH (Ir))

Tr
;

Cmax
(
S∗np (L′r,M′

r)
)

Cmax
(
S∗p (Lr,Mr)

) ≤ Cmax (SH (L′r,M′
r))

Cmax
(
S∗p (Lr,Mr)

) =
Cmax (SH (L′r,M′

r))
λ
κ
Cmax

(
S∗p (L′r,M′

r)
) .

Using these relationships we obtain

Cmax
(
S∗np (I)

)
Cmax

(
S∗p (I)

) ≤ Cmax (SCMB (I))

Tr

= max

{
Cmax (SH (Ir))

Tr
,
Cmax (SH (I ′r))
λ
κ
Cmax

(
S∗p (I ′r)

)} .
For m = 3, and r = 1, we obtain

Cmax (SH (Lr,Mr))

Tr
=

T1
T1

= 1

.

111

CHAPTER 5. POWER OF SPLITTING

since the one job J1 scheduled must be placed on the first machine. Hence the power

of splitting must be determined by the makespan of the schedule on the remaining

machines
Cmax (SCMB (I))

Tr
≤ Cmax (SH (L′r,M′

r))
λ
κ
Cmax

(
S∗p (L′r,M′

r)
) .

Now if Cmax
(
S∗p (L′r,M′

r)
)

= T ′r, then let our heuristic H use Algorithm Q2 de-

scribed in Section 5.3.1 when

Cmax (SH (L′r,M′
r))

Cmax
(
S∗p (L′r,M′

r)
) ≤ φ (s) =

2(s+1)
3s

, if 1 ≤ s ≤ 4
3

s+1
2
, if 4

3
≤ s ≤ 2

s+1
s
, if s ≥ 2

and hence

Cmax
(
S∗np (I)

)
Cmax

(
S∗p (I)

) ≤ max
{

1,
κ

λ
φ (s)

}
.

Thus
Cmax

(
S∗np (I)

)
Cmax

(
S∗Split (I)

) =
Cmax

(
S∗np (I)

)
Cmax

(
S∗p (I)

) λ ≤ max {λ, κφ (s)} .

Using Cmax
(
S∗p (L′1,M′

1)
)

= T ′1, we can now (for m = 3) derive an expression for κ

κ =
Cmax

(
S∗p (L′1,M′

1)
)

Cmax
(
S∗p (Ln,Mm)

) =
T ′1
Tm

=

p(N)−p1∑m
i=2 si

Tm
=

p(N)−s1λTm∑m
i=2 si

Tm
=

∑m
i=1 si − s1λ∑m

i=2 si

= 1− s1 (λ− 1)∑m
i=2 si

κ = 1− s1
s2 + s3

(λ− 1) .

Hence, for s1 = s2 = s, s3 = 1

Cmax
(
S∗np (I)

)
Cmax

(
S∗Split (I)

) ≤ max

{
λ,

(
1− s

s+ 1
(λ− 1)

)
φ (s)

}
.

Tightness examples are scaled versions of those for when λ = 1.

112

CHAPTER 5. POWER OF SPLITTING

s p1 p2 p3 p4 Cmax(S
∗
p) S∗np Cmax(S

∗
np) τ

N1 N2 N3

1
[
1, 4

3

]
λsT3 κ s+1

3
T3 κ s+1

3
T3 κ s+1

3
T3 λT3 1 2, 3 4 κ2(s+1)

3s
T3

κ
λ
2(s+1)
3s

2a
[
4
3
, 2
]

λsT3 κ s+1
2
T3 κ s+1

2
T3 − λT3 1 2 3 κ s+1

2
T3

κ
λ
s+1
2

2b [2,+∞) λsT3 κ s+1
2
T3 κ s+1

2
T3 − λT3 1 2, 3 ∅ κ s+1

s
T3

κ
λ
s+1
s

In the above instances T3 sets the scale, i.e. it is an input parameter. We must

have κ = 1− s1
s2+s3

(λ− 1) in order for the definitions to be consistent.

If Cmax
(
S∗p (L′1,M′

1)
)

= p2
s2
, then we know p2

s2
≤ p1

s1
, since it belongs to Class 1 (and

not Class 2). Hence the makespan is dominated by machineM1. Our heuristic schedule

would place job J2 on the second machine and the rest of the jobs on machine M3,

where they would complete before J2 on M2. Hence in this situation

Cmax
(
S∗np (I)

)
Cmax

(
S∗Split (I)

) = λ ≤ max {λ, κφ (s)} .

113

CHAPTER 6

Conclusion

The main body of this work is a study of the power of preemption, and the power of

splitting for classical scheduling models on identical, uniform and unrelated machines.

For the objectives of minimizing the makespan and sum of completion times, we provide

a review of preemptive, non-preemptive and splitting job problems.

In Chapter 1 we introduce the necessary concepts and notation for this thesis,

detailing the nature of the machine environments, job characteristics, and the objective

functions which are investigated. We also present a brief introduction to theory of

computational complexity, and introduce the underlying optimization problems and

algorithm associated with the main body of our work. The scheduling problems which

are considered in this thesis are introduced in Chapter 2, where the nature of each

problem is discussed, and the best known results are presented. A detailed review of

the existing body of work on the power of preemption is provided in Chapter 3.

Our main results are presented in Chapter 4, where we consider the power of limited

preemption for several scheduling problems with a single preemption, and Chapter 5,

where we consider schedules with splitting jobs. Those are listed in the following

section.

6.1 Contributions

• In Section 4.1 we prove that for three identical machines, the problem of mini-

mizing the makespan with at most one preemption, P3 |#pmtn ≤ 1|Cmax, and
in consequence any problem where #pmtn ≤ m− 2, is NP-hard in the ordinary

sense by demonstrating a polynomial reduction from the well-known Subset-

Sum problem.

114

CHAPTER 6. CONCLUSION

• For the problem of minimizing the makespan with a single preemption on uniform
machines, in Section 4.2.1 we prove that the problem of minimizing the makespan

on two uniform machines with a single preemption is solvable in polynomial

time, and provide an algorithm which finds an optimal schedule for problem

Q2 |#pmtn ≤ 1|Cmax in O (n) time. As part of our solution we also give an

expression for the value of the objective function of this problem.

• In Section 4.2.3 we extend the results by Jiang et al. (2014) on the power of
preemption for schedules with a single preemption of uniform machines to the

general case of m machines. Here we provide a polynomial time algorithm for

problem Qm |#pmtn ≤ 1|Cmax, and give tight upper bounds for the power of
limited preemption for this problem.

• In Section 4.2.4 we perform a parametric analysis of the power of preemption

for problem Q3 |#pmtn ≤ 1|Cmax, and we provide tight upper bounds for the
different classes of instances.

• For the single preemption problem on two unrelated machines, in Section 4.3 we

prove that problem R2 |#pmtn ≤ 1|Cmax is NP-hard in the ordinary sense via a
polynomial reduction from the Partition problem.

• In Section 4.3.1 we give the power of preemption for a class of instances of the
problem on two unrelated machines, where an optimal preemptive schedule re-

quires only a single preemption.

• For the problems of minimizing the makespan and the sum of completion times

on identical machines with splitting jobs, in Section 5.2 we perform an analysis of

the power of splitting. For these problems we provide tight bounds on the power

of splitting for several classes of instances.

• For the problem of minimizing the makespan on uniform machines with splitting
jobs, in Section 5.3 we extend the results by Soper and Strusevich (2014a) for

the case of two uniform machines, and provide the bounds for the power of

splitting for different classes this problem. Moreover, for the same problem on

three uniform machines, we analyze the bounds of the power of splitting for Class

r, 1 ≤ r ≤ m− 1 instances.

115

CHAPTER 6. CONCLUSION

6.2 Future Work

The completion of this work has left a number of open questions which require further

research. Suggestions for future work are discussed next.

• Extension of the power of limited preemption from a single preemption to a finite
number of preemptions on uniform machines.

• Investigation of the power of preemption for other classes of instances for the
two unrelated machine problem, and an extension of that result to m number of

machines.

• Extension of the results on the power of splitting for the three uniform machine

problem to other classes of instances, and a generalization of the bounds for m

machines.

• Study of the power of splitting for the problem of minimizing the sum of com-

pletion times on m uniform machines.

• Study of the power of splitting for the makespan and sum of completion times

objectives on unrelated machines.

116

REFERENCES

Arad, D., Mordechai, Y., & Shachnai, H. (2014). Tighter Bounds for Makespan Mini-

mization on Unrelated Machines. arXiv preprint arXiv:1405.2530.

Atallah, M. J. (Ed.). (1998). Algorithms and theory of computation handbook. CRC

press.

Bijsterbosch, J., & Volgenant, A. (2010). Solving the Rectangular assignment problem

and applications. Annals of Operations Research, 181(1), 443-462.

Birkhoff, G. (1946). Three observations on linear algebra. Univ. Nac. Tucumán. Revista

A, 5, 147-151.

Bourgeois, F., & Lassalle, J. C. (1971). An extension of the Munkres algorithm for the

assignment problem to rectangular matrices. Communications of the ACM, 14(12),

802-804.

Braun, O., & Schmidt, G. (2003). Parallel Processor Scheduling with Limited Number

of Preemptions. SIAM Journal on Computing, 32(3), 671-680.

Brucker, P. (2007). Scheduling Algorithms (3rd edition). Berlin: Springer.

Brucker, P., Hurink, J., Jurisch, B., & Wöstmann, B. (1997). A branch & bound algo-

rithm for the open-shop problem. Discrete Applied Mathematics, 76(1), 43-59.

Burkard, R. E., & Cela, E. (1999). Linear assignment problems and extensions (pp.

75-149). Springer US.

Chen, B. (1991). Parametric bounds for LPT scheduling on uniform processors. Acta

Mathematicae Applicatae Sinica, 7(1), 67-73.

Chen, B. (2004). Parallel scheduling for early completion. Handbook of scheduling:

algorithms, models, and performance analysis. CRC Press.

117

REFERENCES

Chen, B., Potts, C. N., & Woeginger, G. J. (1999). A review of machine scheduling:

Complexity, algorithms and approximability. In Handbook of combinatorial optimiza-

tion (pp. 1493-1641). Springer US.

Coffman Jr, E. G., & Garey, M. R. (1993). Proof of the 4/3 Conjecture for Preemptive

vs. Nonpreemptive two-processor scheduling. Journal of the ACM (JACM), 40(5),

991-1018.

Conway, R. W., Maxwell, W. L., & Miller, L. W. (1967). Theory of Scheduling, Palo

Alto-London.

Cook, S. A. (1971, May). The complexity of theorem-proving procedures. In Proceedings

of the third annual ACM symposium on Theory of computing (pp. 151-158). ACM.

Correa, J. R., Skutella, M., & Verschae, J. (2012). The Power of Preemption on Unre-

lated Machines and Applications to Scheduling Orders. Mathematics of Operations

Research, 37(2), 379-398.

Crescenzi, P., & Panconesi, A. (1991). Completeness in approximation classes. Infor-

mation and Computation, 93(2), 241-262.

Dantzig, G. B., Orden, A., & Wolfe, P. (1955). The generalized simplex method for

minimizing a linear form under linear inequality restraints. Pacific Journal of Math-

ematics, 5(2), 183-195.

Davis, E., & Jaffe, J. M. (1981). Algorithms for scheduling tasks on unrelated proces-

sors. Journal of the ACM (JACM), 28(4), 721-736.

De, P., & Morton, T. E. (1980). Scheduling to minimize makespan on unequal parallel

processors. Decision Sciences, 11(4), 586-602.

Dobson, G. (1984). Scheduling independent tasks on uniform processors. SIAM Journal

on Computing, 13(4), 705-716.

Edmonds, J., & Karp, R. M. (1972). Theoretical improvements in algorithmic effi ciency

for network flow problems. Journal of the ACM (JACM), 19(2), 248-264.

Epstein, L., Levin, A., Soper, A. J., Strusevich, V.A.(2016). Power of Preemption for

Minimizing Total Completion Time on Uniform Machines.

Ford Jr, L. R., & Fulkerson, D. R. (1955). A simple algorithm for finding maximal

network flows and an application to the Hitchcock problem (No. RAND/P-743).

RAND CORP SANTA MONICA CA.

118

REFERENCES

Friesen, D. K. (1987). Tighter Bounds for LPT Scheduling on Uniform Processors.

SIAM Journal on Computing, 16(3), 554-560.

Gairing, M., Monien, B., & Woclaw, A. (2007). A faster combinatorial approximation

algorithm for scheduling unrelated parallel machines. Theoretical Computer Science,

380(1), 87-99.

Garey, M. R., & Johnson, D. S. (1979). A Guide to the Theory of NP-Completeness.

San Francisco.

Gonzalez, T., & Sahni, S. (1976). Open shop scheduling to minimize finish time. Journal

of the ACM (JACM), 23(4), 665-679.

Gonzalez, T., Ibarra, O. H., & Sahni, S. (1977). Bounds for LPT schedules on uniform

processors. SIAM Journal on Computing, 6(1), 155-166.

Gonzalez, T., & Sahni, S. (1978). Preemptive scheduling of uniform processor systems.

Journal of the ACM (JACM), 25(1), 92-101.

Gonzalez, T., Lawler, E. L., & Sahni, S. (1990). Optimal preemptive scheduling of two

unrelated processors. ORSA Journal on Computing, 2(3), 219-224.

Graham, R. L. (1966). Bounds for Certain Multiprocessing Anomalies. Bell System

Technical Journal, 45(9), 1563-1581.

Graham, R. L. (1969). Bounds on Multiprocessing Timing anomalies. SIAM Journal

on Applied Mathematics, 17(2), 416-429.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. H. G. (1979). Optimization

and approximation in deterministic sequencing and scheduling: a survey. Annals of

discrete Mathematics, 5, 287-326.

Hariri, A. M. A., & Potts, C. N. (1991). Heuristics for Scheduling Unrelated Parallel

Machines. Computers & operations research, 18(3), 323-331.

Hochbaum, D. S., & Shmoys, D. B. (1987). Using dual approximation algorithms for

scheduling problems theoretical and practical results. Journal of the ACM (JACM),

34(1), 144-162.

Horowitz, E., & Sahni, S. (1976). Exact and Approximate Algorithms for Scheduling

Nonidentical Processors. Journal of the ACM (JACM), 23(2), 317-327.

119

REFERENCES

Horvath, E. C., Lam, S., & Sethi, R. (1977). A Level Algorithm for Preemptive Schedul-

ing. Journal of the ACM (JACM), 24(1), 32-43.

Ibarra, O. H., & Kim, C. E. (1977). Heuristic Algorithms for Scheduling Independent

Tasks on Nonidentical Processors. Journal of the ACM (JACM), 24(2), 280-289.

Jiang, Y., Weng, Z., & Hu, J. (2014). Algorithms with Limited Number of Preemptions

for Scheduling on Parallel Machines. Journal of Combinatorial Optimization, 27(4),

711-723.

Johnson, D. S., & Garey, M. R. (1979). Computers and intractability: A guide to the

theory of NP-completeness. Freeman&Co, San Francisco, 32.

Karp, R. M. (1972). Reducibility Among Combinatorial Problems (pp. 85-103). Springer

US.

Kellerer, H., Mansini, R., Pferschy, U., & Speranza, M. G. (2003). An effi cient fully

polynomial approximation scheme for the subset-sum problem. Journal of Computer

and System Sciences, 66(2), 349-370.

Khachiyan, L. G. (1980). Polynomial algorithms in linear programming. USSR Com-

putational Mathematics and Mathematical Physics, 20(1), 53-72.

Kovács, A. (2006). Tighter Approximation Bounds for LPT Scheduling in Two Special

Cases. In Algorithms and Complexity (pp. 187-198). Springer Berlin Heidelberg.

Kovács, A. (2010). New Approximation Bounds for LPT Scheduling. Algorithmica,

57(2), 413-433.

Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval re-

search logistics quarterly, 2(1-2), 83-97.

Lawler, E. L., & Labetoulle, J. (1978). On Preemptive Scheduling of Unrelated Parallel

Processors by Linear Programming. Journal of the ACM (JACM), 25(4), 612-619.

Labetoulle, J., Lawler, E. L., Lenstra, J. K.,& Kan, A. R. (1982). Preemptive scheduling

of uniform machines subject to release dates. In Progress in combinatorial optimiza-

tion. Waterloo, Ont., 245-261

Lin, J. H., & Vitter, J. S. (1992, July). e-Approximations with minimum packing

constraint violation. In Proceedings of the twenty-fourth annual ACM symposium on

Theory of computing (pp. 771-782). ACM.

120

REFERENCES

Lee, C. Y., & Strusevich, V. A. (2005). Two-machine Shop Scheduling with an Unca-

pacitated Interstage Transporter. IIE Transactions, 37(8), 725-736.

Lenstra, J.K. & Rinnooy Kan, A.H.G. (1979), Computational Complexity of Discrete

Optimization Problems, In: P.L. Hammer, E.L. Johnson and B.H. Korte, Editor(s),

Annals of Discrete Mathematics, Elsevier, Volume 4, Pages 121-140, ISSN 0167-5060,

ISBN 9780444853226

Lenstra, J. K., Shmoys, D. B., & Tardos, É. (1990). Approximation Algorithms for

Scheduling Unrelated Parallel Machines. Mathematical programming, 46(1-3), 259-

271.

Liu, J. W. S., & Liu, C. L. (1974). Performance analysis of heterogeneous multiprocessor

computing systems. Computer architectures and networks (E. Gelenbe and R. Mahl,

eds.), North Holland, 331-343.

Martello, S., Soumis, F., & Toth, P. (1997). Exact and approximation algorithms for

makespan minimization on unrelated parallel machines. Discrete applied mathemat-

ics, 75(2), 169-188.

McNaughton, R. (1959). Scheduling with deadlines and loss functions. Management

Science, 6(1), 1-12.

Mokotoff, E. (1999). Scheduling to minimize the makespan on identical parallel ma-

chines: An LP-based algorithm. Investigacion Operative, 97-107.

Papadimitriou, C. H. (1981). On the Complexity of Integer Programming. Journal of

the ACM (JACM), 28(4), 765-768.

Papadimitriou, C. H. (2003). Computational complexity. John Wiley and Sons Ltd..

Papadimitriou, C., & Yannakakis, M. (1988, January). Optimization, approximation,

and complexity classes. In Proceedings of the twentieth annual ACM symposium on

Theory of computing (pp. 229-234). ACM.

Pinedo, M. L. (2012). Scheduling: theory, algorithms, and systems. Springer.

Potts, C. N. (1985). Analysis of a linear programming heuristic for scheduling unrelated

parallel machines. Discrete Applied Mathematics, 10(2), 155-164.

Potts, C. N., & Van Wassenhove, L. N. (1992). Integrating Scheduling with Batching

and Lot-Sizing: A Review of Algorithms and Complexity. Journal of the Operational

Research Society, 43(5), 395—406. http://doi.org/10.2307/2583559

121

REFERENCES

Queyranne, M., & Sviridenko, M. (2002). A (2+ε)-approximation algorithm for the

generalized preemptive open shop problem with minsum objective. Journal of Algo-

rithms, 45(2), 202-212.

Rustogi, K., & Strusevich, V. A. (2013). Parallel Machine Scheduling: Impact of

Adding Extra Machines. Operations Research, 61(5), 1243-1257.

Schulz, A. S., & Skutella, M. (2002). Scheduling Unrelated Machines

by Randomized Rounding. SIAM J. Discret. Math., 15(4), 450—469.

http://doi.org/10.1137/S0895480199357078

Shmoys, D. B., & Tardos, É. (1993). An Approximation Algorithm for the Generalized

Assignment Problem. Mathematical Programming, 62(1-3), 461-474.

Serafini, P. (1996). Scheduling Jobs on Several Machines with the Job Splitting prop-

erty. Operations Research, 44(4), 617-628

Shor, N. Z. (1972). Utilization of the operation of space dilatation in the minimization

of convex functions. Cybernetics and Systems Analysis, 6(1), 7-15.

Sitters, R. (2005). Complexity of preemptive minsum scheduling on unrelated parallel

machines. Journal of Algorithms, 57(1), 37-48.

Sitters, R. A. (2008). Approximability of average completion time scheduling on unre-

lated machines. In Algorithms-ESA 2008 (pp. 768-779). Springer Berlin Heidelberg.

Skutella, M. (2001). Convex quadratic and semidefinite programming

relaxations in scheduling. Journal of the ACM, 48(2), 206—242.

http://doi.org/10.1145/375827.375840

Soper, A. J., & Strusevich, V. A. (2014a). Single parameter analysis of power of pre-

emption on two and three uniform machines. Discrete Optimization, 12, 26-46.

Soper, A. J., & Strusevich, V. A. (2014b). Power of Preemption on Uniform Parallel

Machines. Approximation, Randomization, and Combinatorial Optimization. Algo-

rithms and Techniques (APPROX/RANDOM 2014)}, 28, 392-402.

Von Neumann, J. (1953). A certain zero-sum two-person game equivalent to the optimal

assignment problem. Contributions to the Theory of Games, 2, 5-12.

Williamson, D. P., Hall, L. A., Hoogeveen, J. A., Hurkens, C. A. J., Lenstra, J. K.,

Sevast’Janov, S. V., & Shmoys, D. B. (1997). Short shop schedules. Operations Re-

search, 45(2), 288-294.

122

REFERENCES

Woeginger, G. J. (2000). A comment on scheduling on uniform machines under chain-

type precedence constraints. Operations Research Letters, 26(3), 107-109.

Xing, W., & Zhang, J. (2000). Parallel machine scheduling with splitting jobs. Discrete

Applied Mathematics, 103(1), 259-269.

123

