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ABSTRACT

A self-propagating malware is a malicious software program that spreads itself across

the Internet by exploiting flaws in software systems and therefore capable of launching

attack against vulnerable Internet hosts. Fast self-propagating malware poses a security

threat to hosts that are connected to the Internet because the speed of their propagation

is very high and causes disruption of services across the Internet. Thus it becomes crucial

to effectively detect and contain the propagation of fast self-propagating malware on the

Internet.

This thesis presents a mechanism for the detection and containment of fast self-

propagating malware. The thesis initially presents an overview of self-propagating mal-

ware and the need for a solution to counter the propagation of this class of malware.

The thesis also presents a comprehensive literature survey to identify research gaps and

limitations of previously reported worm detection and containment systems. Based on

the identified limitations and shortcomings, an improved detection and containment

scheme has been developed to counter the spread of fast self-propagating malware. The

developed scheme, termed NEDAC, uses a cross-layer architecture to provide a com-

bined countermeasure solution against fast self-propagating malware, i.e., a detection

technique at network layer and a containment technique at data link layer. Further-

more, an improved testing environment, termed V-Network, has been developed for

high fidelity malware experimentation and testing of countermeasure systems. An eva-

luation framework has been developed and used to test the NEDAC scheme along with

other previously reported countermeasure systems using known and contemporary self-

propagating malware. The NEDAC scheme demonstrated a better performance than

the previously reported countermeasure systems.
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Chapter 1

GENERAL INTRODUCTION

1.1 Introduction

The Internet today provides an unprecedented medium that connects different devices

together in order to share information across the globe. This plays a key role in our

personal daily activities and operations of different organisations and governments. Ad-

ditionally, most critical and financial systems are largely dependent on the Internet for

their communications and data transmissions. As a result, the Internet must be kept

available continuously and secured against malware and other malicious activities that

may compromise its integrity.

Network worms are a class of malware that self-propagate on the Internet by exploiting

vulnerabilities and flaws in software systems that have not been acknowledged (zero-day

worms) or patched at the time of outbreak. The Internet has experienced a number of

worm outbreaks such as Slammer, Code Red and Witty (Tidy et al., 2014) and Conficker

(Soltani et al., 2014) that caused disruption of services and significant financial losses

to government, transportation and other institutions ranging from millions to billions

of US Dollars (Fosnock, 2005) as summarised in Figure 1.1. Additionally, the Stuxnet

worm was discovered in 2010, which targeted industrial control systems in order to cause

damage (Chen and Abu-Nimeh, 2011; Falliere et al., 2011). Stuxnet led to the release of

other variants such as Duqu (Chien et al., 2012), Flame (Goyal et al., 2012) and Gauss

(Bencsáth et al., 2012) for cyber espionage. The number of worm outbreaks reduced

1



1.1 Introduction

from 2004 due to change in malware author motivation from causing network disruption

to financial gain, which is more beneficial. Therefore fast scanning worms became less

useful but the technical threat remained. This threat makes network worms to be a

viable option for causing serious damage and disruption to the Internet even without

malicious payloads as in the case of the Slammer worm (Tidy et al., 2014).

$10 to $100 Million

$ 1.1 Billion

$2.6 Billion

$645 Million

$1.2 Billion

$1.3 Billion

$11 Million

> $15 Million

Morris 1988 Mellissa 1999 Code Red 2001 Nimda 2001 Slammer 2003 Blaster 2003 Witty 2004 Conficker 2008/9

Figure 1.1: Financial losses caused by previous worm outbreaks on the Internet

A vulnerability is a flaw or weakness in software, services or security policies that allows

buffer overflows or remote code execution on a target host (Tidy et al., 2014). This

enables an attacker to send worm code capable of infecting vulnerable hosts on the

Internet. An attacker can also transfer a backdoor to a vulnerable host, which can be

used to acquire complete control of a victim host. Vulnerabilities that can be exploited by

a worm continue to be published by system vendors including the Microsoft RDP (CVE-

2012-0002) of 2012 (CVE, 2012) and ShellShock (CVE-2014-6271) (CVE, 2014a) and

Drupal (CVE-2014-3704) (CVE, 2014b) of 2014. These vulnerabilities can be exploited

by sending a crafted datagram to a target host, which allows remote code execution.

The present threat of worm outbreak therefore remains clear.
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1.2 Motivation

Common countermeasures to malware are signature-based anti-virus software, network

intrusion detection systems and host intrusion detection systems, which along with net-

work firewalls, counter the effects of a large proportion of contemporary malware. How-

ever, the ability of such systems to counter the effects of zero-day fast scanning network

worms is limited due to the zero-day (or close to zero-day) nature of many such mal-

ware samples combined with the propagation delay for the distribution of signatures.

Therefore, the high propagation and infection rates of fast scanning network worms

pose a significant security threat, with consequent damage to networks and the Inter-

net. Thus, it is important to effectively identify and counter the propagation of fast

scanning network worms, before causing damaging to networks and the Internet using a

state of the art detection and containment mechanism. This mechanism must first work

without the need to rely on signatures as in the case of common anti-virus software and

signature based intrusion detection systems. Methods which rely on content signatures

are unlikely to detect zero-day scanning worms because the signatures are unknown at

the point of the outbreak. Secondly, due to the high propagation rates of zero-day fast

scanning network worms, the traditional approach of waiting for patches to be released

by vendors to fix vulnerabilities is not viable (Ahmad and Woodhead, 2015).

A range of behavioural detection and suppression mechanisms has been reported in

previously published security research work. However, there are limitations and short-

comings in the reported mechanisms. The mechanisms that use payload information

(e.g. the technique reported by Kaur and Singh (2014)) to identify worm datagrams

have limitations such as computational complexity , management overhead (Jyothsna

et al., 2011), high rates of false positives (Li et al., 2008) and incur significant delays

in deployment and detection (Kim et al., 2012). Rate limiting techniques (e.g. those

reported by Shahzad and Woodhead (2014b)) alone can only slow worm infections. Tech-

niques that use rate of successful or failed connections (e.g. the technique reported by

Rasheed et al. (2009)), and some datagram-header based anomaly detection systems
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(e.g. those reported by Srivastava and Giffin (2010), Comar et al. (2013) and AlEroud

and Karabatis (2013)) are specific to TCP-based worms and/or consume resources in

order to keep track of distinct connection and host information, most especially in large

networks (Ahmad and Woodhead, 2015).

Thus, it is desirable to have a fast and accurate worm countermeasure solution that

is capable of detecting and containing the propagation of fast scanning network worms

before they cause damage to systems and networks without affecting benign network

traffic; that is the false-positive rate must be low. Furthermore, numerous countermeas-

ure techniques (Liao et al., 2013) have been developed by security researchers to mitigate

worm attacks, but the speed at which zero-day fast scanning network worms propagate

is very high for the techniques to act effectively.

1.3 Key Research Contributions

This thesis presents a worm countermeasure mechanism that uses a sensitive network

level detection system to identify fast scanning network worms. The mechanism also uses

a data link containment system to block an identified worm infection, which enables the

isolation of an infected host from a local network. The cross-layer technique enables

the mechanism to provide a powerful and combined countermeasure solution for fast

scanning network worms. A network level solution was chosen because it provides an

overall picture of datagrams moving across the network and the number of devices

involved in detecting malware are fewer compared to a host based solution. Furthermore,

an improved virtualised network environment with large scale and advanced features has

been developed for worm experimentation and testing of countermeasure systems. The

performance of the countermeasure mechanism has been evaluated using previous worms

and contemporary pseudo-worms developed based on contemporary vulnerabilities.
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1.4 Thesis Outline

This section presents the organization of the remaining parts of the thesis. Chapter 2

presents a comprehensive survey of related research work in the area of worm detection

and containment, and then worm and countermeasure testing environments. Chapter 3

presents the developed worm detection and containment mechanism. Chapter 4 presents

the environment used for worm experimentation and countermeasure testing. Chapter

5 presents details of the evaluation programme used to test the performance of the

developed worm countermeasure solution. Chapter 6 presents details of the experiment-

ation conducted and the results obtained. Finally, Chapter 7 concludes the thesis and

discusses possible future work.
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Chapter 2

SURVEY OF RELATED WORK

2.1 Introduction

A network worm is a class of software that is potentially dangerous, because of its highly

virulent nature. Fast scanning network worms are a particularly dangerous sub-class of

such malware, because hosts infected by a fast scanning network worm send out worm

infectious datagrams to random IP addresses rapidly seeking more vulnerable hosts as

seen during the outbreak of the Slammer worm (Jamil and Chen, 2006), which caused

network congestion and disruption of services (Tidy et al., 2014).

The self-propagation behaviour of network worms has attracted the attention of cyber

security researchers due to the speed with which fast scanning network worms infect a

population of vulnerable hosts. There have been significant recent advances in studying

the infection pattern of network worms using different techniques and mechanisms (Liao

et al., 2013), with the aim of developing a range of countermeasure systems. Despite

significant research efforts that have been devoted to preventing the spread of worms, the

propagation of fast scanning network worms poses a serious security threat to networks

and the Internet. This is because fast scanning network worms propagate very quickly

through networks and across the Internet (Chen et al., 2003). Some fast scanning net-

work worms can potentially infect almost all vulnerable hosts in a short period of time

such as the case of the Code Red and Slammer worms (Tidy et al., 2014). Additionally,

the rapid advances of high speed Internet connectivity and network technologies has
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enabled fast scanning network worms to potentially propagate at a speed much faster

than human countermeasures can respond (Wang et al., 2014).

Thus, the threat posed by the rapid spread of fast scanning network worms requires an

automated technique that is relatively fast to detect and counter such malware because

the speed of their propagation is high for manual responses such as patching, router-

/firewall reconfiguration or waiting for the release of new signatures (Jamil and Chen,

2006).

This chapter begins by presenting an overview of network worms, their propagation

characteristics and the vulnerabilities they exploit. The chapter then presents a survey

of the mechanisms proposed in literature to detect and contain such worm propagation.

The survey concentrates on identifying research issues in the development of fast scan-

ning network worm detection and countermeasure systems and the environments used

to evaluate the virulence of the worms and countermeasures.

2.2 Network Worms

A network worm is a malicious software program that propagates itself across a network

by infecting hosts and in some cases launching malicious activities. The infection is

achieved by exploiting vulnerabilities in host network services that have not been patched

or unacknowledged (zero-day worms) at the point of an outbreak (Tidy et al., 2014).

A host that has been infected by a worm actively discovers and spreads a copy of the

worm to other vulnerable hosts on the Internet (Ahmad and Woodhead, 2015). Unlike

a virus that searches for files in a computer system to which to attach itself or requires

some sort of user intervention for propagation (Yang et al., 2013), a worm has the ability

to search for new targets and propagates itself across networks (Wang et al., 2014). The

propagation of a worm uses either TCP or UDP transmission schemes (Li et al., 2008).

In TCP transmission, the worm requires a three-way handshake to establish a connection

with the vulnerable host before transferring a copy of the worm code. Therefore, when

the worm sends out a TCP SYN datagram to initiate a connection, it must wait until
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it receives a corresponding SYN/ACK or timeout datagram from the host it is trying

to probe. On the other hand, UDP is connectionless, so UDP worms do not require

a connection to be established before infection can begin. The implementation of the

worm is normally self-carried and included in the first datagram sent to the target,

which make UDP worms spread very fast as seen in the Slammer outbreak (Tidy et al.,

2014). Fast scanning network worms often cause harm to services and networks such as

denial of services (Moore et al., 2003a), damage (Shannon and Moore, 2004), deploying

malicious programs (Moore et al., 2003b) and other cyber crimes (Falliere et al., 2011).

A worm infection often begins with a single host, which then targets a set of IP addresses,

searching for more vulnerable hosts. If the worm successfully hits a vulnerable host, it

then transfers over a copy of itself to the new host, which begins executing the worm

code. Network worms can be broadly classified as scanning worms and topological worms

based on the target discovery strategy (Wang et al., 2014). Scanning worms propagate

themselves on the Internet by probing addresses looking for vulnerable hosts. Figure 2.1

depicts the propagation behaviour of a scanning worm.

Figure 2.1: Propagation of a scanning worm

A topological worm infects topological neighbours based on the local information found

on the victim hosts such as URL addresses on the disc of an infected host and use

them to conduct more probing attacks. Figure 2.2 depicts the propagation behaviour
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of a topological worm. Topological worms generally spread more slowly than scanning

worms (Weaver et al., 2003), particularly fast scanning worms.

Figure 2.2: Propagation of a topological worm

2.2.1 Scanning Worms

A scanning worm spreads by employing various target discovery techniques in order

to exploit a vulnerability (Weaver et al., 2003). Upon infecting a vulnerable host, the

worm uses the victim host to spread copies of itself automatically by probing a set of IP

addresses (Wang et al., 2014). This technique of probing a set of IP addresses or working

through a set of ordered addresses to identify vulnerable hosts is known as scanning. The

scanning strategy can be classified as random, permutation, localized, hit-list, stealthy

or routable scanning (Staniford et al., 2002; Zou et al., 2006), as detailed below.

• Random Scanning: The random scanning technique is the most common and

simple target finding strategy, where worms generate pseudo-random IP addresses

and then try to connect to them. Most scanning worms propagate by probing

pseudo-random addresses looking for vulnerable hosts. Upon infecting a vulnerable

host, the copy of the worm is then transferred to the infected host, which in turn

enables the victim to infect other vulnerable hosts. The limitations of random

scanning are:
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1. Probing addresses multiple times.

2. Scanning addresses that are not used.

3. No determination of whether hosts are already infected.

4. Often generates a large amount of unusual traffic and therefore is relatively

easy to detect.

• Permutation Scanning: In permutation scanning, an infected host is assigned

with part of a pseudo-random permuted IP address space to scan and infect vulner-

able hosts, i.e., dividing up the address space within which each new worm instance

scans for new vulnerable hosts. The scanning behaviour starts randomly, then the

infected hosts work their way through the permutation to find vulnerable hosts. In

addition, if the worm encounters an already infected host, it assumes that another

worm is working through that sequence of permutation, and therefore chooses a

new random point and proceeds with the scanning. This strategy resolves some of

the problems of random scanning whilst maintaining random probing behaviour.

• Localised Scanning: The localised scanning technique probes vulnerable hosts

within the subnet of an infected host. The probe initially infects vulnerable hosts

on the Internet, and then targets addresses that are close to the infected host.

This technique has the potential to successfully spread rapidly within internal net-

works because the worm has already crossed firewalls and other perimeter security

systems.

• Hit-list Scanning: The hit-list scanning technique uses a pre-compiled list of host

IP addresses that are potentially vulnerable. This list is compiled by scanning the

Internet slowly and stealthy over a long period to evade any suspicion, collecting

information from publicly available resources such as SHODAN (Goldman, 2014)

or manual reconnaissance. Hit-list scanning can be extremely fast, but requires

the compilation of the target address list.

• Routable Scanning: The routable scanning technique narrows the scanning
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space by probing IP addresses from within the routable IPv4 address space in-

stead of the whole IPv4 address space, which increases the spreading speed of a

worm. Routable scanning also reduces the chances of detection due to a reduction

in the number of “host unreachable” ICMP return datagrams and so makes the

worm less easy to detect.

2.2.2 Worm Activation

After a worm probes an IP address and transmits a copy to the infected host, the worm

is then activated through self-activation or a scheduled process (Weaver et al., 2003). In

self-activation, the worm will initiate its execution using commands with the privilege

of the exploited service. Alternatively, a scheduled process on the infected host is used

to execute the worm.

2.2.3 Worm Payload Execution

The final action of a network worm after infecting a vulnerable host is to execute its

payload, which depends on the payload carried by the worm, or, indeed whether it

has one (Weaver et al., 2003). The payload is the part of the worm that carries the

data identifying the goal of the worm author. The payload format and its propagation

can occur using different mechanisms. Some worms make the payload size variable by

padding the payload with garbage data, or fragment the worm payload differently and

reassemble the pieces at the target; these are called monomorphic worms (Li et al.,

2008). A worm that changes its payload dynamically by scrambling the program, so

every instance of the worm looks different but functions in exactly the same way is

known as a polymorphic worm (Kaur and Singh, 2014). The payload can carry code for

destructive purposes (Shannon and Moore, 2004), financial crime (Goyal et al., 2012),

stealth and other malicious activities (Bencsáth et al., 2012). The worm can also carry

no payload (Moore et al., 2003a).
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2.3 Wormable Vulnerabilities

A vulnerability is a flaw or weakness in software, services or security policies that allows

buffer overflows or remote code execution on a target host. This enables an attacker to

send worm code capable of infecting vulnerable hosts on the Internet. An attacker can

also transfer a backdoor to a vulnerable host, which can be used to acquire complete

control of a victim host.

A vulnerability is said to be wormable (Nazario et al., 2004) if it is network reachable,

has the potential to provide remote code execution and network access and does not re-

quire human interaction (Tidy et al., 2014). Individual vulnerabilities can be researched

through a number of online sources that provide details of identified vulnerabilities such

as the Common Vulnerabilities and Exposures (CVE) system (CVE, 2014c) and the Na-

tional Vulnerability database (NVD) (NVD, 2014). The CVE and NVD systems focus

on providing details for a range of vulnerabilities and keep notes of whether a vulner-

ability is network reachable or requires human interaction if exploited. Additionally,

Symantec Connect (Symantec, 2015) provides working exploits for some vulnerabilities.

These sources provide the necessary information for assessing the wormability of many

vulnerabilities.

2.3.1 Vulnerabilities Employed in Historical Worm Outbreaks

Some of the fast scanning network worm outbreaks that have been experienced on the

Internet are Code Red, Nimda, Slammer and Witty. The vulnerabilities exploited by

these worms are detailed below.

• Microsoft IIS Indexing Service DLL Vulnerability: This was the vulnerab-

ility exploited by the Code Red worm in 2001 (Berghel, 2001) and Nimda also in

2001 (CERT, 2001; Mackie et al., 2001). The vulnerability was reported on 18th

June, 2001 by eEye Digital Security (eEye Digital Security, 2001). It was a remote

buffer overflow vulnerability in all versions of the IIS Web server software, at the

time, which used the default installation process including several Internet Service
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API (ISAPI) extensions or dynamic linked libraries. The extension, idq.dll (In-

dexing service), was a component of Microsoft Index Server that provided support

for administrative scripts (.ida files) and Internet Data Queries (.idq files), which

enabled searching data on a web server (Cowie et al., 2001). A security vulnerab-

ility was discovered in “idq.dll” that allowed a remote attacker to initiate a buffer

overflow attack, which in-turn caused a denial of service or remote code execution

on the server. The remote code execution capability enabled an attacker to gain

complete control of the server, including changing web pages, reformatting the

hard drive or adding new users to the local administrators group (Dolak, 2001).

• Microsoft SQL server 2000 Vulnerability: This was the vulnerability ex-

ploited by the Slammer worm in 2003 (Moore et al., 2003a). The vulnerability was

found in Microsoft SQL Server 2000 and Microsoft Desktop Engine (MSDE) 2000,

which exhibited two buffer overflow vulnerabilities that could be exploited by a

remote attacker without the need for authentication (Joukov and Chiueh, 2003).

The attack could be channelled over UDP and successful exploitation of the flaw

allowed complete control over a victim host.

• Internet Security Systems (ISS) Vulnerability: This was the vulnerability

exploited by the Witty worm in 2004 (Shannon and Moore, 2004). The vulner-

ability affected the protocol analysis module (PAM) for monitoring application

traffic in ISS firewall products. A routine in the PAM that monitored ICQ server

responses contained a series of stack based buffer overflow vulnerabilities, which

assumed an incoming UDP datagram on port 4000 to be an ICQv5 server response

without sanity checking (eEye Digital Security, 2004).

2.3.2 Contemporary Wormable Vulnerabilities

Some more contemporary wormable vulnerabilities include the Microsoft RDP vulner-

ability of 2012 (CVE-2012-0002) and the ShellShock vulnerability of 2014 (CVE-2014-

6271), which are summarised below.
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• Microsoft Remote Desktop Protocol (RDP): The Microsoft RDP is a pro-

prietary protocol used to remotely access Windows-based hosts across a network.

This vulnerability (CVE-2012-0002) was identified to exist in Microsoft Windows

XP, Vista, 7, Server 2003 and Server 2008. The vulnerability can be exploited by

sending a crafted datagram to the TCP or UDP port 3389 on a host running RDP.

The vulnerability potentially allows remote arbitrary code execution. An attacker

can then use this to send copies of the malicious datagrams to any vulnerable host,

making the vulnerability wormable.

• ShellShock: Bash (bourne-again shell) is a common UNIX command processor

that uses a text-based window for executing user and application commands passed

to it. Bash is used in many versions of Linux, UNIX and Mac OS X, including

versions which run web servers employing the Common Gateway Interface (CGI).

Among the commands passed to Bash by applications are those which allow the

application to set environment variables. The ShellShock vulnerability (CVE-2014-

6271) affects the way environment variables are set by the applications, i.e., the

Bash shell processes the trailing strings after function definitions in the values of

environment variables, which allows an attacker to add malicious code to the en-

vironment variable and arbitrary execution of code when the environment variable

is set on a vulnerable host.

2.4 Worm Detection Techniques

Previously reported worm countermeasure systems have used detection techniques at

either the host or network perimeter levels (Smith et al., 2009). A brief description of

each technique is set out below.

2.4.1 Host Level Detection System

A host level detection system uses end-host information to detect anomalous behaviour

such as buffer overflows, correlating network data to memory errors, and looking for
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patterns in system calls (Li and Shad, 2014). This technique requires deployment on

every host to detect a network or malware attack (Chen et al., 2014). Host level worm

detection systems reported in literature include COVERS (Liang and Sekar, 2005) Vigil-

ante (Costa et al., 2005) and SWEEPER (Tucek et al., 2007). Host level worm detection

systems are difficult to manage centrally and they are vulnerable to compromise when

a host is infected (Jamil and Chen, 2006).

2.4.2 Network Level Detection System

Network level detection systems are usually deployed at the network perimeter to protect

the entire network of hosts by monitoring inbound and outbound network traffic (Li

et al., 2008). Therefore network level detection systems become more desirable compared

to host level system due to a lower installation and management overhead (Li and

Shad, 2014). Network level intrusion detection systems can mainly be categorized into

signature-based and anomaly-based detection systems (Jyothsna et al., 2011).

2.4.3 Signature-based Network Detection System

A signature-based detection system maintains a database of signatures for previously

known attacks (Liao et al., 2013). An alarm is raised if a datagram in the network

matches a signature in the database (Kim et al., 2012). The signature database is up-

dated frequently in order to efficiently detect new threats (Kumar and Sangwan, 2012).

A number of signature-based detection systems exist, including Snort (Khamphakdee

et al., 2014) and Bro (Sharma and Sharma, 2015). Snort and Bro use static signatures,

which are a set of previously known byte sequences considered to be malicious. Although

Snort has an anomaly detection component that monitors TCP protocol anomalies, such

as data on SYN packets and data received outside the TCP window (Khamphakdee et al.,

2014), it does not detect zero-day worm attacks. Thus the drawback of Snort and Bro

is the inability to detect new attack whose signature is absent from the database (Beigh

and Peer, 2014). Autograph (Aljawarneh et al., 2016) and EarlyBird (Punithan et al.,

2016) were developed to generate signatures dynamically for Snort and Bro by analysing
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the content of network traffic to find common byte sequences. These detectors together

with Snort or Bro can detect the presence of zero-day worms, but cannot detect poly-

morphic worms (Kaur and Singh, 2014). Additionally, these detectors can be misguided

into labelling legitimate traffic as malicious (Chung and Mok, 2006; Newsome et al.,

2006; Perdisci et al., 2006). Generally, signature-based systems are effective in detecting

known attacks and are easy to deploy (Liao et al., 2013), but limited in maintaining

a large database of previously and newly identified threats (Ahmad and Woodhead,

2015). Additionally, the efficiency of the detection algorithm is affected by the large size

of signature database (Li et al., 2008).

2.4.4 Anomaly-based Network Detection System

An anomaly-based detection system examines network traffic in order to build a profile

of the normal behaviour and then raises an alarm for events that deviate from the

normal profile (Liao et al., 2013). In contrast to signature-based systems, anomaly-

based systems can detect new attacks (Li et al., 2008). Anomaly-based detection systems

look for deviations from a normal profile, based on the datagram header information or

payload information (Cheema et al., 2009). Datagram-header based anomaly detection

systems use datagram header information to build a model of normal traffic flow of data

and then attempt to detect any deviation from the normal behaviour of the network

traffic observed. Payload-based anomaly detection systems observe the payload content

of network traffic to identify a byte pattern that indicates the presence of a worm.

Significant research efforts in anomaly-based network intrusion detection systems led

to the existence of numerous approaches (Jyothsna et al., 2011; Liao et al., 2013) that

identify the presence of worms using datagram header information or payload informa-

tion. A selection of the main techniques are summarised in Sections 2.5 and 2.6.
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2.5 Datagram-header Based Anomaly Detectors

Datagram-header based anomaly detection systems use datagram header information

to build a model of normal traffic flow and then attempt to detect any deviation from

the normal behaviour of the network traffic observed (Ahmad and Woodhead, 2015).

Datagram-header based systems also observe the rate of failed and successful transmis-

sion of datagrams to detect an attack (Li and Shad, 2014; Weaver et al., 2004). Sections

2.5.1 through 2.5.3 present a selection of the main techniques that use datagram-header

information.

2.5.1 Anomalous or Unused Header Information

Most datagram-header based anomaly detection systems look for anomalous or unusual

port number and IP addresses, i.e. ports and IP addresses not observed during training

on normal non-hostile traffic. Among the approaches that use datagram-header informa-

tion are those that monitor source and destination IP addresses and ports, and Ethernet

header fields such as the techniques reported by Mahoney and Chan (2001), Gu et al.

(2004), Qin et al. (2004) and Comar et al. (2013).

2.5.1.1 Packet Header Anomaly Detection (PHAD)

Mahoney and Chan (2001) developed the Packet Header Anomaly Detection (PHAD)

technique, which learns the normal ranges of values for each datagram header field at

the (Ethernet), network (IP), and transport/control layers (TCP, UDP, ICMP). PHAD

examines 33 datagram header fields, and was designed to be as protocol independent

as possible. PHAD uses probability to rate anomalies in detection mode based on the

rate of anomalies observed during a training phase; the rarer the detection anomalies,

the more likely they are to be hostile when identified in detection mode. During the

training phase, a datagram field that has been observed n times with r distinct values,

must have r "anomalies" during the training period. If the rate continues, the probability

that the next observation will be anomalous is approximated by r
n
. In detection mode,
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each anomalous datagram header field is assigned a score that is inversely proportional

to the probability of being anomalous at time t as shown in equation 2.1. The sum of

the scores is finally taken to decide if the datagram should be considered anomalous.

Scorefield = tn

r
(2.1)

PHAD was evaluated using the 1999 DARPA off-line IDS evaluation dataset (Lippmann

et al., 2000). PHAD was trained on seven days of attack free network traffic (week 3)

collected from a sniffer between the router and victim machines, and tested on nine days

of traffic from the same point (weeks 4 and 5, except week 4 day 2, which is missing),

during which there were 201 attacks (183 in the available data). The results of the

evaluation showed a successful detection of 72 out of the 201 attacks. PHAD detected

four out of the seven IP address probe attacks available in the dataset. PHAD generated

20 alarms; eight true positives and twelve false positives.

The shortcoming of the PHAD technique is the need for a training phase, which delays

the time of deployment and when the system can start the detection process. Further-

more, changes in the state of a network such as new hardware and software installation

and upgrades will potentially cause more false positives due to new range of values

in header information not observed during training phase. Additionally, PHAD has a

limitation because the technique did not take containment into account.

2.5.1.2 Destination-Source Correlation (DSC)

Gu et al. (2004) developed an algorithm, termed Destination-Source Correlation (DSC),

which correlates incoming and outgoing traffic. A training exercise was conducted in a

local network to keep record of normal profile of infection-like scan rates, where each

port witnessed in the traffic will be recorded including the local destination host address.

Thus, if a host received a datagram on port i, and then starts sending datagrams destined

for port i, it becomes a suspect. Then if the immediate outgoing scan rate for the suspect

host deviates from a normal profile, the suspicious victim is considered to be infected.
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The algorithm then outputs a worm alert using a local warning system, and indicates

the victim IP address and its scan rate. The DSC algorithm was developed with the

aim of detecting fast scanning network worms.

The DSC algorithm was tested in order to evaluate its false positive rate using trace

files collected from two distinct sources; Waikato Internet monitoring project (WAND)

(WAND, 2001) and Georgia Institute of Technology, College of Computing (GTTrace).

The data from WAND was used to train DSC; 80% of the trace was used as train-

ing data and 20% was used for testing the false positive rate. The experiment es-

tablished a normal profile of scan rate for every port immediately after infection-like

behaviour. The experiment focused on traffic from some representative TCP ports, i.e.,

21, 22, 23, 25, 80, 139, 445 and UDP ports, i.e., 53, 1434. The local warning system was

tested using a worm model developed in the datagram level network simulator GTNetS

(Georgia Tech Network Simulator). The results of the experiment showed 0.19% and

3.08% infection percentage using /12 and /16 networks.

The limitation of the DSC algorithm was the inability to detect worms that use two

or more attack vectors. As a result, Qin et al. (2004) improved the technique using a

combination of HoneyStat and the modified version of the DSC algorithm to solve the

limitation of DSC implementation.

2.5.1.3 Modified DSC

Qin et al. (2004) proposed a modified DSC algorithm that monitors IP or media access

control (MAC) addresses to defend against IP address spoofing. The idea of this tech-

nique is that HoneyStat can be used to capture scans on different ports, and therefore

covers what DSC cannot detect. The modified DSC algorithm used three bloom filters

denoted as Di−1,Di, and Si, for every port, which track the destination addresses at

time ticks and for scans directed at the network, and the source addresses for traffic

(SYN and UDP) originating at time tick i from the network. Thus, at every time tick i,

suspicious victim’s IP address and the number of scans the victim sends out (i.e., scan

rate) is recorded. If the scan rate deviates from a normal profile, the suspicious victim
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is regarded as a real victim infected by a worm. Then a worm alert is generated and

indicates the victim IP address and its scan rate.

The modified DSC algorithm was evaluated using the discrete time-based AAWP (Ana-

lytical Active Worm Propagation) model (Chen and Ranka, 2004) for simulation and

detection time analysis. The performance of the modified DSC algorithm was analysed

under three different worm scan strategies; random scan, routable scan and divide-

conquer scan. The detection performance was measured in terms of infected percentage

of the whole vulnerable host population on the Internet when a worm alert was gener-

ated. The results of the infection percentages for random, routable and divide-conquer

scanning using /12 and /16 networks were 0.82% and 13.11%, 0.19%, and 3.05%, and

0.19% and 3.01% respectively.

The two implementations of the DSC algorithm required a training phase, which delays

the time of deployment and when the system can start the detection process and did

not take containment into account. Additionally, host-based implementation of the

algorithm incurred a high installation and management overhead most especially in

large networks (Li and Shad, 2014).

2.5.1.4 Machine Learning

Comar et al. (2013) developed a framework to detect and isolate malicious network

traffic and classify them as known malware, a variation of known malware or new mal-

ware. The technique used machine learning to detect and classify layer-3 and layer-4

headers by introducing a tree-based feature transformation to overcome issues due to

imperfections of the data and to construct more informative features for malware detec-

tion. Initially, malicious and benign flows are isolated, then a collection of classifiers is

used to categorise each instance of a specific malware class; to identify new and known

malware. The framework was evaluated using network traffic from an Internet Service

Provider. The dataset contained 216, 899 flows, out of which only 4, 394 flows were la-

belled as malicious and categorized into one of the 38 known classes. Experiments were

conducted to compare the classification performance of tree-based features against other
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baseline approaches for handling data imperfection issues. The results of the framework

gave a higher area under the ROC curve.

The shortcoming of the framework is the need a training phase, which delays the time of

deployment and when the system can start the detection process. Finally, the framework

did not take containment into account.

2.5.2 First or Failed Contact

Most scanning network worms (TCP-based) initiate connection requests to pseudo-

random IP addresses, which results in a number of failed connections (Li et al., 2008).

As a result, some approaches, such as those reported by Williamson (2002), Jung et al.

(2004), Weaver et al. (2004) and Li and Shad (2014) used the status of a connection

request and first-contact connection to detect worm behaviour.

2.5.2.1 Rate limiting

Williamson (2002) used source and destination IP addresses of datagrams to limit the

rate at which malware can try to connect to new IP addresses. In this mechanism, a

connection is delayed in order to slow the propagation of malware. The system has

one component to determine connection requests to new hosts and another component

that limits the rate of those connections. Whenever a host makes a request, the system

verifies the newness of the destination IP address using a short list of recent connections.

The request is then added to a delay queue if it is new, otherwise it will be processed

as normal. The delay time is a compromise between reducing the impact of false alarms

and limiting the spread of malicious activities in the network.

The mechanism was evaluated with normal web traffic (http) using the browsing beha-

viour (time, url visited) of five researchers collected over a five month period as reported

by the author. The results of the evaluation showed Williamson’s scheme to be effective

in slowing down worm propagation. The scheme also demonstrated simplicity and ease

of management.
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The scheme incurred large delays for legitimate applications when the delay queue was

saturated with worm traffic (Wong et al., 2006). Another possible consequence of the

scheme is the size of the delay queue; small queue size slows down worm propagation

and increases false positive rate, while large queue size reduces false positive rate and

increases worm propagation (Weaver et al., 2004).

2.5.2.2 Threshold Random Work (TRW)

Jung et al. (2004) proposed an algorithm which they termed the Threshold Random

Walk (TRW), derived from sequential hypotheses to identify malicious remote hosts.

The algorithm is based on the fact that scanning malware is more likely to attempt to

access hosts and services that do not exist than legitimate remote hosts, since they lack

precise knowledge of which hosts and ports on the target network are currently active.

The algorithm requires that a remote host attempt to establish a new TCP connection

to a local destination host is marked 0 if the connection attempt is successful i.e. if

there is corresponding TCP reply from the destination local host. On the other hand,

failure to establish a successful TCP connection marks it as 1 because the connection

attempt is either made to an inactive host or to an inactive service on an active host.

The algorithm then decides whether a remote host is a scanner based on the count of

its successful and failed connection attempts. The technique considers two hypotheses,

H0 and H1, where H0 is the hypothesis that a given remote host is benign and H1 is the

hypothesis that such host is a worm scanner.

The performance of the algorithm was evaluated using trace-driven simulations with

Lawrence Berkeley National Laboratory and International Computer Science Institute

datasets (Paxson, 2005). Due to the complexity of the random walk calculation in the

algorithm and its reliance on failed connection, Weaver et al. (2004) improved the TRW

algorithm.

2.5.2.3 Modified TRW

Weaver et al. (2004) simplified the TRW scheme by considering all new connections

22



2.5 Datagram-header Based Anomaly Detectors

to be a failure until a response is received. The technique uses a scan detection and

suppression mechanism; caches are used to track the activity of both new connections

and IP addresses to reduce the random walk calculation in the algorithm. The algorithm

drops a datagram if it does not match an existing and successfully-established connection

after a predefined threshold count. The technique detects and stops a scanning worm if

its failed connection attempts exceed 10 with a low false positive rate. The algorithm

keeps track of both TCP and UDP datagrams and is suitable for both hardware and

software implementations.

The algorithm was evaluated using hour-long traces of datagram headers collected at the

Lawrence Berkeley National Laboratory. The results of the evaluations showed that the

scheme had a good sensitivity of detecting scanning worms with a low false positive rate.

The modified TRW scheme generated false negatives due to saturation of the connection

cache, which caused a new scan attempts not to be recorded because it aliases with a

prior established connection. Thus, the sensitivity of the scheme increased with an

increase in the size of the connection cache in order to reduce aliasing.

2.5.2.4 Self-propagating Worm Observation and Detection (SWORD)

Li and Shad (2014) proposed a worm detector, which they termed Self-propagating Worm

Observation and Detection (SWORD). SWORD comprises two main modules; a Burst

Duration Detector (BDD) and a Quiescent Period Detector (QPD). The BDD mod-

ule encompasses a burst detection algorithm to prevent fast scanning network worms

by creating a window for every different size of first-contact connections, i.e, the al-

gorithm computes a threshold for a “2-connection” burst, a “3-connection” burst, a

“4-connection” burst, and so on, up to a maximum burst size. The algorithm measures

multiple different durations observed for each burst size, during a training stage, and

then bases the threshold on the minimum duration observed for a given burst size. The

QPD module ensures that quiescent periods in network activity do not disappear because

of constant worm scanning. The idea is a normal host will exhibit regular quiescent peri-

ods where it does not make any first-contact connections. Therefore, if a host does not
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display quiescent periods as observed during the training stage, and has been “active”

for a long period, then QPD determines that such a host is infected by a worm that is

scanning the network. This is achieved by measuring the mean and standard deviation

of all the active periods that are separated by a quiescent duration. These values are

used to generate a threshold duration for active periods, which is the mean plus β times

the standard deviation. The value of β can be tweaked for different environments to

minimise false positives. If a host has an active period exceeding the threshold duration

for any quiescent period, it is likely infected by a worm. The co-existence of the two

techniques enables SWORD to detect worm behaviour and makes it hard for a worm to

avoid detection. The SWORD detector uses k-means clustering (Ahmad and Dey, 2007)

to separate hosts into groups such that different thresholds can be applied to different

groups of hosts.

The performance of SWORD was evaluated against other detectors in four distinct en-

vironments; campus, enterprise, department and wireless. Generally, SWORD demon-

strated a good performance in detecting evasive worms. However, SWORD incurred

overhead in storing different thresholds for all the connection burst sizes, which requires

more storage space. An increased computational requirement is also needed for SWORD

to examine the connection history and determine violation of any of the thresholds. Ad-

ditionally, SWORD required a training phase and did not take containment into account.

2.5.3 Domain Name System (DNS) Activities

Another detection approach used to identify scanning worms utilises the DNS activities

of hosts to detect worm propagation such as mechanisms reported by Whyte et al. (2005)

and Shahzad and Woodhead (2014b).

2.5.3.1 DNS-based Rate Limiting

Whyte et al. (2005) used DNS-based rate limiting to suppress scanning worms in an

enterprise network. The observation was that scanning worms often use numeric IP

addresses instead of the qualified domain name of the system (Ganger et al., 2002),
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which eliminates the need for a DNS query. In contrast, the vast majority of legitimate

publicly available services are accessed through the use of the DNS protocol; the network

service that maps numeric IP addresses to corresponding alphanumeric names. Therefore

the main idea behind this technique is that the absence of DNS resolution before a new

connection is considered anomalous. The technique was implemented in software and

used DNS anomalies to detect scanning worms between enterprise network cells and from

enterprise networks to the Internet. An anomaly is considered if there is no observed

DNS resolution before initiating a new connection a number of times.

The technique was evaluated by installing the software prototype on a commodity PC

with a Linux operating system and a 10/100 network interface card. One week of

network traffic was collected at a firewall in front of Carleton University research labs.

The results of the evaluation showed a successful detection of scanning worms with a

low false positive rate. The technique also slowed down the worm propagation.

2.5.3.2 DNS-based Rate Limiting and Awareness

Shahzad and Woodhead (2014b) proposed a scheme termed rate limiting plus look ahead

(RL+LA) that is based on the correlation of Domain Name System (DNS) queries and

a destination IP address of an outgoing TCP SYN or UDP datagrams leaving a network

boundary. The RL+LA scheme also utilizes a communication scheme between a set of

peer networks using a custom protocol termed Friends. The main idea in this counter-

measure scheme is that the lack of a DNS lookup action prior to an outgoing TCP SYN

or UDP datagram to a new destination IP address is used as a behavioural signature,

while the Friends protocol spreads reports of the event to potentially vulnerable and

uninfected peer networks within the scheme. In the RL+LA algorithm, for any TCP

SYN or UDP datagram leaving the network, the algorithm looks for a corresponding

DNS lookup in a network DNS cache, which saves the result of all DNS lookups along

with the corresponding source and destination IP addresses. If such an entry is absent,

it adds the source IP address to a counter cache and increments a corresponding count

value. A threshold value, N , is defined in the counter cache and once the value is reached
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the algorithm blocks outgoing traffic from the offending host using iptables and reduces

N to N/2. The algorithm then sends an alert message using the Friends protocol to

internal peer routers and to the border gateway router, which in turn forwards the alert

to external peers in the scheme using the same protocol.

The scheme was evaluated using a software prototype in a virtualized host testbed that

consists of six fully routable class C networks (192.168.0.0 to 192.168.5.0). The scheme

used a developed network daemon that behaves in a way similar to the Slammer worm.

The results showed the capability of the scheme in successfully detecting and slowing

down scanning worms.

2.5.3.3 Limitations

The implementation of the DNS-based technique in the mechanisms reported by Whyte

et al. (2005) and Shahzad and Woodhead (2014b) assigned a uniform and static threshold

for the DNS-anomaly detection. This will potentially generate false positives in the

presence of background traffic and other traffic demands that do not require DNS lookup.

The mechanisms also left internal network hosts open to worm attack from local and

remote infected hosts. Finally the implementations did not differentiate legitimate traffic

that used numeric IP address from malicious traffic during worm scanning, which added

more counts to the threshold and therefore increased potential false positives.

2.6 Payload Based Anomaly Detectors

Payload-based anomaly detection systems use protocol payload information to build

a network traffic profile during a training phase and then use the developed profile

to detect intrusions if there is a deviation of behaviour from the established norm by

network traffic during the detection phase.
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2.6.1 Statistical Distance

Wang and Stolfo (2004) proposed a payload-based anomaly detection method known as

PAYL to detect and generate signatures for zero-day worms. PAYL uses a training phase

to create a profile during normal operation and produce a byte frequency distribution as

a model for normal payload. Based on this information, a centroid model is created and

then during the detection phase, the Mahalanobis distance of each datagram payload

from the centroid model is calculated. A datagram is considered to be anomalous based

on its distance from the normal behaviour. If the distance is larger than a threshold

value for the incoming traffic for port i, then such a datagram will be marked as suspect

for port i and then placed in the buffer. An outgoing datagram from port i, that is

detected as anomalous by the anomaly detector, is compared with the buffer content. A

similarity score is computed and then Longest Common Substring (LCS) and Longest

Subsequence (LCSeq) of any two compared strings are generated. If the similarity score

is greater than a threshold value, the outgoing traffic is blocked and then a signature is

generated in the form of LCS and LCSeq.

The effectiveness of PAYL was evaluated using three datasets of real worm traffic; EX,

W and W1. The EX dataset was from an external commercial organisation, while W and

W1 datasets were derived from two web servers at the Computer Science Department

of the University of Columbia. Worm traffic, such as Code Red and Code Red II, were

inserted into each dataset during the evaluation, which contained 40 worm datagrams.

The result showed PAYL performed well in detecting Code Red attacks, buffer overflow

attacks and other TCP-based attacks. The drawback of PAYL is the need for a training

phase.

2.6.2 Statistical Dispersion

Kim et al. (2012) proposed a payload-based intrusion detection scheme using a stan-

dalone device that can be deployed on networks. The system is designed with a variable

and dynamic training windows size. During the training period, the system activates
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itself as soon as the window hits the size of 100 datagrams, and then continues with the

update until it reaches the desired stage. The scheme employed the detection method

reported by Kim and Nwanze (2008). During the training phase, the mean and standard

deviation scores for all datagrams were computed. A global threshold value is then de-

termined based on these scores and a global tuning parameter. The parameter is chosen

by a network monitor based on the traffic characteristics of the system, which is used

to adjust the value of the threshold. In the detection stage, a score is computed by

counting the number of datagram bytes that fall outside the range defined for each byte.

The physical prototype of the mechanism was implemented using a Gumstix Overo Tide

embedded computing platform for evaluation. The results of the evaluation showed that

the performance of the scheme is proportional to the training window size, i.e, increasing

the training window size will give the scheme a better performance. Although the scheme

reduced the training period by automatically activating itself as soon as the window hits

a number of datagrams, the robustness of the scheme is improved with an increased size

of the training window. Finally, the scheme did not take containment into account.

2.6.3 Limitation

Generally, payload-based detection mechanisms are unable to detect polymorphic worms

or a traffic that has been encrypted. The mechanisms also require complex numerical

computation during detection phase.

2.7 Worm Containment

Detecting the propagation of network worms without automatic containment does not

provide a countermeasure solution in itself. As a result, different containment methods

have been used by previously reported research work, which can broadly be categorised

into slowing down worm infection and blocking (Li et al., 2008). Slowing down worm

infection is an approach used to reduce the speed of worm propagation to give more

time for human countermeasures to be applied. This is the method used by Williamson
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(2002) and rate limiting techniques (Wong et al., 2006). The speed of worm propagation

is often so high that it is impractical for human intervention to effectively take place

before a high proportion of the vulnerable population is infected. This makes slowing

down worm infection an unsuitable technique for fast scanning network worms. Blocking

is to isolate network traffic or a host that shows worm-like behaviour from the network

to prevent further infection. Blocking can be implemented at the network and data link

levels based on the address of the infected host or datagram content (Li et al., 2008).

2.7.1 Network Level Blocking

Network layer devices provide traffic blocking capabilities using access control lists

(ACLs), which are commands that control the movement of datagrams through an

interface of a network layer device (Belhaouane et al., 2015). The datagram filtering

process assists in restricting host access to a network by preventing traffic originating or

destined to the host (Chate and Chirchi, 2015). The datagram filtering decision is made

based on header information such as source and destination IP addresses and source and

destination ports. This is the method used by most of the reported detection system

that used traffic blocking to stop the propagation of an identified worm infection. These

include the techniques reported by Jung et al. (2004), Weaver et al. (2004), Whyte et al.

(2005) and Shahzad and Woodhead (2014b).

The drawback of traffic blocking, particularly at router level, is that the internal network

hosts are still open to worm attack, because the local infected host can still send worm

datagrams destined to vulnerable hosts within the network segment.

2.7.2 Data Link Level Blocking

At the data link level, network switches (managed) provide access control capabilities

using MAC ACLs, which control network traffic based on fields in Ethernet MAC and

VLAN headers (Bierman et al., 2013). This can be used to block network traffic based on

the source MAC and destination MAC addresses, Ethernet type field values and VLAN

identifiers. This capability of isolating a single host in a local network segment has the
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potential to block the spread of a worm infection within a local network segment as well

as to remote hosts.

MAC-based ACLs are supported by most of the available managed network switch

products such as the Cisco Catalyst 4500 series (Cisco, 2016), 3Com 3CDSG10PWR

(3Com, 2016), TP-LINK Tx series (TPLINK, 2016) and D-Link DGS-3000 series

(DLINK, 2016). Although vendors are trying to incorporate self-defending features

in their products such as Cisco Network Admission Control, which redirects suspicious

traffic to a honey pot or blocks it using a firewall (Kumar et al., 2016), data link level

switches are not equipped with an automatic worm detection or containment capability.

Although MAC ACLs can be used to block an identified infected host, the reported

worm countermeasure techniques rather employed the network level blocking technique.

Thus, it is desirable to explore the use of an automatic data link level access control

method for worm infected hosts.

2.8 Testing Environment

To fully understand the propagation behaviour and infection patterns of fast scanning

network worms, there is a need for a safe and convenient environment that is isolated

from the Internet in order to analyse the behaviour of this malicious software. Large

scale network worm outbreak scenarios are difficult to simulate due to the complexity

and resources required in setting up a controlled environment for worm propagation

and countermeasure testing (Floyd and Paxson, 2001). The approaches that are mainly

used by security researchers to test the effects of worms and other network attacks are

mathematical models (Fei et al., 2009), simulation (Floyd and Paxson, 2001), emulation

(Calheiros et al., 2010) and virtualisation systems (White and Pilbeam, 2010). Math-

ematical models can provide a high level of scalability, but they are not accurate for

Internet worm simulation. This is due to their limitations in modelling some features of

the Internet such as topology, heterogeneity, dynamism, traffic and bandwidth routing

and network congestion (Perumalla and Sundaragopalan, 2004).
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2.8.1 Simulation Systems

Simulation systems use tools and processes to imitate and model a real network environ-

ment. Simulation is an accepted and widely used technology in studying the epidemic of

network worms; example simulation tools include NS-3 and SSFNet. The NS-3 simulator

(Henderson et al., 2008) is an open-source simulation system that has been developed

and widely used in research and education relating to computer networks and the In-

ternet. It provides features including support for virtualisation software, scalability and

modularity. The Scalable Simulation Framework Network (SSFNet) simulator (Yoon

and Kim, 2009) was developed with various network simulation applications and topo-

logies, traffic and scalability. To enhance scalability and provide ease of use and distrib-

uted network simulation, Riley (2003) developed the Georgia Tech Network Simulator

(GTNetS). Another powerful software simulation package is the Optimized Network En-

gineering Tool (OPNET). OPNET (Chang, 1999) is capable of simulating a large range

of communication systems from a single LAN to global satellite networks and can be

used for discrete event simulations. Despite advances in using parallel/distributed exe-

cution capabilities to develop datagram-level simulators, researchers have been unable

to achieve a simulated network size similar to that of the IPv4 address space (Floyd and

Paxson, 2001). This is due to the processing and memory requirements needed (Peru-

malla and Sundaragopalan, 2004). Some simulation systems use a Finite State Machine

(FSM) to represent a network node such as the Internet Worm Simulator (IWS) and

Parallel Worm Simulator (PWS). Thus, these provide a high level of scalability and less

resource requirement than datagram level simulators. IWS (Tidy et al., 2015) achieved

a scale to the size of IPv4 address space and PWS (Wei et al., 2005) provides good

Internet topology at the autonomous system level.

Generally, simulation systems have limitations in modelling heterogeneity, topology and

the granularity of the Internet. They also have limitations in scale, incur high processing

and memory requirements and cannot model the full range of operating system features

(Perumalla and Sundaragopalan, 2004).

31



2.8 Testing Environment

2.8.2 Testbeds

Testbeds are another widely used technology that utilise real applications and operating

systems in an emulated or virtualised environment. The challenges in developing test-

beds are re-usability of experiments from a baseline, preventing malware from escaping

out of the controlled environment and a trade-off between complexity and scale (van

Heerden et al., 2013).

2.8.2.1 Emulation Systems

Emulation (Calheiros et al., 2010) takes the properties of a system and reproduce them

with a different type of system. This allows the use of computing nodes and network

links to form a system with more emulated elements than real elements. A node in the

emulation system represents a real host running in the form of software. To achieve a

large-scale emulation, multiple nodes can be instantiated on a single physical machine.

Emulation systems have the characteristics of simulation and real world systems and

they have the potential to achieve high fidelity, scale and effectiveness (Perumalla and

Sundaragopalan, 2004). Emulab (Hibler et al., 2008) and DETERLab (Mirkovic et al.,

2010) are some of the emulation systems which have been used by security researchers in

the past. Emulab (Hibler et al., 2008) was developed at the University of Utah to provide

researchers with an environment suitable for network and operating system testing.

Emulab enables users to develop their experiments with a set of PCs connected in a

customised topology via a graphic user interface and then load the desired operating

system on to the PCs for experimentation. The DETERLab (Mirkovic et al., 2010)

enables user access to a specified set of nodes with custom operating systems. The

DETERLab also allows experimentation with network topology using switches, firewalls,

physical nodes, and offers attacks and defence tools. However, DERTERLab has limited

physical resources and scale for worm outbreak experiments and other network attacks

(Murillo and Duarte, 2013).

Emulation systems are generally better than simulation systems in effectiveness because
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they allow for interaction with the operating system and serve as a compromise between

simulation and real world systems. Nevertheless, emulation systems such as DETERLab

and Emulab have limited scale of experiments and physical resources available for users;

therefore, they are not suitable for large scale experimentation of worm propagation

(Perera et al., 2013). Additionally, emulation systems have performance drawbacks

because each instruction on the guest system has to be translated by the software bridge

for the host system (White and Pilbeam, 2010).

2.8.2.2 Virtualisation Systems

Virtualisation systems present a platform that is more able to perform realistic tests

because it offers a more realistic way of presenting the technology and applications (Per-

umalla and Sundaragopalan, 2004). Virtualisation systems use the technique of separat-

ing resources and services from the underlying physical delivery to form an environment

with virtual machines and other network infrastructure on a host. Virtualisation sys-

tems provide speed performance which is better than emulation systems because the

guest hosts can directly access the physical host hardware (White and Pilbeam, 2010).

Some virtualised testbeds includes V-NetLab (Sun et al., 2008), Vise (Årnes et al., 2006),

vGround (Jiang et al., 2006) and VMT (Shahzad et al., 2013).

V-NetLab (Sun et al., 2008) is a virtualised testbed that comprises virtual machines

interconnected using hubs and switches that are implemented in software. V-NetLab

utilizes network virtualisation at the data link layer in order to allow for the re-use of

the same set of IP addresses in different virtual networks. V-NetLab is also designed to

enable the virtual networks to be accessed remotely without the need for physical access

to the hardware. ViSe (Årnes et al., 2006) is a virtualised platform developed to test

malware attacks against a range of operating systems and evaluate them using intrusion

detection systems. The testbed contains 10 operating systems and 40 exploits (both local

and remote) against the programs running on the operating systems. vGround (Jiang

et al., 2006) is an environment that comprises three virtual enterprise networks connected

by three virtual routers capable of hosting hundreds of virtual machines. VMT (Shahzad
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et al., 2013) is a virtualised network testbed developed for zero-day worm analysis and

countermeasure testing. The testbed comprises four enterprise networks with a few

hundred virtual machines.

Virtualisation systems require relatively high computational resource in order to host a

large number of virtual nodes, however, they have the potential to achieve high fidelity

and effectiveness as noted by Perumalla and Sundaragopalan (2004). Perumalla and

Sundaragopalan (2004) also noted that virtualised systems are not limited to scalability

at the expense of an amount of computation power. Furthermore, White and Pilbeam

(2010) noted that virtualisation systems provide speed performance better than emula-

tion systems because the guest hosts can directly access the physical host hardware.

2.9 Methodology of Worm Detection

The reviewed network anomaly-based detection systems used datagram header informa-

tion, payload information or both to detect the presence of worm infection and propaga-

tion. The techniques used by the detection systems to determine abnormal behaviour in

a network can be classified as statistical analysis, connection status, traffic correlation

and destination addresses visited.

• Statistical analysis: This is the use of network traffic information to statistically

characterise the normal behaviour of a network. This aspect requires a training

phase in order to model the normal activity of a network, and a detection phase

to determine a deviation in the normal behaviour observed during the training

phase. This is the technique used by payload-based detectors and some datagram-

header based detectors such as the techniques reported by Mahoney and Chan

(2001), Comar et al. (2013) and Wang and Stolfo (2004). Therefore, for each

datagram inspected during the detection phase, the system must measure the

statistical score of the datagram and then compares the result with a normal

profile. However, the dependence of the technique on the need for a training

dataset increases management overhead due to difficulties involved in collecting,
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filtering and processing the data, especially for detection systems that use payload

information to identify worm datagrams (Smith et al., 2009). Additionally, the

detection system has to be trained for a period of time to understand a normal

network profile, which hinders deployment and leaves the network vulnerable to

attack (Kim et al., 2012). Finally, most such detection systems (e.g. those reported

by Mahoney and Chan (2001), Comar et al. (2013) and Wang and Stolfo (2004))

require complex numerical computation (Jyothsna et al., 2011; Liao et al., 2013)

to identify worm datagrams in the detection phase and incur a high rate of false

positives, especially when new systems are introduced into the network or the

normal behaviour of the network changes for some other reason (Li et al., 2008).

• Connection status: A number of targets contacted by a scanning worm are inactive

IP addresses, which result in a number of failed connection (TCP based scanning).

This is the technique used by Jung et al. (2004), which has limitations such as

the inability to detect UDP-based worms because there is no return traffic from

the destination to the source which indicates success or failure. Additionally, if

a worm uses hit-list scanning or a peer-to-peer network interaction log, the failed

connection rate will significantly reduce. An improved way of detecting worm

activity using connection status is to consider all connections to be a failure until

a response is received, i.e, a datagram is marked suspicious if it does not match a set

of existing and successfully-established connections, which reduces the dependence

of the system on failed connection rate. This is the technique used by Weaver

et al. (2004), but the technique incurs the same limitation of inability to detect

UDP-based worms. Generally, detecting worms using connection status requires

enormous resources to keep track of distinct connection and host information,

which is resource consuming and therefore not suitable for use in large networks

(Li et al., 2008).

• Traffic correlation: A vulnerable host is infected by a worm after receiving an

infectious datagram from another infected host. The idea here is an infected host
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that is transmitting datagrams must have received an infection from another host.

Therefore correlating inbound and outbound traffic enables the detection of worm

scanning and propagation. This is the technique used by Gu et al. (2004) and

Qin et al. (2004). The technique correlated inbound and outbound ports to detect

fast scanning network worms because in most cases an infected host transmits

datagrams that are destined to the same port. This technique is promising in

detecting worm scanning but limited in detecting worms that used multiple attack

vectors because the inbound and outbound traffic differ (Stafford and Li, 2010).

• Destinations visited: A scanning worm transmits datagrams to wide range of dif-

ferent destinations in order to propagate widely. Therefore the pattern of visiting

new destinations by a normal host differs from that of a scanning worm. There-

fore, monitoring frequent contact to new destinations enables the detection of a

scanning worm. This is the technique used by Williamson (2002) and Li and Shad

(2014). The techniques monitored the rate of first contact to different destinations

within a window of time. Another approach to monitoring destination addresses

is to utilise the DNS activities of hosts to detect worm propagation. A scanning

worm transmits datagrams using numeric IP addresses without the need for DNS

resolution, which deviates from the normal behaviour of accessing the vast major-

ity of legitimate publicly available services. This is the technique used by Whyte

et al. (2005) and Shahzad and Woodhead (2014b). Generally, monitoring destin-

ations visited is promising in detecting worm scanning and propagation including

events where a worm uses a hit-list or topological information because the worm

must contact new destinations in order to spread the infection (Li and Shad, 2014;

Wang et al., 2014).

Having identified the classes of techniques used to determine abnormal worm-like beha-

viour in a network and their limitations, it is clear that traffic correlation and monitoring

the destinations visited provide a better coverage and performance in detecting scanning

worms than using statistical analysis and connection status. This is due to their ability

to detect both TCP-based and UDP-based worms and effectively provide an early detec-
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tion of worm scanning and propagation. Furthermore, monitoring destinations visited

provides more detection coverage than traffic correlation because if properly used, it

can detect worms that used multiple attack vectors. Therefore, it is desirable to further

study the use of destination contacts to detect scanning worms.

2.10 Research Issues

Having discussed anomaly-based detection systems, this section identifies some research

issues based on the implementations of the reported mechanisms and the techniques

employed to detect and contain worm propagation. The section also presents identified

issues that relate to the virtualised testing environments reported. The limitations are:

• Deployment delay and resource consumption: The survey identified that the repor-

ted worm detection techniques either used statistical analysis, traffic connection

status, traffic correlation or destination contacts to determine abnormal behaviour

in a network. Techniques that used statistical analysis of header or payload con-

tent such as those reported by Mahoney and Chan (2001), Wang and Stolfo (2004)

and Kim et al. (2012) incur management overhead and hinder deployment due to

the need to collect data for training (Jyothsna et al., 2011; Liao et al., 2013). The

techniques also incur a high rate of false positives, especially when new systems

are introduced into the network or the normal behaviour of the network changes

(Li et al., 2008). The techniques that used connection status such as those re-

ported by Jung et al. (2004) and Weaver et al. (2004) cannot detect UDP-based

worms and require significant resources to keep track of distinct connection and

host information, which makes them unsuitable for use in large networks (Li et al.,

2008).

• Uniform and static threshold: The reported worm detection mechanisms used a

uniform and static threshold for all hosts in a network irrespectively of differences in

their connection behaviours and the services they offer. Hosts in a network exhibit

divergent behaviours and therefore require different thresholds. For example, a
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server host tends to respond to client requests and runs more applications and other

network services or daemons that may connect to different destination IP addresses.

On the other hand, a client host used to access the Internet makes connections in

a pattern different from a server host. Therefore, the transmission behaviour of a

server host is different from a client host. The rate of Internet usage also differs by

time of day, i.e. in most cases, Internet usage is significantly higher during working

hours (Citicaka, 2014). This is the peak period for hosts in a network to generate

larger traffic volume due to higher usage. As a result, it is anomalous for a host

to make frequent connections to different destinations during a quiescent period.

Therefore, thresholds applied to hosts during active and quiescent periods should

differ in order to reduce the possibility of false positives during peak periods and

enforce strict security measures during the quiescent period. A quiescent period

gives scanning worms enough time and bandwidth to propagate across networks

and the Internet, and there is also limited or no human intervention. Thus, due to

the different behaviour of hosts in a network and varying rate of traffic by the time

of day, the choice of having different and dynamic thresholds for network hosts

will potentially improve the performance of a detection mechanism.

• Suppression of worm infection: The next step after detecting a worm infection

is to slow down the propagation or automatically block traffic from the infected

source using address blocking or content blocking techniques. Address blocking is

to drop any traffic from a host identified to be infected while content blocking drops

datagrams that contain the worm signature. The reported worm countermeasure

techniques that use a containment technique (e.g. those reported by Williamson

(2002), Wang and Stolfo (2004), Weaver et al. (2004), Whyte et al. (2005) and

Shahzad and Woodhead (2014b)) blocked a host identified as infected at the net-

work boundary router and at the network level, i.e, access control for the infected

host is implemented for outbound traffic at the layer 3 level, which contained the

worm infection within a network segment. Using network level access control on

outbound traffic typically only slows down the infection rather than stopping it,
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because it leaves internal network hosts vulnerable to further worm attack and

allows inbound worm traffic into the network. Thus, it is desirable to explore the

use of data link level access control to block an infected host. Additionally, upon

detecting a worm infection, it is also desirable to implement access control for

inbound worm traffic into a network segment.

• Limited features for worm experimentation in testbeds: The review has identified

that virtualisation systems have the potential to achieve high fidelity, scale, effect-

iveness and speed at the expense of an amount of computation power, in order to

host a large number of virtual nodes (Perumalla and Sundaragopalan, 2004; White

and Pilbeam, 2010). However, the reported virtualised testing environments (e.g.

V-NetLab (Sun et al., 2008), Vise (Årnes et al., 2006), vGround (Jiang et al., 2006)

and VMT (Shahzad et al., 2013)) have limited scale of experiments and provide no

support for background traffic. In addition, vGround (Jiang et al., 2006) is plat-

form dependent, i.e., it supports Linux-based worm experimentation and VMT

(Shahzad et al., 2013) does not provide a management interface for re-usability of

experiments.

The identified limitations and shortcomings of previously published research can be

summarised as follows;

• A delay between deployment and start of the detection process: This is the time

needed for data collection to train a detection scheme to learn the normal profile

of a network before the start of a detection process. This is the technique used by

machine learning based detection schemes and payload-based detection schemes.

• A high resource consumption: This is the use of large system resources such as

memory to keep a record of every connection and host information during the

detection process. This is the technique used by schemes that use first or failed

destination contact to identify worm infection.

• A uniform and static threshold for all network hosts: This is the use of the same
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threshold for network hosts to determine an excess in the level of anomalies exhib-

ited by a host. This technique is used by most detection schemes.

• Suppression of worm infection rather than stopping it by countermeasure schemes:

This is the process of blocking an identified worm infection by a countermeasure

scheme. The detection schemes that uses rate limiting, failed contacts, DNS activ-

ities and correlation of inbound and outbound traffic suppress worm infection by

containing it at the network boundary router or network level, which allow the

infection to continue within the local network.

• Limitation in scale of experiments: The reported virtualised network environments

have limited scale of experimentation. Large scale of experimentation has the

potential for more fidelity and effectiveness in worm experimentation (Perumalla

and Sundaragopalan, 2004).

• Lack of provision for background traffic: The reported virtualised network environ-

ments do not provide support of background traffic, which is essential in assessing

the performance of a detection schemes in terms of false positives.

• Limitation in re-usability of experiments and operating system dependency: The

reported virtualised network environments are not equipped with tools that facil-

itate managing and repeating experiments using either the same or different set

up. Some of the environments support UNIX-based worm experimentation only.

2.11 Research Questions and Objectives

Having identified some limitations associated with the previously reported worm detec-

tion systems and testing environments, the following research questions were established:

Is it possible to develop an effective worm countermeasure scheme that has
a lower delay in comparison to the existing open source schemes?

Additionally, in order to empirically assess whether the above research questions have

been answered, and to what extent, the following research tools need to be developed:
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1. An improved and suitable testing environment in comparison with the existing

virtualised testing environments.

2. The use of previous and contemporary malware to assess the effectiveness of the

proposed solution.

To address the above questions, the research work needs to achieve the following main
objectives:

1. Development of a more accurate worm detection method without compromising

temporal performance in comparison with the existing schemes.

2. Use of a containment mechanism that blocks an identified worm infection from

spreading within a local network and to remote hosts.

Generally, traffic correlation techniques such as that reported by Gu et al. (2004) and

monitoring destinations techniques such as those reported by Whyte et al. (2005) and

Shahzad and Woodhead (2014b) are promising in detecting worm scanning and propaga-

tion. The techniques also have the potential to exhibit low false alarms and detect worms

that use multiple attack vectors if carefully implemented. Therefore it is desirable to

explore the use of these techniques to identify the presence of a worm. Thus the research

work seeks to

• Improve the traffic correlation and DNS-based detection schemes and apply the

techniques on server and client hosts in a network respectively.

• Use a dynamic threshold scheme for network hosts due to varying rate of traffic

by time of the day.

• Use access control to block an identified infected host from transmitting datagrams

and a network access control to block inbound worm datagrams.

These serve as the basis for further research analysis and development of an improved

anomaly-based detection and containment mechanism. Chapter 3 discusses the details
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of the improved detection and containment mechanism. Chapter 4 discusses the en-

vironment developed for the analysis of worm propagation and testing countermeasure

mechanisms. Chapter 5 discusses the details of the evaluation programme developed for

worm propagation experiments and countermeasure testing.

2.12 Summary

The early part of this chapter presented a brief overview of malware and network worms.

The chapter then presented a range of previously reported worm detection and contain-

ment schemes. These schemes are broadly categorised as datagram-header based anom-

aly detection systems and payload-based anomaly detection systems. Datagram-header

based anomaly detection schemes use protocol header information to detect anomalies.

Payload-based detection schemes use the content of datagram payloads to observe an-

omalies in byte frequency. The chapter also presented a range of reported techniques

used by security researchers for worm propagation and countermeasure testing. The

chapter then presented some identified research issues, which serve as the basis for the

development of an improved worm detection and containment mechanism and a suit-

able environment for empirical evaluation of countermeasure mechanisms. Finally the

chapter presented the research questions that the remainder of this thesis document

endeavours to address.
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Chapter 3

THE NEDAC SCHEME

3.1 Introduction

This chapter presents the worm detection and containment scheme proposed based on

the research gaps identified in the survey of related work. The chapter is set to answer

the research question outlined in Chapter 2and therefore attain the two objectives set

out in Section 2.10. Section 3.2 presents a brief background on worm detection and

containment schemes. Section 3.3 presents an overview of the approach used for the

proposed worm countermeasure mechanism. Section 3.4 presents the design of the de-

tection and containment techniques used in the countermeasure mechanism. Section 3.5

presents a comparative analysis of the proposed worm countermeasure with previously

reported worm detection schemes while Section 3.6 summarises the chapter.

3.2 Background

According to Chen et al. (2014), fast scanning network worms are a virulent class of

network worms that exploit wormable vulnerabilities and immediately propagate per-

vasively by launching attacks against Internet hosts and services, thereby posing a major

threat to the security of the Internet. Most individual scanning worms exploit the same

vulnerability throughout their propagation and try to propagate the infection to more

vulnerable hosts. This propagation behaviour of contacting a significant number of new

destination addresses characterises a scanning worm. In addition, the unique traffic
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pattern of rapidly connecting to new distinct destination addresses in order to infect a

wide range of vulnerable host serves as a fundamental behaviour of fast scanning net-

work worm propagation. Thus, it is desirable to focus on this fundamental behaviour

in order to detect fast scanning network worms because it makes evasion very difficult

(Li and Shad, 2014). The behaviour of contacting new destinations by probing pseudo-

random IP addresses is inevitable by a worm that is seeking to propagate, and therefore

is important for a detection mechanism to look for worm behaviour in the way new

destinations are contacted (Li and Shad, 2014). The active probing of IP addresses over

the Internet makes it possible for a network-based detection system to detect the worm

behaviour.

The survey of related work presented in Chapter 2 has shown that detection schemes

that use correlation of inbound and outbound traffic and those that monitor destinations

visited by hosts in a network have the ability to identify both TCP-based and UDP-

based worms, unlike the techniques reported by Jung et al. (2004) and Weaver et al.

(2004), which have the potential to detect TCP-based worms only. The schemes also

exhibit low false alarms compared to the techniques reported by Mahoney and Chan

(2001), Wang and Stolfo (2004) and Comar et al. (2013), and if carefully implemented,

can detect worms that use multiple attack vectors (Stafford and Li, 2010).

Among the reported schemes that used correlation of inbound and outbound traffic and

monitoring destinations contacted by hosts are the schemes reported by Gu et al. (2004),

Qin et al. (2004), Whyte et al. (2005) and Shahzad and Woodhead (2014b) respectively.

The limitations of these schemes are their limited ability to accurately differentiate worm

traffic and benign traffic that behaves in a similar way to worm traffic and suppression

of identified worm infection rather than stopping it completely. This is because the

schemes maintained a count of worm activities for each host and therefore during worm

propagation, benign traffic that exhibits worm behaviour is marked as suspicious and

counted as worm datagrams. This makes it difficult to accurately apply a countermeasure

solution due to the relatively high probability of false positives.

Thus, it has been identified that modifying the traffic correlation and DNS-based detec-
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tion schemes, and applying the techniques to server and client hosts respectively, has the

potential to improve the accuracy of the detection mechanism. Furthermore, applying a

data link and network layer access control methods upon identifying a worm infection,

for outbound and inbound worm traffic respectively, has the potential to block an in-

fected hosts from spreading the infection within its local network segment and to/from

remote hosts. These techniques have the potentials to provide a powerful combined de-

tection and containment solution against fast scanning network worms. The proposed

scheme is also likely to provide a better containment solution that blocks an identified

worm infection from spreading within a local network and to/from remote hosts.

3.3 Approach

The proposed worm detection and containment scheme, termed NEDAC, is a cross-layer

mechanism that uses a network layer detection system and a data link layer containment

system, with a connection maintained between the two systems to enable continuous

data transmission. The detection system uses two different techniques to detect worm

infection from client hosts and server hosts respectively. The detection system maintains

a list of server IP addresses in order to differentiate client and server hosts in a network.

Client hosts are defined as network hosts which typically consume Internet services (e.g.

workstations, laptops, tablets, smartphones, etc.) while server hosts are network hosts

used to serve client requests (e.g. web servers and email servers).

The detection system keeps track of inbound and outbound TCP and UDP datagrams

and ARP request datagrams for a window of time with value T to determine worm

behaviour that exceed a threshold with value V (for TCP and UDP datagrams) and W

(for ARP request datagrams). The threshold is a maximum allowable count of worm

behaviours a host can send before T has elapsed. However, the containment system uses

the MAC address of a host that has been identified (by the detection system) as infected

to block all traffic originating from the host.

A threshold applied to a host in a network also depends on the time of day, i.e., active
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and quiescent network periods are defined. An active period is considered to be a period

during which hosts in a network generate a large volume of Internet traffic to several

destinations. This is normally during business hours and working days, which vary

by geographical location and country. A quiescent period is when hosts in a network

are less active or idle; this is normally during non-business hours. As a result, the

thresholds applied during the two periods vary because Internet usage during off-peak

period reduces by 60% as examined by Citicaka (2014). The reduction in Internet

usage was also observed during live network traffic collection at University of Greenwich

computer laboratories. Although backups and batch jobs typically run out of normal

business hours, the number of destinations visited during backup are relatively low and

consistent. Therefore, before applying a threshold to a client or server host, the detection

system determines the time of day and then applies the appropriate threshold.

3.4 NEDAC Architecture

The architecture of the NEDAC detection system is presented in Figure 3.1. The de-

tection part of NEDAC comprises a Traffic Classification (TC) engine, a Threshold

Determination (TD) engine, three detection sub-systems namely ARP-based detection

(AD), server host worm detection (SWD) and client host worm detection (CWD), an

exempt table and three caches to keep track of connection and host information; namely

input/output (I/O) cache, resolution and no-resolution caches. The containment part of

NEDAC comprises the containment system and a record that keeps details of contained

hosts and their time stamps.
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Figure 3.1: NEDAC worm detection architecture

The TC engine is used to classify TCP or UDP traffic that is destined to or originates

from client and server hosts in a protected network and then passes the result to the

CWD or SWD sub-system, while ARP traffic is passed to the AD system. The exempt

table elements are IP address and port number combinations that are exempt from the

detection system for known systems that legitimately communicate using IP addresses

directly. The resolution cache is used to keep record of all DNS resolutions made by

hosts in a network, i.e, IP address of host that make a resolution and the resolved IP

addresses. The no-resolution cache is used to keep record of hosts that send datagrams

without a prior DNS resolution. The TD is used to assess the level of worm behaviour

exhibited by a host in order to determine counts above the relevant threshold.

The AD sub-system identifies ARP requests (from all network hosts) to internal inactive

local IP addresses and then uses the TD to assess the level of worm behaviour. If a

threshold with value W is exceeded, the TD invokes the countermeasure. The CWD

and SWD sub-systems process the received TCP and UDP traffic from TC and then

assess the behaviour of the client and server hosts in the network respectively. The
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CWD and SWD sub-systems also use the TD to determine whether the level of worm

activity observed from a host passes a threshold with value V , and if true, then the TD

invokes the countermeasure. The CWD and SWD sub-systems are made up of a Traffic

Inspection Module (TIM) and a Detection Module (DM).

• TIM: This module receives traffic flow from the network and classifies the traffic

into inbound and outbound. The module extracts the required header information

of each inbound TCP or UDP datagram and records the information in the I/O

cache. Outbound datagrams are forwarded to the Detection Module.

• DM: This module receives outbound traffic and then detects worm infection and

propagation by monitoring datagram header information. The module then uses

TD to pass information to a countermeasure solution upon detecting an infected

host in a network.

Figure 3.2 shows the flow diagram of the NEDAC mechanism with all the detection

sub-systems. The pseudo-code of the NEDAC mechanism is presented in Appendix A.

Details of the CWD and SWD techniques are set out in sections 3.4.1 and 3.4.2, while

details of the data link containment system are set out in Section 3.4.3.
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3.4.1 Client Host Worm Detection

The CWD technique is detailed using the activity diagram presented in Figure 3.3.
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Figure 3.3: NEDAC worm detection architecture for client hosts

The TIM comprises a Traffic Filtering engine and has access to the I/O and resolution

caches. The Traffic Filtering engine is used to classify inbound and outbound datagrams

and passes the record to the I/O or resolution cache and the Worm Detection engine in

the DM respectively. The I/O cache is used to keep the destination port of all inbound

datagrams (excluding DNS record) while the resolution cache is used to keep the IP

address of a host that made a DNS resolution to a destination and the resolved address.

The DM has a Worm Detection engine and access to the TD engine, exempt table and

resolution and no-resolution caches.

The CWD algorithm (Figure 3.2 left) uses the Worm Detection engine in DM to compare

the source IP addresses and ports to entries in the exempt table and the resolution

cache. This is to determine a white-listed host and a prior DNS resolution for an

outbound datagram respectively. If there is a miss in both, the algorithm records the

destination port of the outbound datagram and the internal source host IP address in the

no-resolution cache, increments the counter associated to the destination port for such

hosts, and then uses the TD engine to determine whether the entry exceeds a threshold.

This continues for datagrams destined to distinct destination port that exhibit abnormal

behaviour and upon exceeding a threshold with value V , the TD engine invokes the data
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link containment system. Then the TD checks for the presence of the suspect port in

the I/O cache and if there is a hit, an access control list (ACL) is updated to block all

inbound datagrams, at the network boundary router, destined to the suspect port in the

network segment. A time-to-live (TTL) is provided for entries in all the caches, which

is the lifespan for datagrams information held in the caches. The default TTL value for

DNS (86400 seconds) (Elz et al., 1997) is applied to the resolution cache and 64 seconds,

which is the TCP and UDP TTL value for most operating systems (Lippmann et al.,

2003), is applied to the no-resolution and I/O caches. Furthermore, the TD decrements

the counters in the no-resolution and I/O caches by half after the expiration of the

timing window of T , and then checks all caches to identify and remove entries with an

expired TTL.

3.4.2 Server Host Worm Detection

The SWD technique is detailed in the activity diagram presented in Figure 3.4.
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Figure 3.4: NEDAC worm detection architecture for server hosts

The TIM of the SWD comprises a Traffic Filtering engine that classifies inbound and

outbound traffic and then sends the datagrams to the I/O cache and Correlation engine

respectively in the DM. The DM has a Correlation engine and access to the TD engine,

exempt table and the I/O cache. The Correlation engine determines worm behaviour
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from server hosts by associating inbound and outbound traffic information.

The SWD algorithm (Figure 3.2 middle) monitors traffic to and from server hosts with

the aid of the Traffic Filtering engine in TIM. The algorithm uses the Traffic Filtering

engine to record the destination port and IP address of an inbound datagram in the I/O

cache and passes outbound datagram information to the correlation engine. To detect

worm behaviour, the algorithm checks the presence of the destination port of outbound

TCP SYN and UDP datagrams in the I/O cache. The behaviour is deemed suspicious if

the destination port is found in the I/O cache, and therefore a counter is incremented. If

the outbound datagram is UDP, an additional verification of the destination IP address

is made to determine a reply UDP datagram, i.e., if the destination IP address does not

match the IP address recorded in the I/O cache, the behaviour is marked as suspicious

and therefore a counter is incremented. SWD then uses TD to determine any count above

threshold, invoke both countermeasure techniques and decrement and clear entries in the

same manner as CWD.

3.4.3 Containment System

The next stage after detecting the presence of a worm is to counter the attack. Contain-

ment is to prevent the spread of a worm from an infected host to vulnerable hosts. The

containment technique used by NEDAC is a data link access control method in order

to block an identified infected host from sending traffic within the local network, and

thereby also to remote external targets. Data link level containment using a switch has

the potential to offer a defence by isolating an identified infected host and therefore stops

a worm propagation to local and remote hosts. If this can be achieved, it will represent

an improvement over the network level access control used by previously reported worm

countermeasure schemes, which only stop worm traffic destined to remote vulnerable

host while leaving internal vulnerable hosts open to worm attack.

The vast majority of managed network switches support the use of MAC address ACLs

to block traffic originating from and destined to a host in a local network. However,

switches do not have the capability to detect a worm infection or collaborate in providing
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an automatic countermeasure solution for worm propagation. Thus, the containment

system of NEDAC is an automated system that has been designed to use the MAC

address access control method on a switch upon receiving a request for such service

from the detection system. The containment algorithm of NEDAC is detailed in the

control flow diagram presented in Figure 3.5. The algorithm receives the MAC address

of an infected host from the detection system and then blocks all traffic originating from

the host using the MAC address access control method on the relevant switch. Then

the system logs the host details and time stamps.

Start

Get data (MAC)

Validate MAC address

Block host with the 
specified MAC address 

Send the host name and 
blocking time to output file

CSV output file

While true

Incoming 
requests

End

Yes

No

Figure 3.5: NEDAC containment system

3.5 NEDAC Comparative Analysis

This section presents a comparative analysis of NEDAC and the previously reported

worm countermeasure schemes that used traffic correlation and destination contacts to

determine worm behaviour in a network. The chosen schemes are the DSC technique

reported by Gu et al. (2004) and the DNS-based rate limiting techniques reported by

Whyte et al. (2005) and Shahzad and Woodhead (2014b). The NEDAC detection system

uses modified versions of the DNS-based and traffic correlation techniques to detect worm

behaviour from client and server hosts respectively. The specific design improvements
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relating to worm detection and worm containment, provided by NEDAC, are presented

in sections 3.5.1 and 3.5.2 respectively.

3.5.1 Detection System

The NEDAC mechanism applies a DNS-based detection technique to client hosts because

they mainly consume Internet services, which in most cases requires a DNS resolution.

Therefore the absence of DNS resolution by a client host for a significant number of

destination contacts, within a short time period, is anomalous. On the other hand,

server hosts are used to serve client requests, so server hosts listen for client requests

and then respond to the requests. Server hosts do not initiate new Internet connections

in most cases and therefore require less DNS resolution than clients, and in some cases,

none at all. Therefore, the use of the inbound and outbound traffic correlation technique

has a better potential to effectively detect abnormal behaviour for server hosts and is

thus employed as a detection technique for server hosts by NEDAC.

The NEDAC detection system also uses ARP request datagrams to identify worm

scanning to inactive local IP addresses by both client and server hosts. This further

strengthens the detection capabilities of the mechanism in identifying worm infection

and propagation because, in most cases, only a malicious activity such as worm scan-

ning sends datagrams to an inactive local IP address in a network.

The NEDAC detection system uses a dynamic threshold policy based on time of day as

described in Section 3.3, in an effort to reduce the possible rate of false positives during

the active period (when hosts in a network generate large and frequent Internet traffic)

of network usage and enforce a more strict policy during the quiescent period.

Thus, the use of specific worm detection techniques for client and server host together

with the ARP-based detection component, which is applicable to all hosts in a network,

has greater potential to effectively detect worm infection and propagation than the two

previously reported detection schemes. Additionally, the detection technique does not

require training and therefore resolves the issue of the delay between system commission-
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ing and the start of the detection process, and also reduces the overhead of collecting,

filtering and processing data to train the system.

Furthermore, the CWD and SWD techniques observe anomalous traffic and maintain

a count for distinct destination ports contacted by a client host, unlike the techniques

reported by Gu et al. (2004), Whyte et al. (2005) and Shahzad and Woodhead (2014b)

that maintained a counter for each host, i.e, in NEDAC a counter Cij is maintained

for each ith anomalous distinct destination visited by jth host. Therefore keeping the

count of anomalous distinct destination ports contacted by a host enables NEDAC to

accurately identify the destination port used by a fast scanning network worm. This dif-

ferentiates worm traffic from other legitimate traffic that may exhibit similar behaviour,

because the counter associated to the destination port of worm datagrams increases

rapidly. It also enables NEDAC to detect worm infection and propagation including

those that employ multiple attack vectors, which is a limitation of the DSC (Gu et al.,

2004) algorithm as reported by Qin et al. (2004). Generally, this has the potentials to

significantly reduce the possibility of false positives and accurately apply a network level

countermeasure for identified worm traffic coming into a network. Thus, NEDAC has

the potential to achieve the objective of having a more accurate detection mechanism in

comparison with the existing schemes.

Finally, the NEDAC detection system uses TTL for DNS, TCP and UDP datagram

information maintained in relevant caches. This is to address the issue of high resource

consumption due to the need for keeping track of distinct connection and host inform-

ation during the detection process, which provides the NEDAC detection system with

potential for resource efficiency.

3.5.2 Countermeasure System

The NEDAC mechanism uses containment techniques at network and data link levels.

Upon detecting a worm infection, the destination port used by the identified worm

traffic is used to apply a network level countermeasure by blocking worm traffic coming

in to a network. Additionally, the data link level containment system is used to block
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all outbound datagrams from a host that has been identified by the detection system

as infected. This is achieved by automatically applying an access control for infected

host on a network switch. These countermeasure techniques provide NEDAC with the

potential to not only block an identified worm infection from an internal network host,

but also worm traffic coming into the network from a remote host, which is a combined

countermeasure solution to protect internal and remote network hosts.

3.6 Summary

This chapter has presented the design of an improved worm detection and containment

scheme termed NEDAC. The NEDAC design uses a cross-layer solution that detects

worm infection at the network layer and then contains the infection using data link and

network level containment solutions. The detection system of NEDAC applies different

worm detection techniques for client and server host in a network and uses ARP request

datagrams to inactive internal IP addresses to identify worm infection from both client

and server hosts. A comparative analysis of NEDAC and two previously reported de-

tection schemes has been presented to show the advances of NEDAC over the existing

schemes. Having developed a countermeasure solution, the research work seeks to de-

velop a safe and convenient environment as a research tool for empirical assessment of

the developed worm countermeasure solution. Chapter four presents the details of the

environment developed for evaluating NEDAC.
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Chapter 4

THE V-NETWORK TESTBED

4.1 Introduction

Having proposed a countermeasure solution for fast scanning network worms, it is de-

sirable to develop an environment that can be used to test and evaluate the proposed

solution, with a view to quantifying the achievable improvements. Therefore a safe and

convenient environment that is isolated from the Internet is needed.

This chapter presents the design and implementation of a virtualised testing environ-

ment that comprises suitable features for worm propagation and countermeasure sys-

tems. These include management facilities that simplify the creation of virtual host

in large scale, re-usability and tearing down large number of virtual hosts and genera-

tion/replay of background traffic. Section 4.2 presents the background to virtualisation

and virtualised testbeds. Sections 4.3 and 4.4 present the details of the testbed design

and implementation respectively. Sections 4.5 and Section 4.6 present the details of the

worm daemon and management scripts provided by the testbed to manage and facilitate

worm propagation experiments. Finally, Section 4.8 summarises the chapter.

4.2 Background

Virtualisation (Chiueh and Brook, 2005; Sahoo et al., 2010) refers to the technology used

to create an abstraction layer between computer hardware and an operating system and

applications running on top of it. This layer provides infrastructural support using low-
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level resources to create multiple virtual instances that are independent and isolated from

each other, such as a virtual computer, an operating system (OS), a storage device,

or computer network resources. Virtualisation consolidates workloads in a way that

allows one physical machine to be multiplexed for many different users, which improves

the efficiency of a data centre by allowing more work to be done on a smaller set of

physical nodes (Hwang et al., 2013). This provides flexibility, portability, re-usability

and less resource requirements and is therefore suitable to be used in research work.

Virtualisation is most commonly implemented using a hypervisor, i.e., a software or

firmware component used to create virtual system resources.

A hypervisor or Virtual Machine Monitor (VMM), which lies between hardware and

an operating system, divides system resources, such as CPU, memory and storage into

several independent smaller components. Each component known as ’virtual machine’

is capable of running an operating system with the support of the CPU as if it is on

a physical machine. The main advantage is the isolation provided for each component

to operate without affecting others. Hypervisors are divided between Type 1 and Type

2 (Sherman, 2014). A Type 1 hypervisor runs directly on system hardware with each

virtual machine running on top of the hypervisor. The Type 2 hypervisor runs on a host

operating system, with each virtual machine running on top of the hypervisor. There are

numerous hypervisors ranging from open-source hypervisors such as the KVM (Kivity

et al., 2007) and Xen (Barham et al., 2003), to commercial hypervisors such as the

VMware vSphere (Lowe, 2011) and Microsoft Hyper-V (Velte and Velte, 2009).

The survey of related work presented in Chapter 2 has identified that virtualisation

systems have the potential to achieve high fidelity, scale, effectiveness and speed and

are therefore suitable for malware experimentation. However, the previously reported

virtualised testbeds reviewed in Chapter 2 have limited experimental scale, platform

dependency, and provide no support for background traffic and management interface

for re-usability of experiments.

Thus a virtualised network environment has been developed to facilitate controlled worm

propagation and the testing of countermeasure systems. The testbed, termed Virtualised
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Network (V-Network), has been developed with scalability, re-usability, portability and

resource efficiency as desirable attributes. V-Network is aimed at studying the infection

and propagation patterns of network worms and testing a range of countermeasure sys-

tems. V-Network is platform independent, which makes it convenient for UNIX-based

or Windows-based experimentation, and is designed with the capability of resetting and

re-running experiments from a standard baseline in a controlled environment either using

a graphical user interface or command line scripts.

4.3 V-Network Design

The V-Network testbed contains four virtualised enterprise networks that comprise a

number of virtual network cells. The virtual network cells contain LANs with a DHCP

server for IP address management, a DNS server for name resolution, an NTP server to

provide a time synchronization service for the virtual hosts, a logging server to keep a

record of worm infection activities and routers for internal routing services. The virtual

enterprise networks are connected together to enable data communication and routing

services across the internetwork. The design was chosen to study how worm infection

spreads across multiple networks that are physically and geographically separated and

to facilitate the deployment of countermeasure systems. Figure 4.1 details the logical

design of an enterprise network in the V-Network testbed. The V-Network testbed uses

the Quagga routing suite (Ishiguro et al., 2007) to provide routing services. The VMware

vSphere 5.5 (Lowe, 2011) hypervisor has been used for virtualisation services, which also

comprises VMware vCenter Server for remote management of the ESXi servers. VMware

vSphere was chosen for the development of the V-Network testbed due to its strong

performance in comparison to KVM, Xen and Microsoft Hyper-V in the utilization of

CPU, memory disk I/O and network I/O as determined by Hwang et al. (2013).
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Figure 4.1: A V-Network enterprise network design with four virtualised LANs
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4.4 V-Network Implementation

The V-Network testbed has been implemented using the following resources:

• Four servers running VMware ESXi 5.5 server for virtualisation services, each with

an Intel Core i7 (12 virtual cores at 3.40 GHz) processor, 64GB of RAM and 2TB

of hard disk storage capacity.

• Two servers running the Quagga routing suite to provide routing services, each

with an Intel Core i7 (8 virtual cores at 3.40GHz) processor, 24GB of RAM and

1TB of hard disk storage capacity.

• A server running the NTP daemon for time synchronization across all hosts, with

an Intel Core i7 (8 virtual cores at 3.40GHz) processor, 24GB of RAM and 1TB

of hard disk storage capacity.

• A server running a custom-developed logging server daemon to keep record of host

activities, with an Intel Core i7 (8 virtual cores at 3.40GHz) processor, 16GB of

RAM and 1TB of hard disk storage capacity.

• A server running VMware vCenter server for managing the ESXi servers remotely,

with an Intel Core i7 (8 virtual cores at 3.40GHz) processor, 16GB of RAM and

1TB of hard disk storage capacity.

• Two Ethernet switches.

Figure 4.2 presents the physical design of the V-Network testbed. Each ESXi server

accommodates virtual machines in different “portgroups”. The portgroups are attached

to virtual switches in order to form a number of virtualised LANs within the V-Network

testbed. The management network has been configured to enable administrative control

over the V-Network ESXi servers. The vCenter Server is used to manage the entire

vSphere environment, i.e., all of the ESXi servers in the V-Network testbed and other

hardware resources using the “management portgroup” of each ESXi server.

61



vCenter
 Server

Log Server

Router
(Quagga)vSphere Web 

Client
Administrator

ESXi Host A ESXi Host B ESXi Host C ESXi Host D

Management Network
Traffic Network

NTP Server

VMKernel Port Vmotion

Management network port

Virtual Switch 1

Server portgroup

Virtual machine portgroup

Server portgroup

Virtual machine portgroup

Virtual Switch N

.

Virtual management 
switch

VMKernel Port Vmotion

Management network port

Virtual Switch 1

Server portgroup

Virtual machine portgroup

Server portgroup

Virtual machine portgroup

Virtual Switch N
.

Virtual management 
switch

VMKernel Port Vmotion

Management network port

Virtual Switch 1

Server portgroup

Virtual machine portgroup

Server portgroup

Virtual machine portgroup

Virtual Switch N
.

Virtual management 
switch

VMKernel Port Vmotion

Management network port

Virtual Switch 1

Server portgroup

Virtual machine portgroup

Server portgroup

Virtual machine portgroup

Virtual Switch N
.

Virtual management 
switch

Figure 4.2: V-Network physical implementation
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The vCenter Server also supports the use of PowerCLI (Dekens and Renouf, 2011),

which enables the management of the vSphere environment using scripts. Thus, using

PowerCLI through vCenter Server, scripts can be used to clone a desired number of

virtual machines, take virtual machine snapshots, restore virtual machines and servers

to a base state after an experiment, clean and re-create virtual machines, start and stop

virtual machines and remotely manage the entire V-Network environment. The vSphere

Web client is used to remotely monitor, control and manage the infrastructure through

the vCenter Server using the GUI. The traffic network is used to provide other network

services such as routing and time synchronization. The DMZ of the V-Network testbed

is connected to the Internet through a firewall for NTP update prior to experimentation.

The Internet connection is then removed before the experiments begin.

Figure 4.3 details the physical and logical design of the V-Network implementation.

The virtualised enterprise networks were configured using four class A IP address spaces

by default. The IP addressing can be reconfigured to any desired class and subnet

depending on the requirements of the malware experimentation used. The virtualised

enterprise networks were also connected together using the border router that allows

access to other physical or virtualised networks and the Internet. The testbed supports

the use of RIP, OSPF and BGP routing protocols.
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4.5 Worm Daemon

The V-Network testbed uses a worm daemon developed by Shahzad and Woodhead

(2014a) with the capabilities of facilitating a worm attack event using chosen worm

characteristics. The worm system consists of both client and server modules capable of

sending and receiving UDP datagrams. The client module is used to initiate a worm

attack against desired targets. The virtual hosts are made vulnerable by running the

server module, which listens on a specific UDP port and then, after receiving an “infec-

tion” datagram, continuously transmits “infectious” UDP datagrams. Upon infection,

a vulnerable host will send its time stamp and IP address information to the logging

server for record management. The logging server has been configured with a logging

daemon that keeps the details of infected host addresses and infection time. This process

will continue until full infection is achieved based on the details recorded on the logging

server.

4.6 Configuration Scripts

The V-Network testbed uses utility scripts to manage the virtualised environment and

facilitate worm experimentation. The utility scripts can be used for services such as

virtual machine start-up and shut-down, cloning virtual machines, resetting the virtual

environment to a baseline after experimentation and tearing down virtual machines on

the ESXi hosts. To conduct an experiment, a base virtual machine is configured with the

correct worm daemon and then cloned to the required number of virtual machines. The

V-Network implementation comprises a number of customised utility scripts to facilitate

large scale management of virtual machines. The utility scripts are detailed as follows:

Create-VMs: The Create-VMs script is used to create a number of virtual machine

clones from a base virtual machine that has been configured with the correct

worm daemon and network settings for experimentation. The script then places

the developed clones in the same network environment with the base clone.
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Start-VMs: The Start-VM script is used to power on a virtual machine or group of

virtual machines.

Stop-VMs: The Stop-VMs script is used to shut down a virtual machine or group of

virtual machines.

Pause-VMs: The Pause-VMs script is used to pause the activities of a virtual machine

or group of virtual machines during an experiment.

Resume-VMs: The Resume-VMs script is used to resume the activities of a virtual

machine or group of virtual machines.

Snapshot-VMs: The Snapshot-VMs script is used to snapshot a virtual machine or

group of virtual machines. This can be done after starting virtual machines but

before conducting an experiment. After the experiment, the virtual machines

can be restored to their initial configuration in order to repeat the same set of

experiments using Reset-VMs script.

Reset-VMs: The Reset-VMs script is used to reset a virtual machine or group of virtual

machine to a standard base.

Move-VMs: The Move-VMs script is used to move a virtual machine or group of virtual

machines from one network segment to another.

Teardown-VMs: The Teardown-VMs script is used to clear virtual machine(s) after

an experiment to allow for a different configuration and experiment.

The utility scripts require the name of a virtual machine or the group name of virtual

machines.

4.7 V-Network Comparative Analysis

The V-Network testbed has the following improved features in comparison with previ-

ously reported virtualised testbeds:
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• Platform Independence: V-Network uses real-world operating systems, applica-

tions, and other networking software, which provides a platform that offers a real-

istic way of presenting the technology and applications. Unlike vGround (Jiang

et al., 2006) that supports Linux-based worm experimentation only, V-Network

has been designed to be platform independent, i.e., it supports Windows-based

and Linux-based worm experiments.

• Management: V-Network provides utility scripts for managing the infrastructure to

facilitate malware experimentation such as re-usability, resetting and tearing down

virtual machines. This enables the development of multiple sessions of different

worm experiments quickly and easily, contrary to VMT (Shahzad et al., 2013) that

used a substantially manual method.

• Background traffic: Unlike VMT (Shahzad et al., 2013), vGround (Jiang et al.,

2006) and ViSe (Årnes et al., 2006), V-Network provides support for generating

traffic and replaying traffic collected in .pcap file format as background traffic. The

traffic can be replayed as collected or in a client-server communication fashion.

These improvements can be summarise as presented in Table 4.1.
Table 4.1: V-Network comparative analysis with existing testbeds

Testbed Integration with physical network
OS Support Background Traffic Management

Unix-based Windows Traffic Generation Traffic Replay GUI Shell Script

vGround No Yes No No No No Yes

ViSe No Yes Yes No No Yes No

VMT No Yes Yes No No Yes No

V-Network Yes Yes Yes Yes Yes Yes Yes

4.8 Summary

This chapter has presented a virtualised environment that has been developed for the

purposes of worm propagation experiments and testing countermeasure systems. The

virtualised environment termed V-Network has been developed using the VMware hy-
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pervisor and has a scale of 1200 virtual machines. V-Network can be managed either

using a graphical user interface or command line scripts and it is platform independent,

i.e. it supports the use of Windows and UNIX based systems. In contrast to previously

reported testing environments, V-Network has higher scale, fidelity and ease of manage-

ment and provide support for traffic generation and replay. Finally, having developed

a countermeasure mechanism and a testing environment, it is desirable to have a pro-

gramme that will be used to evaluate the countermeasure mechanisms in the developed

testing environment. Chapter five presents the evaluation programme used for worm

propagation and countermeasure testing, while Chapter six presents the experiments

conducted during the evaluation and results obtained.
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Chapter 5

AN EVALUATION PROGRAMME

5.1 Introduction

A developed worm countermeasure mechanism, termed NEDAC, and a virtualised test-

ing environment, termed V-Network, were presented in chapters 3 and 4 respectively.

Thus, it is desirable to develop an evaluation programme to test the worm detection

and containment system in the developed testbed. This can be achieved by determin-

ing a suitable evaluation technique that enables running worm traffic against NEDAC

using a variety of different settings in a set of repeatable and controlled experiments for

performance measurement.

This chapter presents an evaluation programme designed to test NEDAC along with

two previously reported worm detection schemes for comparative analysis, namely DSC

and a DNS-based technique (henceforth termed DNS-RL). Section 5.2 presents the tech-

nique used to test the mechanism. Section 5.3 presents a brief description of the pre-

viously reported detection schemes used for comparative analysis. Section 5.4 presents

the performance metrics and other derived attributes determined during the evaluation

programme. Section 5.5 presents the background traffic used during the evaluation pro-

gramme. Section 5.6 presents the worm daemons used to generate worm traffic. Section

5.7 presents the procedure followed during the evaluation programme. Finally, Section

5.8 presents the chapter summary.
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5.2 Evaluation Technique

The evaluation of network-based security systems, such as network intrusion detection

systems (NIDSs), requires the use of a dataset that closely reflects the characteristics of

real network traffic. The approaches used by security researchers to evaluate network in-

trusion detection systems can be classified as testing without background traffic, testing

using real-time traffic, testing using collected real traffic, testing using sanitized traffic,

and testing using simulated traffic (Mell et al., 2003). Mell et al. (2003) noted that test-

ing an NIDS without background traffic or using real-time traffic have performance and

management limitations respectively. The former is limited in determining false alarms

due to the absence of background traffic, which cannot determine the performance of an

NIDS in the presence of background traffic. The latter has difficulties (if not impossible)

in repeating an experiment and in determining false positives because it requires manual

inspection of traffic logs or statistical sampling techniques to find attacks.

To evaluate an NIDS using a collection of real traffic trace, attack datagrams are injected

in to the trace, which can later be replayed to test an NIDS. The NIDS can also be tested

by replaying the traffic trace while running attacks concurrently. This approach enables

repeating experiments and therefore facilitates the determination of false positives. The

performance of an NIDS can also be determined at different levels of background activity.

However, to evaluate an NIDS using simulated traffic, a testbed network is created

with hosts and network infrastructure that can be successfully attacked and to generate

background traffic on the network. The testbed is configured to generate background

traffic using traffic generation tools, which can also be recorded for a playback. This

approach enables repeatability because previously generated background activity can

be replayed. The approach is also promising because it facilitates the determination of

detection performance and false positive rates.

Thus, NEDAC along with the DSC and DNS-RL schemes were evaluated using pseudo-

worm attack datagrams along with a set of collected real traffic traces in a controlled

environment. The traffic traces were used as background traffic to assess the possibility of
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false positives while worm attack datagrams were used to assess the detection capabilities

of the schemes. The NEDAC scheme has two sub-systems that employ different detection

techniques. The first system, which is server-based, used datagram header information to

detect anomalies from server hosts in a network, and therefore does not require payload

information. The other system, which is workstation-based, used DNS activities to

determine anomalies from client hosts in a network, and therefore requires data from

the payload of DNS reply datagrams.

5.3 Selected Detection Schemes for Comparison

This section presents a brief summary of the candidate detection schemes chosen for

comparative evaluation against NEDAC. The detection schemes that used correlation

of inbound and outbound traffic and destination contacts as a behavioural signature

provided a better performance in identifying scanning worms with less complexity and

false positives in comparison to schemes that used statistical analysis (Li et al., 2008).

The schemes are also capable of detecting both TCP-based and UDP-based worms unlike

the schemes that rely on connection status to detect worm propagation and infection.

5.3.1 Destination Source Correlation

Gu et al. (2004) proposed a correlation scheme termed Destination Source Correlation

(DSC). The scheme detects the presence of a worm by correlating inbound and outbound

traffic on a given port, i.e, if a host received a datagram on port i and then starts sending

datagrams destined for port i, it becomes a suspect. If the behaviour exceeds a threshold,

then an alarm is raised. The DSC scheme monitors outbound datagrams from a host for

a duration of time. An algorithm was developed based on the description of Gu et al.

(2004) that uses a network based solution to contain worm infection, i.e., block outbound

datagrams from an infected host at network level. However, the existing acronym of the

scheme was maintained.
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5.3.2 DNS Rate Limiting

Whyte et al. (2005) and Shahzad and Woodhead (2014b) proposed a DNS-based tech-

nique to detect worm propagation in an enterprise network. The DNS-based schemes

used the absence of DNS resolution by a host prior to contacting a new destination

IP address. The schemes monitor the behaviour for a duration of time and a counter

is maintained for each host that exhibits this behaviour. Upon a host exceeding a

threshold, an alarm is raised and the host is blocked from sending outgoing traffic at

the network level. An algorithm was developed based on the descriptions provided by

Whyte et al. (2005) and Shahzad and Woodhead (2014b) and the acronym assigned to

the algorithm is DNS-RL.

5.4 Performance Metrics

A range of metrics (Fink et al., 2002) are commonly used by security researchers to

quantify the performance of a network intrusion detection systems. The key metrics

required for this evaluation are summarised as follows:

True positive (TP) rate: This is the percentage of worm alarms raised

when a worm is present.

True negative (TN) rate: This is the percentage of identified benign

traffic when there is no worm.

False positive (FP) rate: This is the percentage of worm alarms raised

when there is no worm.

False negative (FN) rate: This is the percentage of worm datagrams not

identified by a detection system.

Accuracy: The accuracy of a detection system is used to measure the ability

of the system to raise an alarm only when a worm is present. This metric is
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derived as presented in equation 5.1.

Accuracy = TP + TN

TP + TN + FP + FN
(5.1)

Precision: This is the probability of identifying worm scanning when a de-

tection system raises an alarm, i.e. fraction of the worm instances that are

positively identified as worms. This metric assesses the usability of a detec-

tion system because alarms are useful only if there is a positive identification

of worm traffic. This metric is derived as presented in equation 5.2.

Precision = TP

TP + FP
(5.2)

Receiver Operating Characteristic (ROC): An ROC curve is used to

illustrate the interaction between the TP rate and the FP rate. This is useful

when analysing and comparing multiple detection systems.

5.5 Background Traffic

A set of legitimate traffic traces are required for the evaluation. The NEDAC scheme

and most worm detection systems are designed to identify the presence of worm infection

within subnets, therefore, it is desirable to use datasets that comprise traffic that occur

in subnets. The available datasets that closely matched the evaluation requirements

are the DARPA (Lippmann et al., 2000), CDX 2014 (USMA, 2016) and the LAB (see

section 5.5.3) datasets. The datasets were chosen because they comprise traffic that

occurred in subnets with a range of commonly used network protocols such as ARP,

IP, TCP, UDP, DNS, TFTP, TLS/SSL, FTP, HTTP, HTTPs, IMAP4, POP3, SMTP,

SNMP, SSH, DHCP, NTP and Telnet. Additionally, the DARPA and CDX traffic are

labelled datasets that support security analysis. The three traces include a wide range

of collected traffic from a number of network hosts with statistics as presented in Table

5.1.
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Table 5.1: DARPA, CDX and LAB Trace Statistics

Trace
Datagrams

Active Hosts
TCP UDP ARP Total

DARPA 14,517,826 (87%) 2,297,690 (13%) 11,540 (0.37%) 16,725,516 31

CDX 1,212,877 (94%) 62,768 (5%) 6,862 (1%) 1,282,507 20

LAB 3,276,725 (79%) 856,234 (20%) 9,763 (0.24%) 4,142,722 60

To prepare the traces for a replay session, each dataset was divided into datagrams

originating from a client host and those originating from a server host using a tcpreplay

pre-processor known as tcpprep (Turner and Bing, 2005). The function of tcpprep is

to split traffic in a .pcap file into two streams (traffic originating from client and server).

The details of the two streams are then recorded in a .cache file. The resulting .cache

file can then be used by tcpreplay to replay the traffic traces as client datagrams or

server datagrams. The resulting client and server traffic was then replayed as client-

server communication using a tcpreplay command between endpoints.

5.5.1 DARPA Dataset

The DARPA 1999 dataset comprises traces generated over five weeks of simulated net-

work traffic. The physical network consists of an inside and outside component separated

by a router. The network comprises five victim hosts, which are the targets of attacks

and one sniffer. The inside component includes victim hosts of many types (e.g. Linux,

Solaris, Sun OS) while the outside component includes two workstations which simulate

gateways to a virtual outside Internet leading to 100 hosts. Data is collected from the

inside victim running Solaris and from an outside sniffer. The evaluation programme

reported in this thesis uses the traffic data collected by inside sniffers on week 1 and

3. Although the DARPA 1999 dataset is 17 years old at the time of this writing, the

“inside” traces of week 1 and 3 of the dataset are attack free traces that contain payload

information for a variety of protocols needed for the evaluation. Additionally, the traces

include a wide range of collected traffic from 31 network hosts.
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5.5.2 Cyber Defense Exercise (CDX) 2014 Dataset

The CDX is a computer security competition designed to promote awareness about the

role of Information Assurance in protecting critical information systems. The CDX 2014

dataset comprises traffic from a cyber defense exercise that incorporated a set of hosts

used for network attack and another set of hosts for benign traffic generation. The data-

set recorded attack traffic generated using 30 hosts and white traffic generated using 20

hosts by manually interacting with web, email, DNS lookups, and other required ser-

vices. The evaluation programme reported in this thesis uses the benign traffic generated

during the CDX 2014 competition.

5.5.3 LAB Dataset

The LAB dataset was collected from a departmental computer laboratory that serves

students and administrative staff members. The dataset comprises traffic with a variety

of web (administrative sites and web portals for students and faculty), email services

and other applications such as file sharing (SMB). The dataset comprises traffic collected

from 60 hosts over a span of seven hours for five days using a network tap.

5.6 Pseudo-worms

The evaluation process used the Slammer worm and two contemporary pseudo-worms

that were developed based on two recent wormable vulnerabilities, as test examples. The

Slammer worm was chosen because it is among the fastest worm outbreaks experienced

on the Internet that caused financial losses and disruption of services. The developed

contemporary pseudo-worms were used to further evaluate the NEDAC scheme using

new potential fast scanning worms and to attempt to characterise the threat posed by the

recent vulnerabilities. The recent vulnerabilities were Microsoft RDP (CVE-2012-0002)

and ShellShock (CVE-2014-6271).

To develop and use the pseudo-worms in experiments, some important metrics are re-

quired such as the vulnerable populations for the vulnerability, worm datagram size and
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the likely scan rate. Moore et al. (2003a) reported that the Slammer worm had at least

a vulnerable population of 75, 000 hosts. They also noted that Slammer exhibited an

average scan rate of 4, 000 datagrams per infected host per second and had a datagram

size of 404 bytes. Ahmad and Woodhead (2015) reported the vulnerable population and

potential datagram size of the Microsoft RDP and ShellShock vulnerabilities as having

values of 16.5M and 42.5k and 3, 800 bytes and 2, 000 bytes respectively.

5.6.1 Scan Rate

The bandwidth available for an infected host and the worm datagram size determine

how fast a worm can send datagrams particularly in the case of UDP-based worms. The

upload speed of Internet hosts was reported to be within the range of circa 3.2 Mbps to

5 Mbps in 2015 and 2016 (van der Vorst et al., 2014). van der Vorst et al. (2014) also

reported an upload speed of 7.3 Mbps to 10 Mbps for network environments with high

speed Internet connection, which can also be higher for data centre hosts (Zhuang et al.,

2013). Additionally, the vast majority of server hosts have higher Internet bandwidth

than client hosts in a network. Thus the bandwidth available to hosts to transmit worm

datagrams depends on the network environment and the category of the hosts.

Based on the assumption that the Internet connected client and server hosts exhibit an

average data transmission rate of 5 Mbps and 7.5 Mbps respectively, the scan rate S,

available to a single worm instance, on an infected host, to transmit a datagram of size

M (in bytes), over a C megabits Internet connection per second can be determined using

equation 5.3.

S = C

M
(5.3)

Therefore, the possible scan rates for the RDP and ShellShock pseudo-worms are 165

and 313 datagrams per second for client hosts and 247 and 468 datagrams per second

for server hosts respectively. The scan rates of the pseudo-worms were scaled down by a

factor of 32, 1.3 and 2.5 for the Slammer, RDP and ShellShock pseudo-worms respect-

ively for client hosts to avoid overloading V-Network server resources. The resulting
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scan rates employed in the experiments are 125, 127 and 125 “infectious” datagrams per

second for Slammer, RDP and ShellShock respectively.

5.6.2 Parameters

Having determined the vulnerable population values of the candidate worms along with

the size of routable IPv4 address space (3, 673, 309, 759 (Cotton and Vegoda, 2010),

the number of vulnerable hosts per million Internet hosts for each pseudo-worm was

determined using equation 5.4.

Pm = Sp

Rip
∗ 1, 000, 000 (5.4)

where, Pm denotes the value of vulnerable hosts per million Internet hosts, Sp denotes

the absolute number of vulnerable hosts and Rip denotes the number of routable IPv4

addresses. The results were 21, 4454 and 12 vulnerable hosts per million Internet hosts

for the Slammer, RDP and ShellShock pseudo-worms respectively. For experimenta-

tion, the maximum number of virtual hosts supported in the V-Network testbed is 1200.

Therefore the number of hosts required for experimentation with each candidate worm

depends on the value of its vulnerable hosts per million Internet hosts. Using IPv4 class

A size network (224), the Slammer and ShellShock pseudo-worm experiments require[
224 ∗ 3 ∗ 21

1000000

]
= 1057 and

[
224 ∗ 5 ∗ 12

1000000

]
= 1007 vulnerable hosts respectively.

The RDP pseudo-worm has a relatively higher value of vulnerable hosts per million

Internet hosts and therefore using class A size network requires a larger number of vul-

nerable hosts. Therefore, using four class B size networks (216), the RDP pseudo-worm

experiment requires
[
216 ∗ 4 ∗ 4454

1000000

]
= 1168 vulnerable hosts. Thus, the experimenta-

tion used 1057 and 1007 and 1168 vulnerable hosts for Slammer, ShellShock and RDP

pseudo-worm respectively, within the relevant network address spaces.
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5.6.3 Worm Traffic

Initiating a worm outbreak involves creating the required number of virtual machines in

V-Network from a base virtual machine that has been configured with the correct pseudo-

worm daemon. For the Slammer pseudo-worm experiments, 1056 virtual machines were

created across four enterprise networks from a configured base virtual machine, i.e.,

264 virtual machines in each enterprise network. The same procedure was applied to

RDP and ShellShock pseudo-worms, but the total number of virtual machines for the

RDP pseudo-worm was 1168 across four enterprise networks (292 virtual machines per

enterprise network) and 1007 virtual machines across five enterprise networks (201 vir-

tual machines in three enterprise network and 202 in two enterprise networks) for the

ShellShock pseudo-worm. For each experiment, the virtual machines were powered to

automatically synchronise their time with the NTP server, and then wait for inbound

datagrams. The worm infection event was then initiated by sending a UDP datagram to

one of the vulnerable virtual machines in one of the virtualised enterprise networks. A

UDP-based worm has been chosen due to its higher rate of propagation compared to a

TCP-based counterpart. UDP-based worms require no acknowledgement and cannot be

detected by mechanisms that rely on the number or state of failed connection attempts.

5.7 Procedure

The evaluation programme was conducted using the developed software prototypes of

NEDAC, DSC and DNS-RL in sets of test experiments. During the evaluation, a pro-

totype of a detection scheme was positioned on the gateways of each virtualised LAN

in the V-Network enterprise networks, and for NEDAC, the containment system was

positioned on the switches as depicted in Figure 5.1.

78



5.7 Procedure

Enterprise Network
NEDAC 

Containment Switch
NEDAC/Other  

Detection RouterD

10.0.0.0/8 11.0.0.0/8

12.0.0.0/8 13.0.0.0/8

D D

D D

Figure 5.1: Prototype evaluation set up

5.7.1 Testing for Random Destination Contacts

The sets of experiments conducted for each detection scheme comprise a test for Slam-

mer, RDP and ShellShock pseudo-worms using random and then hit-list scanning beha-

viours. The random scanning technique probes IPv4 addresses within the routable IP

address space. The hit-list scanning technique infects a list of pre-compiled vulnerable

hosts, which includes both client hosts and a server host, and then each infected host

uses random scanning. Random scanning was chosen because it is the commonly used

propagation method for most of the worm outbreaks experienced on the Internet such

as the Code Red (Zou et al., 2002), Slammer (Moore et al., 2003a), Witty (Shannon

and Moore, 2004) and Conficker (SANS, 2008). Additionally, hit-list scanning was also

experienced during the outbreak of the Witty worm. Shannon and Moore (2004) noted

that the Witty worm used a hit-list size of 110 to 160 hosts within the first 30 seconds
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of the worm outbreak. This hit-list size was at least of 1% of Witty vulnerable hosts.

Therefore, the evaluation used 1% of the vulnerable population values of 1057, 1168 and

1007 for Slammer, RDP and ShellShock pseudo-worms. The hit-list sizes were 11, 12

and 10 for Slammer, RDP, ShellShock pseudo-worms respectively.

5.7.2 Testing for Unused local IP Address Contacts

To evaluate the ARP-based detection component, a range of active IP addresses were

defined in each subnet. Therefore during the evaluation, an ARP datagram transmitted

outside the range of the active addresses of a subnet is considered suspicious and therefore

flagged as a scanning event. The threshold used for ARP based worm scanning are, 1,

2 and 3 ARP request datagrams sent to inactive local IP addresses.

5.7.3 Threshold and Background Traffic Set-up

The experiments were conducted using threshold values of 100, 200, 300 and 400 worm

datagrams sent by a host within timing windows of 10, 15 and 20 seconds. The threshold

values were chosen because a fast scanning network worm can be detected before causing

damage to networks even after transmitting 100 or 200 datagrams. Meanwhile, the

values do not exert strong restriction for benign traffic that exhibit worm-like behaviour.

The range of values was used to determine the possible effect of the thresholds and

timing windows on the percentage of false positives. Each pseudo-worm experiment was

conducted in the presence of background traffic using each of the three traffic datasets;

DARPA, CDX and LAB. This was to test the detection systems using legitimate traffic

with different characteristics and model heterogeneity in the experiments because the

datasets comprises traffic from the most commonly used operating systems; Unix-based

and Windows.

To test the effect of dynamic threshold scheme, the experiments were initiated in a

defined peak period and then continue through a defined quiescent period. The peak

period is characterised by a large volume of generated background traffic, i.e, the back-

ground traffic was replayed in large volume while worm attack datagrams are transmitted

80



5.7 Procedure

by the pseudo-worms. Conversely, the quiescent period is characterised by low volume of

generated background traffic along with worm attack datagrams. These were achieved

by setting a number of hosts to replay background traffic in large volume while an-

other set of hosts replay traffic in low volume during peak period. As the peak period

elapses, the hosts that replay large volume of background traffic were halted and the set

of hosts that replay low volume of background traffic continue. Citicaka (2014) noted

that traffic volume reduces by 60% during non-business hours, therefore the evaluation

examined the effect of reducing the threshold to 25%, 30% and 35%. The volume of

background traffic replayed by each host during the peak period was the average num-

ber of datagrams transmitted per second for each traffic dataset, which was 76, 153 and

184 datagrams per second for the DARPA, CDX and LAB traffic traces respectively.

However, the traffic volume was reduced by 25%, 30% and 35% during the quiescent

period.

5.7.4 Experimentation Set-up

For each pseudo-worm experiment, a number of hosts (1057 for Slammer, 1168 for RDP

and 1007 for ShellShock) were configured with the correct daemon for worm attack

datagrams while other hosts were configured to replay the background traffic between

endpoints across the V-Network internetwork as depicted in Figure 5.2. The worm

attack and traffic replay events were executed concurrently in each experiment. The

experiments were conducted without any countermeasures in place, then repeated with

the countermeasures in the presence of background traffic. The performance metrics,

TP, TN, FP and FN were determined for each countermeasure experiment. The metrics

were then used to determine the precision and accuracy of each detection scheme.
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Enterprise
 Network

NEDAC 
Containment Switch

NEDAC/Other  
Detection RouterD

10.0.0.0/8 11.0.0.0/8

13.0.0.0/8

D

D D

12.0.0.0/8

D

Infected
Hosts

Background
Traffic

Figure 5.2: Pseudo-worm attack and background traffic generation events

Figure 5.3 summarises the evaluation experiments conducted for each of the three de-

tection schemes. Each of the 18 experiments presented in Figure 5.3 was conducted 12

times using a combination of different threshold values and timing windows as presented

in Table 5.2, and then repeated twice.
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Experiments

ShellShock

Hit-list

Scanning
LAB

CDX

DARPA

Random
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LAB

CDX

DARPA

RDP

Hit-list

Scanning
LAB

CDX

DARPA

Random

Scanning
LAB

CDX

DARPA
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Hit-list

Scanning
LAB

CDX

DARPA

Random

Scanning
LAB

CDX

DARPA

Figure 5.3: Evaluation experiments

Table 5.2: Sets of Experiments

Experiments
Threshold value Timing Window

100 200 300 400 10 15 20

1 ! # # # ! # #

2 # ! # # ! # #

3 # # ! # ! # #

4 # # # ! ! # #

5 ! # # # # ! #

6 # ! # # # ! #

7 # # ! # # ! #

8 # # # ! # ! #

9 ! # # # # # !

10 # ! # # # # !

11 # # ! # # # !

12 # # # ! # # !
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5.8 Summary

This chapter has presented an evaluation programme that has been developed to test

NEDAC along with two earlier detection methods for comparative purposes. The pro-

gramme uses collected traces together with worm attack datagrams to evaluate the de-

tection systems. The collected traces, from the DARPA, CDX and LAB datasets, were

used as background traffic during the evaluation. The worm attack events employed a

Slammer-based pseudo-worm and two contemporary pseudo-worms to facilitate worm

propagation experiments. The worm propagation experiments used random and hit-list

worm scanning strategies for the testing. Finally, the number and range of experiments

needed to evaluate the detection schemes have been set out.
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Chapter 6

RESULTS OF THE NEDAC SCHEME EVALUATION

6.1 Introduction

This chapter presents the results of the evaluation experiments used to test the per-

formance of NEDAC in comparison with the DSC and DNS-RL schemes. The objective

of this chapter is to empirically establish whether NEDAC meets the research object-

ive of developing a more faster, effective and accurate worm detection and containment

mechanism in comparison with the existing schemes. Section 6.2 presents the worm

experimentation set up used and Sections 6.3 and 6.4 present the worm detection and

containment results respectively. The false positive results for the DSC, DNS-RL and

NEDAC schemes are presented in Section 6.5. Section 6.6 presents analysis of the per-

formance of the detection and containment schemes and Section 6.7 summarises the

chapter.

6.2 Worm Propagation Experiments

To evaluate the capability of NEDAC together with the DSC and DNS-RL schemes, a

set of worm outbreak experiments were conducted in the presence of each scheme as set

out in Table 5.2. Each experiment was repeated twice and an average result of three

experiments was computed. The three worm daemons used during the evaluation were

configured as discussed in Sections 6.2.1 through 6.2.3.
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6.2.1 Slammer

As presented in Section 5.6.2, the Slammer pseudo-worm experiments were conducted

using 1057 vulnerable hosts (1051 as client hosts and 6 as server hosts) across three class

A size networks as depicted in Figure 6.1.

Enterprise Network
NEDAC 

Containment Switch

NEDAC/Other 
Detection RouterNDND

Susceptible host Traffic generation/replay host

10.0.0.0/8 11.0.0.0/8

12.0.0.0/8

NDND

NDNDNDND

Subnets used:
10.0.0.0/11, 10.32.0.0/11, 10.64.0.0/11, 10.96.0.0/11
10.128.0.0/11, 10.160.0.0/11, 10.192.0.0/11, 10.224.0.0/11

Subnets used:
11.0.0.0/11, 11.32.0.0/11, 11.64.0.0/11, 11.96.0.0/11
11.128.0.0/11, 11.160.0.0/11, 11.192.0.0/11, 11.224.0.0/11

Subnets used:
12.0.0.0/11, 12.32.0.0/11, 12.64.0.0/11, 12.96.0.0/11
12.128.0.0/11, 12.160.0.0/11, 12.192.0.0/11, 12.224.0.0/11

Figure 6.1: Slammer pseudo-worm experimental set-up

The Slammer pseudo-worm daemon was configured to listen on UDP port 1434 and then

transmit UDP datagrams to port 1434 at a scan rate of 125 “infectious” datagrams per

second, once “infected”.
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6.2.2 RDP

Also as presented in Section 5.6.2, the RDP pseudo-worm experiments were conducted

using 1168 vulnerable hosts (1160 as client hosts and 8 as server hosts) across four class

B size networks as depicted in Figure 6.2.

Enterprise Network
NEDAC 

Containment Switch

NEDAC/Other  
Detection RouterNDND

Susceptible host Traffic generation/replay host

172.16.0.0/16 172.17.0.0/16

172.18.0.0/16 172.19.0.0/16

NDND NDND

NDND

Subnets used: 
172.16.0.0/19, 172.16.32.0/19, 172.16.64.0/19 

172.16.96.0/19, 172.16.96.0/19 172.16.128.0/19

Subnets used: 
172.17.0.0/19, 172.17.32.0/19, 172.17.64.0/19 

172.17.96.0/19, 172.17.96.0/19 172.17.128.0/19

Subnets used: 
172.18.0.0/19, 172.18.32.0/19, 172.18.64.0/19 

172.18.96.0/19, 172.18.96.0/19 172.18.128.0/19

Subnets used: 
172.19.0.0/19, 172.19.32.0/19, 172.19.64.0/19 

172.19.96.0/19, 172.19.96.0/19 172.19.128.0/19

NDND

Figure 6.2: RDP pseudo-worm experimental set-up

The RDP pseudo-worm daemon was configured to listen on UDP port 3389 and then

transmit UDP datagrams to port 3389 at a scan rate of 127 “infectious” datagrams per

second, once “infected”.
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6.2.3 ShellShock

Finally, the ShellShock pseudo-worm experiments were conducted using 1006 vulnerable

hosts, as derived in Section 5.6.2 (996 as client hosts and 10 as server hosts) across five

class A size networks as depicted in Figure 6.3.

Enterprise Network
NEDAC 

Containment Switch

NEDAC/Other 
Detection RouterND

Susceptible host Traffic generation/replay host

12.0.0.0/8

13.0.0.0/8 14.0.0.0/8

10.0.0.0/8

ND
  

ND
  

NDND NDND

NDND NDND

Subnets used:
10.0.0.0/11
10.32.0.0/11
10.64.0.0/11
10.96.0.0/11
10.128.0.0/11

Subnets used:
11.0.0.0/11
11.32.0.0/11
11.64.0.0/11
11.96.0.0/11
11.128.0.0/11

11.0.0.0/8

Subnets used:
12.0.0.0/11
12.32.0.0/11
12.64.0.0/11
12.96.0.0/11
12.128.0.0/11

Subnets used:
14.0.0.0/11
14.32.0.0/11
14.64.0.0/11
14.96.0.0/11
14.128.0.0/11

Subnets used:
12.0.0.0/11
12.32.0.0/11
12.64.0.0/11
12.96.0.0/11
12.128.0.0/11

Figure 6.3: ShellShock pseudo-worm experimental set-up

The ShellShock pseudo-worm daemon was configured to listen on UDP port 8080 and

then transmit UDP datagrams to port 8080 at a scan rate of 125 “infectious” datagrams
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per second, once “infected”.

6.3 Worm Detection Results

The Slammer, RDP and ShellShock worm experiments were conducted using random

and hit-list scanning techniques in the presence of background traffic. The thresholds

used during the experiments were 100, 200, 300 and 400 anomalous datagrams sent

within the timing windows of 10, 15 and 20 seconds as discussed in Section 5.7.3. The

detection performance of each scheme was determined during the experiments and then

an average result of three experiments was computed for each scheme. The results are

then presented based on the type of background traffic used, i.e. DARPA, CDX and

LAB network traffic.

The metrics used to assess the detection performance of each scheme were Accuracy

and Precision as discussed in Section 5.4. The main goal of a detection system is to

accurately identify a worm infection. Precision shows how a detection scheme correctly

classifies worm instances as intrusions, while accuracy measures how satisfactorily the

worm instances are classified as intrusions by a detection scheme (En-Najjary and Urvoy-

Keller, 2010). The overall detection performance of a scheme is then assessed based on

the extent of its accuracy and precision.

6.3.1 Precision

This section presents the results of the precision of worm detection for the DSC, DNS-RL

and NEDAC schemes. Figure 6.4 shows the precisions of the three detection schemes

with the DARPA network traffic. The precisions of the DSC, DNS-RL and NEDAC, with

a timing window of 10 seconds and a threshold value of 100, are 88.4%, 86.7% and 97.3%

respectively. Thus the schemes are 88.4%, 86.7% and 97.3% likely to correctly classify

worm instances as intrusions with a threshold value of 100 and a timing window of 10

seconds respectively. The results also show that the precisions increased with increasing

threshold values (200, 300 and 400) and a timing window of 10 seconds; 3.5%, 3.6%
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and 1.4%, on average, for the DSC, DNS-RL and NEDAC schemes respectively. The

precisions also increased, on average, by 2.6%, 3.4% and 1.3% with increasing threshold

values and a timing window of 15 seconds for the DSC, DNS-RL and NEDAC schemes

respectively. It should be noted that the precisions of the three detection schemes also

increased with the same threshold value but longer timing window. For instance, the

precision of DSC with threshold values of 100 and 200 and a timing window of 10 seconds

increased by 3.8% and 4.1% respectively when the timing window was increased to 15

seconds.
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Figure 6.4: Precision of detection with the DARPA network traffic

Figure 6.5 shows the precision values of the three detection schemes with the CDX

network traffic. The precision increased with increasing threshold values and longer

timing window as with the DARPA network traffic. The precision increased, on average,

across increasing thresholds and a timing window of 10 seconds by 3.3%, 2.8% and 1%

for the DSC, DNS-RL and NEDAC schemes respectively. The precision also increased

by 3.1%, 2.5% and 1.6% for DSC, DNS-RL and NEDAC with a threshold value of 100

and a timing window of 15 seconds.
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Figure 6.5: Precision of detection with the CDX network traffic

Figure 6.6 shows the precision values of the three detection schemes with the LAB

network traffic. With a timing window of 10 seconds, the precision increased, on average,

by 1.2% and 1.7% for the DSC and DNS-RL schemes respectively across the increasing

thresholds.
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Figure 6.6: Precision of detection with the LAB network traffic

The precision also increased by 1% and 1.2% for DSC and DNS-RL with a threshold
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value of 100 and a timing window of 15 seconds. The precision of NEDAC remained

100% across the thresholds and timing windows used with the LAB network traffic.

6.3.2 Accuracy

This section presents the results of the accuracy of worm detection for each of the DSC,

DNS-RL and NEDAC schemes. Figure 6.7 shows the accuracy of worm detection for

the three schemes with the DARPA network traffic. The values of detection accuracy

for DSC, DNS-RL and NEDAC with a threshold value of 100 and a timing window of 10

seconds are 93.4%, 92.3% and 98.4% respectively. Thus the DSC, DNS-RL and NEDAC

schemes are 93.4%, 92.3% and 98.4% likely to satisfactorily classify worm instances

as intrusions. As with the precision, the detection accuracy increased with increasing

threshold values and longer timing window. Figures 6.7 and 6.9 shows the accuracy of

worm detection for each of the three schemes with the CDX and LAB network traffic

respectively, which exhibit similar trend of increasing accuracy across rising threshold

values and longer timing window.
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Figure 6.7: Accuracy of detection with the DARPA network traffic
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Figure 6.8: Accuracy of detection with the CDX network traffic
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Figure 6.9: accuracy of detection with the LAB network traffic

6.3.3 Performance

The general performance of the detection schemes shows that the trend is for the preci-

sion and accuracy to increase with higher threshold values and a longer timing window,

i.e., increasing the timing window and/or threshold value provide an additional level
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of precision and accuracy of worm detection. However, increasing the timing window

provides more precision and accuracy with fewer malware traffic propagation than in-

creasing the threshold value. The detection schemes also performed better with the

CDX and LAB datasets due to fewer false positives compared to the DARPA dataset.

Figure 6.10 presents the average detection performance of DSC, DNS-RL and NE-

DAC based on the threshold values used across all the experiments conducted with

the DARPA, CDX and LAB datasets. Generally, the NEDAC scheme demonstrated a

better detection performance than the DSC and DNS-RL with minimum average values

of 99.1% and 99.6% for precision and accuracy respectively.
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Figure 6.10: Average detection performance for the three schemes

6.4 Worm Containment Results

The worm containment performance of the DSC, DNS-RL and NEDAC schemes was

evaluated using random and hit-list scanning infections as discussed in Section 5.7.1.

The experiments were initially conducted without any countermeasure solution in place

to determine the time taken to attain full infection. The experiments were then repeated

in the presence of each detection scheme to evaluate their countermeasure capabilities.
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The results of the experiments have been scaled up by factors of 32, 1.3 and 2.5 for the

Slammer, RDP and ShellShock pseudo-worms respectively for client hosts in order to

conform to the actual scan rate of the worm daemons. This is because the scan rates of

worm daemons were scaled down before the experiments as explained in Section 5.6.1.

The results of the worm containment performance using a threshold value of 100 are

presented in Sections 6.4.1 through 6.4.3.

6.4.1 Results for the Containment of Random Scanning Worm

This section presents the results of the containment of random scanning infection using

the timing windows of 10, 15, and 20 seconds.

6.4.1.1 Results for the Timing Window of 10 Seconds

This section presents the results of random infection behaviour using a timing window

of 10 seconds. Figures 6.11, 6.12 and 6.13 show the number of infected hosts per second

using the Slammer, RDP and ShellShock pseudo-worms respectively. The Slammer

pseudo-worm attained full infection (1057 vulnerable hosts) in 120 seconds with no

detection scheme and infected 104 (10%) and 184 (17%) of its vulnerable hosts in the

same period of time with the DSC and DNS-RL schemes respectively. The RDP pseudo-

worm attained full infection (1168 vulnerable hosts) in 120 seconds with no detection

scheme and infected 208 (18%) and 235 (20%) of its vulnerable hosts in the same period

of time with the DSC and DNS-RL schemes respectively. The ShellShock pseudo-worm

attained full infection (1006 vulnerable hosts) in 2000 seconds with no detection scheme

and infected 200 (20%) and 322 (32%) of its vulnerable population in 2000 seconds

with the DSC and DNS-RL schemes respectively. The Slammer, RDP and ShellShock

infection rates remained zero with the NEDAC scheme.
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Figure 6.11: Slammer Random infection behaviour with 10 seconds timing window
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Figure 6.12: RDP Random infection behaviour with 10 second timing window
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Figure 6.13: ShellShock Random infection behaviour with 10 second timing window

This is because the initially infected host, for each pseudo-worm experiment, was detec-

ted and then blocked from sending out datagrams at the data link layer. Additionally,

inbound worm datagrams were also blocked at the network layer, which stopped the

infection completely for each of the three worm outbreak scenarios. Generally, when the

detection schemes were applied, the infections were significantly suppressed to at most

20% and 32% of the vulnerable populations by the DSC and DNS-RL schemes respect-

ively and blocked completely by the NEDAC scheme. Although the worm infections

were detected by the DSC and DNS-RL schemes and countermeasure solutions were ap-

plied, the worm spread because the initially infected host continued sending infectious

datagrams and therefore the internal network hosts were left open to the worm attack.

6.4.1.2 Results for the Timing Window of 15 Seconds

This section presents the results of random infection behaviour using a timing window

of 15 seconds. Figures 6.14, 6.15 and 6.16 show the number of infected hosts per second

using the Slammer, RDP and ShellShock pseudo-worms respectively.

97



6.4 Worm Containment Results

0 20 40 60 80 100 120
0

100

200

300

400

500

600

700

800

900

1000

1100

Time (second)

N
u

m
b

er
 o

f 
in

fe
ct

ed
 h

o
st

s

 

 

Infection
Infection + DSC
Infection + DNS-RL
Infection + NEDAC

Figure 6.14: Slammer Random infection behaviour with 15 seconds timing window
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Figure 6.15: RDP Random infection behaviour with 15 second timing window
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Figure 6.16: ShellShock Random infection behaviour with 15 second timing window

The Slammer pseudo-worm attained full infection (1057 vulnerable hosts) in 120 seconds

with no detection scheme and infected 153 (14%), 247 (23%) and three of its vulner-

able hosts in the same period of time with the DSC, DNS-RL and NEDAC schemes

respectively. The RDP pseudo-worm attained full infection (1168 vulnerable hosts) in

120 seconds with no detection scheme and infected 438 (38%), 492 (42%) and two of

its vulnerable hosts in the same period of time with the DSC, DNS-RL and NEDAC

schemes respectively. The ShellShock pseudo-worm attained full infection (1006 vulner-

able hosts) in 2000 seconds with no detection scheme and infected 326 (32%), 398 (40%)

and one of its vulnerable population in the same period of time with the DSC, DNS-RL

and NEDAC schemes respectively.

In contrast to the results of 10 seconds timing window, the infection rates of the pseudo-

worms increased, on average, by 12%, 11% and 0.2% for the DSC, DNS-RL and NE-

DAC schemes respectively. The 50% increase in the timing window enabled the worms

to transmit more infectious datagrams before exceeding the assigned threshold. How-

ever, the infections were suppressed to at most 38%, 42% and three of the vulnerable
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populations by the DSC, DNS-RL and NEDAC schemes respectively.

6.4.1.3 Results for the Timing Window of 20 Seconds

This section presents the results of random infection behaviour using a timing window

of 20 seconds. Figures 6.17, 6.18 and 6.19 show the number of infected hosts per second

using the Slammer, RDP and ShellShock pseudo-worms respectively. The Slammer

pseudo-worm attained full infection (1057 vulnerable hosts) in 120 seconds with no

detection scheme and infected 198 (20%), 286 (28%) and five of its vulnerable hosts in

the same period of time with the DSC, DNS-RL and NEDAC schemes respectively. The

RDP pseudo-worm attained full infection (1168 vulnerable hosts) in 120 seconds with no

detection scheme and infected 495 (42%), 516 (44%) and two of its vulnerable hosts in

the same period of time with the DSC, DNS-RL and NEDAC schemes respectively. The

ShellShock pseudo-worm attained full infection (1006 vulnerable hosts) in 2000 seconds

with no detection scheme and infected 419 (42%), 500 (50%) and one of its vulnerable

population in the same period of time with the DSC, DNS-RL and NEDAC schemes

respectively.
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Figure 6.17: Slammer Random infection behaviour with 20 seconds timing window
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Figure 6.18: RDP Random infection behaviour with 20 second timing window
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Figure 6.19: ShellShock Random infection behaviour with 20 second timing window

The infection rates of the pseudo-worms increased, on average, by 5% for the DSC and

DNS-RL schemes and 0.1% for the NEDAC scheme in comparison with the results for
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the 15 seconds timing window.

6.4.1.4 Performance

Table 6.1 summarises the number of hosts infected across the experiments conducted us-

ing random scanning within the relevant infection time of each pseudo-worm. Generally,

the trend is that the infection increases with an increasing timing window.

Table 6.1: Number of Infected Hosts with the three Schemes using Random Scanning

Timing Window Scheme Slammer RDP ShellShock Average (%)

10 Seconds

DSC 104 (10%) 208 (18%) 200 (20%) 16

DNS-RL 184 (17%) 235 (20%) 322 (32%) 23

NEDAC 1 1 1 1

15 Seconds

DSC 153 (14%) 438 (38%) 326 (32%) 28

DNS-RL 247 (23%) 492 (42%) 398 (40%) 34

NEDAC 4 (0.4%) 3 (0.3%) 2 (0.2%) 0.3

20 Seconds

DSC 198 (20%) 495 (42%) 419 (42%) 33

DNS-RL 286 (28%) 516 (44%) 500 (50%) 39

NEDAC 6 (0.6%) 3 (0.3%) 2 (0.2%) 0.4

6.4.2 Results for the Containment of Hit-list Scanning Worm

This section presents the results of the containment of hit-list scanning infection using

the timing windows of 10, 15, and 20 seconds.

6.4.2.1 Results for the Timing Window of 10 Seconds

This section presents the results of hit-list infection using a timing window of 10 seconds

and pre-compiled lists of 11, 12 and 10 hosts for the Slammer, RDP and ShellShock

pseudo-worms respectively as discussed in Section 5.7.1. Figures 6.20, 6.21 and 6.22

show the number of infected hosts per second with the Slammer, RDP and ShellShock

pseudo-worms respectively.
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Figure 6.20: Slammer with a timing window of 10 seconds and a hit-list of 11 hosts
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Figure 6.21: RDP with a timing window of 10 seconds and a hit-list of 12 hosts
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Figure 6.22: ShellShock with a timing window of 10 seconds and a hit-list of 10 hosts

The Slammer pseudo-worm attained full infection (1057 vulnerable hosts) in 70 seconds

with no detection scheme and infected 541 (51%), 700 (66%) and 18 (2%) of its vul-

nerable hosts in the same period of time with the DSC, DNS-RL and NEDAC schemes

respectively. The RDP pseudo-worm attained full infection (1168 vulnerable hosts) in

80 seconds with no detection scheme and infected 532 (46%), 644 (55%) and 38 (3.5%)

of its vulnerable hosts in the same period of time with the DSC, DNS-RL and NEDAC

schemes respectively. The ShellShock pseudo-worm attained full infection (1006 vulner-

able hosts) in 700 seconds with no detection scheme and infected 447 (44%), 781 (78%)

and 13 (1.3%) of its vulnerable hosts in the same period of time with the DSC, DNS-RL

and NEDAC schemes respectively.

6.4.2.2 Results for the Timing Window of 15 Seconds

This section presents the results of hit-list infection using a timing window of 15 seconds

and pre-compiled lists of 11, 12 and 10 hosts for the Slammer, RDP and ShellShock

pseudo-worms respectively. Figures 6.23, 6.24 and 6.25 show the number of infected
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hosts per second with the Slammer, RDP and ShellShock pseudo-worms respectively.
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Figure 6.23: Slammer with a timing window of 15 seconds and a hit-list of 11 hosts
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Figure 6.24: RDP with a timing window of 15 seconds and a hit-list of 12 hosts
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Figure 6.25: ShellShock with a timing window of 15 seconds and a hit-list of 10 hosts

The Slammer pseudo-worm attained full infection (1057 vulnerable hosts) in 70 seconds

with no detection scheme and infected 926 (88%), 998 (94%) and 20 (2%) of its vul-

nerable hosts in the same period of time with the DSC, DNS-RL and NEDAC schemes

respectively. The RDP pseudo-worm attained full infection (1168 vulnerable hosts) in

80 seconds with no detection scheme and infected 693 (59%), 797 (68%) and 46 (4%)

of its vulnerable hosts in the same period of time with the DSC, DNS-RL and NEDAC

schemes respectively. The ShellShock pseudo-worm attained full infection (1006 vulner-

able hosts) in 700 seconds with no detection scheme and infected 591 (59%), 887 (88%)

and 18 (2%) of its vulnerable hosts in the same period of time with the DSC, DNS-RL

and NEDAC schemes respectively.

6.4.2.3 Results for the Timing Window of 20 Seconds

This section presents the results of hit-list infection using a timing window of 20 seconds

and pre-compiled lists of 11, 12 and 10 hosts for the Slammer, RDP and ShellShock

pseudo-worms respectively. Figures 6.26, 6.27 and 6.28 show the number of infected
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hosts per second with the Slammer, RDP and ShellShock pseudo-worms respectively.
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Figure 6.26: Slammer with a timing window of 20 seconds and a hit-list of 11 hosts
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Figure 6.27: RDP with a timing window of 20 seconds and a hit-list of 12 hosts
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Figure 6.28: ShellShock with a timing window of 20 seconds and a hit-list of 10 hosts

The Slammer pseudo-worm attained full infection (1057 vulnerable hosts) in 70 seconds

with no detection scheme and infected 996 (94%), 1027 (97%) and 24 (3%) of its vul-

nerable hosts in the same period of time with the DSC, DNS-RL and NEDAC schemes

respectively. The RDP pseudo-worm attained full infection (1168 vulnerable hosts) in

80 seconds with no detection scheme and infected 802 (69%), 931 (80%) and 53 (5%)

of its vulnerable hosts in the same period of time with the DSC, DNS-RL and NEDAC

schemes respectively. The ShellShock pseudo-worm attained full infection (1006 vulner-

able hosts) in 700 seconds with no detection scheme and infected 680 (68%), 900 (89%)

and 21 (2%) of its vulnerable hosts in the same period of time with the DSC, DNS-RL

and NEDAC schemes respectively.

6.4.2.4 Performance

Table 6.2 summarises the number of hosts infected across the experiments conducted

using hit-list scanning within the relevant infection time of each pseudo-worm. The

general trend is also for the infection to increase with an increasing timing window.
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Table 6.2: Number of Infected Hosts with Hit-list Scanning

Timing Window Scheme
Pseudo-worm (hit-list size)

Slammer (11) RDP (12) ShellShock (10) Average (%)

10 Seconds

DSC 541 (51%) 532 (46%) 447 (44%) 47

DNS-RL 700 (66%) 644 (55%) 781 (78%) 66

NEDAC 18 (2) 38 (3.3%) 13 (1.3) 2

15 Seconds

DSC 926 (88%) 693 (59%) 591 (59%) 69

DNS-RL 998 (94%) 797 (68%) 887 (88%) 83

NEDAC 20 (2%) 46 (4%) 18 (2%) 3

20 Seconds

DSC 996 (94%) 802 (69%) 680 (68%) 77

DNS-RL 1027 (97%) 931 (80%) 900 (89%) 89

NEDAC 24 (3%) 53 (5%) 21 (2%) 3

6.4.3 Infected Hosts Contained by NEDAC

The RDP pseudo-worm experiments conducted using pre-compiled lists of 12 initially

infected hosts spread the worm infection to a number of client and server hosts, which

were all detected and contained completely by the NEDAC scheme. Table 6.3 summar-

ises the number of infected client and server hosts that were contained by NEDAC due

to either exceeding the threshold assigned for probing IPv4 routable address as set out

in Section 5.7.1 or the threshold assigned for contacting inactive local IP address as

discussed in Section 5.7.3.

Table 6.3: Infected Hosts Contained by NEDAC during RDP Hit-list Experiment

Hit-list Size
Infections Host Type Number of hosts Contained for Probing

Additional Total Client Server IPv4 Addresses Inactive Local IP Addresses

12 26 38 35 3 37 1

An additional number of 26 hosts were infected during the experiment with a pre-

compiled list of 12 initially infected hosts. Three out of the 38 infected hosts were
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servers that were contained for probing random IPv4 routable addresses. Among the 35

infected client hosts, a host was contained for probing an inactive local IP address. All

other infected hosts in the set of experiments conducted were contained due to probing

random IPv4 routable addresses. Across the sets of experiments conducted, most of

the hosts were contained due to probing IPv4 routable addresses, because during worm

scanning, the frequency of generating an IP address within the inactive local IP address

space is lower compared to generating an IP address within the entire IPv4 routable

address space.

6.5 False Positive Results

A false positive occurs when an alarm is raised, which has been caused by benign traffic.

An alarm was considered to be an alert generated by a detection scheme for datagram(s)

sent by a host on a distinct destination port, i.e., alerts raised by a detection scheme for

datagrams destined for port X from host Y are considered to be a single alarm raised

by the detection scheme for host Y. This is then recorded as an alarm from host Y until

another alert is generated for datagrams sent by host Y to a different destination port.

All real pseudo-worm datagrams were detected by the schemes in all the experiments

conducted and therefore the TP and FN rates are 100% and zero respectively. However,

a number of false positives were raised by the schemes when employing timing windows

of 10 and 15 seconds. The false positives dissipated with the timing window of 20

seconds. Figures 6.29, 6.30 and 6.31 present the number of false positives raised by the

three schemes with the CDX, DARPA and LAB network traffic respectively.
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(a) Timing window of 10 seconds
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(b) Timing window of 15 seconds

Figure 6.29: False positives raised with CDX network traffic
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(b) Timing window of 15 seconds

Figure 6.30: False positives raised with DARPA network traffic
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Figure 6.31: False positives raised with LAB network traffic
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The schemes raised higher number of false positives with the DARPA network traffic

than the CDX and LAB network traffic. These variations indicate the impact of network

environment on the detection performance of the schemes. The schemes also have a

higher number of false positives with low threshold values and timing window, which

generally diminished with rising threshold values and longer timing window. For the

former, the reduction was due to increasing the number of allowed benign datagrams

that exhibit worm scanning-like behaviour. For the latter, the reduction was due to an

increase in the amount of time for benign datagrams that exhibit worm scanning-like

behaviour, which occur frequently within a short period of time. Section 6.5.1 through

6.5.3 present discussions of the network protocols in the DARPA, CDX and LAB network

traffic that caused false positives for the DSC, DNS-RL and NEDAC schemes.

6.5.1 False Positive Analysis for the DARPA Traffic

The false positives raised by the DSC, DNS-RL and NEDAC schemes, with DARPA

network traffic, were mainly datagrams destined for TCP port 23 (Telnet), UDP ports 53

(DNS), 123 (NTP), 137 (NetBIOS name resolution), 138 (NetBIOS datagram services)

and 520 (routing information protocol) and other network ports (see Tables B.3 and

B.4 in Appendix B for details). Figure 6.32 summarises the TCP and UDP ports that

caused false positives for the three schemes. The common cause of false positives was a

multicast UDP datagram destined for UDP port 520.

The UDP multicast datagram was an RIP update datagram between the internal gate-

way and an external router in the MIT Lincoln laboratory. RIP update datagrams

appeared in the trace because the packet sniffer used to collect the traces was positioned

between the gateway of the “outside” network and an external router that connects the

“inside” and “outside” network segments. Ideally, the worm detection schemes, partic-

ularly NEDAC, were designed to work at the gateway interface of a protected network

and monitor traffic to and from internal network hosts, where it is less likely for the

schemes to encounter RIP update datagrams.
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Figure 6.32: Protocols that causes false positives in the DARPA network traffic

However, the rate at which RIP sends updates to neighbouring routers is not similar to

fast scanning network worm behaviour, because RIP routers exchange complete updates

every 30 seconds by default (Malkin, 1998). Nevertheless, the RIP port can be added

into the exempt list in NEDAC to avoid false positives, which are less likely to occur

when the mechanism is deployed in a network.

In addition to the RIP update datagrams, the schemes also raised common false positives

for NetBIOS service datagrams, i.e. datagrams destined for UDP ports 137 (broadcast

NetBIOS name resolutions) and 138 (datagram services). The NetBIOS name service

manages name resolution for NetBIOS hosts on a local network, while the datagram

service is used to send messages to unique or multiple NetBIOS hosts (Appanasamy,

2013). A NetBIOS host resolves a name using a cache, a name server or an IP subnet

broadcast (Davies, 2008). An IP subnet broadcast sent by a host is received by all

machines on the same network. Similarly, a NetBIOS host uses the datagram service to

send messages to a group of hosts, which also uses subnet broadcast for name resolution.
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These behaviours are similar to worm scanning because a host is sending datagrams to

different IP addresses on the same destination ports without a prior DNS resolution.

Additionally, the response sent by a host upon receiving a NetBIOS service datagram is

triggered by an inbound datagram received on the same port, which also resembles worm

scanning for the DSC scheme and the NEDAC server anomaly detection component.

However, the rate at which the datagrams are transmitted by name resolution and

datagram services are not similar to fast scanning network worms.

Furthermore, the DSC and DNS-RL schemes raised common false positives for data-

grams destined for TCP ports 1135, 1220, 1241, 1362 and 2060 and then UDP port

123. The DSC scheme also raised false positives for datagrams destined for UDP port

53 due to the occurrence of client host DNS resolution datagrams, which were triggered

by DNS response datagrams received on the same port. The DNS-RL scheme raised

false positives for datagrams destined for TCP port 23 and other network ports in the

DARPA network traffic.

6.5.2 False Positives Analysis for the CDX Traffic

The false positives raised by the DSC, DNS-RL and NEDAC schemes, with the CDX net-

work traffic, were datagrams destined for TCP ports 21 (FTP), 25 (SMTP), 80 (HTTP),

443 (HTTPS) and 445 (Microsoft SMB protocol), and also UDP ports 53, 67 (DHCP

server), 68 (DHCP client), 123 (NTP), 137 (NetBIOS name resolution) and 138 (Net-

BIOS datagram services). Figure 6.33 summarises the TCP and UDP ports that caused

false positives for the three schemes (see Tables B.1 and B.2 in Appendix B for details).
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Figure 6.33: Protocols that causes false positives in the CDX network traffic

As with the DARPA network traffic, the common cause of false positives for the three

detection schemes were NetBIOS name resolution (for DNS-RL and NEDAC only) and

datagram services. The DNS-RL and NEDAC schemes raised common false positives

for DHCP client requests and server reply datagrams destined for UDP ports 67 and 68

respectively. The DHCP datagrams destined for UDP 67 were IP address renewals/re-

quests sent by hosts during system start up using numeric broadcast or DHCP server IP

addresses. Then the DHCP server responds to the requests by sending reply datagrams

destined for UDP port 68 in order to assign a new IP address or renew an existing lease.

Both DHCP client requests and server responses exhibit worm scanning-like behaviour

due to multiple contacts to different destinations on the same port, particularly when a

number of network hosts are booted within a short period of time. However, the rate at

which the DHCP requests and responses occur is not similar to fast scanning network

worm behaviour. Additionally, most IP address request/renew datagrams do not go

through a network router/gateway unless where such a router/gateway is also the local

DHCP server or a relay agent. Nevertheless, the false positives can be resolved with
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the NEDAC scheme by white-listing the IP address of the router and the DHCP port

number combination when the mechanism is deployed in a network.

The DSC and DNS-RL raised common false positives for datagrams destined for TCP

ports 21 and 445 and UDP port 123. The Microsoft SMB protocol (TCP port 445) is

used for file and printer sharing directly over TCP unlike the previous version of the

protocol that requires NetBIOS layer using UDP ports 137 and 138 and TCP port 139

(Martin, 2003). This is to simplify the SMB traffic by replacing the NetBIOS broadcast

name resolution with DNS resolution (MacDonald and Barkley, 2000). As with the

DARPA network traffic, the DSC scheme raised false positives for datagrams destined

to UDP port 53, while the DNS-RL scheme raised false positives for datagrams destined

for TCP ports 25, 80 and 443.

6.5.3 False Positives Analysis for the LAB Traffic

The false positives raised by the DSC and DNS-RL schemes, with the LAB network

traffic, were datagrams destined for TCP ports 25, 80, 443, 445 and also UDP ports 123,

137, 138. Figure 6.34 summarises the TCP and UDP ports that caused false positives

for either or both of the DSC and DNS-RL schemes (see Tables B.5 and B.6 in Appendix

B for details). The most common cause of false positives were datagrams addressed to

TCP port 445 and UDP ports 123 and 138 as with the DARPA and CDX network traffic.

The DNS-RL scheme raised false positives for datagrams destined for TCP ports 25, 80,

443 and 1935 (Adobe Systems Macromedia Flash Real Time Messaging Protocol) and

then UDP port 5355 (LLMNR). The LLMNR protocol enables name resolution within a

subnet or link-local scoped network, especially when DNS name resolution fails (Aboba

et al., 2007; Jeong et al., 2003).
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Figure 6.34: Protocols that causes false positives in the Lab network traffic

An LLMNR host resolves a name by sending an LLMNR query to multicast addresses,

which is destined for UDP port 5355. Then an LLMNR host that is authoritative to

the name responds to the query by sending a unicast UDP response to the sender on

the same port (Aboba et al., 2007). The multicast LLMNR query resembles a worm

scanning activity because a multicast query sent to different addresses with the same

destination port will cause an alarm by the DNS-RL scheme. However, LLMNR queries

and responses are not routable, i.e. they do not pass through a router, and the rates at

which the queries and responses occur are not similar to those of a fast scanning network

worm.

6.5.4 NEDAC False Positive Detection for the Peak and Quiescent Periods

The NEDAC detection system used a dynamic scheme that assigns threshold based on

peak and quiescent periods as explained in Section 3.3. The dynamic threshold scheme

was tested using different volumes of background traffic as explained in Section 5.7.3.

During the NEDAC evaluation, the effect of reducing the peak period threshold to 25%,

30% and 35% during the quiescent period was tested. Table 6.4 summarises the false

positives raised by NEDAC with CDX and DARPA network traffic during the peak and

quiescent periods.
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Table 6.4: False positives raised by NEDAC during peak and quiescent periods

Network Traffic Threshold Total No. of FPs Peak Period
Quiescent Period

25% 30% 35% 40%

10 seconds timing window

CDX
100 19 16 3 3 3 0

200 4 4 0 0 0 0

DARPA

100 31 27 4 2 2 2

200 13 11 2 2 0 0

300 8 8 0 0 0 0

15 seconds timing window

DARPA 100 14 2 2 0 0 0

Generally, the NEDAC detection system raised a higher number of false positives per

unit time during the peak period due to higher volume of background traffic. The

NEDAC detection system raised 16 false positives using a threshold of 100 with the

CDX network traffic during the peak period. The number of false positives then reduced

to three during the quiescent period when the threshold was reduced by 25%, 30% and

35% and then dissipated when the threshold was reduced by 40%. Generally, the false

positives raised by NEDAC with both CDX and DARPA network traffic dissipated with

increasing threshold in peak or quiescent periods and longer timing window. NEDAC

raised no false positives with the LAB network traffic.

6.6 Analysis

This section presents a brief analysis of the worm detection and containment performance

of the schemes tested. An analysis of the detection performance is presented in Section

6.6.1, while Section 6.6.2 presents an analysis of the containment performance of the

schemes.
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6.6.1 Detection Performance

The false positives raised by the three detection schemes with the DARPA, CDX and

LAB network traffic occurred due to the following:

• True false positives: These are legitimate and routable TCP and UDP datagrams

that were marked as worm datagrams by the detection schemes.

• Non-routable datagrams: These are legitimate and non-routable datagrams that

were marked as worm datagrams by the detection schemes. These are datagrams

meant to be used within a subnet or local area network such as NetBIOS name

resolution (UDP port 137) and datagrams services (UDP port 138), DHCP client

request (UDP port 67) and server reply (UDP port 68) datagrams and LLMNR

datagrams. With proper network configuration, these datagrams are less likely to

pass through a router/gateway. However, where NetBIOS and DHCP protocols

where configured to communicate across a router due to network requirements, the

ports and/or participating hosts can be exempted in NEDAC when the mechanism

is deployed in a network. This is to resolve the possibility of false positives although

the rate at which the datagrams are transmitted is not similar to that of a fast

scanning network worm.

• RIP update datagrams: These are route advertisement datagrams that are sent and

received by neighbouring routers for route update information. These datagrams

are also less likely to encounter with the detection schemes.

Thus, the true false positives raised by the detection schemes are those that were not

caused by non-routable and RIP update datagrams. Tables C.1 through C.6 in Appendix

C present the details of true false positives raised by the detection schemes. For example,

the DSC and DNS-RL schemes raised 66 and 28 true false positives out of a total of

82 and 31 false positives with the CDX traffic using a threshold of 100 and a timing

window of 10 seconds. Similarly, the reduction holds for the two schemes across all the

experiments conducted with the three datasets. However, the NEDAC scheme raised no

119



6.6 Analysis

true false positive across all the experiments conducted with the three datasets. Figure

6.35 presents the overall average detection performance of each scheme across all the

conducted experiments.
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Figure 6.35: Overall average detection performance for the three schemes

Figures 6.36 and 6.37 present the ROC curve of each scheme with the DARPA and CDX

network traffic. As noted in Section 6.5.4, NEDAC raised no false positive with the LAB

network traffic.
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Figure 6.36: ROC curve for the three detection scheme with the DARPA traffic
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Figure 6.37: ROC curve for the three detection scheme with the DARPA traffic

Generally, the NEDAC scheme has demonstrated a better performance in differentiating

worm traffic from benign traffic than the DSC and DNS-RL schemes, with an overall

precision of 99.7% and an accuracy of 99.9%. Furthermore, the DSC and DNS schemes

also showed a good sensitivity in detecting worm infection from their ROC curves for

both DARPA CDX network traffic. NEDAC demonstrated a better sensitivity than

the two detection schemes in both scenarios. These were achieved because the NEDAC

scheme monitored and assigned a counter for each distinct destination port contacted by

a host. This enables NEDAC to accurately identify fast scanning network worm traffic

because the counter associated to the destination port used by a worm increased rapidly

unlike other legitimate traffic.

6.6.2 Containment Performance

Worm containment involves blocking the propagation of a worm from an infected host to

vulnerable hosts. The DSC and DNS-RL schemes used network level access control that

blocked outbound worm traffic from infecting remote vulnerable hosts. This allowed

the worm infection to continue to spread within the internal network and from external
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networks as depicted in Figure 6.38. However, the NEDAC scheme used data link layer

blocking to isolate an infected host, which prevented the worm infection from spreading

locally and to remote hosts, and then blocked identified inbound worm traffic using

network layer blocking as depicted in Figure 6.39.
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Figure 6.38: Worm containment scenario for the DSC and DNS-RL schemes
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Figure 6.39: Worm containment scenario for the NEDAC schemes

Figure 6.40 presents the average percentage values to which the DSC, DNS-RL and

NEDAC schemes suppressed the propagation of the pseudo-worms used in the evaluation

experiments.
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Figure 6.40: Average number of infected hosts with DSC, DNS-RL and NEDAC

The DSC and DNS-RL schemes suppressed the worm propagation to 33% and 39% of

the vulnerable population with random scanning technique, while the NEDAC scheme

suppressed the worm propagation to 1% of the vulnerable population. The suppression

of hit-list worm propagation by the DSC and DNS-RL was less effective than the worm

propagation with random scanning as the infection increased beyond 70% of vulnerable

hosts. This is due to the large scale of continued scanning activities by the infected hosts

after countermeasures were applied by the DSC and DNS-RL schemes. The NEDAC

scheme suppressed the hit-list infection to 3% of the vulnerable population.

The NEDAC containment approach is more effective because the worm infection cannot

spread within the internal network and there is no contribution from other infected

hosts from external networks. Although the comparison is uneven because NEDAC

used a different containment technique compared with that of the DSC and DNS-RL

schemes, the empirical tests have demonstrated that using a data link layer containment

solution is more effective in blocking outbound worm traffic from infecting internal and

remote network hosts, although it consumes more switch processing power especially

when multiple infected hosts (at least 20) in a network segment are scanning the Internet.

Additionally, the network layer containment used by NEDAC to block inbound worm

infection further enabled the scheme to protect internal vulnerable hosts against worm
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infection coming from external networks. These enabled the NEDAC scheme to have a

better containment performance than the DSC and DNS-RL schemes.

6.7 Summary

This chapter has presented the worm experiments conducted to test the NEDAC scheme

together with two previously reported worm detection and containment schemes. The

chapter has initially presented the experimentation set-up and network designs used for

the candidate worms during the experiments. The chapter then presented the worm de-

tection and containment results for the NEDAC scheme and the two previously reported

schemes. A brief analysis of the overall results has been presented, which showed that

NEDAC has a better worm detection and containment performance in comparison with

the two previously reported detection schemes tested.
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Chapter 7

CONCLUSIONS

7.1 Introduction

The early chapters of this thesis have presented an overview of fast scanning network

worms, the vulnerabilities they exploit, their infection and propagation techniques and

the threat they pose to the security of enterprise networks and the Internet. The thesis

then presents a cross-layer mechanism, termed NEDAC, that uses a network level detec-

tion system and a data-link level containment system to provide a novel countermeasure

solution for fast scanning network worms. Chapters four through six then present the

testing and evaluation of NEDAC, demonstrating that it provides improved performance

in comparison to previous methods. This chapter concludes the thesis by summarising

the suggested original contributions, providing an overview of two developed research

tools, and setting out some recommendations for further work.

7.2 Research Contributions

The suggested contributions of this research work are:

• A better worm detection system: The NEDAC detection system uses two separate

and specific anomaly detection techniques for network client and server hosts. The

detection system also uses an ARP-based detection technique for all network hosts

in order to strengthen the detection capabilities of the scheme in identifying worm

scans targeted towards inactive local IP addresses in a network as discussed in
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Section 3.4. The advances provided by NEDAC enabled the scheme to demonstrate

a substantial performance improvement over the worm detection schemes reported

by Gu et al. (2004), Whyte et al. (2005) and Whyte et al. (2005) as presented in

Section 6.3. This is because the NEDAC scheme has average precision of 99.7% and

accuracy of 99.9%, while the DSC and DNS-RL have average precisions of 97.8%

and 96.3%, and average accuracies of 98.8% and 98% respectively as presented

in Section 6.6.1. The NEDAC detection system requires no training session and

also uses TTL for traffic information recorded in caches as discussed in Section

3.4. These are considered to have resolved the issue of training-driven delays and

provides resource efficiency as set out in Section 2.10.

• A better worm containment system: The NEDAC containment techniques used at

the network and data-link levels enabled the scheme to demonstrate an improved

containment capability. The containment system does not only isolate an identified

infected host in a protected network, but also blocks inbound worm traffic from

entering the network. Therefore the network and data-link containment techniques

provide a combined containment solution that was capable of protecting vulnerable

hosts from internal and external worm infection at an early stage as presented in

Section 6.4. The use of the data link containment technique also enabled NEDAC

to protect the network from local-to-local worm infections. The network and data

link containment capabilities enabled NEDAC to suppress worm infection to, at

most, 3% of its vulnerable population, unlike DSC and DNS-RL that allowed the

worm to infect more than 70% of the vulnerable population as presented in Section

6.6.2.

These contributions are considered to have addressed the identified research gaps as

set out in Section 2.10. However, the NEDAC scheme is limited to providing a worm

countermeasure solution when deployed across the distribution and access layers of an

enterprise network. The scheme cannot contain a worm infection when deployed in the

core layer of a network unless where the core and distribution layers are merged together.

The NEDAC performance evaluation is limited to a maximum scale of five enterprise
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networks, with a network having a maximum number of eight subnets.

7.3 Research Tools

The thesis presented some research tools that have been developed to support the es-

tablishment of the research contributions presented in Section 7.2. These research tools

are summarised as follows;

• The use of pseudo-worms incorporating contemporary malware characteristics for

evaluation: The evaluation programme used to test the NEDAC scheme employed

two contemporary pseudo-worms that have been developed based on two contem-

porary wormable vulnerabilities namely Microsoft RDP (CVE-2012-0002) of 2012

(CVE, 2012) and ShellShock (CVE-2014-6271) (CVE, 2014a). The pseudo-worms

were used to evaluate the NEDAC scheme using new potential fast scanning net-

work worms and to characterise the threat posed by the recent vulnerabilities. It

is suggested that this is a step forward in testing the capabilities of worm detection

systems.

• An improved and suitable testbed for worm experimentation and testing coun-

termeasure systems: The research work developed the V-Network testbed with

improved features such as a larger scale of experimentation, with 1200 virtual

hosts and support for physical network integration, which is larger than the scale

of the ViSe and VMT tesbeds that supported 10 and 300 hosts respectively. The

V-Network testbed also has facilities for managing worm experiments and support

for multiple operating systems, background traffic generation and replay. These

are improvements over the vGround testbed (Jiang et al., 2006), the ViSe testbed

(Årnes et al., 2006) and the VMT testbed (Shahzad et al., 2013).

It is suggested that these research tools addressed the objective of having an improved

and suitable testing environment and evaluation mechanism as discussed in Section 2.11.
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7.4 Recommendation For Further Work

It is recommended that future researchers in this field consider the following possible

future work:

• Threshold scheme: The NEDAC detection system used a dynamic threshold

scheme that assigned limits for anomalous behaviour based on the time of day,

i.e, peak and quiescent periods. It is possible that the scheme can be further im-

proved to assign a threshold that is relative to the network activity of a host or

group of hosts at any given time.

• Address and packet spoofing: The NEDAC detection system used IP and ARP da-

tagrams to detect anomalous behaviour from a network host. The NEDAC scheme

has no ability to detect a worm that may spoof the IP address of a network host

or employs an ARP poisoning attack. Similarly, the data-link layer containment

system also has limited ability to detect a spoofed MAC address. It may be ap-

propriate to explore ways in which NEDAC can be enhanced to detect spoofed

addresses.

• Testing the impact of different environment: Network environments have different

network traffic due to differences in the use of network protocols and applications.

The performance of an anomaly-based detection scheme depends on the protocols

and applications used in a network environment. The NEDAC scheme was tested

using three different network traffic datasets, which represent a fraction of the

different network environments connected to the Internet. Thus the behaviour

of the NEDAC scheme can be further evaluated using different network traffic

in order to examine how the scheme will adapt to changes in different network

environments. The scheme can also be evaluated using larger number of enterprise

networks and subnets.

128



7.5 Summary

7.5 Summary

This chapter has presented an overview of the contributions provided by this research

work. The NEDAC worm countermeasure scheme presented in this thesis was compar-

atively evaluated with two previously reported worm detection schemes and empirically

proven to provide a faster countermeasure solution with almost no false alarms. The

NEDAC scheme therefore has the potentials to provide a countermeasure solution for

the propagation of fast scanning network worms before causing any damage when de-

ployed in networks. Thus, implementing the NEDAC scheme on routers and switches in

networks will provide a countermeasure solution against fast scanning network worms.
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Appendix A

NEDAC Pseudocode

1: Begin

2: /* Initialize Caches */

3: initializeCache(IOCache)

4: initializeCache(resolutionCache)

5: initializeCache(noResolutionCache)

6: initializeTable(exemptTable)

7: /* Initialize Thresholds */

8: Threshold1 = setThresholdARP()

9: Threshold2 = setThresholdIP()

10: /* Set timer */

11: T = SetTimerSignal()

12: /* open interface */

13: openInterface(interface)

14: /* do in parallel */ process 1

15: while (there are datagrams to process) do

16: getARPandIPDatagram()

17: uniqueMAC = getMACAddress(datagram)

18: headerInfo = getHeaderInfo()
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19: if datagram is ARP request to unused IP address then

20: dportcounter = updateHostCount()

21: if determineThreshold(dportcounter) >= Threshold1 then

22: containHost(MACAddress)

23: end if

24: end if

25: if datagram is inbound IP datagram then

26: if datagram is DNS reply then

27: updateResolutionCache()

28: else

29: updateIOCache(dstIP)

30: updateIOCache(dPort)

31: end if

32: else

33: if headerInfo is not found in exemptTable[] then

34: if source host not a server then

35: if IP addresses not in resolutionCache then

36: updateNoResolutionCache(headerInfo)

37: if determineThreshold(dportcounter) >= Threshold2 then

38: containHost(MACAddress)

39: if dPort in IOCache then

40: blockInbound(dPort)

41: end if

42: end if

43: end if

44: else

45: correlate(headerInfo)

46: if dport in IOCache then

47: updateIOCache(headerInfo)

48: if determineThreshold(dportcounter) >= Threshold2 then
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49: containHost(MACAddress)

50: if dPort in IOCache then

51: blockInbound(dPort)

52: end if

53: end if

54: end if

55: end if

56: end if

57: end if

58: getNextDatagram()

59: end while

60: /* do in parallel */ process 2

61: while true do

62: if (T generates timeout signal) then

63: for entries in resolutionCache do

64: if (TTL >= 86400) then

65: deleteEntry()

66: end if

67: end for

68: for entries in noResolutionTable and inboundTable do

69: if (TTL >= 60) then

70: deleteEntry()

71: end if

72: halveThresholds()

73: end for

74: end if

75: end while

76: End
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Appendix B

False Positives

The false positives raised by the DSC, DNS-RL and NEDAC during the sets of experiments conducted with the DARPA,

CDX and LAB datasets are presented in Tables B.1 through B.6. The Port/Host column indicates the number of hosts

that caused the false positives on a particular port. For example, during the DSC experiment with CDX dataset using a

threshold value of 100, 12 hosts raised a false positive on TCP port 12.

Table B.1: False positives raised with CDX dataset x10 seconds

Scheme Threshold Total False Positives TCP Port/Hosts UDP Port/Hosts

DSC 100 82 TCP 21/12, TCP
445/17

UDP 53/19, UDP
123/18 UDP 138/16

200 31 TCP 21/7, TCP
445/11

UDP 53/10, UDP
123/1, UDP 138/3

DNS-RL
100 107

TCP 21/9, TCP 25/9,
TCP 80/13, TCP
443/11, TCP 445/8

UDP 67/10, UDP 68/2,
UDP 123/13, UDP
137/18, UDP 138/14

200 45 TCP 80/2, TCP 443/5
UDP 67/12, UDP 68/1,
UDP 123/7, UDP
137/10, UDP 138/8

300 11 UDP 67/5, UDP 123/1, UDP 137/3, UDP 138/2

NEDAC 100 19 UDP 67/5, UDP 68/1, UDP 137/7, UDP 138/6
200 4 UDP 137/3, UDP 138/1

Table B.2: False positives raised with CDX dataset x15 seconds

Scheme Threshold Total False Positives TCP Port/Hosts UDP Port/Hosts

DSC 100 53 TCP 21/8, TCP 445/9 UDP 53/17, UDP
123/12, UDP 138/7

DNS-RL 100 58 TCP 21/2, TCP 80/7,
TCP 443/9

UDP 67/14, UDP 68/1,
UDP 123/6, UDP
137/11, UDP 138/9

200 9 TCP 443/1 UDP 67/2, UDP 137/4,
UDP 138/2
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Table B.3: False positives raised with DARPA dataset x10 seconds

Scheme Threshold Total False Positives TCP Port/Hosts UDP Port/Hosts

DSC

100 162

TCP 1135/18, TCP 1140/19, TCP

1220/16, TCP 1241/14, TCP 1362/12,

TCP 2060/11, TCP 2254/7, TCP

3973/16

UDP 53/28, UDP

123/19, UDP 520/2

200 97

TCP 1135/12, TCP 1140/15, TCP

1220/14, TCP 1241/13, TCP 1362/12,

TCP 2060/8,

UDP 53/24, UDP 520/2,

UDP 123/3

300 46
TCP 1220/6, 1241/5, TCP 1135/7,

TCP 1362/7
UDP 53/19, UDP 520/2

400 11 TCP 1135/3 UDP 53/6, UDP 520/2

DNS-RL

100 194

TCP 23/20, TCP 1135/9, TCP

1168/9, TCP 1220/19, TCP 1241/14,

TCP 1362/13, TCP 2060/11, TCP

2190/12, 2254/7, TCP 3846/7, TCP

3973/8, TCP 4172/8, TCP 4189/7,

TCP 4686/6, TCP 5236/4, TCP

5862/10, TCP 6667/4, 7836/5

UDP 123/4, UDP 137/10,

UDP 138/5, UDP 520/2

200 133

TCP 23/17, TCP 1135/7, TCP

1168/8, TCP 1220/19, TCP 1241/14,

TCP 1362/13, TCP 2060/10, TCP

2190/12, TCP 7836/5, TCP 5236/4,

TCP 5862/9

UDP 520/2, UDP 137/8,

UDP 138/5

300 89

TCP 23/8, TCP 1135/7, TCP 1168/8,

TCP 1220/15, TCP 1241/6, TCP

1362/9, TCP 2060/9, TCP 2190/7,

TCP 7836/4, TCP 5236/3

UDP 520/2, UDP 137/6,

UDP 138/5

400 28
TCP 23/9, TCP 1220/8, TCP 1168/5,

TCP 7836/2, TCP 5236/2
UDP 520/2

NEDAC

100 31 - UDP 137/16, UDP

138/13, UDP 520/2

200 13 - UDP 137/7, UDP 138/4,

UDP 520/2

300 12 - UDP 137/6, UDP 138/4,

UDP 520/2150



Table B.4: False positives raised with DARPA dataset x15 seconds

Scheme Threshold Total False Positives TCP Port/Hosts UDP Port/Hosts

DSC
100 99

TCP 1135/10, TCP 1140/3, TCP
1220/11, TCP 1241/10, TCP
1362/9, TCP 2060/11, TCP
2190/7, TCP 2254/1, TCP 3846/4,
TCP 3973/2, TCP 4154/2, TCP
4686/2, TCP 7716/2, TCP 7836/4,
TCP 9681/4

UDP 53/15, UDP
520/2, UDP 123/2

200 41

TCP 1135/5, TCP 1140/1, TCP
1220/5, TCP 1241/5, TCP 1362/5,
TCP 2060/4, TCP 2190/2, TCP
2254/1, TCP 7836/3

UDP 53/8, UDP 520/2

300 7
TCP 23/2, TCP 1220/1, TCP
1135/1, TCP 1362/1, TCP 1241/1,
TCP 2060/1

DNS-RL

100 140

TCP 23/12, TCP 1135/9, TCP
1168/7, TCP 1220/12, TCP
1241/10, TCP 1362/11, TCP
2060/9, TCP 2190/8, TCP 2254/6,
TCP 3846/6, TCP 3973/5, TCP
4172/7, TCP 4189/5, TCP 4686/4,
TCP 5236/4, TCP 5862/2, TCP
7836/5

UDP 137/10, UDP
138/5, UDP 123/2,
UDP 520/2

200 96

TCP 23/8, TCP 1135/6, TCP
1168/6, TCP 1220/8, TCP 1241/9,
TCP 1362/7, TCP 2060/8, TCP
2190/5, TCP 2254/4, TCP 7716/4,
TCP 5862/1, TCP 3846/6, TCP
3973/5, TCP 4172/4, TCP 4686/3,
TCP 4189/5

UDP 137/7, UDP
138/4, UDP 123/2,
UDP 520/2

300 64

TCP 23/9, TCP 1135/3, TCP
1168/3, TCP 1220/5, TCP 1241/2,
TCP 1362/4, TCP 2060/3, TCP
2190/2, TCP 2254/4, TCP 7716/3,
TCP 7836/2, TCP 3846/6, TCP
3973/5, TCP 4172/4, TCP 4686/3,
TCP 4189/5, TCP 7836/1

400 2 TCP 23/2

NEDAC 100 16 UDP 137/9, UDP
138/5, UDP 520/2
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Table B.5: False positives raised with LAB dataset x10 seconds

Scheme Threshold Total False Positives TCP Port/Hosts UDP Port/Hosts

DSC 100 27 TCP 445/10 UDP 53/4, UDP 123/8,
UDP 138/5

200 8 TCP 445/6 UDP 123/2

DNS-RL
100 51

TCP 80/5, TCP
443/16, TCP 445/7,
TCP 1935/3

UDP 123/2, UDP
137/5, UDP 138/7,
UDP 5355/6

200 30
TCP 443/12, TCP
1935/1, TCP 445/4,
TCP 80/1

UDP 123/1, UDP
137/2, UDP 138/4,
UDP 5355/5

300 3 TCP 443/1, TCP
445/2 -

Table B.6: False positives raised with LAB dataset x15 seconds

Scheme Threshold Total False Positives TCP Port/Hosts UDP Port/Hosts

DSC 100 15 TCP 445/8 UDP 53/2, UDP 123/2,
UDP 138/3

DNS-RL 100 35
TCP 80/3, TCP
443/11, TCP 445/4,
TCP 1935/1

UDP 123/3, UDP
137/2, UDP 138/6,
UDP 5355/5

200 19 TCP 443/8, TCP
445/4

UDP 137/1, UDP
138/3, UDP 5355/3
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Appendix C

True False Positives

The true false positives raised by the DSC and DNS-RL schemes during the sets of experiments conducted with the

DARPA, CDX and LAB datasets are presented in Tables C.1 through C.6. These are false positives raised by the schemes

for legitimate and routable datagrams transmitted by hosts.

Table C.1: True false positives raised with CDX dataset x10 seconds

Scheme Threshold Total False Positives TCP Port/Hosts UDP Port/Hosts

DSC 100 66 TCP 21/12, TCP
445/17

UDP 53/19, UDP
123/18

200 28 TCP 21/7, TCP
445/11

UDP 53/10, UDP
123/1

DNS-RL
100 63

TCP 21/9, TCP 25/9,
TCP 80/13, TCP
443/11, TCP 445/8

UDP 123/13

200 14 TCP 80/2, TCP 443/5 UDP 123/7
300 1 UDP 123/1

Table C.2: True false positives raised with CDX dataset x15 seconds

Scheme Threshold Total False Positives TCP Port/Hosts UDP Port/Hosts

DSC 100 46 TCP 21/8, TCP 445/9 UDP 53/17, UDP
123/12

DNS-RL 100 23 TCP 21/2, TCP 80/7,
TCP 443/9 UDP 123/6

200 1 TCP 443/1 -
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Table C.3: True false positives raised with DARPA dataset x10 seconds

Scheme Threshold Total False Positives TCP Port/Hosts UDP Port/Hosts

DSC

100 160

TCP 1135/18, TCP 1140/19, TCP

1220/16, TCP 1241/14, TCP

1362/12, TCP 2060/11, TCP

2254/7, TCP 3973/16

UDP 53/28, UDP

123/19

200 95

TCP 1135/12, TCP 1140/15, TCP

1220/14, TCP 1241/13, TCP

1362/12, TCP 2060/8,

UDP 53/24, UDP

123/3

300 44
TCP 1220/6, 1241/5, TCP 1135/7,

TCP 1362/7
UDP 53/19

400 9 TCP 1135/3 UDP 53/6

DNS-RL

100 177

TCP 23/20, TCP 1135/9, TCP

1168/9, TCP 1220/19, TCP

1241/14, TCP 1362/13, TCP

2060/11, TCP 2190/12, 2254/7,

TCP 3846/7, TCP 3973/8, TCP

4172/8, TCP 4189/7, TCP 4686/6,

TCP 5236/4, TCP 5862/10, TCP

6667/4, 7836/5

UDP 123/4

200 118

TCP 23/17, TCP 1135/7, TCP

1168/8, TCP 1220/19, TCP

1241/14, TCP 1362/13, TCP

2060/10, TCP 2190/12, TCP

7836/5, TCP 5236/4, TCP 5862/9

-

300 76

TCP 23/8, TCP 1135/7, TCP

1168/8, TCP 1220/15, TCP

1241/6, TCP 1362/9, TCP 2060/9,

TCP 2190/7, TCP 7836/4, TCP

5236/3

-

400 26
TCP 23/9, TCP 1220/8, TCP

1168/5, TCP 7836/2, TCP 5236/2
-
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Table C.4: True false positives raised with DARPA dataset x15 seconds

Scheme Threshold Total False Positives TCP Port/Hosts UDP Port/Hosts

DSC
100 97

TCP 1135/10, TCP 1140/3, TCP
1220/11, TCP 1241/10, TCP
1362/9, TCP 2060/11, TCP
2190/7, TCP 2254/1, TCP 3846/4,
TCP 3973/2, TCP 4154/2, TCP
4686/2, TCP 7716/2, TCP 7836/4,
TCP 9681/4

UDP 53/15, UDP
123/2

200 39

TCP 1135/5, TCP 1140/1, TCP
1220/5, TCP 1241/5, TCP 1362/5,
TCP 2060/4, TCP 2190/2, TCP
2254/1, TCP 7836/3

UDP 53/8

300 7
TCP 23/2, TCP 1220/1, TCP
1135/1, TCP 1362/1, TCP 1241/1,
TCP 2060/1

DNS-RL

100 123

TCP 23/12, TCP 1135/9, TCP
1168/7, TCP 1220/12, TCP
1241/10, TCP 1362/11, TCP
2060/9, TCP 2190/8, TCP 2254/6,
TCP 3846/6, TCP 3973/5, TCP
4172/7, TCP 4189/5, TCP 4686/4,
TCP 5236/4, TCP 5862/2, TCP
7836/5

UDP 123/2

200 83

TCP 23/8, TCP 1135/6, TCP
1168/6, TCP 1220/8, TCP 1241/9,
TCP 1362/7, TCP 2060/8, TCP
2190/5, TCP 2254/4, TCP 7716/4,
TCP 5862/1, TCP 3846/6, TCP
3973/5, TCP 4172/4, TCP 4686/3,
TCP 4189/5

UDP 123/2

300 64

TCP 23/9, TCP 1135/3, TCP
1168/3, TCP 1220/5, TCP 1241/2,
TCP 1362/4, TCP 2060/3, TCP
2190/2, TCP 2254/4, TCP 7716/3,
TCP 7836/2, TCP 3846/6, TCP
3973/5, TCP 4172/4, TCP 4686/3,
TCP 4189/5, TCP 7836/1

400 2 TCP 23/2
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Table C.5: True false positives raised with LAB dataset x10 seconds

Scheme Threshold Total False Positives TCP Port/Hosts UDP Port/Hosts

DSC 100 22 TCP 445/10 UDP 53/4, UDP 123/8
200 8 TCP 445/6 UDP 123/2

DNS-RL
100 33

TCP 80/5, TCP
443/16, TCP 445/7,
TCP 1935/3

UDP 123/2

200 19
TCP 443/12, TCP
1935/1, TCP 445/4,
TCP 80/1

UDP 123/1

300 3 TCP 443/1, TCP
445/2 -

Table C.6: False positives raised with LAB dataset x15 seconds

Scheme Threshold Total False Positives TCP Port/Hosts UDP Port/Hosts
DSC 100 12 TCP 445/8 UDP 53/2, UDP 123/2

DNS-RL 100 22
TCP 80/3, TCP
443/11, TCP 445/4,
TCP 1935/1

UDP 123/3

200 12 TCP 443/8, TCP
445/4 -
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