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ABSTRACT

Deaths and casualties caused by silo collapses have happened across the

industry over the world, especially in production plants which store and

handle fine powder. The collapses not only cost financially to settle for

compensation, also cost companies’ reputation and credibility for partner-

ship. Industry experts believe that the high frequency of silo failures are

mainly due to “shortcomings in one or more of four categories: design,

construction, usage, and maintenance”. However, there is one category

has been overlooked by industry, it is the technology in storage, flow and

handling of fine powder.

This thesis studies the technology within the area of flow and handling

of find powder. Whether or not a cohesive powder would freely discharge

through a given orifice is a question at the centre of numerous bulk solids

handling issues encountered in industry. The work in this thesis contributes

towards answering the question by using a combination of empirical powder

property determination and numerical simulation.

Cohesive arching at the outlet is a formation of an arch of cohesive powder

(usually fine powder) at the smallest cross-section of a flow channel in a

silo (usually the outlet). If it builds up the material inside of the silo, it

can potentially cause the failure of the silo by material overload.

The aim of the research is to establish a precise and cost-effective constitu-

tive model that is able to predict the cohesive arching and stress condition

in a silo.
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The numerical simulation is conducted under Finite Element (FE) ap-

proach developed and coded in a numerical solver PHYSICA, new con-

cepts and variables to address the discrepancy between the field of powder

mechanics and numerical simulation.
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Chapter 1

INTRODUCTION

This chapter lays out the flow of the thesis, the problems industry faces while handling

powders, the goal of the research project and the fundamental principle of the arching

problem which this project is solving.

1.1 Outline of the Thesis

The research and findings of this PhD are reported in the following order:

(a) Chapter 1 Introduction explains the background and the history prior to this

research which leads to the aim of this research.

(b) Chapter 2 and Chapter 3 Literature Review details the background of this re-

search and existing technology associated with the research topic.

(c) Chapter 4 Preliminary Study outlines the findings in preliminary simulations,

however the conclusion from these findings suggest that the preliminary simu-

lations were all failed attempts, which reason leads to Chapter 5 and Chapter

6.

1



1.2 Research Rationale

(d) Chapter 5 Theory contains the structure of the developed model and both em-

pirical theories and numerical theories behind it.

(e) Chapter 6 Implementation consists of i) the tests to obtain input parameters for

the numerical model, and ii) coding developments which address the software

shortfalls.

(f) Chapter 7 Results and Discussion discuss the results and finding on study cases.

(g) Chapter 8 Conclusions and Future Work critically reviews the developed model

and suggests further improvements.

1.2 Research Rationale

Manufacturing continues to be an important part of both developed and developing

economies, and a large proportion of its industries will deal with powders either as

finished products or during intermediary processing steps. This applies to agriculture,

construction, energy, materials, chemicals, foods and pharmaceuticals to name a few.

Process engineers are well accustomed to dealing with fluids, which are made to flow

reliably from one vessel to the next at a predictable velocity. However, the behaviour

of powders is not as easy as fluid to predict.

During storage, powders are subjected to compressive forces which are subsequently

retained as a residual cohesive strength. This means there is no guarantee that any of

the powder will flow out of the opening when the valve is released. The detrimental

effect of this upon an overall production process is self-evident. It is not a surprise

that drug and food powders are particularly susceptible, because they tend to deal

with finer particles and smaller equipment.

This PhD research project arose from and has been guided by a particular limita-

tion of an earlier project which simulated powder behaviour. The previous project is

2



1.2 Research Rationale

documented as the QPM project [1; 2; 3; 4; 5; 6], the QPM project was a coopera-

tion between the Centre for Numerical Modelling and Process Analysis, University of

Greenwich, The Wolfson Centre, University of Greenwich and Department of Chemical

and Process Engineering, University of Surrey. The project simulated Granular Ma-

terial in Large-Scale Engineering Processes, using a Computational Fluid Dynamics

(CFD) continuum approach [7; 8]. The model successfully simulated processes at an

industrial scale; which included hopper filling, hopper emptying, pneumatic conveying

etc. However incipient flow of the powders was assumed to occur automatically at

the beginning of the discharge requiring no criterion to determine “failure” 1. Further

research was required in the numerical modelling of the simulation of initial discharge

of a hopper.

Pharmaceutical and agricultural industries often encounter aching problems in the silos

or hoppers while handling fine powders within their production plants. The installed

system is inadequate in relation to the powder being handled, this usually occurs

because of the lack of understanding of the behaviour of the powder by the system

designer [9; 10]. There are two types of arching: mechanical arching and cohesive

arching. The former is often associated with coarse bulk materials and the latter is

often associated with fine powders. This research project deals only with the latter.

Cohesive arching is the formation of an arch of cohesive powder normally at the small-

est cross-section of a flow channel (usually the outlet of the hopper). Figure 1.1 shows

a typical cohesive arching problem in a half cylinder hopper , the hopper is constructed

in half from perspex plastic for observation. The figure also shows the typical case

where the cohesive powder can support itself in a shape of an arch near the outlet.

1“Failure” in this content is understood to mean the initiation of collapse in a body of powder,

leading to flow

3



1.3 Aim of Research

Figure 1.1: Cohesive arching of a cohesive powder in a perspex hopper with an open

outlet.

The hoper is built with diameter of 170mm, height of 600mm and the opening of

30mm. The hopper has been filled with wheat flour while the valve was closed, then

the valve was released.

1.3 Aim of Research

The aim of this research project was to establish a precise and cost-effective constitu-

tive model that predicts the arching and stress conditions in a wedge hopper, starting

from the stage where a closed hopper is filled with cohesive powder to the stage where

the outlet is opened and the hopper starts to empty. Most hopper consist of two

section: a straight section and a convergent section. A wedge hopper has rectangular

prism straight section and a wedged in convergent section. A cylindrical hopper has

a cylindrical straight section and a cone-shaped convergent section. The reasons of

4



1.4 Structure of the Research Programmne

conducting this research will be explained in State of the Art in Industry in Chapter 2,

in which the chapter also includes the reviews on currently existing numerical models

and their shortfalls when it comes to the prediction of arching.

The model in this research is designed to be employed in industry that deals with any

types of cohesive powder, which are very fine and under stress in general. Due to the

small size of particles and relevantly large size of the hoppers in production plants, an

enormous number of particles are involved. For a 10 tonnes silo filled which cement1

would easily contain 4.5×1023 particles. The numerical continuum approach is more

viable than the discretised approach to simulate such situations. The powder is a large

number of particles, and the compatibility of the numerical continuum approach aligns

with the numerical assumption which the powder is treated as a continuous material

with properties that change smoothly with position.

The currently established numerical continuum models predict the stress and strain

conditions in powder compaction, however the failure criteria were not developed from

the powder principle. The experimental models which predict the failure of the powder

only take account of the simultaneous stress conditions, but they lack of the ability

to accommodate the stress history in powder compaction which accounts for the si-

multaneous stress conditions. The simulation model developed in this study is the

combination of numerical and experimental models which provides stress predictions

throughout the filling and the emptying of a hopper.

1.4 Structure of the Research Programmne

This section details the workflow in this research programme and its development.

At the beginning of the research programme, the author firstly has familiarised herself

with both background theory of Powder Mechanics and numerical modelling. In order

1A typical cement particle usually has a diameter of 30νm and a bulk density of 1600kg/m3

5



1.4 Structure of the Research Programmne

to obtain the knowledge in both fields, in addition to literature review, the author has

attended short courses held by the Wolfson Centre for Bulk Solids Handling, University

of Greenwich, and the master’s course run by Department of Mathematical Sciences,

University of Greenwich.

Secondly, the author attempted to simulate the powder behaviours with both Com-

putational Fluid Dynamics (CFD) and Finite Element Method (FEM) approaches, in

order to to select the most suitable model to develop.

Thirdly, the author designed and conducted empirical testing on the powder material

to obtain input parameters for simulations.

Fourthly, source codes were re-developed and implemented with the complex consti-

tutive relationship of the powder and the parameters from empirical testing.

Lastly, the author has conducted parametric studies with the model to test the range

within which the model would functional coding.

6



Chapter 2

LITERATURE REVIEW ON

POWDER MECHANICS

THEORY

This chapter is to review the existing numerical models on powder mechanics and

discuss their capabilities for this research, which is aimed to predict the stress and

arching condition inside a hopper.

Powder Mechanics has not been one of the most traditional subjects, because, in the

history of research, it first appeared in early 1900’s as micromeritics [11; 12; 13; 14].

Then researchers found various aspects of powder mechanics are similar, or even the

same as Soil Mechanics. Soil Mechanics since then has a huge influence for the develop-

ment in Powder Mechanics for their similarities on cohesiveness and compressibility,

until Jenike in 1960’s introduced the flowability concept specifically for powder to

contribute to better hopper and silo design [15; 16].

7



2.1 State of the Art

2.1 State of the Art

Merrow [17] conducted a study in 1981 on the cost of growth and performance across

industrial production plants. His findings suggested that a typical medium to large-

sized production plant could cost between half a billion to over one billion US dollars

for its design and construction, in additional other several millions for annual operation

cost. For production plants that handle powder and bulk solids, they might consist of

a mixing system, transport system and storage system. If any problem arises in one

of the systems, the whole plant would fall short from its normal production rate, or

even at worst, come to a stop.

This project’s scope falls in the range of the issue arise in the design and the operation

of storage system.

In regards of designing a mass flow hopper to achieve a smooth operation in the

production plants, the industry has been employing the Jenike’s analytic model to

predict the minimum width of the hopper outlet with given hopper geometry, powder

characteristics, hopper material and the stress history of the powder.

The Jenike’s analytic model has proved its reliability over the last four decades for

standard hopper shapes: circular hoppers; square hoppers; and cynical hopper with

rectangular outlets. However, hoppers with non-standard shapes have been used in the

production plants for different reasons, such as to maximise hopper capacity or to have

multiple outlets for higher production rate. In those situations, the Jenike’s method

for flow problems has been inadequate[18]. Therefore powder mechanics researchers

have focused their efforts towards more general computational strategies which may

be adaptable and flexible over the traditional Jenike’s method.

8



2.2 Flow patterns in hoppers

2.2 Flow patterns in hoppers

There are four basic phenomena that occur in hoppers and silos, they are: a) mass

flow, b) core flow (sometimes regarded as funnel flow), c) arching and d) rat-holing.

The former two are flow patterns (Figure 2.1 suggested by Khambekar [19])that are

associated with flow occurring in the hopper. The latter two lead to a no-flow situation

(Figure 2.2 presented by the Wolfson Centre [20]).

Figure 2.1: Flow patterns of Core Flow (left) and Mass Flow (right).

9



2.3 Cohesive Arching and Cohesion

Figure 2.2: Obstructions to flow: Mechanical arch(left), Cohesive arch(middle) and

Rat-holing (right).

2.3 Cohesive Arching and Cohesion

A hopper filled with cohesive powder can be discretised as in Figure 2.3. Figure 2.4

represents the element in the layer of arching at the outlet with a free body force

diagram. Each layer of arch supports its own weight, the lowest layer does not receive

any forces from the layer above it. Cohesive arching occurs when the powder’s internal

strength forming inside the arch is larger than the current stresses acting upon it,

known as arching condition. If the current stresses acting upon the arch exceed the

arch strength, incipient flow will occur; this phenomenon is called the Failure of the

Arch.

10



2.3 Cohesive Arching and Cohesion

Figure 2.3: Discretised hopper.

Figure 2.4: Free Body Diagram of the element in the layer of

arching at the outlet with: a) Arching Condition, b) Failure

Condition.

A Coulomb material is a brittle material, whose shear failure envelop is defined by

the Mohr-Coulomb mathematical model. The shear strength in powder mechanics

describes the magnitude of the shear stress that a powder can sustain. The shear

resistance of powder is a result of friction and interlocking of particles at particle

contacts. A cluster of compressed cohesive powder is a Coulomb material that has

the ability to retain the shear strength after the external compressive load is removed.

As seen in Figure 2.5, cohesive powder maintains a shear strength within the powder
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itself, τ , when the external applied stress, σ, is zero. The magnitude of the remaining

strength is called the cohesion of the material, c. The relationship between the shear

strength and the stress is shown in following figure. The Yield Locus can be represented

mathematically by:

τ = mσ + c (2.1)

Figure 2.5: Yield Locus of a typical cohesive material after compaction to a certain

density

where m is the shape of the shear strength to normal stress curve.

The cohesion of the powder is influenced by both ambient conditions and intrinsic

powder characteristics, these include:

• stress history that has acted upon the powder

• temperature

• particles size distribution

• particle shape

• chemical composition

12
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• moisture content

Due to the high volume of knowledge involved in each aspect, only stress history

is selected to be considered in this research project. This research project is only

interested in the filling and the opening of a hopper, in other word the time frame of

the procedure is too short for any other parameters listed above to change, therefore

parameters apart from stress history listed above will be assumed to be constant

though out the project.

For a normal hopper, the normal stress profile at the wall will typically look in Figure

2.6

Figure 2.6: A typical normal stress distribution at the wall

The cohesion of the powder will be affected by the stress, therefore the cohesion of the

powder is changing throughout inside of the hopper. One of the problems to solve in

the numerical simulation is to correlate the cohesion with the stress history. This is

an essential prerequisite to predict the arching condition in any given hopper.
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2.4 Analytical Approaches for Predicting Arching

2.4.1 Unconfined Uniaxial Failure and its operational test

As previously mentioned in Figure 2.3, Figure 2.4 and Figure 2.5, the discrete element

in the arching section is Coulob material which is subjected to compressive loads.

If the element in the layer orientated vertical-horizontal, it can be approximately

represented as a powder specimen undergoing uni-axial compression until it fails under

compression.

The unconfined failure test was developed in the 60’s to measure the failure condition.

The test measure the shear strength of the material and it is used as one of the

parameters to determine flow properties and predict the arching condition in hopper

[21].

The test consists of two stages: a) the Pre-consolidation stage, b) the failure stage.

Powder is filled into a cylindrical confinement and the redundant powder at top is

scraped off to give an even surface. A flat lid (red in Figure 2.7) is placed onto the

powder. The cylinder is then securely positioned under a Texture Analyser which

applies and measures the load onto the lid to consolidate the powder.
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Figure 2.7: Powder specimen inside a cylinder confinement at the

start of consolidation (left) and at the end of consolidation (right).

The wall of the cylindrical confinement will generate a horizontal reaction stress, σ2,

onto the powder as the powder is subjected to a vertical consolidation stress, σ1. These

two stresses will generate a half Mohr’s circle as shown in Figure 2.8
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Figure 2.8: Mohr’s Circle stress analysis during consolidation stage.

After the powder is consolidated, the external stress is temporarily removed and the

cylinder confinement is also removed. The powder is then subjected to vertical in-

cremental stress until the breakage of powder occurs, the stress is then recorded as

unconfined failure stress of the consolidated powder, σc. During the unconfined failure

stage, there is zero horizontal stress, σ0 (Figure 2.9), acting onto the powder as the

powder is unconfined. σc and σ0 are added onto Figure 2.10 to create a Yield Locus

for the powder under a specific consolidation stress, σc. The tangent points of the

two semi Mohr’s Circles are connected with a straight line [22]. It is also because the

powder is a Coulomb material. The extended line is said to be the Yield Locs of the

material under a certain consolidate stress, σ1.
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Figure 2.9: Unconfined Failure stage.

Figure 2.10: Mohr’s Circle stress analysis during unconfined failure stage.

The same test procedure is then repeated with a series of different initial consolidation

stresses (Figure 2.11).
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Figure 2.11: Yield Loci generated with a series of tests with different consolidate

stresses.

For each Yield Locus, a pair of a consolidation stress, σ1, and an unconfined failure

stress, σc, can be found and they are plotted in σ1 - σc plane to form a Failure Function

(FF), as shown in Figure 2.12. For most powders, σ1 and σc seemingly have a linear

proportional relationship.
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Figure 2.12: Failure Function.

“Failure Function” or “Flow Function” is a crucial measurement for powder flowability;

the steeper the gradient, the more more difficult for the material to flow, which is called

cohesive material, and vice versa for more free flowing material (Figure 2.13).
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Figure 2.13: Cohesive Materiel v.s Free Flowing Material.

2.4.2 Shear Failure and its Operational testers

As mentioned before, the powder characterisation and its interaction with the hopper

are important factors to determine the flow of powder in any given hopper or silo.

There are several shear testers which are designed to measure the flowability of any

given powder. They based on the Jenike and Walker shear testers. The incipient flow

of any granular material or powder occurs at its steady-state(also refereed as critical-

state) condition. Under this condition, the powder will start shearing at its critical

applied stress and critical density. There are a few testers built with the consideration

to measure the parameters at critical state.

The Jenike shear tester (Figure 2.14) was introduced in the 1960’s [15; 21], it was the

first tester designed to measure the flowability of any given powder.
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Figure 2.14: Shear Cell of the Jenike shear tester

The operation is detailed below; powder material is filled into a container that consists

of a bottom ring, an upper ring and a mould. The upper ring is off-set against the

bottom ring, Load is applied onto the lid to give a uniform force, FN distribution across

the powder surface. The mould is then removed and any additional powder material

is scraped off. The powder material is now under the pre-consolidation condition with

a certain pre-consolidation stress σ1.

A bracket (Figure 2.14) is secured to the edge of the upper ring and is connected to

a motor which provides an incremental force, FS, to the upper ring. At a point when

the upper ring shears against the bottom ring and slips, it is also the moment incipient

failure occurs and the stress recorded at this point is the unconfined failure stress σc.

The Jenike shear test needs to be conducted several times with different pre-consolidation

stresses to create a Flow Function, the Flow Function determines the flowability of the

powder material.

However, the disadvantages of the Jenike shear tester are:

• time-consuming
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• its requirement of high operational skill of the operator

• the maximum off-set distance is very limited

• the apparatus set-up requires the test to be repeated to generate the Flow Func-

tion, and the bulk density is not guaranteed to be repeatable as the nature of

powder packing varies.

Walker improved the Jenike shear cell design to the ring shear cell [23]. The ring shear

cell provides unlimited distance that the lid can travel, which is otherwise restricted

in the Jenike shear cell.

The Walker shear tester was the srunner of several more widely used annular shear

cells, including that of Schwedes and Schulze [21; 24; 25; 26] shown in Figure 2.15

below:

Figure 2.15: Ring shear tester of Schwedes and Schulze
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Chapter 3

LITERATURE REVIEW ON

NUMERICAL MODELS

Numerical simulations in powder mechanics can be categorised in three main areas:

Discrete Approach, Continuum Approach and Hybrid Approach (Figure 3.1). Each

categories has its own sub categories. This chapter will reviewed and detail the numer-

ical models which are involved in powder mechanics on their strengths and shortfalls,

in order to conclude the most suitable solution for this research project.
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Numerical Simulations

Continuum ApproachDiscrete Approach Hybrid CFD-DEM Approach

Discrete

Element

Method

Computational

Fluid

Dynamics

Finite

Element

Method

CFD - Euler CFD - Lagrangian

Figure 3.1: Numerical Simulation categories for powder mechanics.

3.1 Discrete Approach

This approach treats each particle individually and numerically simulates the motions

and interactive force effects of each particle [27]. Due to the microscopic simulation

and heavy usage of computational resources, Discrete Approach is only suitable for

samples with a relatively small amount of particles to set bench mark for simulations

for dynamic flow problem [28].

3.1.1 Discrete Element Method (DEM)

The Discrete Element Method(DEM) was first developed in late 1970’s [29], it was

for the purpose of simulating soil movement and geotechnical problems [30]. Powder

Mechanics and Soil Mechanics share a large amount of similarities, therefore DEM

has also been widely used in Powder Mechanics [31]. Due to modelling limitations,
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3.1 Discrete Approach

most DEM powder simulations only consider monodisperse particles, ie all particles

have a uniform size and shape. However, the assumption of monodisperse particles

is seemingly unrealisetic , starting from last decade Kong, Lannutti et. al [32] have

included multi-size particles in their simulations.

DEM simulates all forces acting on each individual particle, these include both normal

and tangential forces. DEM numerically solves the equations of motion, Equation 3.1

is the integrated equation for all the interacting soft particles in a system of when they

come into contact with each other.

mi
d2

dt2
ri =

∑
j

~fi +mig (3.1)

where mi is mass of particle i, r is the particle position, ~fi is sum of all contact forces

acting on the particle, and g is gravity.

Total force ~fi on particle i from Equation 3.1:

~fi = ~fni + ~f ti (3.2)

where ~fn and ~f t are normal and tangential contact force component, n and t are

normal and tangential unit vector respectively.

3.1.1.1 Contact Force Model

The contact force models utilises the contact mechanics to define the deformation of

solids that touch each other at one or more points, which is known as overlap, δ, shown

in Figure 3.2. The contact force models are the most basic and widely employed model

in DEM for granular simulations, the particles are assumed to be soft particles when

they come into contact of each other [33; 34; 35; 36]. It has been used in both research

and industry to simulate powder behaviours.
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3.1 Discrete Approach

Figure 3.2: Overlap δ between two particles in contact

Linear Contact Model

The Linear Contact model employs Hook’s law to represent the force-displacement

relationship over the normal displacement, known as overlap δ, when two soft particles

come into contact with each other as shown in Figure 3.2. In this model model two

particles would have a displacement due to contact and the interaction is assumed to

be linear elastic [37; 37; 38].

~fn = knδn (3.3)

Hertz Model

The Hertz Model use the Hertzian theory in contact mechanics calculate the contact
~fn. Hertzian theory in contact mechanics promoted that the contact forces are usually
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3.1 Discrete Approach

a nonlinear function of the deformation, due to complexity of forces and momentum

exchanged during contact between solids. The normal contact force component ~fn in

Equation 3.2 then becomes:

~fn = knδ
3/2
n (3.4)

Summary on Contact Force Models

Linear Contact Force models compute the equations of motions, different models rep-

resent different equations for stiffness coefficient kn.

3.1.1.2 Tangential contact force

The tangential contact force term, ~f t, in Equation 3.2 is not as straight forward as

the normal contact force term, ~fn. The tangential term takes consideration of the

movement types of the particles: whether the particle is sliding or rolling [39]. There

is a different model for each movement type.

Sliding

Sliding between contact particles will occur if the tangential force [40], in any direction,

between them satisfies the Coulomb friction condition, which is:

|~f t| > µ| ~fn| (3.5)

where µ is the friction coefficient.
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The tangential contact force component ~f t in Equation 3.2 then becomes:

~f t = ktδt + γtvt (3.6)

where ktδt is the spring conservative force term and γtvt is the dashpot dissipative

damping force term of spring-dashpot system in this Linear Contact Force model. k

is the spring stiffness of particle, γt is the viscous damping coefficient, and vt is the

relative velocity in tangential direction of the point of contact.

Rolling

There are two main factors that affect rolling mechanics, the contact force at the point

of contact and the shape of particles [41; 42; 43], due to the depth of details, author

will only review on models considering equal-sized particles.

The governing equation of motion for rolling of particle i is:

Ii
dωi
dt

=
∑
j

~Ti (3.7)

where Ii is the moment, ω is the angular velocity due to rolling, Ti is the torque of

particle i and t is the time increment. Torque ~Ti is given as:

~Ti = Ri
~f t

= −µRi| ~fn|
(3.8)

where Ri is the vector of rotational relative radius from the mass centre of the particle

to the contact point, given as Ri = aiaj/(ai + aj).
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3.1 Discrete Approach

3.1.1.3 Collision models

The previous sections explained the more “static” models available in DEM, which

are employed in simulations of dense flow of frictional granular materials [44]. In this

section, Collision models are more “dynamic” models, they are employed in simulations

for dilute flow of granular materials, due to their ability to capture action and reaction

forces on each particle upon collision [45].

The collision model uses the Event-driven algorithm, which adapts variable time step

interval in the simulation, the variable time step interval is determined by the occurring

events (collisions) in the simulation. Whereas the time step interval is constant in

classical DEM.

The event-driven method in DEM only started in 2007 by Theuerkauf [46] and its

implementation can be found in most recent research since 2012 [47; 48; 49; 50; 51].

The nature of the collision models focuses on the motions during collision, which occurs

frequently in fluidisation of powder flow [52; 53; 54]. However, this research is only

interested in dense powder material.

3.1.2 Conclusion on DEM

DEM is the most popular approach in granular simulation nowadays, due to its ability

to capture the microscopic behaviour and effect of granular material interaction with

each other. The contact model simulates each particle interaction with particles in

contact with it at every time step. This task alone may consume a large fraction of

calculation time. This ability makes DEM cost a high computational resource. Some

simulation scientists have applied the DEM approach to an industrial scale problem

[55] with up to 1 million particles with particle size down to 30 mm. This maximum

number of particles is not high enough and the particle particle size is not small enough

for fine powder, as fine powder particle sizes range between 0 to 50 µm. A typical
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hopper installed in a given production plant would contain tonnes of fine powder, that

would be over trillions of particles. DEM falls short in terms of its ability to simulate

small size particles in an enormously large quantity, but DEM can produce realistic

simulations where there is sufficient computing resource available.

DEM originates from the soft particle molecular dynamics method, it also assumes

that the granular particles are soft particles and the displacements are due to current

forces exerted on the particles. However, as mentioned in the Introduction, cohesive

material has the ability to contain its strength while the force is removed. That means

the cohesive material is stress-history dependent. After reviewing the DEM approach

in detail, the author’s opinion was that DEM is not suitable approach in this research

study.

3.2 Continuum Approach

Due to the high computational time that the discrete approach costs, the author has

moved to viewing the continuum approach on powder simulation in detail to determine

whether that is more suitable for this research project.

The continuum approach treats the powder as a continuum under the principle of

continuum mechanics.

3.2.1 Computational Fluid Dynamics (CFD)

Computational Fluid Dynamics (CFD) models have been well studied and well es-

tablished based on concrete underlying physics. The major capability of CFD is to

solve the governing equations of the fluid; NavierStokes equations or Euler equations

most of the time [56; 57; 58]. CFD started to gain its popularity in powder industry

since the 1970’s, starting to numerically simulate fluidised beds of powder [59; 60; 61],
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as its application extended to multi-phase simulation: the simulation domain is con-

sisted of not only fluid but also solid. There are two workframes: Euler-Euler and

Euler-Lagrangian.

3.2.1.1 Euler - Euler

This workframe treats both gases and solid as a continuum. The powder (solid) is

represented as a pseudo-fluid, hence it obeys the laws of conservation in fluid flow, in

terms of mass, momentum and energy. Equation 3.9 is the Euler equations for mass

conservation adopted with the volume fraction for both solid phase and gas phase.

∂(Vgρg)

∂t
+∇ • (~fgρg ~ug) = 0

∂(Vsρs)

∂t
+∇ • (~fsρs ~us) = 0

(3.9)

where subscript g and s indicates gas and solid respectively, V is the volume fraction,
~f is the phase fraction, ρ is the density and ~u is the velocity of different material

accordingly.

The modified Navier-Stokes equations describes the motion of the domain for each

phase is:

∂

∂t
(~fgρgug) +∇ • (~fgρg ~ug ~ug) = ∇ • τg + ~fgρgg −∇p− β( ~ug − ~us)

∂

∂t
(~fsρsus) +∇ • (~fsρs ~us ~us) = ∇ • τs + ~fsρsg − β(~us − ~ug)

(3.10)

where τ is the viscous stress tensor, g is the acceleration due to gravity, p is the ther-

modynamic pressure, which only exists in gas phase, and β is the interface momentum

transfer coefficient.
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On the microscopic scale, the vibration of any fluid molecules result in heat, a tem-

perature is then introduced to the liquid. This concept was brought into bulk solid

analysis by Savage in early 80’s [22; 62] and had been widely used in bulk solid re-

search [63; 64; 65; 66], especially in the field of powder fluidisation simulation where

the applications are two-phase flow [67]. The collisions of particles cause velocity fluc-

tuations, then a pseudo-temperature is introduced to the bulk solid due to the velocity

fluctuations. The pseudo-temperature is called the granular temperature, is given as:

θ =
u′2

3
(3.11)

where u′ is the fluctuating velocity.

Hence the energy conservation equation is defined as:

3.2.1.2 Euler - Lagrangian

In the last decade, there has been a new technique emerging in granular simulations

and it has been popular in powder dispersion [68; 69; 70] and in wall impingement [71]

. In the CFD-Lagrangian workframe, granular material is no longer being treated as

a pseudo-fluid, but a real particle as it is. The equations of motion are solved in the

calculation of the solid phase, while gas remains as a fluid phase.

The Lagrangian workframe employs equation of motion to calculate acceleration for

each particle, hence updates the particle velocity and feeds back to the fluid phase.

Particle tracking is also embedded in this workframe to track the motion of each

particle. Therefore this workframe is computationally expensive unless the number of

particles is small.
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3.2.1.3 Conclusion on CFD

CFD powder simulation allows the materials, air and powder to interact and exchange

momentum and energy with each other. Hence the effect of fluid is a large contributor

in powder simulation in comparison with DEM or FEM. In this study, air escapes

through gaps between particles, and it does not interact or exchange information with

the powder, air effect is minimal. Therefore CFD approach is not best suited for

this project. The QPM project prior to this research came to difficulties in obtaining

the effective viscosity of the powder (see Chapter 1.2). The focus of this research

lays in the structure for the failure of the arch forming at the outlet. Section 2.4

explains that Mohr’s circle analysis with stresses in different directions is crucial for

prediction arching/failure condition. A model which can cope with deviatoric stresses

is important. Most CFD models are only capable of providing hydrostatic pressure; it

is not possible to analyse the failure with a stress that is not the same in all direction.

3.2.2 Finite Element Method (FEM)

The Finite Element Method is a continuum approach to granular numerical simulation,

treating powder in bulk as a block of solid deformable continuum [72; 73].

3.2.2.1 Cam-Clay Model

In 1966, the Cam-Clay model was originally introduced by a Professor in Soil Mechan-

ics from University of Cambridge, Schofield [74; 75]. It is a elastic-plastic numerical

model that interprets a series of empirical data from axial testing and utilises the

Critical State concept and Flow Rule of Theory of Plasticity [76] to predict the ideal

behaviour of an isotropic-hardening soft clay. Hence the name Cam-Clay. The break-

through of Cam-Clay model lies in its ability to allow the soft soil (usually wet clay)
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to recover volume changes during axial testing by loading-unloading-reloading proce-

dure, this procedure can extract parameters of non-linear elasticity and of hardening

by plastic volumetric deformation of the soft soil. The soft soil is assumed to be a

ductile plastic continuum satisfying the associated flow rule.

Soil Mechanics and Powder Mechanics share a number of similarities, Cam-Clay model

is often employed in the simulations to predict dense powder behaviours.

Adapted Triaxial Powder Test for Cam-Clay

The schematic diagram in Figure 3.3 demonstrates the apparatus used in the triaxial

tester. The original triaxial test for soil submerges wet clay in water. In order to

accommodate dry powder testing, water is replaced with dry air. Therefore, this

adapted triaxial test submerges dry powder in dry air [77].

The test system is examined to be air-tight; there is no leakage anywhere throughout

the system. Powder is filled inside of the rubber sleeve, which is affixed to the pedestal.

There is a sintered metal plate inside of the rubber sleeve, between the pedestal and

the powder, to allow air to go through and to prevent powder from passing through the

porous medium. A plastic lid is mounted at the top end of the rubber sleeve. Powder

sample inside the rubber sleeve is air-tight and housed inside the glass chamber. Inlet

and outlet valves control the air pumping in and getting out off the glass chamber and

the fluid flow metre measures the air going into the chamber via the inlet.
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Figure 3.3: Triaxial test apparatus for Cam-Clay Model

Surrounding air in the glass chamber provides a radial air pressure of σr, and the axial

shaft provides an axial pressure of σa onto the powder. The effective stress acts on

powder is σ′ = (σ−u). The powder has its own pore air pressure u, which is negligible.
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So the mean normal effective stress, p′, and the traiaxial deviatoric stress, q, are:

p′ =
1

3
(σ′) =

1

3
(σ′a + 2σ′r)

q = σ′a − σ′r
(3.12)

Figure 3.4: Correlation between specific volume and logarithmic

of normal effective stress

The advantage of Cam-Clay model lies in its establishment of a relationship between

applied stress and relating strain, while taking account of the previous stresses acting

on the material. Hence it was a break through on measuring material that is “stress

history” dependent.

During compression, the powder specimen behaves as a ductile plastic continuum,

its specific volume, v, is observed to decrease exponentially with increasing normal
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effective stress, p′, their correlation will be

v + λ ln p′ = vλ (3.13)

Figure 3.4 Shows the relationship between the specific volume and logarithm of the

normal effective stress. Material that is loosely pack is undergoing an increase of

effective normal stress. The volume will reduce and follow the path on Line A with

a slope of λ, until the effective normal stress reaches p′1. Then the material is on

relaxation; the applied stress is lifted and the material starts swelling. The material

will follow a small elastic expansion. The specific volume of the material, v, follows

the path on Line B with a slop of κ and increases slightly to v′κ.

v + κ ln p′ = vκ (3.14)

where vλ and vκ are the intercepts on the lines, vκ differs from each unloading-reloading

line and depends on the stress loading history.

After relaxation, the material is then under increasing compression again and the

specific volume follows the path on Line C with a slope of κ until the effective normal

stress reaches p′1 again, then v will go back on Line A. Else if the effective normal stress

does not research the p′1, it will be in the region of between unloading and reloading,

going back and forth on Line B and C. This is a very significant implementation

of measuring material that is “stress history” dependent. This characteristic points

out one of the crucial contributions of specific volume (or density) of the material in

powder mechanics to predict its flow/no-flow condition, whereas the effect of density

is minimal in conventional solid mechanics.

Critical State
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Another crucial contribution of density in powder mechanics lies within the Critical

State of the powder. Figure 3.5 details the shear failure for granular material and

states that incipient flow only happens at shear failure when material is at its critical

density.

Any granular material, under normal consolidation stress σ while shearing with a

shearing stress τ for a horizontal displacement dx, would have a change in its thickness

slightly, by a vertical displacement dy (Figure 3.5). dy/dx indicates the rate of dilation

of the granular material. If it is continuously sheared, material strength reaches its

maximum when dy/dx also reaches its maximum(Figure 3.6). Then slippage would

occur and dy/dx becomes zero, this is said to be in Critical State condition [78].

Figure 3.5: Direct shear box test
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Figure 3.6: Strength and displacement during shear box test

In Critical State, granular material flows as a frictional fluid (similar to a Bingham

fluid 1), shear strain occurs without any further changes in effective mean stress p′,

deviatoric stress, q and specific volume v. This state can be represented by a Critical

State Line in p′− q plane (Figure 3.7) the Critical State Line is a straight line passing

through the origin with the slope equal to M. The Critical State Line is also parallel

1The behaviour of switching from solid phase to fluid phase is very similar between the two, but

there are still differences between the two, which will be discussed in later chapters
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to the Virgin Compression Line in v − ln p′, the parameter Γ is the specific volume at

unit pressure in Critical State condition.

Figure 3.7: Critical state line in q − p′ plane

Figure 3.8: Critical state and virgin compression line in v − ln p′ plane

Relation between Γ and N for Cam-Clay model is:

Γ = N − (λ− κ) (3.15)
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Hardening and Associated Flow Rule

Hardening of material in Cam-Clay is done by plastic deformation. Flow rules are

used in plastic theory in solid mechanics to determine the plastic strain in any ma-

terial which under goes plastic deformation. The name “associated” is given to its

compatibilities with any certain yield criteria [79]. The original Cam-clay model has

a yield function in the shape of a tear drop while the modified Cam-Clay model, by

Roscoe and Burland [80], has a yield function of an ellipse as shown in Figure 3.9. In

the Cam-Clay model, due to the usage of a critical state concept, the stress terms of

yield function represent not the total stresses, but the mean effective stresses in p′− q
plane.

Figure 3.9: Yield surfaces for original Cam-Clay and modified Cam-Clay model

Yield function for Cam-Clay model:

q +Mp′ ln(
p′

p′o
) = 0 (3.16)

Yield function for Modified Cam-Clay model:

q2

p′2
+M2(1− p′o

p′
) = 0 (3.17)
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where p′o is the pre-consolidation stress and it controls the size of the yield surface.

Material hardening occurs in the region to the right of the intersect point of the Critical

State Line and the yield surface, Figure 3.9 shows that material is in compression. The

region to the left of the intersect point in the same figure represents material softening,

which is associated with material dilatancy. The material is in tension in this region.

Conclusion on Cam-Clay Model

The cohesion of the powder is not a parameter in the Cam-clay model. Nevertheless

cohesion is an essential parameter in the powder material property, therefore research

has established a relationship between the elastic modulus and cohesion during the

powder hardening stage [81; 82].

The Cam-Clay model is computationally inexpensive in comparison with DEM, its

allowance for material to behave differently in either compression or tension makes

it favourable among other numerical models for granular simulation. However the

Cam-Clay model does lack some suitable prospects for the case study in this research,

which is to predict the arching condition of cohesive powder in a hopper: a) Cam-Clay

model only simulates compaction of powder, it lacks of the ability to examine the

catastrophic failure of powder in the hopper, b) Cam-Clay model deals with isotropic

compaction and treats the material as an isotropic material, which is not the case in

cohesive powder.

If any researchers attempt to use the Cam-Clay model for failure/arching prediction

in hoppers while taking consideration of cohesion. The author would suggest the

research to focus on incorporating the cohesion in the yield surface and/or develop a

yield surface that represents the failure of the powder.
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3.2 Continuum Approach

3.2.3 Rheology Method

Powder behaviour classifies itself between being a fluid and being a solid, depending

on its state [50], ranging from free-flow to non-flow situation. This transition zone

is usually known as a state of “flowing solid” or “pseudo fluid”. The term rheology

is given to this area of study [83]. The rheology method in powder handling has

been studied by researchers in the past two decades [84; 85]. If the powder, which is

subjected to a constant stress, resists further deformation after an initial deformation,

the powder is considered a solid. If the powder, which is subjected to a constant stress,

continues to deform, the powder is considered a fluid. The rheology method allows

the researchers to study both solid and fluid characteristics of the powder. Figure 3.10

shows that the classification of continuum materials.

Figure 3.10: Classification of continuum materials

Viscoplasticity is a wide topic in rheology, its capability lies in providing both hy-

drostatic pressure and deviatoric stresses and its ability to considering both material

properties plasticity(a solid’s characteristics) and viscosity (a fluid’s characteristics).

Viscoplastic models consist of two main elements; a Hookean spring element and a

rate-dependent dash-pot element.

Bingham [86; 87] introduced a model in which under a certain yield stress 1 the solid

1Yield stress in this content is different from yield stress in normal standard solid mechanics,

which is the stress threshold to determine the solid would behave either plasticity or elasticity.
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3.2 Continuum Approach

material would start to flow. This phenomenon resembles the powder behaviour: a

block of dense powder behaves as a solid until the exerted stress researches the critical

point (yield stress).

Figure 3.11: Viscosity regimes chart.

Figure 3.11 shows different material viscosity behaviours and Equation 3.18 shows that

how a Bingham material switch from solid phase to fluid phase.

δu

δy
=

{
0 , τ < τ0 solid phase
τ−τ0
µ∞

, τ ≥ τ0 fluid phase
(3.18)

The ability of the model switching between two phases in the Bingham model resemble

the behaviour of powder which also switches between two phases dependiing on the

stress conditions.
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3.3 Hybrid CFD-DEM Approach

3.3 Hybrid CFD-DEM Approach

The approaches mentioned previously in Section 3.1.1 and Section 3.2.1 have only one

solver. Some might have different elements interoperated into the solver to accom-

modate the situation. Figure 3.12 shows both CFD solver with incorporated DEM

element, which indicate DEM contributes sources to one or more than one CFD vari-

able and vice versa for DEM solver with incorporated CFD.

Figure 3.12: Solvers with incorporated element

Hybrid CFD-DEM Approach is a very sophisticated approach in Powder Mechanics

[88; 89; 90]. In Euler-Lagragian(Section 3.2.1.2), interaction between fluid and solid

phase is mentioned, but it is only the coupling between gas and particle. The interac-

tions between particle and particle is absent. While the Hybrid CFD-DEM Approach

infuses the features from CFD and DEM. It couples gas-particle and particle-particle

interaction.

This approach focuses on running two solvers at the same time: the motion of discrete

particles is obtained by the DEM which solve the equations of Newton’s law of motion

to each particle, while the flow of continuum fluid is calculated with local averaged

Navier-Stockes equations in CFD. The information is fed and exchanged between the

solid phase and the fluid phase, this interaion is described by using Newton’s third

law. However this workframe is comparatively new in academic, and is still under

development [? ].
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3.4 Chapter Summary

Therefore there are two solvers running parallel to each other and exchanges informa-

tion at the same time, demonstrated in Figure ??. The function requires extremely

complex coupling ability from the codes and also extremely high performance capabil-

ity to conduct the calculation. Therefore this approach is the most computationally

expensive of all.

3.4 Chapter Summary

After reviewing the existing available models for powder behaviour simulations, the

author decided to conduct a preliminary study to examine the closest models for

powder behaviour for the problem of predicting arching.

Discreet Element Method(DEM) simulates the forces and dynamic motion for every

single particle. Due to its extremely high computational requirements, it is only suit-

able for coarse granular materials or small benchmark samples of fine powders.

The existing models feature the flow end of granular materials and fine powders.

However, this project is interested in the catastrophic failure of incipient flow in the

hopper. The author felt there are none existing models that are perfectly suitable for

this project as a whole, but only suitable for different individual aspects of the project,

and moved to conduct preliminary simulations to extract the essence of each relevant

aspect from different models, then establish a new constitutive model to predict arching

conditions in a hopper.
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Chapter 4

PRELIMINARY STUDY

The author’s approach here was to start off by evaluating the available simulation

tools. It was the best way to identify what worked, what did not work for the complex

situation, and where the main difficulties were. This preliminary work was essential

to establish the final simulation model approach.

4.1 Simulation of Powder behaviours by using vis-

coplastic fluid model

The rational starting point to simulate flow appeared to be using CFD. However to use

CFD requires a constitutive law for the fluid, usually based on Navier-Stokes equation

with the Newton’s viscosity law (see Equation 4.1).

∂

∂t
(ρ−→u ) +5 • (ρ−→u ⊗ −→u ) + pI) = 5 • τ + ρg (4.1)

As yet the role of stress history would be ignored whilst trying to make a start on the
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4.1 Simulation of Powder behaviours by using viscoplastic fluid model

modelling knowing that this would have to be accountable for later.

Therefore the zone in the middle of the first arch in a discretised hopper was simulated

(demonstrated in Figure 2.3) to determine if this model would be a suitable method

for further development.

It was known that powders do not obey Newton’s viscosity law, so it was necessary

to seek a law that would be suitable to real powder behaviour. The powder behaves

like a solid when it is filled and static in the hopper, but it behaves like a pseudo-fluid

when it starts to flow. This phenomenon fits the definition of a viscoplastic material

described in Section 3.2.3.

Bingham model features a material that behaves like a pseudo-fluid once the stress

acting on the material exceeds the yield stress; the material would flow with a shear

rate proportional to the amount by which the acting shear stress exceeds the yield

stress.

The material in the zone is supported by its own weight and subjected to normal face

acting on both side.
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4.1 Simulation of Powder behaviours by using viscoplastic fluid model

Figure 4.1: Simulation of arched element

Figure 4.1 is the simulation of an arched element circled in Figure 2.3 using Bingham

model with one end fixed and external pressure acting on the end.

Boundary Conditions:

• fixed coordinates at x = 0

• applied pressure 36× 10Pa

Bingham Material Properties:

Yield stress Shear rate Viscosity

1400Pa 2000Pa 1000Pa
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4.1 Simulation of Powder behaviours by using viscoplastic fluid model

Conclusion on Bingham model

Viscoplastic models are the well-known models in CFD that provide deviatoric stresses

in additional to hydrostatic pressure. Powder materials do express different stress in

different directions. Therefore Bingham model was chosen to be the first attempt, even

though it has a few shortfalls when dealing with the prediction of arching behaviour

in hopper.

However, standard CFD had no capability to deal with change in properties due to

stress history, which was known to be important from the Cam-Clay model (Section

3.2.2.1). Bingham model assumes the material is incompressible, which is not the case

for powder compaction. Cohesive powder increases its bulk density and decrease its

volume under compaction, while the bulk density increases, the strength of the powder

also increase.

In addition, in reality each layer of arch supports its own weight, stresses acting on the

arch with the open outlet is less than the stresses when the outlet is close. According to

the Bingham model the simulated element would always be in the solid phase; unless

the assumption is made that the material sitting on top of the arch rests its weight

onto the arch. This is a behaviour of flow condition, which is against conditions of this

research project. This research project aims on predicting arching or flow condition

with stress analysis.

Lastly, the viscosity in CFD, which is an important parameter in CFD simulation,

does not fully represent the characteristics of the powder. Because during shear, the

powder would break apart and become discontinuous instead of remaining continuous

like a normal fluid. In normal CFD, the discontinuity in fluid is treated with extrap-

olation. However when the powder break apart, the failure is a catastrophic event,

extrapolation over the discontinuous zone would not be a suitable approximation to

the powder.

Discontinuity at arch failure is actually a quasi-static problem; it is like a bridge failure.

The author hence moved to examine the use of Finite Element Method for arching
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4.2 Simulation of an arched outlet and element removal by Using FE

problem.

4.2 Simulation of an arched outlet and element re-

moval by Using FE

Simulation of the arch was attempted using a continuum mechanics approach i.e.

Finite Element (FE). The powder incipient flow at the outlet is a catastrophic failure

event. Failure mechanics is well established in conventional solid mechanics [91; 92].

However, when the powder starts “flow” out of the hopper, the material which is

“gone” would no longer have any effect on the stress-strain analysis of the rest of

the powder. This is the reason why the author decided to model the failure event

by changing powder elements to void elements. Below details how the study was

conducted:

Arch geometry

Thickness Hopper half angle Mesh size

100mm 45◦ 10× 26mm

Most hopper and silo manufacturers design the geometry without the consideration of

the powder behaviours and draw up the designs with CAD, hopper half angles across

the industry are commonly found to be 30◦ , 45◦ and 60◦ . The half angle chosen to

be 45◦ for this study, as it is one of the most common and problematic shapes across

the industry.

Material properties

Bulk Density Poisson Ratio Young’s Modulus

720kg/m3 0.3 220× 103Pa

Boundary conditions
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4.2 Simulation of an arched outlet and element removal by Using FE

• All degrees of freedom are restricted on the elements next to wall, that means

the material is non-sliding along the wall. Because the preliminary study is only

examining the removal of elements under the assumption that arching is already

occurring. So the simulation will have a non-slip boundary condition at wall.

• The only forces existing are the gravitational force and force between powder

and wall.

The same simulation with the unchanged material properties and boundary conditions

were conducted on both ANSYS and PHYSICA. The reason for the comparison is to

ensure the basic Solid Mechanics module in PHYSICA is bug-free, so further software

development can be conducted in addition to the original source codes. The reason

for choosing PHYSICA over ANSYS is that PHYSICA has a much easier access to

its source codes and therefore more flexible to cope with user changes. Even though

PHYSICA does not have a user friendly interface, it is necessary for software developers

to develop the source codes, in order to make accommodating changes to the complex

calculation system.
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4.2 Simulation of an arched outlet and element removal by Using FE

Figure 4.2: Comparisons between Ansys and PHYSICA on horizontal displacements.

53



4.2 Simulation of an arched outlet and element removal by Using FE

Figure 4.3: Comparisons between Ansys and PHYSICA on vertical displacements.
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4.2 Simulation of an arched outlet and element removal by Using FE

Both results on ANSYS and PHYSICA in Figure ?? show the same contour and value

on displacements; range from −0.0031m to 0.0031m for horizontal displacement,U,

and range from −0.0015m to −0.0015m for vertical displacement,V.

To compare the stresses, the author has chosen the stress along the centreline of the

arch (Figure 4.4 ), as it is where the largest movement in vertical displacements take

place. The largest displacement is associated with largest stresses, for any discrepancy

between Ansys and PHYSICA, the centreline will be the most obvious location to

examine, as shown in Figure 4.4 maximum displacement is along the centreline.

Figure 4.4: Schematic diagram for centreline of the arch, where the two results are

compared.

Figure 4.5: Comparisons between Ansys and PHYSICA on

vertical and horizontal stresses along the centreline

Figures 4.5 above show consistency in both vertical and horizontal stresses between

ANSYS and PHYSICA results, even though there is a small shift in the results, this is

due to the fact that the stress values in ANSYS are given at the nodes of each element
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4.2 Simulation of an arched outlet and element removal by Using FE

whereas in PHYSICA are given at the centre of each element. These comparisons show

that the solid mechanics module in PHYSICA is suitable for further code development.

Elements are then removed to simulate the situation where bits of material from

the arch start to fall. In the arch simulation there are two circumstances where the

elements need to be removed. One is where elements experience tensile stress, the

other, where the stresses of the element satisfy Mohr’s Circle failure criteria.

PHYSICA gives stress results in global coordinates, which are in either global horizon-

tal or vertical direction. In order to study the element stresses, local stresses need to

be transformed from the global stresses to align with the orientation of each element.

The stress transformation can be conducted as follows (see Figure 4.6):

Figure 4.6: Stress transform and different co-ordinate system

Dieter (Ref [93]) has used ′ to denote the transformation coordinate, for simplifica-

tion and coherence for later paragraphs, author will use notation as in the following
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4.2 Simulation of an arched outlet and element removal by Using FE

equations.

σlh =
σh + σv

2
+
σh − σv

2
cos(2ϑ) + σs sin(2ϑ)

σlv =
σh + σv

2
− σh − σv

2
cos(2ϑ)− σs sin(2ϑ)

σls =
σv + σh

2
sin(2ϑ) + σs cos(2ϑ)

(4.2)

σlh, σlv and σls are elemental local horizontal, vertical and shear stress respectively.

σh, σv and σs are global horizontal, vertical and shear stress respectively and ϑ is the

angle between local element orientation and the global x-y axes (shown as in Figure

4.7).

Figure 4.7: θ of an arbitrary element (left) and θ values across

the arch

The local horizontal stress is shown in Figure 4.8 on the left and it is shown in a

manner that positive and negative stresses are emphasised. In order to emphasise

the switch between the compression elements and the tensile elements, the conture is

scaled between −1Pa to 1Pa; the blue elements are all in tension and the red elements

are in compression. The elements in tension are due to be removed. After the removal
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4.2 Simulation of an arched outlet and element removal by Using FE

of the elements in tension, the rest of the arch remains in compression. The figure on

the right demonstrates the stress after removal of the elements in tension. The local

horizontal stress on the rest of elements does not change before or after the removal.

This shows that the rest of the arch is in compression and the compressive force makes

elements interlock with its adjacent elements, therefore the arch can support its own

weight.

Figure 4.8: Local horizontal stress before (left) and after (right)

removal of elements

As it has been mentioned in previous chapter, the other criterion for removing the

element is to satisfy the failure criterion in Mohr’s Circle analysis.

Mohrs circle analysis is the most fundamental principle in powder mechanics, Janikes

introduction of Mohrs circle analysis paved the stress analysis in powder mechanics.

Mohrs circle is a graphical expression of the state of stress at a point. The difference

between the traditional Mohr’s circle and the Mohr’s circle for powder mechanics is

that the traditional Mohr’s circle by is derived for specimen in tensile stress (see Figure

4.9) and the powder mechanics are mostly in compression stress.
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4.2 Simulation of an arched outlet and element removal by Using FE

Figure 4.9: Stress components at a plane passing through a point in a continuum under

plane stress conditions

Figure 4.10: Sign convention of Mohr’s Circle
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4.2 Simulation of an arched outlet and element removal by Using FE

Traditional Mohrs circle in Figure 4.10 has tensile stress as positive stress and com-

pressive stress as negative stress. σ1 and σ2 are the major and minor principal stresses

where shear stress is absent. The figure also shows the element needs to rotate 2θ

clockwise (CW) to reach its principal stress state.

However, the sign convention is different in powder mechanics - compression is positive

and tension is negative. The representation of the stress state for the same element

will be as in Figure 4.11:

Figure 4.11: Sign convention of Mohr’s Circle in Powder Mechanics

Values of mean stress σm, both principal stresses σ1, σ2 and maximum shear stress

σmaxls can be calculated as follows:

σm =
1

2
(σlh + σlv)

σmaxls =

√
1

2
[σlv − σlh]2 + σ2

ls

σ1 = σm + σls

σ2 = σm − σls

(4.3)

After studying the elements in the centre, another location with high tendency to shear

has also been studied, where shear stress is at its maximum. The contour in Figure

4.12 shows that maximum shear stress occurs at the corner of the arch on each side,
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4.2 Simulation of an arched outlet and element removal by Using FE

the element at the corner of the arch on the right has been specifically studied using

Mohrs Circle analysis. therefore the first principal, second principal and shear stress

need to be calculated for each element.

For an arch to be formed in the hopper near the outlet, the arch is self-supported and

it is believed to be rigid and static resting across the hopper outlet. Hence there would

be a no-slip condition at the corner.

Figure 4.12: Contour of maximum shear stress in each element calculated from Equa-

tion 4.3

Stress data extracted from that point are tabulated as follows:

Local Vertical Stress Local Horizontal Stress Local Shear Stress

11.6× 103Pa 1.7× 103Pa 14.5× 103Pa
Local Mean Stress Local Max Shear Stress

6.0× 103Pa 47.8× 103Pa
Local Major Principal Stress Local Minor Principal Stress

10.8× 103Pa 1.2× 103Pa
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4.2 Simulation of an arched outlet and element removal by Using FE

An empirical experiment has been conducted in accordance to the simulation. The

cohesion and the internal friction angle are functions of pre-consolidation stress. The

pre-consolidation stress is assumed to be the major principal stress, therefore the

cohesion and the internal friction angle can be found accordingly for each element.

The corresponding Yield Locus is then obtained as a failure criterion to examine

whether or not the element will fail. Hence the author used the stresses to analyse the

condition with the Mohr’s circle analysis.

Figure 4.13: Generic Mohr’s Circle using given stress data, maximum and minimum

principal stresses
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4.2 Simulation of an arched outlet and element removal by Using FE

Figure 4.14: Genetic Mohr’s Circle and its predicted Yield Locus

For any powder specimen, failure occurs when the element generic Mohr’s circle touches

the Yield Locus. However, at this point of the research, the author came to the

realisation that a history of stress needs to be created in order to carry out the Mohr’s

circle analysis with a failure criterion. The preliminary simulation leads to further

research after realising the problems and the the adoption of PHYSICA, whose ability

allow users and developers to create code to accommodate complex calculation, these

two aspects are explored on later chapters.

The author also carried out simulations on different outlet spans and different hopper

angle to support the preliminary simulation:
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4.2 Simulation of an arched outlet and element removal by Using FE

Figure 4.15: Different outlet span for preliminary stimulation

Figure 4.16: Different hopper angle for preliminary stimulation

The findings of conducting two analysis with different hopper geometry; hopper half

angle of 30◦ and 45◦. The results shows that the Generic Mohr’s circle from the 30◦

case touches the Yield Locus therefore it would fail. The Generic Mohr’s circle from

the 45◦ does not satisfy the failure criterion, the material therefore remains arched.
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4.2 Simulation of an arched outlet and element removal by Using FE

This is the true to most real situations across the industry. The steeper the hopper

(smaller hopper half angle), the more free-flowing the material will be.
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Chapter 5

THEORY

This chapter outlines the hypothesis of this research project and modelling and the

theories behind the hypothesis.

5.1 Model Theory

Through Literature Review and the Preliminary Study, we know that there is no cur-

rent existing continuum numerical model that is good for predicting cohesive arching

in a hopper. The author decided to extract the relevant essential aspects from the well-

established models to assemble and develop a model that represents the underlying

physics in cohesive arching condition in a hopper.

The author identified FEM as a feasible approach in Preliminary Study Chapter 4, and

this decision has been upheld after reviewing the relevant literature. The full modelling

approach is set out in Figure 5.1. Subsequent sections will describe the model in

greater detail in terms of empirical property determination, numerical simulation, and
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5.1 Model Theory

the links between the two. The author conducted the confided compression test for

powder characteristics which are used in the compaction aspect of modelling and the

Brookfield PowderFlow test for the powder characteristics which are used used in the

failure of the arch.
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Figure 5.1: Modelling Flowchart
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5.2 Powder Compressibility and Young’s Modulus

In order for the simulation to function properly, it needs a new relationship for Young’s

modulus which relates the strain to applied stress according to powder behaviour.

Whereas, for a solid, this relationship is well established, for powder it is much more

complex. The complete arise in the under-defined powder concepts in FEA.

During filling, the powder is under compaction, ie. its volume is reducing. The Cam-

Clay model (Section 3.2.2.1) shows how powder behaves under both increase and

decrease of stress.

The use of the plasticity law in Cam-Clay for flow is not employed in author’s model,

because the Cam-Clay model was introduced having in mind that the material will

flow as an extremely ductile solid or frictional fluid after the critical state is reached.

However, for the cohesive powder arching condition, once the shear failure happens,

it will be a catastrophic failure event, similar to fracture events but not the same. So

the deformation mechanism from plasticity law is of no use in this model.

The author knows that during compaction the powder is behaving plastically in reality.

But for computational convenience, the author introduced the effective “Young’s Mod-

ulus” to trick the software package, with a high yield stress1. Because the yield stress

in the simulation is ensured to be high enough for the calculations to be conducted

within the elastic region of the material.

The relationship between applied stress and related strain are given in Chapter 3.2.2.1,

where a powder starts at a low density (eg. filled into a hopper under low stress) and

stress is applied, the volume reduces along the steep part of the curve. The slope is a

function of density, but can be modelled as an equivalent Young’s modulus,“E”, where

can be produced from this curve, as a function of stress, to use in the simulation for

filling. According to the Cam-Clay model, if at any point the stress is reduced an

1The yield stress here is the yield stress in which if exceeded, material deforms plastically
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5.3 Finite Element Method for “Elastic” Material

elastic expression will occur at a different slope, for which a different stress-strain

relationship (effective “E”) can be determined, again dependent on stress because the

line is a curve if plotted on linear axes.

To implement the effective “E” in the simulation, it requires a different function for

“E”, one for plastic volume reduction for filling stage when the powder is in compaction

and one for the elastic behaviour during opening when the powder is in relaxation.

Both relationship of “E” are liked by density and with respect to stress σ.

As mentioned in previous Section 3.2.2.1 about Cam-Clay, there are two coefficients

λ and κ for the virgin compression situation and unloading-reloading compression

situation. For the numerical model to be able to implement two different compression

situations, two functions are needed for effective “E”.

5.3 Finite Element Method for “Elastic” Material

The typical stress and strain analysis on a given element is illustrated in Figure 5.2

with stresses in each direction [94]:

Figure 5.2: Stress components on an infinitesimal element.
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5.3 Finite Element Method for “Elastic” Material

The equilibrium equations for three-dimensional elastic stress are:

∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

Fx = 0

∂σxy
∂x

+
∂σyy
∂y

+
∂σyz
∂z

Fy = 0

∂σzx
∂x

+
∂σzy
∂y

+
∂σzz
∂z

Fz = 0

(5.1)

where σxx, σyy and σzz are normal stresses, σxy, σxz and σyz are shear stresses, Fx, Fy

and Fz are body forceses.

The equilibrium equations are integrated:

∫∫∫
(
∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

) dxdydz =

∫∫∫
−Fx dxdydz∫∫∫

(
∂σxy
∂x

+
∂σyy
∂y

+
∂σyz
∂z

) dxdydz =

∫∫∫
−Fy dxdydz∫∫∫

(
∂σzy
∂x

+
∂σzy
∂y

+
∂σzz
∂z

) dxdydz =

∫∫∫
−Fz dxdydz

(5.2)

The system of Partial Deferential Equations are coded to be solved in PHYSICA,

which is a numerical solver developed in the Department of Mathematical Sciences

at University of Greenwich. In this study the above equations are simplified into

two-dimensions to simulate a cross-section of a wedge hopper.

∫∫
(
∂σxx
∂x

+
∂σxy
∂y

) dxdy =

∫∫
−Fx dxdy∫∫

(
∂σxy
∂x

+
∂σyy
∂y

) dxdy =

∫∫
−Fy dxdy

(5.3)

Approximation made in this case is the thickness of the hopper in z-axis direction

is extremely small compared to its other directions. A two-dimensional plane stress
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5.3 Finite Element Method for “Elastic” Material

condition is defined to be a state of stress in which normal stress σzz, shear stress σxz

and σyz directly perpendicular to the x− y plane are zero.

σzz = σxz = σyz = 0 (5.4)

Using Green’s Theorem, which gives the relationship between a line integral around a

line and a double integral over an area, Equation 5.3 becomes:

∮
(σxxdy − σxydx) =

∫∫
−Fx dxdy∮

(σxydy − σyydx) =

∫∫
−Fy dxdy

(5.5)

Using the plane stress condition, the Hook’s Law strain-stress compliance matrix for

an orthotropic material is [95; 96; 97]

εxxεyy
γxy

 =


1
Ex

−υyx
Ey

0

−υxy
Ex

1
Ey

0

0 0 1
2Gxy


σxxσyy
σxy

 (5.6)

εxx =
∂u

∂x

εyy =
∂v

∂y

γxy = εxy + εyx =
∂u

∂y
+
∂v

∂x

(5.7)

where εxx,εyy and εxy are strain in x direction, strain in y direction and shear strain,

Ex and Ey are Young’s Moduli in x and y direction, υxy and υyx are Poisson’s ratio and

Gxy is shear modulus. Equation 5.7 is the two-dimensional compatibility equations for

strain. In orthotropic materials, there is no interaction between the normal stresses

σxx, σyy and the shear strain σxy. The factor 1/2 multiplying the shear modulus in the
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5.4 Confined Compression Test

compliance matrix results from the difference between shear strain and engineering

shear strain, γxy, which is a total measure of shear strain in the x-y plane. In contrast,

the shear strain εxy or εyxis the average of the shear strain on the x face along the y

direction, and on the y face along the x direction [98; 99; 100].

The correlation between Shear Modulus, Young’s Modulus and Poisson Ratio for or-

thotropic material[101] is:

2Gxy =
ExEy

Ex + Ey + 2Exυxy
(5.8a)

υxy
Ex

=
υyx
Ey

(5.8b)

The Hook’s law stiffness matrix for orthotropic materials, the inverse of the compliance

matrix, is given as follows:

σxxσyy
σxy

 =

 Ex

1−υxyυyx
υxyEy

1−υxyυyx 0
υxyEy

1−υxyυyx
Ex

1−υxyυyx 0

0 0 2Gxy


εxxεyy
γxy

 (5.9)

where

2Gxy =
ExEy

Ex + Ey + 2Eyυxy

5.4 Confined Compression Test

The confined uniaxial compression test is conducted to obtain Young’s Moduli Ex and

Ey required in simulation. This method is introduced by the author for this research.
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5.4 Confined Compression Test

The confined compression test procedure is very similar to the Unconfined Uniaxial

Compression Test.

Powder is filled into a cylindrical confinement and the redundant powder at top is

scraped off to give an even surface. The cylinder is then securely positioned under

the Texture Analyser (Figure 5.3) which applies and measures the load onto the lid to

compress the powder.

Figure 5.3: Confined Uniaxial Compression test.

The Texture Analyser applies a load at a speed of 0.5mm/s onto the lid with diameter

of 50mm until the load researches 10kg to compress the powder in the cylinder wit

length of 104mm.

At each specific time, i, the Texture Analyser records the load exerted, Fi, and the

displacement, ui, from original position of the lid in the direction of load exerted.
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5.4 Confined Compression Test

Therefore stress, strain and density at each specific time are:

ρi =
m

A(L− ui−1)

σxx,i =
Fi
A

εxx,i =
ui − L
L

(5.10)

where A is the area of where load is exerted, L is the original height of the powder

and m is the mass of the powder.

Density , ρ, is plotted against compression stress , σxx, to obtain a correlation between

them, density is represented in a function of compression stress.

ρ = F (σxx) (5.11)

From compliance matrix Equation 5.6, we know:

εxx =
1

Ex
σxx −

υyx
Ey

σyy (5.12)

εyy = −υxy
Ex

σxx +
1

Ey
σyy (5.13)

In the simultaneous equations, there are 3 known variables, εxx, σxx and εyy, which are

0 and also five unknown variables, Ex, Ey, υyx, υxy, and σyy. There are more unknown

variables than equations.

Researches [102; 103] have methods to determine the Poisson’s ratio and the results

75



5.5 Yield Locus and Failure Criterion

show the Poisson’s ratio has a typical value of 0.3 for powder:

υxy = −εyy
εxx

υyx = −εxx
εyy

(5.14)

K ratio of powder is defined as a ratio between transverse stress, σyy, and axial stress,

σxx. The value of K can be measured and varies widely. The assumption of using K

to linked the two stresses is that the calculation needs to update the value of K every

iteration.

σyy = Kσxx (5.15)

Now there are only two unknown variables, Ex and Ey, remain in Equation 5.12 and

5.13.

Therefore, the Young’s moduli, Ey and Ey, have a strong coupling with stress σxx

and σyy. This strong coupling might disrupt the irritative procedure. Therefore the

Young’s moduli will be represent with density ρ using correlation in Equation 5.11 in

this research model.

5.5 Yield Locus and Failure Criterion

In previous Chapter 2.3, the author stated that the stress history is the only considered

impact on cohesion. The underlying physics and the measurement will be detailed in

this section. Hence how cohesion is associated with the flowability of any given powder.

The mathematical equations for Failure Criterion is introduced by the author and it’s

derived from stress analysis of Mohr’s Circle. Possible incipient flow begins at the
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5.5 Yield Locus and Failure Criterion

opening of outlet in the hopper. The material at that particular moment has internal

shear strength stored within the material, the shear strength is generated from stress

history. In order to have occurrence of failure, the generic (current) external stress

Mohr’s circle needs to either touch the Yield Locus at the its tangent point or research

the Yield Locus and follow the Yield Locus. This section is dedicated to the custom

equations derived from the Mohr’s circle by the the author for the element failure

criterion.

Figure 5.4: Mohr’s Circle consisting of generic stresses at the opening of outlet, each

half circle represents 1) the arching condition and 2) the failure condition of the powder.

Figure 5.5 shows an arbitrary stress condition, which is used to derive a mathematical

expression required for the computer to differentiate between these two stress condi-

tions. The parameters; Cohesion(c) and the gradient(m) of Yield Locus, τ = mσ + c,

are obtained from the Brookfield PowderFlow Tester detailed in Chapter. 6.1.1.
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5.5 Yield Locus and Failure Criterion

Figure 5.5: Mohr’s Circle consisted of arbitrary generic stresses at the opening of outlet

and a Yield Locus generated with stress history.

The Arbitrary Line is perpendicular to the Yield Locus, because initial failure happens

when the Mohr’s circle touches the Yield Locus. In failure condition, the Yield Locus

is tangent to the Mohr’s circle, RF is the shortest distance between mean stress, σg,m,

and the Point (τ, σ). Rg is the longest distance within the generic Mohr’s circle. For

failure to occur:

Rg = RF (5.16)

Stress σg,h and σg,v are the generic horizontal and vertical stresses, the local mean

stress, σg,m is:

σg,m =
σg,v + σg,h

2
(5.17)

Rg =

√
(
σg,v − σg,h

2
)2 + (σg,s)2 (5.18)
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5.5 Yield Locus and Failure Criterion

Yield Locus and the Arbitrary Line are perpendicular to each other:

τ = mσ + c Yield Locus(Stress History) (5.19)

τ = nσ + k Arbitrary Line (Generic Stress) (5.20)

m ·n = −1

n = − 1

m
(5.21)

where m and n are gradient to each line separately, c is cohesion and k is an arbitrary

constant.

Figure 5.6: Mohr’s Circle and Yield Locus intercept.

Arbitrary Line also crosses the Yield Locus at (σg,m, 0) and (τ0, σ0) in Figure 5.6,

Equation 5.20 becomes:
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5.5 Yield Locus and Failure Criterion

k = −n ·σg,m

= −(− 1

m
) ·σg,m

=
σg,m
m

(5.22)

Both lines cross at (τ0, σ0),

τ0 = mσ0 + c

τ0 = (− 1

m
)σ0 +

1

m
σg,m

Obtaining coordinates for τ0 and σ0 by solving the simultaneous equations above:

σ0 =
σg,m −mc
m2 + 1

(5.23)

τ0 = m
σg,m −mc
m2 + 1

+ c (5.24)

(5.25)

RF is the distance between centre point of the Mohr’s circle (σg,m, 0) and Point (σ0, τ0).

RF =

√
(
σg,m −mc
m2 + 1

− σg,m)2 + (m
σg,m −mc
m2 + 1

+ c)2 (5.26)

Now Rg, Equation 5.18, and RF 5.26 can be compared to exam whether the powder

would fail under the current generic stress condition. So the failure criterion will be:

F = Rg −RF (5.27)

The powder material will fail if F reaches zero.
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5.6 Chapter Summary

5.6 Chapter Summary

The introduced model aims to predict incipient arching or flow conditions in a hopper

using stress history. This model is developed with the understanding of the overlapped

areas in the powder mechanics and numerical simulation which these two principles

does not share prior to this research.

The advantage of combining the aspects of empirical testing and numerical modelling

is to have a better representation of powder behaviours. The model does not only

consider the effect of generic stress but also the stress history. The author would

use Confined Compression Test to determine powder characteristics for the effect of

generic stress on the shear strength of the powder and Brookfield Powderflow Tester

for the effect of stress history on failure condition of the powder.

In order to capture the stress history development, the model starts when the filling

starts in a closed hopper. When the filling is complete, the outlet will be open to

simulate generic stress. The model will then trigger the failure criteria for the powder

to determine whether the element of the powder will fail or remain intact. The failed

elements will be removed and the removal will be fed back to the stress calculation

with an open outlet, in order to simulate the failure of each cell again until there is no

failure occurs.

The model addresses the effect of stress history on cohesive powder in arching/failure

condition in numerical calculation.
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Chapter 6

IMPLEMENTATION

Every successful simulation model consists of three different procedures of implementa-

tion: a) Initial Particle Property Determination, b) Numerical Simulation with specific

parameters and boundary conditions, and c) Validation against experimental data.

This chapter describes the first two in detail.

6.1 Empirical Testing for Initial Particle Property

Determination

As for any another simulation, input parameters need to be determined beforehand.

The model proposed in this Thesis utilises the stress-density-strength relationship to

approximate a powder phenomenon, which is that the material is not only affected by

its current stress state, but also affected by its historical stress state.
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6.1 Empirical Testing for Initial Particle Property Determination

6.1.1 Brookfield Powder Flow Tester

With reference to Figure 6.1the Brookfield Powder Flow Tester which a more advanced

tester than the other analytical tester described in Chapter 2.4.2, the Yield Locus

obtained will be used in predicting failure for each element. The results from the

Brookfield will be used in the Yield Locus Determination section in the modelling

Flowchart (see Figure 5.1).

In Chapter 2.4.2, the author briefly introduced shear failure and powder’s critical state,

Brookfield Powder Flow tester utilises these characteristics to measure flowability of

powder material.

The Brookfield Powder Flow tester was developed in the Wolfson Centre at University

of Greenwich. It measures the characteristic properties of any fine powders, which

include the Flow Function, the effective angle of internal friction, the cohesion and

the gradient of Yield Loci of any given powder with respect to consolidation stress σ1.

The results from the tests focused on obtaining the gradient of loci m and the cohesion

from the test to put into Equation 5.26. Because they are the two contributors from

the stress history to the failure criteria.
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6.1 Empirical Testing for Initial Particle Property Determination

Figure 6.1: Brookfield Powder Flow tester
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6.1 Empirical Testing for Initial Particle Property Determination

Figure 6.2: Cross-section of part of the powder in the Bookfield Powder Flow tester

during operation

The mesh at the bottom of the trough, shown in Figure 6.1 and 6.2, prevents slippage

between the powder and the bottom surface. A trough filling tool is designed to attain

a uniform surface of the powder. Powder is filled in the trough, the trough is affixed

onto the base mechanism. The base mechanism can rotate with a constant velocity

and measures the torque required to turn it. The internal friction lid is mounted onto

the axial shaft which is connected to the loading mechanism.

The powder needs to be consolidated until reaching the steady-state or ”critical state”

condition, at which it has researched a constant volume under shear. Then it is

sheared to failure under either the same critical stress or a lower one. In the following

paragraph, the subscript ss is given to parameters at steady-state condition, and sf is

given to parameters where the powder is sheared to failure.

The powder is consolidated with a normal stress, σ1, exerted on the lid. The trough
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6.1 Empirical Testing for Initial Particle Property Determination

starts to rotate with a constant velocity and this rotation generates a horizontal shear

stress, τss. Shear stress increases with time until it remains constant even though the

powder continues shearing. At this point the strength and the density of powder do

not increase any further. Therefore powder is now shearing under a constant normal

stress, σ1 and a constant shear stress, τss, with a constant density, ρss, at a constant

velocity, this condition of shearing is known as steady-state flow and the powder is

defined as critically consolidated.

Steady-state flow is followed by a pause of rotation and reversal to relax τ then the

trough restarts to rotate again to shear the powder to failure. The normal stress

resumed during shear-to-failure, σsf . The powder will start to rearrange and dilate:

ρsf , will be less than ρss. As the trough rotates at a constant velocity, the shear stress

increases until the incipient flow occurs, at which point the failure of the sheared

powder is achieved. The shear stress at this point is recorded as τsf .

Figure 6.3: Plot of shear stress with respective of time (left) and

of normal stress (right)

Each shear stress for a simple value, τsf has its corresponding normal stress value, σsf ,

these are used to obtain the Yield Locus, τ = mσ + c.

The whole procedure is repeated using several different values of σ1, to obtain a family

of yield loci for different powder stress history.
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6.1 Empirical Testing for Initial Particle Property Determination

6.1.2 Uniaxial Compression Test

With reference to the modelling flow chart Figure 5.1, the Uniaxial Compression test

has been employed to obtain the parameters to determine the powder strength with

respect to stress. Figure 6.4 shows the apparatuses for the uniaxial compression test

The cylindrical column wall is greased with a plastic sheet and the friction between

the wall and the powder is minimised because the plastic sheet slides along the wall

with the powder during compression. The powder fills in the cylindrical column and

the top is scraped off to give an even surface, the specimen is then placed under the

Texture Analyser, which applies and measures the load onto the lid during compaction

of the powder.

Figure 6.4: Texture Analyser
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6.1 Empirical Testing for Initial Particle Property Determination

The author intended to deduce an institutive relationship between the material prop-

erties and the stress exerted on it. There are two relationships deduced from the test

results, one between stress and density, the other one between density and tangent

modulus.

The tangent modulus here is the slope of a stress-strain curve at any stress point. For

simplicity of a complicated numerical model, the tangent modulus is imposed as an

elastic modulus in the simulation, even though tangent modulus is the slope of the

curve beyond the yield stress point and elastic modulus is the slope before the yield

stress point. The numerical purpose and reasoning are detailed in Chapter 5.2

The Texture analyser recorded the position (xi) and the applied load (mi) of the

piston at each specific time. The height (L0) and the diameter (D) of the cylinder are

given, the weight (M) of powder specimen is measured prior to the test. The following

parameters can be calculated from the data obtained.

Height of cylinder L0

Diameter of cylinder D

Weight of powder specimen M

Cross-section area of cylinder A

Distance of piston between current and original position ui

Displacement between each given time δLi = ui − ui−1
Load applied by Texture analyser at given time mi

Force exerted on specimen at given time Fi = (mi + 1
2
M)g

Height of specimen at given time Li = L0 − ui
Strain of specimen at given time εi = δLi

Li

Density of material at given time ρi = M
A ·Li

Stress at given time σi = Fi

A

Specific volume at given time υi = 1
ρi

Tangent modulus at given time Ei = σi
εi

Data of density ρi and stress σi at any specific time can be plotted on the same graph
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6.2 Numerical Implementation for Empirical Relationships

and output as an empirical correlation between the data.

6.2 Numerical Implementation for Empirical Rela-

tionships

Numerical simulation mimics a situation where fine powder, flour in this case study,

was filled in a wedge hopper with a closed outlet, then released from the hopper by

opening the outlet. The simulation predicts whether or not the powder arches at

the outlet when it is opened. The highlighted codes will be detailed in the following

sections, for full coding, please see Appendix A.

The following sections detail all the numerical models attempted. All hoppers in the

simulation are with a hopper half angle of 45◦ due to the limitation of PHYSICA in

boundary condition.

6.2.1 Code development in PHYSICA

PHYSICA is a numerical solver package to calculate a system of mathematical equa-

tions for engineering problems, developed at the University of Greenwich. It is a

powerful solver which allows users have access to the source codes, its accessibility

is much welcomed in research because it provides tailoring for each different complex

scenario.

PHYSICA does not have a Graphical User Interface (GUI), therefore the geometry file

and the ”Inform” test input file contain the information and command inputs for the
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User Level

Pre-processor
Geometry File Inform File

Developer Level

Processor

physica3g.exe

User Level

Post-processor

Case Code

Source Codes

TecPlot

Data Files

Figure 6.5: PHYSICA Processing Flowchart
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executable. The executable, physica3g.exe, is developed in Fortran. It reads in the

geometry and the Inform files to numerically calculate the system and to generate data

files. Data files generated are in binary form, then they are fed to a post-processor

TecPlot to produce visual results. This is a typical user procedure for PHYSICA, as

shown in Figure 6.5

The executable, physica3g.exe, contains a casecode.f in addition to its source codes.

Advanced users of PHYSICA use casecode.f to add extra subroutines, linked with

the standard source codes of physica3g.exe. However, adding extra subroutines in

casecode.f is not enough for this study, it needs even more development in the source

codes as well. The source codes are written in Fortran, structured with many different

modules by utilising structure-oriented programming. The development for this study

focuses on casecode.f and the structure module, which is the module for Solid Me-

chanics. There are three main areas developed to accommodate this special scenario:

changing material properties during filling of the hopper, introducing wall friction

during the filling of the hopper and removing failed elements at the opening of the

hopper.

The overall simulation process consists of two stages: 1) the filling stage which includes

changing material properties and introducing wall friction. 2) the opening stage which

includes the opening outlet and the removal of failure elements.

6.2.1.1 Changing Material Properties during Filling

With reference to the modelling flowchart (Figure 5.1), material changes contribute

in the section of Simulation during Filling Process. The filling of material is coded

as these elements of each layer that switch from having the material properties of

air to powder; the switch progresses uniformly upward as time steps advance. This

is triggered by the command USER_ROUTINE in Inform file with subroutines named

”layered” for density and ”powderE” for Young’s modulus, the modulus used is plastic

modules (practically) from the Cam-Clay model dependent of stress. However, they
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6.2 Numerical Implementation for Empirical Relationships

are identified (numerically) under elastic material properties section in casecode.f (see

a copy of the complete code in Appendix A.1), the reasoning can be found in a previous

Chapter 5.3. The command USER_ROUTINE in the Inform file allows physica3g.exe to

bypass the built-in codes in corresponding sections which are set up for standard Solid

Mechanics calculations.

New variables, which are needed to predict arching failure, are also introduced into

the module under material property.

In the Inform file under MATERIAL_PROPERTY_MODULE, both the density and the Young’s

Modulus are set to bypass the original source codes with subroutine ”layered” and

”powderE” separately with initial values.

In the casecode.f, the author coded if PHYSICA reads ”layered” under the original

subroutine case_mat_prop (casecode for material properties) then PHYSICA would

perform the following:

1. Read in arrays and their locations from source codes

2. Introduce the angle of friction m

3. Allocate memory space for new variables, nx for number of layers in x-direction,

iStr for stresses, iCohe for the cohesion, Einit for the initial Young’s modulus,

iTheta for the angle between principle stress and generic stress, iTantheta for

the tangent of iTheta. iRyl, iRg and iFail are variables introduced for element

failure criterion.

4. Stress tensors are stored in array, [σ1xx, σ1yy, σ1xy, σ2xx, σ2yy, σ2xy . . .] The code

creates individual stress arrays corresponding to each direction. Array Strxx, Stryy

and Strxy in respective of normal stress in x-direction, normal stress in y-

direction and shear stress on xy-plane.

5. Data initialisation at the start of the simulation
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6. If the layer position is equal to 1 at the first time step. then the density is equal

to 1.2 which is the density of air.

7. If the layer position is equal to the time step number then the density would

change to be equal to ”dens”.

in the casecode.f, the author coded if PHYSICA reads ”powderE” under the original

subroutine case_mat_prop (casecode for material properties) then PHYSICA would

perform the following:

1. if the position of the layer is larger then the current time step number, then the

Young’s modulus will be the one of air, which is calculated with Csolid =
√

E
ρ

[104]

2. else if the position of the layer is less and equal to the current time step number,

then the Young’s modulus will be under compaction, performed as E = f(ρ) to

account for the ”hardening” of the powder with increasing compaction, as per

the Cam-Clay model.

The author also coded the Failure Criterion at the filling stage to prepare for the

opening stage.

1. Calculating the cohesion c, Ryl and Rg

2. Establish failure criterion which represents Equation 5.26

RF =
√

(σg,m−mc
m2+1

− σg,m)2 + (mσg,m−mc
m2+1

+ c)2

3. Determine if the failure criterion is satisfied for each element. The variable

Failure will have positive value when criterion is satisfied.

4. The cohesion is the identifier for stress history in the opening stage, so it is

calculated and stored here in order to be called for future calculation.
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6.2.1.2 Wall Friction

There was no built-in wall friction model in PHYISCA, the ”wall friction forces” had to

be ”borrow” the wall the subroutine pressure_load, so that the author could control

the effective angle of wall friction in the Inform file.

tanϕw = νw (6.1)

where ϕw is the effective angle of wall friction, For example, for ϕw of 10◦. νw is 0.176

The friction coefficient is control in the Inform file under Boundary Condition as.

BOUNDARY CONDITIONS

F PATCH 4 PRESSURE VALUE 0.176

The value in the Inform file is read in to the subroutine get_pressure_load as value

c a l l get p r e s su r e load ( Ia , Ra , ipat , i p r e s , va lue )

However, the subroutine pressure_load is over a face are and the structure calcu-

lation is conducted at points. A new subroutine tangnor is introduced to a) storing

displacement tangential component to accommodate the transfer from face calculation

to point calculation, and b) storing normal force to calculate the frictional tangential

force.

F = νwN (6.2)

where F is the frictional force and and ν is the coefficient of friction, N is the normal

force.

f r i cmax = Max( −sn 6 , 0 . ) ∗ value
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Then the frictional force is transferred to stress and applied as an opposite frictional

pressure to its displacement.

6.2.1.3 Storing Stress History

After closely reviewing the Cam-Clay model, the author appreciated its ability to store

and recover the the characteristics of powder specifically the varying modulus with the

stress history. However the model was developed using isotropic compaction, which is

not the case for powder.

The Cam-Clay model is the only model across the field of powder mechanics which

has the accountability for stress history. The author decided to extract the concept of

restoring stress history from the Cam-Clay model to be part of the implementation of

the model in this research project.

The order of calculation in Structure Module PHYSICA is listed below:

1. Input geometry, boundary conditions and material properties

2. Calculate the stiffness matrix and elasticity matrix

3. Calculate the displacement

4. Obtain strain

5. Obtain stress

Due to the nature of PHYSICA, the simulation has had to be paused to make changes

in the Inform file and the casecode.f to storage the stress history from the filling state

to be used in the opening stage. This is done under DATABASE_MODULE, this module

in PHYSICA allows users to restart a previous simulation under either the same or

changed source code.
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DATABASE MODULE
INPUT DATABASE hopperStr

# name = f i l ename without ex tens i on o f
PRINT READ VARIABLES ON

OUTPUT DATABASE hopper open
# nam1 − change database f i l ename to prevent

ove rwr i t i ng
END

The old stresses and variables are stored and compared with the new stresses and

variables in the post-structure section.

6.2.1.4 Initial Flow at Opening outlet

During the filling stage the powder is simulated under a complex code to establish

the failure for each element. At the opening stage, the restriction at the bottom is

removed to represent the opening of the valve.

Geometry file in PHYSICA is represented in a numerical way. Each point in the

geometry file is represented by corresponding location co-ordinates and corresponding

patch numbers. The patch numbers are the boundary condition identifiers used in the

Inform file to command PHYSICA what to do when the identifiers are read.

Example of how points are created in the geometry file:

0 .00000E+00 0.00000E+00 0.00000E+00 1 3 5
6.00000E−03 0.00000E+00 0.00000E+00 0 3 5
1.20000E−02 0.00000E+00 0.00000E+00 0 3 5

.

.

.

.

.
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The author then has employed and tailored an external application with Fortran to

make changes on the patch file, in order to identify number ”1” is used to represent

all the points at the outlet in every direction.

C Make changes to the . geo data in memory :

do i = 1 , np

i f ( ixp ( i ) .EQ. 1 ) then
iyp ( i ) = 1

e n d i f

enddo

The geometry file becomes:

0 .00000E+00 0.00000E+00 0.00000E+00 1 1 5
6.00000E−03 0.00000E+00 0.00000E+00 0 3 5
1.20000E−02 0.00000E+00 0.00000E+00 0 3 5

.

.

.

.

.

BOUNDARY CONDITIONS

! P PATCH 1 DISPLACEMENT VALUE 0.0
P PATCH 3 DISPLACEMENT VALUE 0.0

.

.

.

.

.

The simulation is then resumed with a changed Inform file, a changed casecode.f.
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6.2.1.5 Failure Criteria

This is conducted in the case_output_results in the new casecode.f. So the stress

history and the current stress can be employed in the Failure Criteria.

The most crucial component to represent the stress history in the Equation 5.26 is the

cohesion. In the new casecode.f, instead of calculating it with the generic stress, it is

called from the previous database after the paused-restart procedure.

c a l l save r e s t a r t v a r i a b l e ( ’Cohe ’ , i e r r , f a i l e d )

So the Ryl, Rg and RF are then re-calculated, the Failure Criterion is overwritten

and properly compares the stress history with the generic stress. So the author can

examine the failed elements to be removed in the next step.

6.2.1.6 Removal of Elements

After the initial opening of the outlet, each element has a Failure value. If the failure

value is larger or equal to zero, the element is considered to meet the failure criterion.

The code then needs to change to remove the failed element by changing the material

properties to air.

1. examine each element with failure criterion

2. for satisfied element, change the material properties to air

3. for unsatisfied element, the material properties stay the same.
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6.2.2 Results monitoring

During the simulation, the author made certain results are converged properly by

monitoring each time step. Therefore the Post-process files (Tecplot files) will have

more accurate results in terms of computational iterations.

Figure 6.6: Screen-shot of simulation monitoring

The residual error is set to be less than 10−7 to ensure convergence.

6.3 Chapter Summary

This chapter outlines the developed numerical model that is implemented in the study

for simulation of cohesive powder in a hopper, along with the conducted experiments

to obtain the parameters required for the numerical model.

The model combines the experimental aspects for powder characterisation and the

numerical modelling aspects to deliver a model, which accounts for the impact of

stress history in the powder for failure criteria.

The advantage of this model lies in its ability to precisely predict the failure condition
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by using the Jenike’s failure criteria. The traditional Jenike’s model has been limited

to only three hopper geometries: cynical hopper; square hopper with a circular outlet

and wedge hopper with a rectangular outlet.

The study cases with the developed model, which is detailed in the next chapter,

benchmark against the traditional hopper geometries to ensure the practical function-

ality of the model and prepare it for further development in the future.
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Chapter 7

RESULTS AND DISCUSSION

The results are presented here for a series of case studies, which are able to reflect the

practical application of the model to industrial processes.

Prior to the numerical simulation, empirical experiments have been conducted to ob-

tain input parameters.

7.1 Empirical Results for Powder Property Deter-

mination

As mentioned in previous chapter, the author detailed the reasoning to employ the

Texture Powder Analyser to obtain the relationships among the stress, the density

and the effective Young’s modulus “E”.
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7.1 Empirical Results for Powder Property Determination

Figure 7.1: Sample of raw data from Texture Powder Analyser

Figure 7.2: Constitutive relationship between the density and applied stress

The Constitutive relationship, shown in Figure 7.2 between the density and applied
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7.1 Empirical Results for Powder Property Determination

stress, is

ρi = 61.266 lnσi + 144.54 (7.1)

Data of Tangent Modulus Ei is also plotted against density ρi is collected as in Figure

7.3

Figure 7.3: Constitutive relationship between the Tangent Modulus and density

Ei = 692.5e0.0147ρi (7.2)

These two correlations are employed in the numerical simulation of a wedge hopper.
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7.2 Empirical Results for Yield Locus Determination

7.2 Empirical Results for Yield Locus Determina-

tion

Also mentioned in previous chapter, the proposed empirical experiment for obtaining

parameters of yield loci is by using the Brookfield Powder Flow Tester.

Figure 7.4: Sample of raw data collection

Figure 7.5: Clean data

The value for m with respective of σ1 is:
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7.2 Empirical Results for Yield Locus Determination

Figure 7.6: The gradient of the loci with respective of σ1 from the Brookfield Powder

Flow Tester

The value of m in the Failure Equation 5.26 is evaluated to be 0.6 for the powder

specimen.

Figure 7.7: The cohesion with respective of σ1 from the Brookfield Powder Flow Tester

ci = 0.1732σ1,i (7.3)
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7.3 Case Study 1

The first case study that powder is being poured into a hopper with the closed outlet,

then the hopper outlet is opened to examine if there would be arching formed across

the outlet. The simulation is a slice of a wedge hopper with dimension of 1650 mm

in total height; 1410 mm in the straight section and 240 mm in converging section,

550 mm in width and outlet of 80 mm. The geometry is chosen according to the

experiment conducted in the thesis of Dr Rob Berry [105]. The wall friction for this

case is 10◦.

The continuous change of properties, density and Young’s Modulus, are formulated

in case code. The properties are also switched from those of air to those of powder

during the filling process. The switch is triggered by each time step in accordance with

each element’s location. All elements in the domain are initialised to have a density

of 1.2kg/m3 and Young’s Modulus of 1.40 × 105. The density of the powder is also

changing when it is being compacted during the filling stage.

The author is aware that there is not a proper Young’s Modulus for air, as air is a

fluid. However, it is treated as if the air is a solid in the simulation. The Young’s

Modulus of air can be found from the speed of sound. According to Kinsler [104],

speed of sound of any solid in one-dimension is:

Csolid =

√
E

ρ
(7.4)

Therefore the initial Young’s modulus of air is estimated as 1.40× 105 with the speed

of 340m/s and density of 1.2kg/m3

Powder in bulk is compressible if subjected to external forces. The relationship for

this case study is classified with Equation 7.1 and 7.2.
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The continue change is detailed in Chapter 6.1.2. Figures ?? demonstrate property

changes during filling stage of the hopper with time step increment of 1 second. The

powder’s strength increases when the density of the powder increases.

The chosen time step of 1 second is not relevant to the flow rate of the powder during

filling. It is merely a counter to accommodate the subroutines to work properly with

the layer as the hopper is filled. All results shown in the figures across this chapter

are outputs of every 50 time steps.

Figure 7.8 shows the densities and Young’s Moduli of powder during the filling stage.

Only half of the hopper is simulated by symmetry to save computational resources.

Figures on the left-hand side show the changes in density. Blue contour represents the

density of air, the contour for powder changes in accordance with higher density as

time steps advance. The density of air is 1.2 kg/m3 and the initial density for powder

is 483 kg/m3 (which is obtained from experiment). The maximum density of powder

reaches 650 kg/m3 during compaction. Figures on the right-hand side show changes in

Young’s Moduli. The Young’s Modulus of air is 1.40× 105Pa and the initial value of

powder is 8×105Pa (which is also obtained from experiment). The maximum Young’s

Modulus of powder reaches 1.5× 107Pa during compaction.
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Figure 7.8: Density (left) and Young’s Moduli (right) during filling stage with

different time steps.
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7.3.1 Stress Profile

The normal stress to the wall in a filled hopper is well documented in the literature

[106; 107; 108].

Referring to the stress profile (Figure 2.6) in Chapter 2.3, the normal pressure to

wall increases as the depth from the top of the hopper, z, increases. The theoretical

method, Janssen’s slice method provides a stress profile for a cohesionless granular

material in a straight cylindrical vessel.

Figure 7.9: Stresses acting on a differential slice of cylindrical element.

Figure 7.9 illustrates a slice in a cylindrical column and all the stress acting on it.

σzz is the vertical stress, τw is the wall frictional shear stress. For every increment in

depth, there is a linear incremental increase in stress δσzz. This is a simply hydrostatic

pressure. However, with the presence of wall friction, the profile becomes exponential

as the wall stress also increases as the depth increases (see Appendix B.1 for Janssen’s

equations).

Even though the pressure profile provided by Jassen is for cohesionless materials in
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a cylindrical section, it still serve the purpose to indicate a general pressure profile

across any straight sections of any hopper. Therefore Figure 2.6 represents a general

wall stress profile for any hopper.

Extracting raw data near the wall from the simulation by using post-processor TecPlot,

the author can analyse the data. Figure 7.10 shows the extracted raw data.

Figure 7.10: Sample of raw data from simulation.
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7.3 Case Study 1

Figure 7.11: Stress profiles from simulation.

Figure 7.11 shows both parallel stress (red) and perpendicular stress profiles (blue) to

wall. The perpendicular stress profile matches the general normal stress profile in the

literature (Figure 2.6). Stress increases with depth, peaks at switch point (at 0.24m

from the outlet) then comes back down to zero at the outlet. Jassen’s theoretical

method introduces a K ratio of the horizontal stress to the vertical stress in straight

section:

K =
σh
σv

(7.5)

The value of K-ratio for powder is between zero to one, where zero is for flat solid plate

particles and one is for liquids [109; 110; 111; 112]. Figure 7.12 shows the value of K-

ratio at wall from the simulation. The majority of the data points fall in range between

0.3 and 0.5, which resembles the values for powder from the literature [112; 113]
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7.3 Case Study 1

Figure 7.12: K-ratio at wall.

7.3.2 Arching Prediction

The author is aware that in real practice once the outlet is opened, the failed element

should be under the ”elastic” region 1 of the Cam-Clay model while the element is

relaxed. However, the author was only to able to obtain the constitutive relationship

during compaction, which is the virgin compaction curve in the Cam-Clay model. The

author decided to also employ the virgin compaction curve in the outlet-opening stage,

further suggestion on how to obtain the ”elastic” region will be detailed in Chapter

8.2.1 Expansion Curve of E.

1The ”elastic” region here refer to the unloading-reloading zone in Cam-Clay model, no the elastic

region in traditional Stricture Mechanics.
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7.3 Case Study 1

After the hopper outlet is opened, some powder falls off naturally. Every element is

coded to be examined with the failure criterion which is derived by the author and

detailed in Chapter 5.5. Equation 5.27 indicates that positive Failure value (coloured

red in Figure 7.13) is associated with element failure. Every element, which satisfies

the failure condition, will fall off. The associated elements will be removed for the next

time step. The rest of the powder remains as a rigid solid, which is associated with a

negative Failure value (coloured blue in Figure 7.13). The red contour in the corner of

the switch point is falsely caused by the mathematical singularity at the sharp corner,

therefore no elements from the this corner would be removed. The material properties

of powder in that corner zone remain as those of powder.

After the initial opening of the hopper, elements of failed powder are removed from

the simulation. This is archived via changing the material properties from those of

powder to those of air to model the fallen-off powder, before continuing any further

simulation. Figure 7.13 also shows that density of air (1.2kg/m3 coloured green) at

the outlet.
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Figure 7.13: Arching condition at the outlet right after initial opening (top) and

removal of the failed elements (bottom) (Time Step 1 at opening).

114



7.3 Case Study 1

Figure 7.14: Arching condition at the outlet right after removing the falling

material (Time Step 8 at opening).

The random ”dots” in Figure 7.14 are due to numerical errors. The failed areas are

removed as the failure criteria are satisfied. Even though the simulation shows no

further failure shown in red, the failure zone has reached beyond the switch point.

Hence it will continue to fail to the top, the simulation predicts a mass flow for this

geometry.

7.3.3 Hopper Outlet Design Calculation for Case 1

In 1961 [15], Jenike enlightened the field of bulk solid handling with his ground-

breaking solution method to hopper design, 50 years on the design method has retained

its reputation and widely employed across bulk solid handling industries. The author

used the same method to determine the minimum outlet size for a reliable flow of the
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cohesive powder in this case study, for comparison against the simulation.

Bmin =
σc,critH(α)

ρb,critg
(7.6)

where Bmin is the minimum outlet size, σc,crit and ρb,crit are the unconfined yield

strength and the bulk density of the powder at critical consolidation. H(α) is an

empirical dimensionless factor which depends on the shape and the half angle of the

hopper (see Figure 7.15). For a 45 degree wedge hopper, which has a rectangular

outlet, the value of H(α) is 1.3.

Figure 7.15: H(α) function.

With reference to Figure 7.16 In order to obtain c, crit and ρb,crit, the critical point

needs to be identified with Flow function (FF) and flow factor (ff). The intersection
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of FF and ff is the critical point which determines the flow-or-no-flow condition, FF

must lie under ff for a flow condition (as seen in Figure 7.16). Flow Function (FF) is

explained in Figure 2.12 and flow factor (ff) is a constant ratio of effective wall stress

(σa) to pre-consolidation stress (σ1) for a given hopper.

Figure 7.16: Flow and no-flow criterion for a hopper

For any given hopper, the hopper half angle α, the effective angle of internal friction

δ and the effective angle of wall friction ϕw. Each line will has its own function and

the intersect point is calculated with Equation 7.7.

The powder has been put under the Brookfield Powder Test to obtain the effective

angle of internal friction δ along with other parameters.
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7.3 Case Study 1

Figure 7.17: Effective angle of internal friction for flour

Figure 7.17 shows the effective angle of internal friction, δ, for flour from the Brookfield

PowderFlow tester. However, the effective angle of friction is a function of temperature

and moisture content, while the environmental factors remain unchanged, δ remains

constant [16]. δ will be taken at an average of 50 ◦ for this study.
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7.3 Case Study 1

Figure 7.18: Flow factor (ff) contour for symmetrical wedge hopper for effective angle

of friction of 50 ◦

For every given hopper shape and effective angle of wall friction, flow factor (ff) can

be read off the contour in Figure 7.18. For a 45 ◦ wedge to have a flow pattern of

mass flow, the flow factor is 1.3 and the effective angle of wall friction, ϕw, as previous

mentioned, is 10 ◦ for this study case.

{
σ = 1.3σ1 for ff

σ = 0.5361σ1 for FF
(7.7)

The critical pre-consolidation stress σ1crit is calculated at 235.6Pa, and the σcrit is

306.25Pa. The critical density at σ1crit of 235.6Pa is 550.0kg/m3 .
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7.4 Case Study 2

Calculation from Equation 7.6 obtains minimum outlet width Bmin:

Bmin =
306.25× 1.3

550.0× 9.81
= 0.07379m (7.8)

The calculated minimum outlet for the given hopper in Case 1 is 0.07379m, which

is less than in Case 1 (0.08m). Case 1 simulation is predicted to have a mass flow

pattern, which is satisfied with the calculated value. Case 1 is with an outlet of 0.08,

hopper half angle of 45 ◦ and a wall friction angle of 10 ◦.

The proposed method benchedmark against the Jenike hopper design. As previously

mentioned in Chapter 2, the limitation of Jenike lies in the hopper geometry. As

the design equation, Equation 7.6 and Figure 7.15 suggest. The Jenike’s method is

functional for only three hopper geometries. The proposed method would have the

potential to provide flexibility on hopper geometry while predicting the arching/failure

condition.

7.4 Case Study 2

With the second case study. All geometry aspects, material properties and boundary

conditions will be the same expect. The angle of friction between the wall and powder,

it changed from 10 ◦ to 20 ◦.

Case 1 shows that the model is capable of simulating mass flow in the hopper with the

correct given conditions. Case 2 ensure that with changing angle of friction between

the wall and the powder, the model would be also capable of simulating a different

flow pattern. In order to verify the model is not limited to mass flow only.
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7.4 Case Study 2

Figure 7.19: Density (left) and Young’s Moduli (right) during filling stage with

different time steps.
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7.4 Case Study 2

7.4.1 Stress Profile

Figure7.20 shows the shape of the stress profile is the same as Figure 7.11.

Figure 7.20: Stress profiles from simulation.
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7.4.2 Arch Prediction

Figure 7.21: Arching condition at the outlet right after removing the falling

material (Time Step 1 at opening).

At initial opening of the outlet, the area (contoured in red)of elements at the outlet

satisfies the failure criterion, the elements are then ”removed” by changing the material

from those of powder to those of air.
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7.4 Case Study 2

Figure 7.22: Arching condition at the outlet right after removing the falling

material (Time Step 3 at opening).

At Time Step 3 after opening, the arching prediction was ”floating” in the middle.

Failure of the arch mainly happen from the edge of the wall. If there the elements at

the wall do not satisfy the failure criterion, the author suggests that there is an arch

formed or ”rat-holing” is occurring. In Case 2, the hopper is expected to not have a

mass flow pattern, due to the increase in angle of friction changed from 10 ◦ to 20 ◦.
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7.4 Case Study 2

Figure 7.23: Flow factor (ff) contour for symmetrical wedge hopper for effective angle

of friction of 50 ◦

According to Jenike calculation in Figure 7.23 a 45 ◦ hopper with 20 ◦ angle of wall

friction will most likely lack the ability to create any mass flow pattern, which is in-line

which the results from the simulation that predicts the hopper will have a ”rat-holing”

condition (see Figure ??).

The results from Case 2 prove that the model is not restricted to only predict mass

flow pattern.
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7.5 Case Study 3 - Changes in Cohesion

The simulation is based on FE approach. As Chapter 2.3 explains in detail for Cohe-

sion, Cohesion is one of the controlling factors in powder flowability. There have not

been any attempts to correlate the cohesion and Young’s modulus in powder mechan-

ics before this research. Nevertheless, in the last decade, researchers in Soil Mechanics

[81; 82; 114]

Brahma promoted:

E = 600c (7.9)

where E is Young’s Modulus and c is cohesion.

Schanz promoted the following in Hardening Soft Clay model:

E = Eref (
σ3 + c cotφp
σref + c cotφp

)m (7.10)

where Eref is a reference Young’s modulus corresponding to the reference stress pref ,

which is the stress recorded in the tri-axial test in order to carry out the Cam-Clay

model. σ3 is the minor principal stress, m is the stress dependency index. For more

details about the parameters in Cam-Clay model, please see Chapter 3.2.2.1.

In this Study Case, Equation 7.9 is employed for its simplicity. The cohesion of the

powder increased two-times, so the Young’s Modulus of the material also increase

two-times.
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7.5 Case Study 3 - Changes in Cohesion

Figure 7.24: Density (left) and Young’s Moduli (right) during filling stage with

different time steps.
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7.5 Case Study 3 - Changes in Cohesion

The author observed a flow pattern of “rat-holing” after increasing the Young’s mod-

ulus, E.

Figure 7.25: Arching condition at the outlet right after initial opening (Time Step

1 at opening).

Figure 7.26: Arching condition at the outlet right after removing the falling

material (Time Step 5 at opening).
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In Case 3, the cohesion was doubled numerically to simulation the situation with a

powder material whose strength is doubled. The simulation shows that the material

is having a rat-hole condition in Case 3.

The new material in Case 3 is only implemented numerically, did not undergo any

empirical experiments to obtain parameters such as the effective angle of internal

friction. The analytical method, Equation 7.6, cannot be conducted to obtain the

exact minimum outlet size for mass flow condition. However, the increase of material

strength is known to be one of the contributors to flow obstruction. The rat-holing

results from the simulation reflects the criterion.

Therefore the author concluded that Case Study 3 is also a valid results from the

model.

7.6 Chapter Summary

The introduced numerical model successfully simulate the free-flowing in Case 1 vali-

dated against analytical model. The author tested the model with an increase of the

wall friction in Case 2 and the cohesion in Case 3. The contributors to arching forming

or flow obstruction are a) increase in wall friction and b) increase in material strength.

The results from Case 2 verifies the former and the results from Case 3 verifies the

latter.

In order for the model to function properly, users must conduct both empirical ex-

periments and the numerical simulation together according to the model flowchart

5.1

The case studies shown that the capability of the model to predict arching/failure

condition. The model may provide a potential foundation of numerical simulation

which is tailored to powder mechanics.
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Chapter 8

CONCLUSIONS AND FUTURE

WORK

8.1 Conclusion

8.1.1 Summery of the Research

This PhD project suggests on a new constitutive numerical model that predicts arching

at the outlet of a hopper of a hopper. This model also takes consideration of stress

history which is ”stored” in the powder under a FEA approach. This has never been

achieved before.

To take account of the stress history, the simulation follows the filling an empty hopper

with powder. As the hopper gets filled, the powder properties, Young’s Modulus

and Density change, according to the stress acting on it, due to self-weight of the

powder. The constitutive relationship for charging material properties were obtained
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by conducting the following experiments: Uniaxial Compression Test and Brookfield

Powder Flow Tester. The tests were conducted in The Wolfson Centre at the University

of Greenwich.

Complex coding was required to accommodate the complexity of the material. The

Young’s Modulus and Density of powder is changing as a function of stress, and the

variable parameters are coded into the source codes in a software package Physica.

Physica is a numerical solver package that solves a system of engineering equations, it

was developed at the Department of Mathematical Sciences at University of Greenwich.

The importance of wall friction between powder and the wall lays in that it is one of

the main factors for forming an arch at the outlet.

After coping with the complex non-linear constitutive material properties, study cases

were conducted with the improved codes.

What the author has concluded from this research is that FEA is still a promising ap-

proach for large scale in industry applications to simulate powder behaviour in hoppers

and silos. However, to this date, it has certain limitations to yet to be addressed.

From the viewpoint of PHYSICA, it is indeed an extremely nested software with a

high number of modules and subroutines. However, the modules and subroutines are

written in a very neat manner, and they provide a high degree of flexibility and the

potential of improvement. If PHYSICA were to have a graphic user interface (GUI)

and a database of material properties, the application has the prospect to be more

affordable to use than the analytical model and be widely employed in the industry,

especially for companies which do not have in-house laboratory facilities.
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8.1.2 Contribution to Knowledge

8.1.2.1 Combining Two Fields

The main contribution of this project to the exiting knowledge is the function of the

model which brings together established powder mechanics with numerical simulation

to deliver a feasible measure to predict hopper arching in industry.

The overlapping area in between the field of Powder Mechanics and Numerical Simula-

tion is on a microscopic level. Therefore the personnel who are expert in dealing with

the experimental characterisation and analytical representation of the constitutive be-

haviour of the powders do not generally have a thorough knowledge in modelling, such

as geometry set-up, boundary conditions, mesh techniques, discretisation techniques,

numerical coding etc. On the other hand, those who are expert in numerical simulation

generally do not deal with powder handling or have a deep understanding in complex

powder characteristics, such as powder flowability, critical state of the powders, shear

failure, Jenike’s analytical method for hoppers, experimental testings and so on.

The difficulty for the author was that the two fields do not even share the same vocab-

ulary. The author had to acquire complete understandings and thorough knowledge

of both fields, related to the problem, and to integrate and interpret them in such a

way that can be understood by both fields.

After the author was equipped with the knowledge from both sides, another huge diffi-

culty lies in the implementation of the knowledge. The mathematical approaches used

by both fields are not truly compatible. For example, in traditional Structure Engi-

neering, the strength of the material is determined by its Young’s Modulus. However

Young’s Modulus is not a parameter in Powder Mechanics, instead, the strength of the

material is determined by its stress history and cohesion. Other example is the failure

condition. In traditional Structure Mechanics, the yield stress determines whether

the material behaves elastically or plastically. However, the yield surface determines
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whether a powder behaves elastically or plastically.

The numerical simulations of Powder Mechanics has been ”borrowing” existing numer-

ical models from other similar engineering disciplines. These parameters from powder

characteristics are almost never mentioned in the history of powder simulation.

Therefore in this project, the author had to introduce a wide range of new components

to the codes in PHYSICA to accommodate the discrepancy between the two fields,

introducing concepts and terminology not previously known to the FEA field.

8.1.3 Challenges Solved

Numerical Representation of Failure Criteria from Analytical Model As

mentioned in the previous section, the characteristics in Powder Behaviour are often

unheard of in numerical simulations; one of the many issues addressed in the project is

the numerical representation of failure criteria derived from the Jenike model, Equa-

tions 5.26 and conducted the calculation in the numerical solver PHYISICA.

Implementation of Stress History in simulation

The stress history affects both the strength and failure condition of the powder, it is

very important to introduce and implement it in PHYSICA. Without it the Failure

Criterion will not withstand.

The stress from previous time step is stored as a new variable. Equation 5.26 indicates

that the cohesion, c, and the gradient of the loci, m, are the numerical contributors in

the model to predict the failure of each element. The cohesion changes with various

pre-consolidation stresses but the gradient of the loci remains constant at the value of

0.6 for flour.

The changes in the cohesion are accounted for in the code developments in PHYISICA.
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Implementation of Complex Material Properties During the process module,

the author has also introduced the material strength relationship between the current

stress, which is represented in terms of Young’s Modulus. The switch between different

material properties is also built in.

In powder machines, it is known that wall friction is one of the main factors to hold

the arch in place. The wall friction with sliding mechanism is also introduced into

PHYSICA and implemented.

8.1.3.1 New Challenges Discovered

Numerical singularity errors that have affected the calculation in the corner.

The wall friction with the sliding mechanism is newly introduced in PHYSICA, it is

limited to accommodates a sliding inclination of 45◦.

8.1.3.2 Challenges that Remain Unsolved

The implementation of the orthotropic material property still remains unsolved. Pow-

der is a very complex material, stress history is only one of the contributor to its

strength.

134



8.2 Future Work

8.2 Future Work

8.2.1 Expansion curve of E

One of the most significant contributions has been to allow the change in Young’s

modulus according to the stress conditions. Stress conditions include compaction and

expansion.

During outlet opening stage, the elements under failure condition are in tensile stress.

The author conducted the drained tri-axial test described in Cam-Clay model in the

Civil Engineering Laboratory with the attempt to obtain the expansion curve of ”E”.
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Figure 8.1: Empirical apparatus of Tri-axial test

The dry powder is filled in a rubber sleeve and submerged in water. However, the

apparatus was originally designed to test clay and soil specimens, the pressure range

applied to the water is extensively large, in the range of 200kPa and beyond, compared

to the pressure range of the test on typical powder between 15 − 80kPa [77; 115], in

order to observe the recovery behaviour. The high pressure range of the traditional

tri-axial tester for clay loses the ability to to record any recovery in dry powder when

the powder is under relaxation. Hence most adoptions of Cam-Clay model in powder
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mechanics simulations have been on compression and compaction only.

Therefore the author is proposing the sophisticated apparatus to conduct compression

on dry powder with low stress, previously introduced by Tripodi and Puri [77; 115].

Figure 8.2: Empirical apparatus of Tri-axial test for dry powder

The powder specimen is now filled in a cubical frame instead of a cylinder to allow

different compacting stress in different directions. This apparatus ensures that the

applied stress can be anisotropic.
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8.2.2 Orthortopic Non-linear Elasticity in 3D

FEA equations in PHYSICA is coded in-line with Hooke’s law:

σ = Dε (8.1)

where the stress σ and the strain ε are stored in arrays with six components for three-

dimension, which is demonstrated as following:

and D is the compliance matrix.

In this research, the properties were programmed to be non-linear isotropic ”elastic”.

The 3D compliance matrix of isotropic material is a symmetric matrix, by engineering

definition [116; 117] it is shown as below:

D =
E(1− ν)

(1 + ν)(1− 2ν)



1 ν
1−ν

ν
1−ν 0 0 0

ν
1−ν 1 ν

1−ν 0 0 0
ν

1−ν
ν

1−ν 1 0 0 0

0 0 0 1−2ν
2(1−ν) 0 0

0 0 0 0 1−2ν
2(1−ν) 0

0 0 0 0 0 1−2ν
2(1−ν)


(8.2)

where E and ν are Young’s modulus and Poisson’s ratio respectively. They are both

one single variable, which are coded and stored as below:

Young ’ s modulus = [E]

Poisson r a t i o = [V]
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and the compliance matrix D 8.2 1 is coded as following:

SUBROUTINE e l a s t i c i t y matrix
@ ( Idee , Dee , E, V, Approx )

INTEGER Idee
REAL E, V
REAL Dee ( Idee , Idee )
CHARACTER Approx∗6

C Local v a r i a b l e s .
INTEGER i
REAL vv

CALL s e t n u l l matrix ( Idee , Idee , Dee )

IF ( Approx .EQ. ’THREED’ ) THEN
vv = E ∗ (1 − V) /((1 + V) ∗ (1 − 2∗V) )
Dee (1 , 1 ) = 1
Dee (2 , 2 ) = 1
Dee (3 , 3 ) = 1
Dee (1 , 2 ) = V / (1 − V)
Dee (2 , 1 ) = V / (1 − V)
Dee (1 , 3 ) = V / (1 − V)
Dee (3 , 1 ) = V / (1 − V)
Dee (2 , 3 ) = V / (1 − V)
Dee (3 , 2 ) = V / (1 − V)
Dee (4 , 4 ) = (1 − 2∗V) / (2 ∗ (1 − V) )
Dee (5 , 5 ) = (1 − 2∗V) / (2 ∗ (1 − V) )
Dee (6 , 6 ) = (1 − 2∗V) / (2 ∗ (1 − V) )

END IF

CALL mult ip ly matrix by s c a l a r
@ ( Idee , Idee , vv , Dee )

END

where vv is introduced as a co-efficient of the matrix with respective of E and ν.

1The terminology, the compliance matrix D, used in literature is the equivalent to the terminology,

the elasticity matrix Dee, used in Physica coding
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However, the 3D compliance matrix of orthotropic material is not a symmetric matrix,

by engineering definition [118; 119] it is shown as below :



1
Ex

−υyx
Ey
−υzx

Ez
0 0 0

−υxy
Ex

1
Ey

−υzy
Ez

0 0 0

−υxz
Ex
−υyz

Ey

1
Ez

0 0 0

0 0 0 1
2Gyz

0 0

0 0 0 0 1
2Gzx

0

0 0 0 0 0 1
2Gxy


(8.3)

where bot Young’s modulus and Poisson’s ratio are different is different direction.

They should be re-introduced and stored in two different arrays. e.g:

Young ’ s modulus = [E x , E y , E z , G yz , G zx , G xy ]

Poisson ’ s r a t i o = [V xy ,V yx , V xz , V zx , V yz , V zy ]

However, the change in variable type (change from a number to an array) will largely

affect the calculation across the equation system. At the same time, all Young’s mod-

ulus and Poisson’s ratio are non-linear according to the stress history. The challenge

of implementation of a non-linear orthotropic materials lies in the re-configuration of

the compliance matrix. The codes in PHYSICA are extremely nested, each PHYSICA

module interacts and exchanges information with other modules. In order to change

the compliance matrix, SUBROUTINE elasticity_matrix requires well-thought plan-

ning, heavy re-coding and careful debugging.

This is the reason for the author to choose Physica as the primary numerical solver

package. Physica is the sole numerical solver which allows both non-linear and or-

thotropic happening at the same time, whereas ANASYS and Comsol only has the

ability to simulate either situation separately.

In addition to coding the matrix, The author would also suggest future work to include
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establishing an empirical method to measure the Young’s modulus and the Poisson’s

ratio in different direction in respective of the stress, which has been suggested by

Mann [120].

8.2.3 Refined mesh at corner

There is a stress singularity point at the corner of the hopper, where the parallel

section meets the converging section. The singularity point is believed to be caused

by the numerical limitation of solving a nodal point in a structured mesh: a mesh

which is made of rectangular elements. The techniques to remove the singularity

point in Finite Element Analysis include substituting the elements at corner with:

a) refined unstructured elements or b) the round-edged elements [121; 122]. These

techniques were not considered in this model, because changing from structured mesh

to unstructured mesh would not be compatible with the codes for the material filling

process. The codes are built in the manner that each uniform layer of element changes

its material properties in accordance with the time step. Unstructured mesh would

not provide uniform layers, and disturb the model. Therefore the author decided to

keep the mesh structured. That singularity point is far away from the hopper outlet, it

is considered to have minimal effect on predicting the arching condition at the outlet.
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8.2 Future Work

Figure 8.3: A structured mesh zoom-in at the corner.

This mesh structure prevent from having sharp corner of the mesh at the switch point

in the hopper. The author would suggest an unstructured mesh at the corner to

minimise the effect of
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Bradley. A hybrid numerical model for predicting segregation during core flow

discharge. Advanced Powder Technology, 17(6):641–662, 2006. 3

[4] RJ Berry and MSA Bradley. Investigation of the effect of test procedure factors

on the failure loci and derived failure functions obtained from annular shear cells.

Powder technology, 174(1):60–63, 2007. 3

[5] Tong Deng, Richard J Farnish, and Michael SA Bradley. Evaluation of par-

ticle degradation due to high-speed impacts in a pneumatic handling system.

Particulate Science and Technology, 26(5):438–450, 2008. 3

143



REFERENCES

[6] Tariq Hussain, Waseem Kaialy, Tong Deng, Mike SA Bradley, Ali Nokhodchi,
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Appendix A

Code development

A.1 Material Properties during Filling

A.1.1 inform file

MATERIAL PROPERTY MODULE
DENSITY

MATERIAL 1 USER ROUTINE laye r ed 1 484 .3
SAVE PROPERTY TRANSIENT

END
YOUNGS MODULUS

MATERIAL 1 USER ROUTINE powderE 1 855 .6E+3
SAVE PROPERTY TRANSIENT

END
POISSONS RATIO

MATERIAL 1 CONSTANT 0.3
END
YIELD STRESS

MATERIAL 1 CONSTANT 1.0E+10
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END
END

A.1.2 casecode.f

subrout ine case mat prop ( Ia , Ra , La , Cha , Handld )
dimension Ia (∗ ) , Ra(∗ )
l o g i c a l La (∗ ) , Handld , found
charac t e r Cha(1 ) ∗ (∗ )

r ea l , parameter : : m=0.6 ! ang le o f i n t e r n a l f r i c t i o n

inc lude ’ . . / inc / g e n e r i c . fh ’
i n c lude ’ . . / inc /mprop . fh ’

save nx , iS t r , iCohe , Ein i t , RhoInit , iTheta , iTanTheta
save iRyl , iRg , i F a i l
data i S t r / −1 / , RhoInit / 0 . /
data nx / 0 /
i f ( nx . eq . 0 ) then

i o = 31
open ( io , F i l e =’ d i v i s i o n s ’ , Status =’old ’ )

read ( io , ∗) nx
c l o s e ( i o )
wr i t e ( ∗ , ’ (A, I 4) ’ ) ’ nx = ’ , nx

e n d i f

i e l e = PRP ELE ID − 1
l a y e r = 1 + MOD( i e l e , nx )

i f ( PRP EQN NAM( 1 : 7 ) .EQ. ’ layered ’ ) then
Handld = .TRUE.
i f ( RhoInit . eq . 0 . ) RhoInit = Ra( PRPDAT ID )
! i f ( l a y e r . eq . 1 ) wr i t e (∗ , ’ (A, I 4) ’ ) ’@’ , PRP

ELE ID
dens = 1 .2
i f ( l a y e r .EQ. TIME STEP NUMBER ) dens = Ra( PRPDAT

ID )
Ra( PRPVAR ID + i e l e ) = dens
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e n d i f

i f ( PRP EQN NAM( 1 : 7 ) .EQ. ’ powderE ’ ) then
Handld = .TRUE.
i t ime = TIME STEP NUMBER
i f ( l a y e r > i t ime ) then

Ra( PRPVAR ID + i e l e ) = 1 .01 e5 ! bulk modulus o f
a i r

e l s e i f ( l a y e r .EQ. i t ime ) then
Ra( PRPVAR ID + i e l e ) = Ra( PRPDAT ID ) ! i n i t i a l

va lue
e l s e

! compacted mate r i a l :
i f ( i S t r . eq . −1 ) then

c a l l get v a r i a b l e i n f o ( ’STRESS’ , i S t r , i s z , i tp , iwd ,
msh , found )

i f ( . not . found ) Stop 1
c a l l mem r e a l e l e ( ’Cohe ’ , 1 , iCohe )
E in i t = Ra( PRPDAT ID )
c a l l mem r e a l e l e ( ’ Theta ’ , 1 , iTheta )
c a l l mem r e a l e l e ( ’ TanTheta ’ , 1 , iTanTheta )

c a l l mem r e a l e l e ( ’ Ryl ’ , 1 , iRyl )
c a l l mem r e a l e l e ( ’Rg ’ , 1 , iRg )
c a l l mem r e a l e l e ( ’ Fa i lure ’ , 1 , i F a i l )

e n d i f

Str xx = Ra( i S t r + 6∗ i e l e )
Str yy = Ra( i S t r + 6∗ i e l e + 1 )
Str xy = Ra( i S t r + 6∗ i e l e + 3 )
s t r 1 = Max( 1 . e−9, −Str xx )
s t r 2 = Max( 1 . e−9, −Str yy )
s t r 3 = ABS( Str xy )
strM = ( s t r1+s t r 2) /2 .

Dens = 61.266∗Log ( strM ) + 114.54
Etan = 692 .5 ∗Exp(0 .0147∗Dens )

Ra( DENSIT P + i e l e ) = Max( Dens , RhoInit )
Ra( PRPVAR ID + i e l e ) = Max( Etan , E in i t )
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A.2 Wall Friction

Ra( iCohe + i e l e ) = 0.1732∗ s t r 1
Ra( iTheta+i e l e ) =0.5∗ abs ( atan ( ( 2 . ∗ s t r 3) /( abs ( s t r1− s t r

2) ) ) ∗180 . /3 . 14 )

s i n 2Theta = (2∗ s t r 3) / s q r t ( (2∗ s t r 3) ∗∗2+( s t r1− s t r 2)
∗∗2)

cos 2Theta = (2∗ s t r 3) /( s t r1− s t r 2)
Ra( iTanTheta+i e l e )=s i n 2Theta/(1+ cos 2Theta )
wr i t e (∗ ,∗ ) i s t r
var 1 = (StrM−Ra( iCohe + i e l e )∗m)∗m/(m∗∗2+1.)
Ra( iRyl + i e l e ) = ( var 1 + Ra( iCohe+i e l e ) ) /( s i n (

atan ( 1 . /m) ) )
Ra( iRg + i e l e ) = Sqrt ( ( 0 . 5∗ ( s t r 1 − s t r 2) ) ∗∗2 +

s t r 3∗∗2 )
Ra( i F a i l + i e l e ) = Ra( iRg + i e l e ) − Ra( iRyl +

i e l e )
end i f

e n d i f

end

A.2 Wall Friction

A.2.1 inform

DISCRETISATION METHOD FINITE ELEMENT

BOUNDARY CONDITIONS
P PATCH 3 DISPLACEMENT VALUE 0.0
P PATCH 4 DISPLACEMENT VALUE 0.0
P PATCH 5 DISPLACEMENT VALUE 0.0
P PATCH 6 DISPLACEMENT VALUE 0.0

F PATCH 4 PRESSURE VALUE 0.176
.
.
.
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A.2 Wall Friction

.

.

A.2.2 casecode.f

subrout ine tangnor ( i t en so r , s , un , st , valtang ,
va lnor )

dimension s (∗ ) , un (∗ ) , s t (∗ )
parameter ( n = 3 )
dimension SV(n) ! s t r e s s vec to r :

i f ( i t e n s o r > 0 ) then
SV(1) = un (1) ∗ s (1 ) + un (2) ∗ s (4 ) + un (3) ∗ s (6 )
SV(2) = un (1) ∗ s (4 ) + un (2) ∗ s (2 ) + un (3) ∗ s (5 )
SV(3) = un (1) ∗ s (6 ) + un (2) ∗ s (5 ) + un (3) ∗ s (3 )

e l s e
SV( 1 : 3 ) = s ( 1 : 3 )

e n d i f

dotp = 0 .
do i = 1 , n ; dotp = dotp + SV( i )∗un( i ) ; enddo
t = 0 .
do i = 1 , n

s t ( i ) = SV( i ) − dotp∗un( i )
t = t + s t ( i ) ∗∗2

enddo
val tang = Sqrt ( t )
va lnor = dotp

end

subrout ine case s t r u c t pre s o l u t i o n ( Ia , Ra , La , Cha )
dimension Ia (∗ ) , Ra(∗ )
l o g i c a l La (∗ )
cha rac t e r Cha(1 ) ∗ (∗ )

i n c lude ’ . . / inc / g e n e r i c . fh ’
i n c lude ’ . . / inc /geom . fh ’
l o g i c a l found
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A.2 Wall Friction

dimension et (3 ) , s 6 (3)

i t im = TIME STEP NUMBER
wr i t e (∗ , ’ ( ) ’ )
wr i t e (∗ , ’ (A, I 6) ’ ) ’ pre s o l u t i o n : t imestep ’ , i t im

c a l l get v a r i a b l e i n f o ( ’VBPRES’ , ipr , i s z , i tp , iwd , msh ,
found )

i f ( . not . found ) stop 1

do i = 0 , TOTGPT−1 ; do ix = 0 , 2
Ra( i p r + 3∗ i + ix ) = 0 .

enddo ; enddo

c a l l get v a r i a b l e i n f o ( ’ DelDisp ’ , iep , i s z , i tp , iwd , msh ,
found )

i f ( ( . not . found ) . or . ( i t im < 2) ) then
! Before 1 s t s t r u c t u r e c a l l :
RETURN

e l s e

wr i t e (∗ , 1) ( 1000 .∗Ra( i ep + i ) , i =0, 5 )
1 format ( 6F12 .5 )

c a l l get v a r i a b l e i n f o ( ’STRESS’ , iSt , i s z , i tp , iwd , msh ,
found )

i f ( . not . found ) stop 2

do i f a c = 0 , TOTFAC−1
ipa t = Ia ( FPATCH P + i f a c )
i e l e = Ia ( FTCIND P + i f a c ∗NFTCFD + FACE LOW ELE−1 ) −

1
A = Ra( AREA P + i f a c )

c a l l get p r e s su r e load ( Ia , Ra , ipat , i p r e s , va lue )

i f ( i p r e s . eq . 1 ) then ! vtxb . fh : PARAMETER
(PRESLD = 1)

i f a c e = i f a c + 1
nor = normal f a c e ( i f a c e )
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A.2 Wall Friction

i x = i S t + 6∗ i e l e

! i 1 = CENTRE P + 3∗ i e l e ; x = Ra( i 1) ; y = Ra( i 1+1) ; z =
Ra( i 1+2)

! wr i t e (∗ , ’ ( ) ’ )
! wr i t e (∗ , ’ (A, I 4 , 3F9 . 5 ) ’ ) ’ Ele : ’ , 1+ i e l e , x , y , z
! wr i t e (∗ , 1) (Ra( ix+i ) , i =0 ,5)

! ! ! ! c a l l tangnor ( 0 , Ra( ix ) , Ra( nor ) , et , s t 3 , sn3 )
c a l l tangnor ( 1 , Ra( ix ) , Ra( nor ) , s 6 , s t 6 , sn6 )

! c a l l f a c e c en t r e ( Ia , Ra , i f a c e , x , y , z )
! wr i t e (∗ , 1 ) x , z , sn 6 , s t 6 ! ! ! sn 3 , s t 3

f r icmax = Max( −sn 6 , 0 . ) ∗ value
! ! ! ! f r i cmax = Min( fr icmax , 0 . 5∗ ( s t 3 + s t 6) ) ! Max(

s t 3 , s t 6 ) )

n p i f = Ia ( NOPINF P + i f a c ) ; va l = A∗ f r i cmax / (1 .∗
n p i f )

do i p i f = 0 , npi f−1
inod = Ia ( FACPTS P + i f a c ∗TOTPIF + i p i f ) − 1

! Lates t d i sp lacement t a n g e n t i a l component :
i x = iep + 3∗ inod
c a l l tangnor ( 0 , Ra( ix ) , Ra( nor ) , et , e t l en , en

)

do i = 1 , 3
i 1 = i p r + 3∗ inod + i−1

i f ( e t l e n > 0 . ) then
! Apply f r i c t i o n f o r c e oppos i t e to t a n g e n t i a l

d i sp lacement :
Ra( i 1 ) = Ra( i 1 ) − et ( i ) / e t l e n ∗ va l

e l s e i f ( s t 6 > 0 . ) then
! Apply f r i c t i o n f o r c e oppos i t e to l a t e s t

t a n g e n t i a l s t r e s s :
Ra( i 1 ) = Ra( i 1 ) − s 6( i ) / s t 6 ∗ va l

e l s e
wr i t e (∗ , ’ (A, 2 I 8) ’ ) ’No f r i c . ’ , 1+inod , i
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A.3 Storing Stress History

Ra( i 1 ) = 0 .
e n d i f ! e t l e n

enddo
enddo ! i p i f

e n d i f ! ’ p re s sure ’ patch
enddo ! f a c e s loop

! Reset o f s t r e s s e s to 0 must be a f t e r the f r i c t i o n
c a l c u l a t i o n :

c a l l get v a r i a b l e i n f o ( ’STRAIN’ , iEps , i s z , i tp , iwd , msh ,
found )

do i = 0 , TOTELE−1 ; do j = 0 , 5
i o f f = 6∗ i + j
Ra( i S t + i o f f ) = 0 . ; Ra( iEps + i o f f ) = 0 .

enddo ; enddo

c a l l get v a r i a b l e i n f o ( ’ DISP ’ , i d i s , i s z , i tp , iwd , msh ,
found )

i f ( . not . found ) stop 3
do i = 0 , TOTGPT−1 ; do j = 0 , 2

Ra( i d i s + 3∗ i + j ) = 0 .
enddo ; enddo

e n d i f ! ’ DelDisp ’ found
end

A.3 Storing Stress History

A.3.1 inform

DATABASE MODULE
INPUT DATABASE hopperStr

# name = f i l ename without ex tens i on o f
PRINT READ VARIABLES ON

OUTPUT DATABASE hopper open
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A.4 Initial Flow at outlet opening

# nam1 − change database f i l ename to prevent
ove rwr i t i ng

END

A.3.2 casecode.f

save nx , iS t r ,
.
.
.
.
.

c a l l get v a r i a b l e i n f o ( ’STRESS’ , i S t r , i s z , i tp , iwd ,
msh , found )

i f ( . not . found ) Stop 1
.
.
.
.
.

A.4 Initial Flow at outlet opening

A.4.1 Fortran code to adjust geo file in PHYSICA

C Make changes to the . geo data in memory :

do i = 1 , np

i f ( ixp ( i ) .EQ. 1 ) then
iyp ( i ) = 1

e n d i f

enddo

163



A.4 Initial Flow at outlet opening

A.4.2 Geo file

0.00000E+00 0.00000E+00 0.00000E+00 1 1 5
6.00000E−03 0.00000E+00 0.00000E+00 0 3 5
1.20000E−02 0.00000E+00 0.00000E+00 0 3 5

.

.

.

.

.
1 .65000E+00 2.75000E−01 0.00000E+00 2 4 5
0.00000E+00 0.00000E+00 1.00000E−02 1 1 6
6.00000E−03 0.00000E+00 1.00000E−02 0 3 6
1.20000E−02 0.00000E+00 1.00000E−02 0 3 6

.

.

.

.

.

A.4.3 inform

BOUNDARY CONDITIONS

! P PATCH 1 DISPLACEMENT VALUE 0.0
P PATCH 3 DISPLACEMENT VALUE 0.0
P PATCH 4 DISPLACEMENT VALUE 0.0
P PATCH 5 DISPLACEMENT VALUE 0.0
P PATCH 6 DISPLACEMENT VALUE 0.0

F PATCH 4 PRESSURE VALUE 0.3

P PATCH 7 CONSTRAINT VALUE 45544
P PATCH 8 CONSTRAINT VALUE 45547
P PATCH 9 CONSTRAINT VALUE 45550
P PATCH 10 CONSTRAINT VALUE 45553
P PATCH 11 CONSTRAINT VALUE 45556
P PATCH 12 CONSTRAINT VALUE 45559

.
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A.5 Failure Criteria

.

.

.

.

.
P PATCH 84 CONSTRAINT VALUE 92023
P PATCH 85 CONSTRAINT VALUE 92026
P PATCH 86 CONSTRAINT VALUE 92029

END

A.5 Failure Criteria

A.5.1 casecode.f

subrout ine case output r e s u l t s ( Ia , Ra , La , Cha )
dimension Ia (∗ ) , Ra(∗ )
l o g i c a l La (∗ ) , found , f a i l e d
cha rac t e r Cha(1 ) ∗ (∗ )

r ea l , parameter : : m=0.6 ! ang le o f ?

in c lude ’ . . / inc /geom . fh ’

c a l l get v a r i a b l e i n f o ( ’STRESS’ , i S t r , i s z , i tp , iwd , msh ,
found )

i f ( . not . found ) stop 1
c a l l mem r e a l e l e ( ’ Ryl ’ , 1 , iRyl )
c a l l mem r e a l e l e ( ’Rg ’ , 1 , iRg )
c a l l mem r e a l e l e ( ’ Fa i lure ’ , 1 , i F a i l )

c a l l get v a r i a b l e i n f o ( ’ Cohe ’ , iCohe , i s z , i tp , iwd ,
msh , found )

i f ( . not . found ) stop 2
f a i l e d = . f a l s e .
c a l l save r e s t a r t v a r i a b l e ( ’Cohe ’ , i e r r , f a i l e d )
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A.6 Removal of Elements in casecode.f

do i e l e = 0 , TOTELE−1
Str xx = Ra( i S t r + 6∗ i e l e ) ! V e r t i c a l
Str yy = Ra( i S t r + 6∗ i e l e + 1 ) ! Hor i zonta l
Str xy = Ra( i S t r + 6∗ i e l e + 3 ) ! Shear

s t r 1 = Max( 1 . e−9, −Str xx )
s t r 2 = Max( 1 . e−9, −Str yy )
s t r 3 = ABS( Str xy )
StrM =( s t r1+s t r 2) /2

Var1 = ( strM−m∗Ra( iCohe + i e l e ) ) /(m∗∗2+1.)
Ra( iRyl + i e l e )=s q r t ( ( Var1−strM ) ∗∗2+(m∗Var1+Ra( iCohe

+i e l e ) ) ∗∗2)
Ra( iRg + i e l e ) = Sqrt ( ( 0 . 5∗ ( s t r 1 − s t r 2) ) ∗∗2 +

s t r 3∗∗2 )
Ra( i F a i l + i e l e ) = Ra( iRg + i e l e ) − Ra( iRyl +

i e l e )

enddo
end

A.6 Removal of Elements in casecode.f

A.6.1 inform

MATERIAL PROPERTY MODULE
DENSITY

MATERIAL 1 USER ROUTINE dummy 0
SAVE PROPERTY TRANSIENT

END

YOUNGS MODULUS
MATERIAL 1 USER ROUTINE remove 1 1 .E5
SAVE PROPERTY TRANSIENT

END
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A.6 Removal of Elements in casecode.f

POISSONS RATIO
MATERIAL 1 CONSTANT 0.3

END

YIELD STRESS
MATERIAL 1 CONSTANT 1.0E+10

END
END

A.6.2 casecode.f

subrout ine case mat prop ( Ia , Ra , La , Cha , Handld )
dimension Ia (∗ ) , Ra(∗ )
l o g i c a l La (∗ ) , Handld , found , f a i l e d
cha rac t e r Cha(1 ) ∗ (∗ )

i n c lude ’ . . / inc /mprop . fh ’
i n c lude ’ . . / inc /geom . fh ’

i f ( PRP EQN NAM( 1 : 5 ) .EQ. ’dummy’ ) then
Handld = .TRUE. ! Density

c a l l mem r e a l e l e ( ’ Fa i lure ’ , 1 , i F a i l )
i e l e = PRP ELE ID − 1
x = Ra( CENTRE P + 3∗ i e l e )
i f ( (Ra( i F a i l + i e l e ) .GE. 0 . 0 ) .AND. ( x .LT. 0 . 1 )

) then
Ra( PRPVAR ID + i e l e ) = 0 .0

e n d i f
e n d i f

i f ( PRP EQN NAM( 1 : 6 ) .EQ. ’ remove ’ ) then
Handld = .TRUE. ! Young ’ s

c a l l mem r e a l e l e ( ’ Fa i lure ’ , 1 , i F a i l )
i e l e = PRP ELE ID − 1
x = Ra( CENTRE P + 3∗ i e l e )
i f ( (Ra( i F a i l + i e l e ) .GE. 0 . 0 ) .AND. ( x .LT. 0 . 1 ) )

then

167



A.7 Calculation of Structure Modules

Ra( PRPVAR ID + i e l e ) = Ra( PRPDAT ID ) ! va lue
from inform

wr i t e (∗ , ’ ( I 8 , 2F9 . 3 ) ’ ) 1+ i e l e , x , Ra( CENTRE P + 3∗
i e l e +1 )

e n d i f
e n d i f

end

A.7 Calculation of Structure Modules

The use of compliance (elasticity) matrix in stress-strain calculation:

C I n i t i a l i s e element s t i f f n e s s matrix .
C

CALL s e t n u l l matrix ( dof ine , do f ine , e l e s t f )
C
C Arrange element topology to working topology .
C

CALL vb get element nodes
@ ( e l eno , Ia (ELEPTS P) , TOTPIE, TOTEL2 , nod ie l ,
@ Ia (NODINX P) )

C
C Set the X,Y o f the nodes in the element to WKCORD.
C

CALL vb get node coords
@ ( nod ie l , Ia (NODINX P) , VBDIMS, TOTGP2 , Ra(XYZCRD

P) ,
@ Ra(WKCORD P) )

CALL vb get node dof
@ (VBDIMS, nod ie l , do f ine , IA(NODINX P) , do f inx )

C
C Obtain mate r i a l p r o p e r t i e s f o r t h i s element .
C

youngg = Ra(MSHYNG P+eleno −1)
po i s sn = Ra(POISSONS P+eleno −1)

C
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A.7 Calculation of Structure Modules

C Calcu la te the e l a s t i c i t y matrix dee .
C

CALL e l a s t i c i t y matrix
@ ( nost r s , dee , youngg , po issn , APPROX)

C
C Calcu la te c o n t r i b u t i o n s from sub−c o n t r o l volumes at i n t e r n a l

f a c e s .
C

DO 350 f a c e = 1 , ningpt
C
C Obtain l o c a l S ,T,U coo rd ina t e s o f the i n t e g r a t i o n po int .
C

CALL vb l o c a l coords
@ (TOTEL2 , e leno , Ia (ELETYP P) , Ra( IPS P) , IIPS ,
@ JIPS , KIPS , face , scoord , tcoord , ucoord )

C
C Obtain d e r i v a t i v e s o f shape f u n c t i o n s LDER at the

i n t e g r a t i o n po int .
C

CALL vb l o c a l d e r i v a t i v e s
@ ( scoord , tcoord , ucoord , Ra(LDER P) , Ia ( l o c a t e

) ,
@ nod ie l , e ld ims )

C
C Calcu la te the Jacobian matrix JACMAT.
C

CALL c a l c matrix product
@ ( eldims , nod ie l , VBDIMS, Ra(LDER P) , Ra(WKCORD

P) ,
@ Ra(JACMAT P) )

C
C Obtain the i n v e r s e o f the matrix JACMAT.
C

IF ( e ld ims .EQ. VBDIMS ) THEN
CALL f i n d matrix i n v e r s e

@ (VBDIMS, Ra(JACMAT P) , Ra(INVJAC P) , det , Err in f
, Fa i l ed )

IF ( Fa i l ed ) GOTO 9000
ELSE

CALL vecto r i n v e r s e
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A.7 Calculation of Structure Modules

@ (VBDIMS, Ra(JACMAT P) , Ra(INVJAC P) , det , Err in f
, Fa i l ed )

IF ( Fa i l ed ) GOTO 9000
END IF

C
C Obtain the g l o b a l d e r i v a t i v e s GDER of the shape f u n t i o n s
C with r e s p e c t to the g l o b a l c oo rd ina t e s X,Y.
C

CALL c a l c matrix product
@ (VBDIMS, eldims , nod ie l , Ra(INVJAC P) , Ra(LDER

P) ,
@ RA(GDER P) )

C
C Calcu la te the s t r a in−disp lacement matrix bee .
C

CALL s e t n u l l matrix ( nost r s , do f ine , bee )
CALL s t r a i n matrix

@ ( nost r s , do f ine , VBDIMS, nod ie l , Ra(GDER P) ,
@ Ra(SFUN P) , Ra(WKCORD P) , APPROX, bee )

C
C Calcu la te dbee = dee ∗ bee
C

CALL c a l c matrix product
@ ( nost r s , nost r s , do f ine , dee , bee , dbee )

C
C Calcu la te the t ranspose o f bee
C

CALL transpose matrix ( nost r s , do f ine , bee , bt )
C
C Calcu la te the btdbee = bt∗ dbee
C

CALL c a l c matrix product
@ ( dof ine , nost r s , do f ine , bt , dbee , btdbee )

CALL c a l c u l a t e quot i ent
@ ( nod ie l , VBDIMS, ningpt , Ia ( l o c a t e ) , IIPS ,

JIPS , KIPS ,
@ det , Ra(SFUN P) , Ra(WKCORD P) , Ra( IPS P) ,

quot )

CALL mult ip ly matrix by s c a l a r
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A.7 Calculation of Structure Modules

@ ( dof ine , do f ine , quot , btdbee )
C
C Subtract btdbee from element s t i f f n e s s matrix .
C

CALL subt rac t matrix
@ ( dof ine , do f ine , e l e s t f , btdbee ,

e l e s t f )
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Appendix B

Analytical method

B.1 Slide method

Figure B.1: Stresses acting on a differential slice of cylindrical element.
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B.1 Slide method

Force balance vertically on the element is:

(gρδz + σzz)(
π

4
D2) = (σzz + δσzz)(

π

4
D2) + τw(πDδσzz) (B.1)

In simokied form, by dividing Equation B.1 by Dδσzz

gρ− δσzz
σzz

+
4τw
D

(B.2)

For a cohesionless material in an active (filling) case:

τw = νwσrr (B.3)

From assumption of making both the normal vertical stress and the normal horizontal

stress are the principal stresses:

σzz = σ1σrr = σ3 (B.4)

From the Mohr’s circle

K =
σrr
σzz

=
σ3
σ1

=
1− sin varphi

1 + sin varphi
(B.5)

where K is the Janssen’s ratio, a ratio between the vertical applied stress and the

horizontal stress exerted from the wall to the material.
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B.1 Slide method

Substitute Equation B.3 and B.5 into Equation B.2, Equation B.2 becomes a first

order ODE:

gρ =
dσzz
dz

+
4νwKz

D
(B.6)

solving the ODE, it becomes:

σzz =
rhogD

4τwK
+ C exp

−4νwKz

D
(B.7)

A general solution with the boundary condition, σzz = Q0atz = 0, is

σzz =
ρgD

4τwK
+ [1− exp

−4νwKz

D
] +Q0 exp

4νwKz

D
(B.8)
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