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ABSTRACT 
 
 

Bemisia tabaci (B. tabaci), a major crop pest of important food security crops, transmits 

more than 100 plant viruses. Despite its global importance as one of the world’s top 100 

invasive species, limited genomic resources are available in public domains. In this study, 

transcriptomic datasets from cassava and non-cassava colonizing B. tabaci populations were 

used to compare sequence divergence between populations. 

We sequenced transcriptomes of three cassava colonizing populations and three populations 

which do not colonize cassava as a host plant to generate a large catalogue of transcripts for 

comparative analysis. Twenty four de novo assemblies using multi k-mer values were 

produced using four transcriptome assemblers, Trinity, Velvet/Oases, SOAPdenovo-Trans 

and CLC Bio to maximize the diversity and completeness of assembled transcripts. Trinity 

assemblies were chosen based on evaluation statistics using Transrate, DETONATE, 

BUSCO and CRB-BLAST. The resulting clustered assembly consisted of 185,895-287,559 

contigs, ~38% (for non-cassava) and ~34% (for cassava populations) of which could be 

functionally annotated when compared against NCBI non redundant database using 

BLASTX.  

The assembled transcriptome data will serve as a genomic resource for future B. tabaci 

studies. Furthermore, our results also showed the performance of publicly available 

transcriptome assemblers as well as important factors affecting de novo assembly.  
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Chapter 1: Introduction 

Cassava is one of the most important crops of the tropical world and is consumed by more 

than 500 million people (Dutt et al., 2005). It is important for its high calorie content, low 

production cost and its ability to adapt to most soil and environmental conditions (Herrera 

Campo et al., 2011). Given these characteristics, cassava holds significant promise for 

improving food security in tropical regions where climate, soils and societal stresses 

constrain production (Bellotti and Arias, 2001). Major factors responsible for cassava 

production losses are pests and diseases that have emerged in the past few decades, and have 

caused multi-billion-dollar crop losses.  

The whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), is an important pest of 

various crops, weeds and ornamental plants at all growth stages. The pest causes direct 

damage by feeding upon the phloem sap and indirect damage by honey dew secretion and 

vectoring plant viruses (Martin 1999). It causes damage to more than 600 plants, resulting 

sometimes in complete yield loss in certain crops. B. tabaci is responsible for substantial 

damage to crops by transmitting diseases like cassava mosaic disease (CMD) and cassava 

brown streak disease (CBSD) (Herrera Campo et al., 2011). Cassava mosaic and cassava 

brown streak diseases are two important constraints to cassava production. Economic 

damage from CMD has been substantial causing an average of 50% yield loss in infected 

areas in both Africa and India where cassava plays an important role in food security. CBSD 

has caused annual losses of $50 million with up to 80% yield loss in East Africa alone 

affecting more than 20 million people (Herrera Campo et al., 2011).  

The main objective of this study was to perform comparative bioinformatic analyses on 

cassava and non-cassava populations of B. tabaci to identify differences that could be related 

to the ability of the certain B. tabaci populations to feed on cassava. This research involved 

transcriptome analysis of different B. tabaci populations using a sequence comparison 

approach to understand the roles of potential genes involved in cassava utilization.  
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Chapter 2: Literature review 

2.1 Cassava 

Cassava, Manihot esculenta Crantz, is the only species in the genus Manihot 

(Euphorbiaceae) grown as a food crop (Fauquet and Fargette, 1990; Blagbrough et al., 

2010). Cassava is an important food security crop in the tropics and subtropics, where it is 

cultivated mainly for human consumption (Ariyo et al., 2006; Herrera Campo et al., 2011). 

Cassava is considered as an important source of dietary food energy for many African 

countries where food production is the main concern to match the population growth (Legg 

et al., 2011).  

2.1.1 Origin 

Cassava is widely grown in the tropics and sub-tropics and believed to have originated from 

South America, but was introduced to Africa by the Portuguese in the late 16th century (Ariyo 

et al., 2006).  Later in the 18th century, cassava was introduced to the east coast of Africa 

and the Indian Ocean islands of Madagascar, Reunion and Zanzibar, and in India and Sri 

Lanka in the mid-18th century (Fauquet and Fargette, 1990).                

2.1.2 Importance of cassava 

Cassava is the main carbohydrate supply and source of income for many African countries 

where an increase in production is important to meet the demand as a human food (Wydra 

and Verdier, 2002). It is also considered an important food security crop, able to be grow 

under marginal environmental conditions and low soil fertility (Legg 1999). Cassava has 

several advantages over other food crops, such as rice and maize, as it is easy to grow and 

yields well in poor conditions. Because of the perceived agriculture advantages of cassava 

production and its role in food security and biofuel production, a threat to cassava production 

is of serious concern in developing countries (Cardoso et al., 2005).    

2.1.3 Cassava utilization 

Cassava is grown primarily for its ability to accumulate and store starch within large swollen 

root structures (Taylor et al., 2004). It is used for on-farm consumption, as well as a cash 

crop for smallholder farmers and for commercial operations on large scale farms to feed 

livestock and also for processing into starch used in food and chemical industries (Taylor et 

al., 2004). In food processing, cassava starch is used mainly for paper, textile, and adhesive 
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manufacturing and in the oil drilling industry. It is also an important agent for many derived 

sugar products like glucose, maltodextrins and mannitol (Nassar and Ortiz, 2007). 

Within the past few decades, an increased interest in the potential of bio-ethanol to replace 

conventional fossil fuels has stimulated research into cassava as a possible source of energy. 

Cassava is increasingly an attractive energy crop due to its high CO2 fixation ability, high 

water-use efficiency, high carbohydrate content, and greater starch: ethanol conversion ratio 

compared to other crops (Kristensen et al., 2014).  

2.1.4 Cassava production 

Global cassava production has roughly doubled in the past 30 years from 124 million to 252 

million tonnes in 2012 of which over 130 million tonnes was grown in Africa with about 84 

million tonnes in Asia and about 31 million tonnes in Latin America (FAO, 2013). Cassava’s 

importance has dramatically changed between 1980 and 2011, due to the global harvested 

area expanding from 13.6 million to 19.6 million hectares with an increased industrial 

demand for cassava in East and Southeast Asia, especially for ethanol and in sub-Saharan 

Africa as an important food security crop (FAO, 2013). 

In recent years cassava production in sub-Saharan Africa has increased from 118 million 

tonnes in 2010 to over 130 million tonnes in 2012 (FAO, 2013). The majority of this increase 

has occurred in Nigeria, Africa’s largest producer, which grew over 54 million tonnes in 

2012 compared to only 42 million tonnes in 2010. Among the other sub-Saharan producers, 

Ghana’s output also increased (~4%) with ~15 million tonnes in 2013. In Asia, cassava 

production is set to increase to over 85 million tonnes in 2013 due to industrial utilization of 

cassava in form of alcohol and ethanol (FAO, 2013). 
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Figure 2.1: FAO biannual report on global food markets (November 2013), accessed on 17th 
April 2014  
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2.1.5 Cassava pests and diseases 

Cassava production is constrained by many pests and diseases. The major pests affecting 

cassava production are cassava green mite, cassava whitefly (B. tabaci) and cassava 

mealybug (Night et al., 2011). The important virus diseases affecting cassava production are 

CMD and CBSD. CMD can be caused by many distinct species and strains of begomoviruses 

(genus Begomovirus, family Geminiviridae), and these viruses are transmitted through 

infected cuttings or by the whitefly vector B. tabaci (Ariyo et al., 2006). CBSD is caused by 

cassava brown streak viruses, of which two different species have been identified namely 

Cassava brown streak virus (CBSV) and Uganda cassava brown streak virus (UCBSV).  

Viruses causing CMD and CBSD are transmitted through stem cuttings and also by the 

whitefly vector, B. tabaci.  

2.2 Whitefly Bemisia tabaci 

Bemisia tabaci is the most economically important species complex of interest out of over 

1200 known whitefly species in the world (Mound & Halsey, 1978). The B. tabaci complex 

represents a genetically diverse yet morphologically indistinguishable pests of many 

ornamental and greenhouse crops (Perring et al., 1993; Boykin et al., 2007).  

Members of the B. tabaci species complex are known for their ability to cause damage by 

direct feeding on phloem sap. They extract large amounts of sap from host plants and this 

plays a major role in honey dew excretion onto the surface of leaves and fruit, which results 

in sooty mould development (Brunt, 1986; Cohen et al., 1988; Brown and Bird, 1992; 

Boykin et al., 2007; Herrera Campo et al., 2011). Sooty mould growth on honey dew reduces 

photosynthetic capabilities and also affects plant quality, which makes produce have a poor 

market value (Byrne and Bellows, 1991). The polyphagous nature of the B. tabaci complex 

has been observed on more than 600 different plant species (Mound and Halsey, 1978) 

including some of the important food and industrial crops such as tobacco, tomato, peppers, 

squash, cucumber, beans, pumpkin, dew flower, watermelon, cabbage, sweetpotato, peanut, 

soybean, eggplant, okra and cotton.  

B. tabaci is also capable of acting as a vector for over 100 plant viruses especially 

geminiviruses (genus Begomovirus) in tropical and subtropical regions of the world (Liu et 

al., 2013). It has been the subject of significant interest during the past 30 years by 

transmitting plant viruses such as cassava mosaic begomoviruses (CMBs), cassava brown 
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streak viruses (CBSVs), Tomato mottle virus (ToMoV) and Tomato yellow leaf curl virus 

(TYLCVs), which have produced devastating results in their respective hosts (Mugerwa et 

al., 2012).  

B. tabaci has gained worldwide exposure due to yield losses in global food production 

estimated to exceed US$5 billion annually (Czosnek and Brown, 2010). The worldwide 

importance of B. tabaci is mainly supported by the nature of host adaptability within new 

geographical environments, current status of resistance to a range of pesticides and increased 

global trade of plant materials (Basit et al., 2013). 

2.2.1 History 

B. tabaci was first described in Greece in 1889 as a tobacco pest and named as the tobacco 

whitefly (Gennadius, 1889). In 1897, the first New World B. tabaci were observed on sweet 

potato which was originally described as Aleyrodes inconspicua Quaintance and was known 

as the sweet potato whitefly (Quaintance, 1900). Major B. tabaci occurrences were reported 

on cotton between 1920 and 1930 in India (Horowitz, 1986). Subsequently, major outbreaks 

occurred, in Sudan and Iran in the 1950s, El Salvador (1961), Mexico (1962), Brazil (1968), 

Turkey (1974), Israel (1976), Thailand (1978) and Arizona and California (1981) (Horowitz, 

1986). Outbreaks in soybean took place in Brazil in 1972-73 (Kogan and Turnipseed, 1987) 

and in Indonesia in 1981-82 (Samudra and Naito, 1991).  Major B. tabaci invasions were 

recorded in Florida on ornamental plants, especially poinsettia in 1986 (Price et al., 1987). 

They were also reported from northern European countries, including the United Kingdom, 

Netherlands, France and Germany when a highly destructive strain was imported on 

ornamentals in 1987 (Cheek and MacDonald, 1993). The species is now globally distributed 

and its presence is reported commonly in Africa, southern Europe, the Middle East, Asia, 

Australia, Pacific and Americas (Hu et al., 2011).  

2.2.2 Biotypes 

The classification of whiteflies has long been a topic of debate with the gross morphology 

of all adult B. tabaci populations showing similar characteristics. Due to these 

indistinguishable morphological characteristics, a range of other techniques have been used 

to classify different populations within the B. tabaci complex. Biotypes of B. tabaci were 

first characterised in 1950s by biochemical variations within whiteflies, their host ranges, 

ability to adapt to different geographical environments and capability to transmit different 
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plant viruses (Bird, 1957). Through analysis based on esterase profiles, 19 distinct B. tabaci 

biotypes were identified and named as letter codes A to S (Bedford et al., 1992; Brown et 

al., 1995a; Banks et al., 1999).  

2.2.3 Genetic classification methods 

The classification of B. tabaci populations has also been based on phylogenetic analysis of 

sequences of the 18S rRNA gene, mitochondrial cytochrome oxidase subunit one (mtCOI) 

gene and nuclear DNA ribosomal ITS1 regions (Chowda-Reddy et al., 2012). The species 

clusters identified by Dinsdale et al. (2010) based on phylogenetic analysis and pairwise 

comparisons (including 79 whitefly samples taken from cassava growing areas of Kenya, 

Tanzania, and Uganda) were named as Mediterranean (Q, J, L, sub-Saharan Africa 

silverleaf); Middle East–Asia Minor 1 (B, B2); Middle East–Asia Minor 2; Indian Ocean 

(MS); Asia I (H, M, NA); Australia/Indonesia; Australia (AN); China 1 (ZHJ3); China 2; 

Asia II 1 (K, P, ZHJ2); Asia II 2; Asia II 3 (ZHJ1); Asia II 4; Asia II 5 (G); Asia II 6; Asia 

II 7 (Cv); Asia II 8; Italy (T); sub-Saharan Africa 1; sub-Saharan Africa 2 (S); sub-Saharan 

Africa 3; sub-Saharan Africa 4; New World (A, C, D, F, Jatropha, N, R, Sida); and Uganda. 

Based on the method proposed by Dinsdale et al. (2010), Hu et al. (2011) added four new 

species clusters to B. tabaci cryptic complex based on phylogenetic analysis of samples with 

> 3.5% divergence with respect to their partial mtCOI gene sequence. The new clusters were 

named as Asia II 9, Asia II 10, Asia III and China 3 (Hu et al. 2011).  

2.2.4 Economic importance of the B. tabaci species and the viruses they transmit 

A major outbreak caused by viruses transmitted by B. tabaci was reported in the form of 

cassava mosaic disease (CMD) in Uganda (1990s) and this resulted in up to 100% yield loss 

to cassava crops (Otim-Nape et al., 1997). Subsequent results of CMDs were reported in 

East and Central Africa, showing major crop losses in cassava which affected over 200 

million people (Legg et al., 2006).  

Tomato yellow leaf curl virus (TYLCV) was first discovered in Israel on tomato crops. 

TYLCV mainly discovered in parts of Europe and in eastern Mediterranean countries and 

parts of Africa, Asia, Australia, and the Caribbean where losses were up to 100% (Cohen 

and Harpaz, 1964). Another type of tomato virus spread by B. tabaci was first observed in 

1989, known as Tomato mottle virus (ToMoV). The virus was detected in regions of Florida 
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in the 1990 to 1991, with estimated losses of $125 million on tomato crops (Polston et al., 

1993). Several other plant viruses transmitted by B. tabaci such as Tobacco leaf curl virus 

(TLCV), Squash leaf curl virus (SLCV), Cotton leaf crumple virus (CLCrV) and Bean 

golden mosaic virus (BGMV) cause heavy yield losses to host plants (Bedford et al., 1994). 

2.3 Next Generation sequencing technologies 

2.3.1 Overview  

Determining the genomic information of any living organism is the most crucial step in 

molecular biology for understanding evolutionary, functional and structural relationships 

(Shokralla et al., 2012). DNA sequencing technologies has played an important role in 

understanding biological phenomena (Liu et al., 2012). Over the past two decades, advances 

in traditional ‘Sanger’ DNA sequencing have altered genomics research and allowed 

researchers to conduct experiments that were previously not possible.  

The next-generation sequencing (NGS) technologies introduced in 2005 are high throughput 

in nature compared to Sanger DNA sequencing and are more affordable. NGS technologies 

can sequence several human genomes in a single run within days compared to Sanger 

sequencing, which originally took more than 10 years and US$2.7 billion to complete 

(Berglund et al., 2011). NGS has the potential to accelerate biological research by creating 

new opportunities in genome sequencing projects including de novo genome sequencing, 

resequencing genomes for improvements, mRNA profiling, and can be applied to a broad 

range of applications such as molecular cloning, breeding, finding pathogenic genes, and 

comparative and evolution studies (Zhou et al., 2010; Liu et al., 2012). New sequencing 

technologies have also introduced new areas of genomics research by pairing with 

computational, statistical and mathematical programs and algorithms to analyse vast 

sequencing datasets.  

2.3.2 History and Fundamentals of NGS technologies 

The traditional DNA sequencing method was first introduced by Sanger et al. (1977). The 

DNA sequencing technology developed by Frederick Sanger was based on a chain-

termination method (known as Sanger sequencing) and was adopted as a “first generation” 

laboratory and commercial sequencing technology due to its high efficiency and low 

radioactivity. A decade later, the company Applied Biosystems introduced the first 

automated sequencing machine which incorporated advances and improvements made to the 
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Sanger sequencing technology; the machine, was based on capillary electrophoresis which 

was much faster and more accurate than previous versions (Smith et al., 1986). 

A series of other next-generation sequencing machines including Roche 454, Applied 

Biosystems SOLiD system, Illumina genome analyser, Ion Torrent, HeliScope, SMART 

DNA sequencer have been commercially introduced in recent years based on their 

sequencing and detection techniques. These machines possess the ability to generate tens of 

millions of sequencing reads in parallel (Shokralla et al., 2012).  

NGS technologies do not require a conventional cloning based procedure to amplify and 

separate DNA samples and can be used directly from a pool of cDNA library fragments 

generated through reverse transcription or PCR amplified molecules (Mardis, 2008). These 

technologies have faced many challenges since their first launch in 2005.  

2.3.3 Roche 454 genome sequencer  

Roche 454 was the first next-generation genome sequencing system introduced 

commercially by 454 Life Sciences in 2005 based on sequencing-by-synthesis 

pyrosequencing technology. The 454 pyrosequencing uses a pyrophosphate detection 

technology released during nucleotide incorporation by DNA polymerase. This reaction 

produces light for each incorporated base by the action of enzyme luciferase which is 

proportional to the number of nucleotides incorporated (Shokralla et al., 2012). Single 

dNTPs are added one by one to the reaction and the sequencing-by-synthesis pyrosequencing 

process repeated (Liu et al., 2012). 

The initial sequencing output produced 100-150 bp in terms of average read lengths with 

more than 200,000 reads making the file size about 20 Mb per run in 2005. Roche 454 

launched a new improved system in 2008 called the 454 GS FLX Titanium (Liu et al., 2012). 

The main features of this system were that it could produce up to 700 bp read lengths with 

99.9% accuracy. The advantages of Roche systems are that they only take about 10 hours to 

complete each sequencing run, with read lengths (up to 700 bp) and do not require manpower 

for library construction. The major limitation with these systems are that the reagent cost is 

high compared to other NGS systems and it produces errors for poly-bases longer than 6 bp 

(Liu et al., 2012). 
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Figure 2.2: The working principle of Roche 454 system. (A) Prepare DNA fragments using 

adapter. (B) Emulsion based PCR amplification. (C) Load amplified beads into PicoTiterTM 

plate. (D) Sequencing-by-synthesis reaction and imaging. (http://www.454.com) 
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2.3.4 Applied Biosystems SOLiD system 

Applied Biosystems introduced the SOLiD system in 2007 based on sequencing-by-ligation 

technology. In this technique, adapter-linked DNA fragments are immobilized with 

complementary oligos on to the surface of 1 mm magnetic beads. These DNA fragments are 

mixed with emulsion oil which creates a water-in-oil emulsion that are individually 

amplified using emulsion PCR containing amplification reagents and capture beads. The 

amplified beads are attached to a glass slide and then placed inside a fluidics cassette of the 

sequencer (Shokralla et al., 2012). Before the sequencing cycle, a primer is hybridised to the 

adapter in the first step and then a mixture of oligonucleotide octamers are also hybridised 

to the ligation mixture. The fluorescent labelled octamer detects corresponding four oligo 

bases followed by deletion of fluorescent oligos and the ligation cycle is repeated (Zhou et 

al., 2010). 

Each step of octamer ligation determines five bases (Zhou et al., 2010). The continued 

sequencing process can generate more base pairs similarly and different base positions can 

be identified using different size primers. The current read length of the SOLiD system is 

about 35 bases and because of the nature of the process, a low error rate can be achieved. 

The SOLiD system is capable of detecting more than 50 million bead clusters and therefore 

it can produce gigabytes of data per run (Ansorge, 2009). 

In late 2010, the SOLiD 5500xl system was launched by Applied Biosystems which has up 

to 250 Gb sequencing capacity with improved read lengths (85 bp), accuracy (99.99%) and 

speed (complete run within 7 days). The major drawback of this system was its short read 

length compared to other NGS systems, which generate read lengths in the region of 

700~900 bp (Liu et al., 2012).  

2.3.5 The Illumina (Solexa) Genome Analyser / HiSeq system 

The Genome analyser was commercialised in 2006 by Solexa, and the company was later 

purchased by Illumina in 2007 (Liu et al., 2012). The Illumina system adopted the 

sequencing by synthesis approach. Illumina genome analysers use three steps for 

sequencing. In the first step, DNA is fragmented in to hundreds of millions of copies and 

sheared ends are repaired and ligated with oligo adapters at both ends. In the second step, an 

8-channel genome analyser flow cell is used for cluster generation (Buermans and Dunnen, 

2014). This flow cell contains densely distributed mono oligos for high throughput 
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sequencing. These oligos bind to adapters which are ligated DNA fragments which undergo 

amplification and generate millions of clusters. In the last step, each cluster is supplied with 

polymerase and fluorescent labelled nucleotides with their 3’ ends inactivated. This 

specialized method of blocking the 3’ ends ensures single base pair sequencing. Each 

incorporated nucleotide is identified using an imaging technology. The fluorescent labelled 

3’ ends are then removed and the sequencing by synthesis cycle is repeated (Zhou et al., 

2010). 

Four versions of Illumina sequencers are available in the market today known as Genome 

analyzer IIx, HiSeq 2000, HiSeq 1000 and MiSeq. Due to their high throughput outputs, up 

to 600 Gb (HiSeq 2000), 300 Gb (HiSeq 1000), 95 Gb (Genome analyzer IIx) and 1.5 to 2 

Gb (MiSeq) makes them popular amongst sequencing projects. Illumina introduced an 

upgraded version of HiSeq 2000 in 2012 and this was named HiSeq 2500. This new system 

can produce about 120 Gb of data within 27 hours, and makes the system capable of 

sequencing whole genomes in 24 hours (Shokralla et al., 2012).  

2.3.6 Ion Torrent 

Life Technologies introduced a real-time detection system in 2010 to create a direct 

connection between the chemical and digital methodology to enable fast, accurate and high 

throughput sequencing. The system was based on Watson’s nucleic acid chemistry and 

named as PostLight sequencing technology (Shokralla et al., 2012).  The Ion Torrent works 

on the principle of a biochemical reaction that occurs during nucleotide incorporation into a 

DNA strand using polymerase action, resulting in the release of a hydrogen ion as a by-

product of the reaction. The system uses high-density arrays of micro-machine wells to run 

biochemical process in parallel. Each well on the plate contains a library prepared DNA 

template and ion-sensitive layer at the base. The unique ion sensor technology detects 

charges from hydrogen ions during nucleotide incorporation without any other imaging or 

lighting technology (Buermans and Dunnen, 2014).  

The ion torrent sequencing system uses three different ion chips 314 (10 Mb); 316 (100 Mb); 

and 318 (1 Gb) depending on sequence data required. Recently, Life Technologies added 

another advanced version; the Ion Proton bench top sequencer. The most important aspect 

of Ion Proton is that it can sequence human genome within few hours which took much more 

time to complete with other sequencing systems (Shokralla et al., 2012).  
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2.3.7 HeliScope  

HeliScope was the first commercial single-molecule sequencing system introduced by 

Helicos Biosciences in 2008 (Shokralla et al., 2012). It is based on sequencing-by-synthesis 

on a single DNA molecule using DNA polymerase and fluorescently labelled nucleotides to 

identify incorporated bases. Specially designed fluorescent nucleotides stop the sequencing 

process until the added nucleotide’s presence is detected and captured by a highly sensitive 

CCD camera attached to a microscope. Unincorporated nucleotides are then washed away 

with by-products remaining from the previous cycle followed by a chemical procedure to 

remove fluorescent labels from the extended DNA strand. Repeated cycles of single-base 

extension, label-cleaving and detection procedure can generate up to 1 billion sequence reads 

(Shokralla et al., 2012).  

2.3.8 SMART DNA sequencer 

Pacific Biosciences introduced their single-molecule real-time (SMRT) DNA sequencing 

system in 2010 (Shokralla et al., 2012). It is based on a real-time fluorescent based technique 

that requires no amplification for sample preparation as it involves single molecule 

sequencing-by-synthesis approach. The SMRT system utilizes a ‘zero mode waveguide 

identification system’ made of nano particles to detect DNA polymerase activity. During a 

sequencing cycle, the DNA polymerase adds complimentary nucleotides to the template 

single stranded DNA strand. It uses fluorescence labelled phosphor-linked nucleotides with 

modified terminal phosphate groups which are released during nucleotide incorporation. 

This sequencing cycle does not require a washing step after each cycle, which improves the 

nucleotide incorporation frequency as well as sequence quality. The SMRT platform utilizes 

natural DNA polymerase property to incorporate 10 or more nucleotides per second in 

parallel (Shokralla et al., 2012). 
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Chapter 3: Evaluation of de novo transcriptome assemblies using paired-

end RNA-Seq data of the whitefly, Bemisia tabaci 

 

3.1 Introduction 

High-throughput sequencing has revolutionized research to understand and annotate genetic 

profiles of model and non-model organisms using RNA sequencing (O’Neil et al., 2013). 

RNA sequencing is a powerful and cost-effective way of studying transcriptome profiles of 

organisms in the absence of a reference genome (Zhao et al., 2011). To study such 

transcriptomes, many de novo transcriptome assembly programs are available for 

assembling short sequencing reads generated using Illumina and Roche platforms. However, 

in the absence of a reference transcript set, assembly evaluation can be difficult especially 

when the transcript expression levels are different or the number of gene isoforms present 

due to alternative splicing (Zhao et al., 2011). In addition to the complexity in assembling 

transcripts, many de novo assembly programs take a different approach for assembling raw 

sequencing reads, as well as provide multiple input parameters to allow variations in 

transcriptome assembly generation using the same data set (Smith-Unna et al., 2015). 

Commonly used quality parameters for evaluating such assemblies are contig length 

distribution, number of contigs, mean contig length (N50) etc. but these are primitive and 

often do not provide accurate measures of assembly quality (Li et al., 2014).  

While the transcriptome assembly is difficult, another important factor to consider is 

sequencing coverage. In genome assembly, sequencing coverage is generally uniform, 

whereas the transcriptome sequencing coverage is highly variable and depends on gene 

expression levels (Surget-Groba and Montoya-Burgos, 2010). It is therefore important to 

understand the overlap length between two sequences and assign a value to consider them 

as contiguous also referred to as k-mer length (Surget-Groba and Montoya-Burgos, 2010). 

The optimal k-mer value for any transcriptome assembly depends on the sequencing depth, 

read quality and complexity of the transcriptome to be assembled. Transcriptome assembly 

using higher k-mer lengths can recover longer and contiguous fragments while losing poorly 

expressed transcripts or with lower k-mer lengths to recover poorly expressed transcripts 

which will result in numerous fragmented transcripts (Surget-Groba and Montoya-Burgos, 

2010). Therefore, an approach with various k-mer lengths is highly desirable for de novo 

transcriptome assembly without compromising between these two extremes.  



15 
 

We designed this study to evaluate the transcriptome assembly of three B. tabaci 

populations, Israel B (IB), Israel Q (IQ) and Montpellier Q (MQ), which do not colonize 

cassava and three cassava colonizing populations, East African cassava Nam (AfC), East 

African cassava Ssanje (Ss) and West African cassava Nigeria (NigC) using the Illumina 

HiSeq 2000 platform. Here we used four de novo assemblers Trinity (Grabherr et al., 2011), 

SOAPdenovo-Trans (Xie et al., 2014), CLC Genomics Workbench (CLC bio) and Velvet 

(Zerbino and Birney, 2008) followed by Oases (Schulz et al., 2012) with different k-mer 

values to compare and evaluate the assemblies generated for these six B. tabaci 

transcriptome data sets. All de novo assemblers used in this study use de Bruijn graph for 

computational and memory efficiency, which in turn produces complex sub-graph structure 

of connecting nodes. Each node is connected with a series of edges and if this connection 

overlaps by k-1 nucleotides, then this connection can be considered as possible transcript. 

As each path represents the possible transcript, a scoring method applied to each graph relies 

on the original read sequences and the sequencing information to identify best possible 

transcripts (Grabherr et al., 2011).  

The Trinity assembler uses a novel error removal model for detecting variations in gene 

expression levels within each graph to score possible transcripts using dynamic 

programming while Oases uses a sub-graph structure to estimate all possible transcripts and 

these are scored based on a heuristic algorithm (Xie et al., 2014). SOAPdenovo-Trans 

incorporates the error removal model of Trinity and the robust heuristic approach of Oases 

for scoring using its own transitive reduction method to improve scaffolding graphs for more 

accurate results (Xie et al., 2014). The commercial CLC Bio de novo assembler was also 

used to measure the differences between both open source and commercial algorithms which 

are based on the same de Bruijn theory. In this study, we compared six B. tabaci 

transcriptome data sets using primary metrics as well as metrics based on read mapping and 

annotation to evaluate the assemblies. In addition, we applied multi k-mer strategy to 

examine how various k-mer length affected assembly outcomes.  
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3.2 Materials and Methods 

3.2.1 cDNA library preparation and Illumina sequencing 

Total RNAs were used to construct cDNA libraries for samples IB, IQ, MQ, AfC, Ss and 

NigC. Sequencing libraries for all six samples were generated using Illumina HiSeq 2000 

platform for both ends with read lengths of 100bp.  

3.2.2 Quality control 

Raw sequencing reads produced using Illumina HiSeq 2000 platform were first assessed 

using Cutadapt software (Martin, 2011) to remove adaptor contamination and were then 

quality checked using the FastQC program. The results showed base ambiguity for first 

~13bp in all samples which may be due to hexamer contamination in sequencing data and 

were subsequently trimmed using a custom Practical Extraction and Reporting Language 

(PERL) script to facilitate sequence assembly. 

3.2.3 De novo assembly 

Cleaned reads were de novo assembled using the Trinity (v2.0.6), SOAPdenovo-Trans 

(release 1.03), CLC Genomics Workbench (v7.4) and Velvet (v1.2.10) followed by Oases 

(v0.2.8). All the assemblies were performed using the same assembly parameters to keep the 

same condition for comparing and evaluating results. The parameters used with Trinity were 

–left (forward reads), --right (reverse reads), --seqType (FASTQ file type), --max_memory 

(memory used to run the program), --KMER_SIZE (25, 27 and 29) and --SS_lib_type 

(direction of reads). The CLC de novo assembly was run using k=25 (word size), k=27 and 

k=29 with automatic bubble size. The parameters used with SOAPdenovo-Trans were 

avg_ins = 260 (average insert size), reverse_seq = 0, asm_flags = 3, q1 = forward reads and 

q2 = reverse reads for –K (k-mer values) = 25, 27 and 29. Oases assembly pipeline was used 

for assembling quality reads using parameters –m 25 (initial k-mer value), -M 29 (last k-mer 

value), -fastq (input file type), -shortPaired (short sequencing reads), -separate (separate read 

files) using -ins_length (insert size) 260. 

3.2.4 Assembly statistics computation 

Assembly statistics for each data set were calculated using reference-free quality assessment 

tool TransRate (Smith-Unna et al., 2015). TransRate tool was run with parameters –

assembly (assembly file), --left (forward reads) and --right (reverse reads).  
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In addition, all assemblies were scored using DETONATE (DE novo TranscriptOme rNA-

seq Assembly with or without the Truth Evaluation) (Li et al., 2014). DETONATE consists 

of two scoring methods: RSEM-EVAL (RNA-Seq by Expectation-Maximization) and REF-

EVAL. RSEM-EVAL is a reference free evaluation method based on assembly and the 

sequencing reads used for that assembly while REF-EVAL requires a reference to score the 

assembly. As the genome information for B. tabaci is not available, we used RSEM-EVAL 

to score all assemblies using parameters --paired-end, upstream_read_file (forward reads), 

downstream_read_file (reverse reads) assembly_fasta_file and L (average fragment size). 

3.2.5 Annotation 

Assembled transcripts are often compared against protein databases of same or related 

species using BLAST to assess the assembly completeness. In the absence of full B. tabaci 

genome sequence, reference data set of Acyrthosiphon pisum and Diaphorina citri were 

used. Both A. pisum and D. citri are the members of the Hemiptera Group for which full 

genome information is available. Assembled sequences for all six samples were annotated 

against the A. pisum protein dataset (AphidBase, release v2.1b) and D. citri protein dataset 

using CRB-BLAST (Conditional Reciprocal BLAST) (Aubry et al., 2014) with parameters 

-query (query fasta file), -target (target fasta file as nucleotide or protein) and -evalue (default 

1e-05).  

3.2.6 Evaluating de novo assembly by re-aligning reads to assembled contigs 

To assess the representation of reads in assembled contigs, we used a Trinity bundled script 

bowtie_PE_separate_then_join.pl using the parameters --target (assembly file), --left (left 

reads), --right (right reads), --aligner bowtie, --p 8 (number of processors). Bowtie is a short 

read aligner mainly used to align large sets of short DNA sequences (reads) against a 

reference creating alignments scored properly and improperly paired alignments based on 

paired read alignment information such as orientation of pair and insert size. 

3.2.7 Assessment of assembly completeness 

The TransDecoder tool was used to identify likely coding regions against the set of 

assembled contigs. TransDecoder identifies long open reading frames (ORFs) and scores 

them according to their sequence composition. By default, it reports ORFs that are at least 

100 amino acids long. The completeness of assembled contigs were also evaluated using the 

Benchmarking Universal Single-Copy Orthologs (BUSCO) software (Simao et al., 2015). 
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BUSCO uses longest ORFs and Hidden Markov Model (HMM) amino acid profiles to align 

transcripts against the set of conserved ortholog gene sets. We used 2675 genes from 

arthropods to assess the completeness of transcriptome. 

3.2.8 Redundancy removal and generation of cluster assembly 

To generate meta assembly, all transcripts from different k-mer assemblies were clustered 

and redundancy removal were performed using the CD-HIT-EST (v4.6.4) (Fu et al., 2012) 

program with parameters –n 10, -T 12, -r 1 and –c 1.0. CD-HIT-EST was used to remove 

transcripts which are entirely covered by other transcripts with 100% identity as the merging 

different k-mer assemblies will introduce redundancy. The non-redundant transcripts with 

no less than 200bp were used to produce optimized cluster assembly. 
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3.3 Results 

3.3.1 B. tabaci transcriptome data 

A total of 46,892,996 quality trimmed reads for IB, 81,867,506 reads for IQ, 82,289,190 

reads for MQ, 30,310,262 reads with AfC, 38,438,672 reads for Ss and 43,590,886 reads for 

NigC were obtained with a read length of 87 bp (Figure 3.1). The reads obtained for all 

samples were of good quality with >35 Phred quality score (40 is the highest effective score 

that a single base can receive under normal conditions which indicates that there is a 1 in 

10,000 chance that the called base is incorrect) (Ewing and Green, 1998). 

3.3.2 Assembly statistics 

In the absence of a reference genome for B. tabaci, quality trimmed reads were de novo 

assembled using the Trinity, CLC Genomics, SOAPdenovo-Trans and Velvet followed by 

Oases using recommended transcriptome assembly parameters. We compared each of the 

assemblies using:  

(1) number of contigs assembled 

(2) the minimum and maximum length of assembled contig 

(3) mean contig length 

(4) number of contigs with length >1 kb  

(5) N50 length of contigs 

In addition to these primary assembly measures, we also compared the percentage of reads 

mapped along with the proportion of reads mapped to generate good assemblies, assembly 

score and an optimal assembly score. 

The total number of contigs assembled using k-25, k-27 and k-29 varied across four 

assemblers (Figure 3.2). The highest number of contigs produced per assembly was 153,888 

for IQ k-25 assembly. The contig number steadily decreased as the k-mer value increased 

from 25 to 29 for assemblies generated using the Trinity and Velvet/Oases, whereas the 

contig numbers increased for assemblies generated using the CLC and SOAPdenovo-Trans. 

The shortest contig reported by all assemblies was 75 bp for Velvet/Oases (k-25 Ss 

assembly). Though a number of contigs with shortest length were assembled in the 

Velvet/Oases assembly, it assembled the longest contig amongst all four assemblers with 

length of 36,897 bp for MQ k-25 assembly. The contigs from SOAPdenovo-Trans assembly 
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were relatively short with an average contig length between 430 bp and 675 bp compared to 

1060 bp to 1512 bp from Velvet/Oases assembly (Figure 3). The N50 contig length (Figure 

3.4) for SOAPdenovo-Trans and Velvet/Oases assemblies was approximately two times 

longer than that of Trinity and CLC. Here, N50 is the length of the longest contig where all 

the contigs of that length compose at least 50% of the bases of the assembly (Li et al., 2014). 

Though a greater number of contigs with length of >200 bp were assembled in the Trinity 

assemblies, the highest percentage of contigs with length >1 kb were assembled for 

Velvet/Oases assemblies (Figure 3.5).  
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(A) Raw forward primer derived reads 

 

(B) Trimmed forward primer derived reads 
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(C) Raw reverse primer derived reads 

 

(D) Trimmed raw reverse primer derived reads 

Figure 3.1: Quality of sequence reads determined by FastQC showed variation in base 

calling for first ~13bp and were trimmed to facilitate sequence assembly. A) Result of raw 

forward sequence reads for sample AfC where Y-axis represents percentage of base calling 

for each position in read and the X-axis shows position in read (bp). B) The result shows 

accurate base calling ratio after trimming first ~13bp. C) Result of raw reverse sequence 

reads for sample AfC. D) Trimmed reverse sequence reads. Similarly, all other samples were 

processed and trimmed for first ~13bp. 
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Figure 3.2: Number of contigs assembled using various assemblers and k-mer sizes.  

 

Figure 3.3: Average contig length of contigs assembled using Trinity, CLC, SOAPdenovo-

Trans and Velvet/Oases with k-mer size of 25, 27 and 29.  
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Figure 3.4: N50 values of contigs assembled using Trinity, CLC, SOAPdenovo-Trans and 

Velvet/Oases with k-mer size of 25, 27 and 29. 

 

Figure 3.5: Percentage of contigs assembled using Trinity, CLC, SOAPdenovo-Trans and 

Velvet/Oases with length greater than 1kb. 
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In addition to above primary quality metrics, all assemblies were scored using TransRate. 

TransRate uses reads as input to map contigs against reads to report quality scores for contigs 

and assemblies. TransRate reports two key reference-free statistics: the contig score and the 

assembly score. The contig score measures accuracy and completeness of assembly for each 

individual contig that are assembled from the read, whereas the assembly score measures 

accuracy and completeness of the whole assembly by combining the proportion of the reads 

used to calculate individual contig scores. An increased assembly score (maximum 1.0) 

correspond to an assembly that is more biologically accurate. The optimal assembly score 

(maximum 1.0) can be used to filter out bad contigs based on individual contig scores from 

an assembly, resulting only well-assembled contigs.  

Figure 3.6 shows that the assemblies generated using the Trinity mapped successfully 

compared to other three assembly programs. However, the percentage of reads mapped to 

assemblies ranged from 55-85% and thus shows that a significant amount of reads failed to 

be assembled by all four de novo assembly programs. The results also indicate that despite 

the assemblies generated by Velvet/Oases produced contigs with highest average length and 

N50 length; only about ~60% of total reads were mapped successfully. The optimal assembly 

score results in Figure 3.7 also showed that the Trinity outperformed other three de novo 

assembly programs. The assemblies generated using Trinity with k 27 for sample NigC 

produced the highest assembly score amongst all samples. Unfortunately the CLC 

assemblies for sample IQ with k-27 and 29 failed due to memory limitation even when 

running on Linux servers with 24 cores and 1 TB of memory and were not included in 

Figures 3.6 and 3.7.  

All assemblies were also scored using DETONATE to further evaluate the assemblies based 

on the percentage of reads that mapped successfully. The RSEM-EVAL method of 

DETONATE also uses reads to score each assembly using RSEM probabilistic model. In 

addition, RSEM-EVAL also provides a contig score based on how well each contig is 

supported by reads it is assembled from. As the RSEM-EVAL score is used for evaluating 

best assembly, the contig score can be used to optimize the assemblies by filtering low 

scoring contigs from assembly. The results in Figure 3.8 indicated that the Trinity produced 

most accurate assemblies for k-25, 27 and 29 based on RSEM-EVAL score as the higher 

scores are better than lower scores. The assemblies produced highest score were generated 

using k-29. The results also showed that despite the assemblies generated using Velvet/Oases 
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scored better in contig statistics, it scored worst amongst all four assemblers when compared 

using RSEM-EVAL score.  
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Figure 3.6: Percentage of good mappings where both paired end reads aligned in a correct 

orientation on the same contig without overlapping either end of the contig.  

 

Figure 3.7: Optimal assembly score obtained using TransRate by measuring accuracy and 

completeness of each assembly. 
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Figure 3.8: RSEM-EVAL scores for the B. tabaci transcriptome assemblies. The x-axis 

represents the RSEM-EVAL score for each assembly, with blue representing the highest 

RSEM-EVAL score. A) RSEM-EVAL scores calculated for assemblies generated using k-

mer 25. Here scores near to zero indicates more accurate assemblies. B) RSEM-EVAL 

scores calculated for assemblies generated using k-mer 27. C) RSEM-EVAL scores 

calculated for assemblies generated using k-mer 29. 
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3.3.3 Annotation Statistics 

Another approach using annotation metrics may be more appropriate for assessing assembly 

quality. For this approach, a closely related species with full genome information can be 

used as the closely related species are more likely to share common genes than distantly 

related species. In the absence of full genome information for B. tabaci, assembled contigs 

were annotated against a protein dataset of A. pisum and D. citri using CRB-BLAST. CRB-

BLAST uses bi-directional BLAST alignments using BLASTX (assembly to reference) and 

TBLASTN (reference to assembly). The main reason for annotating in both directions is to 

identify sequence and a protein that have a best match with each other known as reciprocal 

best hits (RBH), that the two sequences are orthologues and are derived from the same 

ancestral locus. 

The results in Figures 3.9 and 3.10 indicated that the assemblies generated using the Trinity 

produced highest number of reciprocal best hits whereas the assemblies generated using 

CLC produced lowest number of reciprocal best hits for all six samples.  
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Figure 3.9: Number of reciprocal best hits against Acyrthosiphon pisum protein dataset using 

CRB-BLAST. 

 

 

Figure 3.10: Number of reciprocal best hits against Diaphorina citri protein dataset using 

CRB-BLAST. 
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3.3.4 Evaluating the quality of assembly 

To assess the completeness of assemblies, we have aligned raw RNA-Seq reads from each 

sample back to assemblies generated using the Trinity, CLC, SOAPdenovo-Trans and 

Velvet/Oases with k-mer 25, 27 and 29 to quantify read representation. The script aligns 

each read file to assembly separately, and then links up the pairs to count number of reads 

that are found as properly paired in addition to those that align to separate contigs also 

referred to as improper pairs. The program also provides indication of only left and right 

aligning pairs to a contig.  

Generally, in a high-quality assembly, the higher the percentage of reads exist as proper pairs 

less the possibility of fragmented assembly. Here, in Figure 3.11, the average percentage of 

paired end reads classed as proper pairs were ~84% (IB), ~81% (IQ), ~85% (MQ), ~79% 

(AfC), ~89% (Ss) and 83% (NigC) for assemblies generated using the Trinity. The results 

showed that the assembled contigs of Trinity aligns well with the reads in comparison with 

other assemblers. The results also indicate that only ~10-15% contigs do not match with the 

reads and thus can be classified as improperly paired. There could be biological differences 

within the samples that may influence the mapping orientation, but these could not be 

quantified or accounted for in the analysis due to the lack of a reference genome. Such 

differences include gene duplication, gene deletion and insertions.  
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Figure 3.11: Percentage of properly and improperly paired reads for assemblies generated 

using Trinity, CLC, SOAPdenovo-Trans and Velvet/Oases with k-mer 25, 27 and 29. A) 

Representation of reads against assemblies of sample IB. B) Representation of reads against 

assemblies of IQ. C) Representation of reads against assemblies of MQ. D) Representation 

of reads against assemblies of AfC. E) Representation of reads against assemblies of Ss. F) 

Representation of reads against assemblies of NigC.   
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3.3.5 Assessment of transcriptome completeness 

Transcriptome completeness is an important measure of quality of assembly as well an 

important measure for downstream analysis. All assembled transcripts were assessed using 

TransDecoder to identify full length, partial and internal contigs based on open reading 

frames (ORFs). The contigs assembled using the Oases were found to encode highest 

percentage of full length ORFs compared to assemble using the CLC, Trinity and 

SOAPDenovo (Figure 3.12). Also the total percentage of internal ORFs were comparatively 

less within Oases assemblies. The CLC assemblies were found to be highly fragmented with 

highest percentage of internal ORFs; missing both start and stop codons.  

BUSCO uses homology modelling to search single copy orthologs curated based on 

sequence uniqueness and conservations levels derived from hundreds of genomes (Simao et 

al., 2015). We measured the completeness of assembled transcripts using 2,675 conserved 

genes from available arthropod genomes. We found that transcripts assembled using k-25 

had highest number of hits compared to assembled using K-27 and 29. Here, we have only 

selected Trinity assemblies as all assembly evaluation statistics suggested that the Trinity 

outperformed other three assemblers.  

We found that 73% (IB), 79% (IQ), 82% (MQ), 59% (AfC), 70% (Ss) and 72% (NigC) of 

genes had a hit in our assembled transcriptome, choosing only assemblies using k-25. 

Although k-25 assemblies were better, other assemblies using k-27 and 29 also resulted in a 

relatively similar number of hits (Figure 3.13).  
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Figure 3.12: Total percentage of contigs identified as complete, partial and internal. Here, 

contigs containing start and stop codon referred as complete; 5prime-partial, missing start 

codon; 3prime-partial, missing stop codon and internal, missing both start and stop codons. 

A) Number of protein coding contigs predicted in sample IB. B) Number of protein coding 

contigs predicted in IQ. C) Number of protein coding contigs predicted in MQ. D) Number 

of protein coding contigs predicted in AfC. E) Number of protein coding contigs predicted 

in Ss. F) Number of protein coding contigs predicted in NigC.  
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Figure 3.13: BUSCO hits against assembled transcripts showing similarity between all three 

k-mer values. 

 

 

 

 

 
 
 
 

 

 



39 
 

3.3.6 Assembly clustering and optimization 

The generation of clustered assemblies (CAs) was performed using CD-HIT-EST with 100% 

identity cut-off to ensure all duplicate transcripts are removed for downstream analysis. 

Alongside CD-HIT-EST, we also used custom Perl script to remove those which were 100% 

identical both in length and in similarity to save computing time while performing CD-HIT-

EST. Figure 3.14 shows the CAs obtained after processing all Trinity transcripts with 

varying k-mer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



40 
 

 

Figure 3.14: Number of contigs decreased after removing transcripts which were entirely 

covered by other transcripts with 100% identity. 
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3.4 Discussion 

With developments in the past decade in next generating sequencing, short read 

transcriptome analysis has become more commonly used for studying non-model organisms. 

However, the transcriptome assemblies generated using short reads need to be validated as 

accurate de novo assembly is crucial for downstream analysis (Amin et al., 2014). In this 

study, we compared and evaluated the performance of four de novo transcriptome 

assemblers: Trinity, CLC, SOAPdenovo-Trans and Velvet followed by Oases using B. 

tabaci transcriptome data sets. In order to reveal the important factors for selecting the best 

assembly, we measured results in terms of contig statistics, assembly statistics and 

annotation statistics using different reference-free quality measures. Of particular interest in 

finding the best assembly parameters was to set some guidelines for assembling short 

Illumina reads in the absence of a reference genome.  

Comparison of de novo transcriptome assemblies showed that each assembly program results 

in different outcomes even though the assemblers used in this study are all based on de-

Bruijn graph. The multi k-mer approach used in this study showed that the number of contigs 

and length of contigs varied across assemblies using the same data set. In our comparison of 

four de novo assemblers using B. tabaci short read Illumina data, we found that the Trinity 

outperformed CLC, SOAPdenovo-Trans and Velvet/Oases in the percentage of reads 

mapped successfully, overall assembly score and annotation score. Here, we dismissed other 

reference free measures such as average contig length, number of contigs and N50 as Trinity 

produced the highest number of contigs with relatively small contig average length and N50 

lengths compared to Velvet/Oases. These suggested that the primary measures for evaluating 

assemblies are unclear and requires other measures to assess the quality of assemblies. 

Overall, these results are similar to those obtained by O’Neil and Emrich (2013) when they 

assessed the quality of Drosophila melanogaster data set. They also found that the primary 

assembly measures such as contig count, mean length and N50 length repurposed from 

genome assembly evaluation metrics may not be useful for assessing quality of 

transcriptome assemblies.  

When scored using TransRate, Trinity produced the best optimal assembly score based on 

high scoring contigs obtained for each assembly. Out of three k values, assembly using k-25 

produced best assemblies, while k-27 and k-29 assemblies were comparable with k-25. 

Similarly, the highest percentage of contigs were successfully mapped back to reads for 
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assemblies generated using the Trinity as shown in Figure 3.6 compared to CLC, 

SOAPdenovo-Trans and Velvet/Oases. These results suggested that the contigs assembled 

using CLC, SOAPdenovo-Trans and Velvet/Oases did not find a good match within reads 

or that the reads aligned to multiple contigs due to sequence similarity between contigs. This 

shows redundancy particularly in Velvet/Oases assemblies as only about ~60% of the 

contigs were successfully mapped to reads. Another reason could be that the reads originated 

from different contigs were merged into same contigs in the form of chimeric contigs. These 

chimeric sequences can cause major problems in downstream analysis, especially when 

working on expression analysis studies (Mundry et al., 2012).  

We also evaluated assemblies based RSEM-EVAL probability model. RSEM-EVAL 

assembly score generated for all assemblies using k-25, 27 and 29 suggested that the 

assemblies produced using Trinity with k-29 performed better. This result was contrary to 

results produced by an algorithmically similar program TransRate. Of the evaluation metrics 

using mapping, no definite results were obtained to score best assembly with optimal k-mer 

size, annotation based statistics were used to further support these findings. However, in the 

absence of reference genome, assembled transcriptome data sets are often compared against 

closely related, well annotated species to understand assembly completeness (O’Neil and 

Emrich, 2013). We annotated assembled contigs of each assembly against Acyrthosiphon 

pisum and Diaphorina citri protein data set using CRB-BLAST to produce best possible 

match using best e-value cutoff scores, which are important for finding best possible hits. 

When searched in both directions using CRB-BLAST (i.e. BLASTX and TBLASTN), 

assemblies using Trinity with k-29 produced marginally higher hits, 19,173 for sample AfC, 

20,464 for Ss and 20,713 for NigC compared to 19,161 (AfC), 20,387 (Ss), 20,615 (NigC) 

with k-27 and 19,145 (AfC), 20,371 (Ss) and 20,565 (NigC) with k-25, whereas assemblies 

generated using Trinity with k-25 produced highest hits for samples IB (19,088) and IQ 

(24,085) against Acyrthosiphon pisum (Figure 3.9). Whereas, the CRB-BLAST results in 

Figure 3.10 showed that the assemblies using Trinity with k-27 produced slightly higher hits 

for samples MQ (21,771), AfC (19,295) and Ss (20,373) against Diaphorina citri than 

assemblies with k-25 and k-29.  

While evaluating the assembly completeness by calculating the read representation, we 

found that the Trinity assemblies aligns well with raw reads in comparison to other 

assemblies but again as observed in all other evaluation statistics, we found no single 
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dominant k-mer across all samples as the best assembly. Sample IB, assembled best using 

k-mer 29, whereas k-mer 25 was best for IQ and k-mer 27 for all other samples MQ, AfC, 

Ss and NigC. We used TransDecoder to predict full length protein coding contigs within 

assemblies and found that the Trinity assemblies had highest number of complete ORFs. 

While this suggested that Trinity assemblies were best but when used total percentage of 

contigs with complete ORFs, Oases assemblies were found to be better than the Trinity. 

Here, we used percentage instead counts as the number of contigs were varying. But when 

we compared assemblies for completeness using BUSCO, we found that the Trinity 

assemblies with k-mer 25 had highest hits against referenced arthropod genes which suggest 

that the default k-mer 25 set as default for earlier version of the Trinity assembler is found 

to be optimal in this case. But then when we compared the same results with k-mer 27 and 

29, the difference was relatively small, which we have observed in all our evaluation 

statistics. 

In summary, our analysis indicated that Trinity performed best in assembling full length 

transcripts based on percentage of reads successfully mapped back to contigs, number of 

CRB BLAST hits obtained against A. pisum and D. citri and based on BUSCO analysis. 

However, the in-depth analysis using different k-mer sizes for evaluating assemblies 

suggested that no single k-mer value exhibited as optimal for data used in this study and 

therefore we used clustered assembly using the Trinity transcripts by merging all k-mer 

assemblies into one. But because the redundancy in transcripts while generating CAs can 

cause bias in downstream analysis, we used CD-HIT-EST to remove all redundant 

transcripts with 100% similarity. While optimizing and analysing de novo assembly of C. 

sinensis using SOAPdenovo, ABySS, trans-ABySS, Oases and Trinity, Zhao et al. 2011 

found that Trinity consistently performed better in terms of transcript accuracy, integrity, 

completeness and sensitivity of assembled transcripts under single k-mer strategy as the 

older version of Trinity (release 20110519) did not support multi k-mer values and therefore 

suggested that assembly results can be further improved if MK strategy is applied to Trinity. 

Zhao et al. 2011 also found that Trinity reduces number of fused transcripts by using strand 

specific assembly parameters when paired-end reads were used. Furthermore, by taking the 

advantage of multi k-mer properties, we incorporated all contigs into one final assembly to 

incorporate different quantities of unique contigs produced in each single k-mer assembly to 

improve biological information retrieval from transcriptome (Haznedaroglu et al., 2012). 
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Chapter 4: Annotation of the Bemisia tabaci transcriptome derived from 

de novo clustered assembly  

 

4.1 Introduction 

The whitefly B. tabaci is a species complex of more than 34 morphologically 

indistinguishable cryptic species (Boykin and De Barro, 2014). Two species of the complex, 

Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED), referred to previously as 

the B and Q biotypes have risen to international importance due to their damage potential 

(Wang et al., 2011). Despite B. tabaci’s global importance as one of the world’s top 100 

invasive species, limited genomic sequence resources are available in public domains (Wang 

et al., 2010). Currently (October 3, 2016), there are about 12,094 EST, 14,359 protein and 

260,065 nucleotide sequences available for B. tabaci on NCBI (source: 

http://www.ncbi.nlm.nih.gov). While efforts to produce complete genome sequence of B. 

tabaci remain unpublished, cDNA sequencing to study candidate genes are ongoing.  

Over the past years, next generation sequencing has significantly improved the efficiency 

and speed of gene discovery and also accelerated research in areas of gene-expression 

profiling and comparative genomics studies (Wang et. al., 2010). Furthermore, next 

generation sequencing, especially RNA sequencing has been widely used to provide 

information on transcript profiles of organisms, and also to understand biological processes 

in both well-studied model organisms and non-model organisms (Zhao et al., 2011). Recent 

transcriptome studies on B. tabaci populations MED and MEAM1 revealed the sequence 

divergence between these two species of whiteflies and also provided a useful resource to 

study evolutionary relationships between species, insecticide resistance and genes 

responsible for host plant utilization (Wang et al., 2011). 

The aim of this study was to generate transcriptome profiles of cassava and non-cassava 

colonizing B. tabaci populations. These transcriptome datasets will provide useful molecular 

and functional resource to understand and compare sequence divergence between cassava 

and non-cassava colonizing B. tabaci populations as well as to shed light on possible 

mechanisms that enable B. tabaci to utilize cassava as a host plant. The comparison between 

samples used in this study and published B. tabaci transcriptome of MED (Wang et al., 
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2010), MEAM1 (Wang et al., 2011; Xie et al., 2012) and Asia II 3 (Wang et al., 2012) is 

essential to understand the roles of conserved genes and their global sequence divergence.  
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4.2 Methods 

4.2.1 Annotation 

For functional annotation, Trinity assembled RNA-seq contigs obtained from clustered-

assembly for all samples were searched using BLASTx (Altschul et al., 1990) against the 

non-redundant (nr) NCBI nucleotide database using a cut-off E-value of 10-3. The top-hits 

for BLASTx results were retrieved and stored in a separate file for statistical analysis. The 

publicly available version of Blast2GO V.2.8.0 (Gotz et. al., 2008) was then used to perform 

Gene Ontology (GO), Enzyme Code (EC) mapping and to identify KEGG (Kyoto 

Encyclopaedia of Genes and Genomes) metabolic pathways helped by BLASTx results. 

Amino acid sequences of all samples were obtained using the TransDecoder tool with default 

parameters. The Pfam database was searched using hmmscan (Finn et al., 2011) to identify 

conserved domains in protein sequences. 

4.2.2 Secretome identification 

The presence of signal peptide motif in protein sequences of B. tabaci was predicted using 

the SignalP (Nielsen, 2017) with default parameters. TMHMM (Krogh et. al., 2001) program 

was used to predict transmembrane regions in amino acid sequences using default 

parameters.     

4.2.3 Molecular marker identification 

To identify Simple Sequence Repeats (SSR), contigs were searched for identification and 

localization of microsatellites using MIcroSAtellite identification tool (MISA PERL script) 

(Thiel et al., 2003). Microsatellites were identified with parameters: mononucleotide repeats 

with >=10 repeats, di-nucleotide repeats with >=6 repeats and tri-, tetra-, penta- and hexa-

nucleotide repeats with >=5 repeats. Compound microsatellites were examined with an 

interval of <=100 bp of the total motif length.  Statistical analysis was performed to 

summarize the number of SSR with type of motif and the length distribution of motif.  
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4.3 Results  

4.3.1 Overview of assemblies 

After eliminating redundant contigs and clustering all k-mer assemblies for each sample, 

final clustered assemblies were generated using the Trinity based on evaluation statistics 

discussed in Chapter 3. The assembled contigs for all samples were varying in length from 

224 bp to 32,043 bp. The most number of contigs (287,559) were assembled for sample Ss 

with a mean length (N50) of 986.92bp and total size of 109,930,193bp. The number of 

contigs assembled for sample Ss (287,559) and sample NigC (280,616) were higher than the 

samples IB, IQ, MQ and AfC with 185,895, 257,163, 256,401 and 242,664 respectively as 

shown in Table 4.1.  

Most of the assembled contigs (64.74% (IB), 63.06% (IQ), 59.47% (MQ), 73.16% (AfC), 

68.91% (Ss) and 65.50% (NigC)) were 200 to 1000 bp in length, followed by 1000 to 2000 

bp and, 2000 to 3000 bp in length as shown in Figure 4.1. Although the majority of contigs 

fall between 200 to 1000 bp, a total of 4194 (IB), 7245 (IQ), 9654 (MQ), 1704 (AfC), 3131 

(Ss) and 4293 (NigC) contigs with length >5,000 bp were obtained.  
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IB 
 

 
IQ 

 
MQ 

 
AfC 

 
Ss 

 
NigC 

Total number 
of reads 

46,892,996 81,867,506 82,289,190 30,310,262 38,438,672 43,590,886 

Total base 
pairs (bp) 

115,514,683 150,689,812 175,787,885 90,710,656 109,930,193 121,086,445 

Read length 
(bp) 

87 87 87 87 87 87 

Total number 
of contigs 

185,895 257,163 256,401 242,664 287,559 280,616 

Mean length of 
contigs 

1154.6 1221.26 1354.83 881.4 986.92 1080.84 

Min length of 
contigs (bp) 

224 224 224 224 224 224 

Max length of 
contigs (bp) 

21,769 26,405 26,876 22,130 20,496 32,043 

GC content 
(%) 

39 39 39 38 39 38 

Table 4.1: Total number of sequencing reads obtained from Illumina paired-end sequencing 

and the number of contigs obtained by clustering contigs assembled using the Trinity 

software.  

 

Figure 4.1: Contig length distribution of six samples based on Trinity assembly. All 

assembled contigs were used to see the differences in length and the number of contigs 

assembled for each sample. Y-axis represents the length of each assembled contig for each 

sample. X-axis indicates the total number of contigs assembled for each sample. 
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4.3.2 Functional annotation 

To assess the putative function, all assembled contigs were submitted to BLASTx similarity 

search against NCBI non-redundant protein database with an E-value cut-off of 10-3. Using 

this approach, 70,648 (IB), 98,777 (IQ), 95,895 (MQ), 81,023 (AfC), 97,157 (Ss) and 96,569 

(NigC) contigs with significant BLASTx hits were found. Of these, a total of 22,122 (IB), 

27,894 (IQ), 23,535 (MQ), 25,290 (AfC), 26,276 (Ss) and 25,558 (NigC) contigs 

corresponded to unique protein accessions in the NR protein database.  

The E-value distribution (Figure 4.2) of the BLASTx top hits revealed that 61% of the 

mapped sequences showed strong homology (smaller than 1.0E-40) for sample IB, 62% for 

IQ, 65% for MQ, 57% for AfC, 60% for Ss and 62% for NigC, and other 39% (IB), 38% 

(IQ), 35% (MQ), 43% (AfC), 40% (Ss) and 38% (NigC) of the contigs ranged between 1.0E-

4 to 1.0E-40. The sequence similarity distribution graph (Figure 4.3) of the predicted proteins 

showed that 40.86% (IB), 39.55% (IQ), 41.98% (MQ), 40.14% (AfC), 40.93% (Ss) and 

41.57% (NigC) of the contigs have a similarity ranging from 40% to 60%, while 12.66% 

(IB), 14.73% (IQ), 10.89% (MQ), 13.51% (AfC), 12.20% (Ss) and 11.70% (NigC) of the 

contigs showed similarity higher than 80%. 
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Figure 4.2: E-value distribution of top BLASTx hits for all samples showed similar 

distribution patterns amongst samples. 

 

Figure 4.3: Sequence similarity distribution of top BLASTx hits for all samples. Y-axis 

represents the number of BLASTx top hits and the X-axis represents the percentage 

identities.  
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Species distribution of BLASTx top hits for all samples is shown in Figure 4.4. The highest 

percentage (23.06% (IB), 20.40% (IQ), 22.56% (MQ), 23.82% (AfC), 23.15% (Ss), 23.48% 

(NigC) of the contigs were matched to termite (Zootermopsis nevadensis). Besides the Z. 

nevadensis, the greater number of contigs matched to other insect species were 

Acyrthosiphon pisum, Diaphorina citri, Tribolium castaneum, Pediculus humanus and 

Athalia rosae. 
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Figure 4.4: Top hit species distribution of the total number of homologous sequences 

matched with an e-value cut-off of 1.0E-3 against NR database. The horizontal bar represents 

the total number of hits found in each species.   

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Zootermopsis nevadensis

Acyrthosiphon pisum

Diaphorina citri

Tribolium castaneum

Pediculus humanus corporis

Athalia rosae

Bemisia tabaci

Orussus abietinus

Nasonia vitripennis

Riptortus pedestris

Fopius arisanus

Megachile rotundata

Lasius niger

Microplitis demolitor

Dendroctonus ponderosae

Solenopsis invicta

Cerapachys biroi

Linepithema humile

Harpegnathos saltator

Nilaparvata lugens

IB IQ MQ AfC Ss NigC



53 
 

              

               

              

               

 

58.73

36.88

4.4

62.7

33.06

4.24

<0 . 8 0 . 8 ‐ 1 > 1

P
er

ce
n

ta
ge

 o
f 

co
n

ti
gs

Ortholog hit ratio

(A)

ZN‐IB AP‐IB

56.02

39.52

4.46

59.9

34.03

6.07

<0 . 8 0 . 8 ‐ 1 > 1

P
er

ce
nt

ag
e 

of
 c

on
ti

gs
Ortholog hit ratio

(B)

ZN‐IQ AP‐IQ

52.91
42.52

4.57

56.56

37.24

6.2

<0 . 8 0 . 8 ‐ 1 > 1

P
er

ce
nt

ag
e 

of
 c

on
ti

gs

Ortholog hit ratio

(C)

ZN‐MQ AP‐MQ

66.66

30.52

2.82

68.37

28.18

3.45

<0 . 8 0 . 8 ‐ 1 > 1

P
er

ce
nt

ag
e 

of
 c

on
ti

gs

Ortholog hit ratio

(D)

ZN‐AfC AP‐AfC



54 
 

              

Figure 4.5: Comparison between Z. nevadensis and A. pisum using ortholog hit ratio shows 

the percentage of contigs that are likely to be fully assembled. Here, we have calculated the 

ortholog hit ratio of total hits obtained for Z. nevadensis (ZN) and A. pisum (AP) to identify 

what percentage of contigs are matching against each organism. Ratio 1.0 indicates fully 

assembled whereas ratios <1.0 indicates partially assembled contigs. Ratios >1.0 indicates 

insertions within contigs. A) Ortholog hit ratio scores for sample IB. B) Ortholog hit ratio 

scores for sample IQ. C) Ortholog hit ratio scores for sample MQ. D) Ortholog hit ratio 

scores for sample AfC. E) Ortholog hit ratio scores for sample Ss. F) Ortholog hit ratio scores 

for sample Ss. 
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4.3.3 Gene Ontology (GO) classification and pathway analysis 

The B. tabaci transcriptome was annotated using GO terms based on BLASTx hits. GO is 

an international classification system to describe the functions and properties of genes in any 

organism. A total of 164,599 (IB), 228,062 (IQ), 210,474 (MQ), 197,546 (AfC), 225,881 

(Ss) and 225,058 (NigC) GO terms were used to categorized the functions of predicted B. 

tabaci proteins into three main categories and 63 level-2 sub-categories, i.e., biological 

process (27 sub-categories), molecular function (14 sub-categories) and cellular component 

(22 sub-categories).  

A frequency distribution of the number of contigs mapped to biological process, molecular 

function and cellular component is depicted in Figure 4.6. The majority of the GO terms 

were assigned to biological process, followed by cellular component and molecular function. 

Of these, the highly represented terms for biological process were metabolic process 

(20.54% (IB), 20.56% (IQ), 19.76% (MQ), 21.18% (AfC), 20.98% (Ss), and 20.97% (NigC)) 

and cellular process (19.46% (IB), 19.40% (IQ), 19.49% (MQ), 19.76% (AfC), 19.65% (Ss), 

and 19.62% (NigC)). Within molecular function category, catalytic activity (42.70% (IB), 

42.64% (IQ), 42.74% (MQ), 43.70% (AfC), 43.57% (Ss), and 43.55% (NigC)) and binding 

(42.66% (IB), 42.46% (IQ), 42.68% (MQ), 42.13% (AfC), 42.29% (Ss), and 42.48% (NigC)) 

prominently represented GO terms, while the dominant GO terms for cellular component 

were cell (22.34% (IB), 21.92% (IQ), 22.34% (MQ), 22.11% (AfC), 21.87% (Ss), and 

22.09% (NigC)), cell part, organelle and membrane. Figure 4.7 showed that contigs with 

smaller length were annotated with most number of GO terms compared to longer contigs. 

 

 

 

 



56 
 

 

 

0 5000 10000 15000 20000 25000

metabolic process

single-organism process

regulation of biological process

response to stimulus

signaling

developmental process

negative regulation of biological process

reproduction

reproductive process

growth

behavior

biological phase

detoxification

cell aggregation

Number of contigs

(A)
Biological Process

IB IQ MQ AfC Ss NigC

0 2000 4000 6000 8000 10000 12000 14000 16000

cell
cell part

organelle
membrane

organelle part
macromolecular complex

membrane part
membrane-enclosed lumen

extracellular region
extracellular region part

synapse
cell junction

supramolecular fiber
virion

synapse part
virion part

extracellular matrix
extracellular matrix component

nucleoid
other organism

other organism part
symplast

(B)
Cellular Component

IB IQ MQ AfC Ss NigC



57 
 

 

Figure 4.6: Histogram distribution of GO functional categories of samples IB, IQ, MQ, AfC, 

Ss and NigC. The results were categorized based on biological process (A), cellular 

component (B) and molecular function (C) and were further grouped into level-2 sub-

categories on X-axis with number of contigs present in each sub-category on Y-axis. 
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(F) 

Figure 4.7: Length distribution of contigs annotated with GO terms. The graph also shows 

the percentage of contigs annotated with length X. Here, A, B, C, D, E and F represents B. 

tabaci populations IB, IQ, MQ, AfC, Ss and NigC respectively.  
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4.3.4 Biological pathway and enzyme classification of B. tabaci 

To identify the potential contigs involved in biological pathways in the B. tabaci samples, 

annotated contigs were searched against Kyoto Encyclopedia of Genes and Genomes 

(KEGG) database. A total of 12,557 (IB), 18,894 (IQ), 15,333 (MQ), 17,432 (AfC), 20,304 

(Ss) and 18,775 (NigC) contigs were assigned to five main categories in KEGG database, 

i.e., metabolism, genetic information processing, environmental information processing, 

organismal systems and human diseases. A total of 128 (IB), 139 (IQ), 128 (MQ), 132 (AfC), 

131 (Ss) and 132 (NigC) pathways were predicted using Blast2GO annotation tool. Among 

the 5 main categories, metabolism represented 93.27% (IB), 94.09% (IQ), 93.61% (MQ), 

95.09% (AfC), 95.20% (Ss) and 94.76% (NigC) as shown in Figure 4.8. Within the 

metabolism, nucleotide metabolism represented most number of contigs (2,377 (IB), 3,354 

(IQ), 2,848 (MQ), 3,197 (AfC), 3,545 (Ss) and 3,397 (NigC)) followed by metabolism of 

cofactors (2,031 (IB), 3,034 (IQ), 2,565 (MQ), 2,839 (AfC), 3,215 (Ss) and 3,088 (NigC) 

and vitamins and carbohydrate metabolism. In contrast, immune system of organismal 

systems and drug resistance of human diseases only matched 458 (IB), 645 (IQ), 505 (MQ), 

415 (AfC), 490 (Ss), 486 (NigC) and 2 (IB), 3 (IQ), 1 (MQ), 1 (AfC), 2 (Ss), 2 (NigC) 

respectively. 

By searching against the enzyme database using the Blast2Go, a total of 8,927 (IB), 12,616 

(IQ), 10,935 (MQ), 11,292 (AfC), 12,652 (Ss) and 12,308 (NigC) contigs were annotated 

with enzyme codes. The annotated contigs were classified into main six categories: 

oxidoreductases (10,302 contigs), transferases (18,174 contigs), hydrolases (31,578 contigs), 

lyases (2,763 contigs), isomerases (2,029 contigs) and ligases (3,884 contigs) (Figure 4.9). 

The most abundant enzyme types were acting on acid anhydrides of hydrolases with total 

number of contigs present in sample IB were 1,674, 2,443 for IQ, 2,028 for MQ, 2,333 for 

AfC, 2,570 for Ss and 2,436 for NigC. The second most abundant enzyme sub-class 

belonged to transferring phosphorous-containing groups in class transferases.  
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Figure 4.8: Analysis of KEGG pathway annotations of samples IB, IQ, MQ, AfC, Ss and 

NigC. Total number of pathways present in each sample were divided into main categories 

and were further divided into sub-categories with the number of contigs present in each sub-

category. 
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Figure 4.9: Classification of potential enzyme genes in six B. tabaci populations. Six main 

enzyme classes were further divided into sub-classes. A) Classification of enzyme genes into 

category oxidoreductases. B) Classification of enzyme genes into category transferases. C) 

Classification of enzyme genes into category hydrolases. D) Classification of enzyme genes 

into category lyases. E) Classification of enzyme genes into category isomerases. F) 

Classification of enzyme genes into category ligases. 
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4.3.5 Domain prediction 

Using the hmmscan script for domain prediction, the total number of hits found were 5,190 

in IB, 12,138 in IQ, 11,779 in MQ, 11,371 in AfC, 11,743 in Ss and 11,703 in NigC. There 

were 11 domains found in IB that were absent in IQ and MQ. Whereas, 1553 domains found 

in IQ that were absent in IB and MQ and there were 1197 domains found in MQ that were 

absent in IB and IQ. Figure 4.10 also shows that the common domains found between IQ 

and MQ were much higher in number compared to found common between IB and IQ and 

IB and MQ. While in the case of cassava colonizing group, 640 domains were found in AfC 

that were absent in Ss and NigC. Likewise, 718 domains were found in Ss that were absent 

in AfC and NigC and 702 domains were found in NigC that were absent in AfC and Ss. 
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Figure 4.10: Venn diagram showing number of Pfam domains found in cassava and non-

cassava colonizing B. tabaci populations.  
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4.3.6 Estimation of transcriptome completeness 

To estimate the transcriptome completeness, each assembled contig and its best BLASTx hit 

were considered orthologs to calculate the “Ortholog hit ratio”. For this study, hit region of 

the contig is considered as an estimator of “putative coding region”. The ortholog hit ratio 

can be calculated by dividing the length of putative coding region of contig by the total 

length of ortholog matched against that contig (O’Neil et al., 2010). It is an important 

indicator of percentage of relative insertions present in both contigs and B. tabaci orthologs. 

The results as shown in Figure 4.11 indicate that 1613 (IB), 2000 (IQ), 2067 (MQ), 1837 

(AfC), 2175 (Ss) and 2208 (NigC) transcripts were fully assembled based on “Ortholog hit 

ratio” of 1.0 (O’Neil et al., 2010), whereas a high number (IB (66,353), IQ (55,200), MQ 

(89,552), AfC (76,924), Ss (91,600), NigC (90,843)) contigs fall below 1.0. A ratio greater 

than 1.0 indicates large insertions in contig sequences. The total number of sequences found 

for ratios >1.0 were 2682 (IB), 3000 (IQ), 4276 (MQ), 2262 (AfC), 3382 (Ss) and 3518 

(NigC).  

 



72 
 

 

Figure 4.11: Relationship between ortholog hit ratio and ortholog length for different B. 

tabaci populations. Ortholog hit ratios were calculated based on BLASTx top hits, where 

the ratio of 1.0 indicates the contig is likely to be fully assembled. Ratios >1.0 indicates 

insertions in contigs and ratios <1.0 indicates partially assembled contigs. 
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4.3.7 Secretome of B. tabaci 

Secreted pathogenic proteins also known as secretome are crucial for establishing infection 

on the host plant. These secretory proteins may affect the plant defence mechanism and 

cellular processes to support the needs of invading pathogens (Thakur et al., 2013). Here we 

used SignalP to predict the presence of signal peptides and TMHMM to predict the presence 

of transmembrane helices in all B. tabaci samples. Total number of contigs that contain the 

signal peptides were 7492 in sample IB, 10,322 in IQ, 10,422 in MQ, 7358 in AfC, 9876 in 

Ss and 10,361 in NigC (Figure 4.12). The number of contigs that contain transmembrane 

helices were 13,718 in IB, 18,907 in IQ, 20,740 in MQ, 13,685 in AfC, 18,219 in Ss and 

19,097 in NigC. 

Those proteins which contain signal peptides but lack transmembrane helices are considered 

as secreted proteins. Following these criteria, a total of 5724 (IB), 7663 (IQ), 8477 (MQ), 

5507 (AfC), 7511 (Ss) and 7552 (NigC) were predicted to be secreted (Figure 4.13).  
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Figure 4.12: The distribution of predicted signal peptides based on probability score. Here, 

the probability score of 1 indicates the contig likely to contain signal peptide motif.  

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000

S
ig

na
lP

 s
co

re

Number of contigs

IB

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000

S
ig

na
lP

 s
co

re

Number of contigs

IQ

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000

S
ig

na
lP

 s
co

re

Number of contigs

MQ

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000

S
ig

na
lP

 s
co

re

Number of contigs

AfC

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000

S
ig

na
lP

 s
co

re

Number of contigs

Ss

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000

S
ig

na
lP

 s
co

re

Number of contigs

NigC



75 
 

 

Figure 4.13: The distribution of predicted secretome proteins in B. tabaci populations. 
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4.3.8 SSR discovery 

For identification of SSRs, contigs of B. tabaci samples were analysed using MISA 

(MIcroSAtellite identification tool) Perl script. SSRs or microsatellites are polymorphic 

repeat regions of 2 to 6 base pairs in length present in genomic DNA. A total of 65,410 (IB), 

105,149 (IQ), 94,941 (MQ), 50,844 (AfC), 65,830 (Ss) and 74,353 (NigC) SSRs were 

identified in 185,895 (IB), 257,163 (IQ), 256,401 (MQ), 242,664 (AfC), 287,559 (Ss) and 

280,616 (NigC) contigs, of which 14,239 (IB), 23,976 (IQ), 21,249 (MQ), 9,515 (AfC), 

12,135 (Ss) and 14,426 (NigC) contigs contained more than 1 SSR (Table 4.2). Of these 

SSRs, the largest fraction was mononucleotides, followed by tri-nucleotides and di-

nucleotides. The most abundant of mononucleotide was poly-T, accounting for 40.48% (IB), 

41.73% (IQ), 39.48% (MQ), 40.05% (AfC), 39.83% (Ss) and 39.51% (NigC) followed by 

the poly-A motif. In the 10 types of trinucleotide repeats, AAC/GTT was the most common 

motif for samples IB, IQ, MQ and Ss, while AAG/CTT found to be most common motif in 

samples AfC and NigC. Within di-nucleotide repeats, AG/CT was the most common type of 

motif, followed by AC/GT and AT/AT (Figure 4.14). 

The number distribution of predicted SSRs is summarized in Table 4.3. The results show 

that the repeat number of most SSRs was between 5 and 7, and there are very few that are 

greater than 10. The number of repeats for samples IB, IQ and MQ are higher than the sample 

AfC, Ss and NigC but most number of hexanucleotide repeats were present in sample NigC. 

The highest repeat number for dinucleotide was 36 for sample MQ.  
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 IB IQ MQ AfC Ss NigC 

Total number of 

sequences 

examined 

185895 257163 256401 242664 287559 280616 

Total number of 

identified SSRs 

65410 105149 94941 50844 65830 74353 

Number of 

sequences 

containing SSR 

44405 68997 64179 37495 49605 54375 

Number of 

sequences 

containing more 

than 1 SSR 

14239 23976 21249 9515 12135 14426 

Number of SSRs 

present in 

compound 

formation 

9982 17025 13202 7111 7248 8753 

 

Table 4.2: Summary of SSRs found in transcriptome assemblies of B. tabaci populations 

(IB, IQ, MQ, AfC, Ss and NigC). 
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Figure 4.14: Overview of type and frequency of repeat motif found in six B. tabaci 

populations.  
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 SSR motifs Number of repeats 

  5 6 7 8 9 10 >10 Total 

Sample IB Dinucleotide 0 1017 424 206 98 85 113 1943
Trinucleotide 1709 598 231 229 100 44 132 3043 

Tetranucleotide 300 131 62 12 28 1 22 556 

Pentanucleotide 73 10 7 11 12 13 18 144 

Hexanucleotide 17 6 9 11 1 0 10 54 

Sample IQ Dinucleotide 0 1580 579 174 196 95 246 2870 

Trinucleotide 2695 831 382 329 119 42 186 4584 

Tetranucleotide 485 196 67 25 26 12 35 846 

Pentanucleotide 173 33 27 30 16 10 13 302 

Hexanucleotide 23 11 6 1 0 0 0 41 

Sample MQ Dinucleotide 0 1679 644 271 147 110 297 3148 

Trinucleotide 2900 949 345 202 101 37 150 4684 

Tetranucleotide 666 224 77 36 21 14 17 1055 

Pentanucleotide 144 52 28 18 8 9 24 283 

Hexanucleotide 20 10 7 0 0 0 1 38 

Sample AfC Dinucleotide 0 1046 398 119 109 32 96 1800 

Trinucleotide 1391 437 250 150 56 15 92 2391 

Tetranucleotide 361 186 59 27 28 29 31 721 

Pentanucleotide 58 6 6 10 1 1 4 86 

Hexanucleotide 12 4 1 1 3 0 0 21 

Sample Ss Dinucleotide 0 1417 535 159 145 46 126 2428 

Trinucleotide 2025 607 290 275 52 19 144 3412 

Tetranucleotide 434 211 114 31 45 22 45 902 

Pentanucleotide 64 10 11 15 3 1 3 107 

Hexanucleotide 8 8 1 0 0 0 1 18 

Sample NigC Dinucleotide 0 1496 591 255 140 54 145 2681 

Trinucleotide 2127 761 384 233 77 38 147 3767 

Tetranucleotide 490 260 90 54 37 47 56 1034 

Pentanucleotide 120 7 2 3 1 0 3 136 

Hexanucleotide 46 2 7 7 3 4 3 72 

Table 4.3: Distribution of SSRs in B. tabaci populations. 
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4.4 Discussion 

Transcriptomes of three cassava and three non-cassava B. tabaci populations were 

sequenced from one lane of Illumina HiSeq 2000 sequencer. The Illumina HiSeq 2000 

sequencing platform used in this study is capable of generating two billion 100 bp paired-

end reads with a yield up to 200 Gb per run. Previous transcriptome studies by Wang et. al. 

2010; 2011; 2012 for analysing B. tabaci populations MED, MEAM1 and Asia II 3 produced 

640 million 150 bp paired-end reads with a yield capacity of 95 Gb per run (Source: 

www.illumina.com). In the absence of a reference genome for B. tabaci at the time of this 

study, the approach used was to assemble B. tabaci transcriptome sequencing reads. Results 

from Chapter 2 indicated that the Trinity assembler performed best for assembling full length 

transcripts based on percentage of reads successfully mapped back to contigs, number of 

CRB BLAST hits obtained against A. pisum and D. citri and based on BUSCO analysis. 

Previous transcriptome studies on yeast, mouse and whitefly by Grabherr et. al. 2013 also 

reported that the Trinity outperformed all other de novo assemblers such as ABySS, Trans-

Abyss and SOAPdenovo. The results were reported based on the number of transcripts 

generated for each sample, the average length of contig and also the number of full-length 

contigs. The results also suggested that the Trinity resolved ~99% of the sequencing errors, 

substantial polymorphism as well as transcripts derived from splicing and duplication events 

(Grabherr et. al., 2013).     

The total number of contigs assembled for all samples (185,895 (IB), 257,163 (IQ), 256,401 

(MQ), 242,664 (AfC), 287,559 (Ss) and 280,616 (NigC)) used in this study were higher than 

previous findings where the contigs assembled for MED (Wang et al., 2010), MEAM1 

(Wang et al., 2011) and Asia II 3 (Wang et al., 2012) (170,115, 123,055 and 144,103, 

respectively). The difference in numbers could be the result of amount of reads, assembly 

program and the parameters used to assemble the contigs, especially the k-mer size. The 

transcriptome assemblies for MED, MEAM1 and Asia II 3 were generated using the 

SOAPdenovo with k-mer size 21. Whereas, the assemblies produced in this study were 

generated using the Trinity by combining three k-mer sizes 25, 27 and 29. The mean length 

of contigs assembled for MED, MEAM1 and Asia II 3 were 266 bp, 269 bp and 201 bp, 

respectively compared to 1155 bp (IB), 1221 bp (IQ), 1355 bp (MQ), 881 bp (AfC), 987 bp 

(Ss) and 1081 bp (NigC).  These results suggested that the size of k-mer is an important 

factor for assembling raw sequencing reads.      
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While annotating assembled contigs using BLASTx, we discovered that 68.69% (IB), 

71.76% (IQ), 75.46% (MQ), 68.79% (AfC), 72.95% (Ss) and 73.53% (NigC) contigs could 

not be annotated with known biological functions. This may have been due to fact that only 

limited (12,094 EST, 14,359 protein and 260,065 nucleotide sequences) were available for 

B. tabaci in NCBI (October 3, 2016). The unannotated contigs may play essential roles in 

the biology of B. tabaci, and hence further research is required to understand the role of these 

unknown genes. The E-value distribution results for MED (Wang et al., 2010) and MEAM1 

(Wang et. al., 2011) showed that 28.03% and 34.04%, respectively of the contigs have high 

similarity with E-value smaller than 1.0E-40. Whereas, the results in this study found 39% 

(IB), 38% (IQ), 35% (MQ), 43% (AfC), 40% (Ss) and 38% (NigC) of the contigs ranged 

between 1.0E-4 to 1.0E-40. The sequence similarity distribution graph (Figure 4.3) showed 

that 12.66% (IB), 14.73% (IQ), 10.89% (MQ), 13.51% (AfC), 12.20% (Ss) and 11.70% 

(NigC) of the contigs have a similarity higher than 80% compared to 18% (MED) and 11.9% 

(MEAM1).  

The taxonomic distribution results (Figure 4.4) were found startling with termite, Z. 

nevadensis having highest number of hits followed by A. pisum. Despite having distinct 

lineages, high percentage of contigs matched to Z. nevadensis was surprising as both B. 

tabaci and Z. nevadensis do not share common characteristics like diet and life cycle stages. 

Though, when we compared OHR statistics for the Z. nevadensis and A. pisum, we found 

that high percentage of contigs fall between the OHR score of 0.8 to 1.0 for Z. nevadensis 

than for A. pisum (Figure 4.6). Here, the OHR score of 1.0 indicates the contig is likely to 

be fully assembled. These results indicating high similarity between Z. nevadensis and B. 

tabaci may be false positives due to error in assembling or contamination in sampling and a 

further study is required to study sequence identity and alignment coverage between two to 

understand sequence similarity. 

The species distribution results for MED (Wang et al., 2010) and MEAM1 (Wang et al., 

2011; Xie et al., 2012) showed that the highest percentage of contigs were matched to pea 

aphid (Acyrthosiphon pisum). This is probably due to the genome sequence of Z. nevadensis 

were only available recently (March 2014) in NCBI databases and were not observed in 

previous whitefly transcriptome analysis results (Wang et al., 2010; Wang et al., 2011). As 

these results do not support the close relationship between Isoptera and Hemiptera group in 

the taxonomic status, further research is required. In the absence of full genome sequences 
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for B. tabaci, only 1055 (IB), 1082 (IQ), 1246 (MQ), 1295 (AfC), 1508 (Ss) and 1484 (NigC) 

contigs were matched to B. tabaci. Whereas, the results of MED (Wang et al., 2010), 

MEAM1 (Wang et al., 2011) and MEAM1 (Xie et al., 2012) showed 126, 97 and 215 

contigs, respectively matched to B. tabaci. This is probably due to the number of sequences 

deposited in NCBI is growing exponentially than it was before for B. tabaci as the number 

of nucleotide sequences for MED and MEAM1 were only 1445 (Wang et al., 2010) 

compared to nucleotide sequences available for B. tabaci are 260,065 on October 3, 2016 

(Source: http://www.ncbi.nlm.nih.gov). 

The GO annotations revealed that “metabolic process”, “catalytic activity” and “cell” were 

the most abundant sub-categories for all six B. tabaci populations within three main 

categories biological process, molecular function and cellular component, respectively. We 

also noticed a high percentage of contigs matched to “cellular process”, “binding” and “cell 

part”. These results indicates that cassava and non-cassava B. tabaci population shows 

similar functional distribution as observed by Wang et al., 2012 when they compared the 

GO annotation results of MED, MEAM1 and Asia II 3, with “metabolic process”, “cell” and 

“binding” were found to be highly represented, indicating different B. tabaci populations 

shares common conserved genes regardless of differences in the amount of sequencing data 

used (Wang et al., 2011, 2012). Interestingly, when we compared the results with other GO 

sub-categories, we found that contigs associated with biological process: “anatomical 

structure formation”, “death” and “pigmentation” were missing in all six samples used in 

this study and were present in MED, MEAM1 and Asia II 3. Whereas, the contigs associated 

with “detoxification” were not found in MED, MEAM1 and Asia II 3. Likewise, “envelope” 

in cellular component, “auxiliary transport protein” and “enzyme regulator” in molecular 

function were missing in IB, IQ, MQ, AfC, Ss and NigC. The difference in results may be 

due to the amount of sequencing reads obtained for samples (IB (46 million), IQ (81 million), 

MQ (82 million), AfC (30 million), Ss (38 million), NigC (43 million)) used in this study 

were higher than MED (43.7 million), MEAM1 (17 million) and Asia II 3 (16.8 million) 

(Wang et al., 2012). Another possibility could be that the samples used in MED, MEAM1 

and Asia II 3 were prepared using egg & nymph, pupa, female and male adult, whereas the 

samples used in this study were obtained from male and female adults only and therefore 

some of the genes might have not expressed at different levels of life cycle stage.          
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Biological pathways and enzymes provide key information about processes and functions 

that are active during different life stages of B. tabaci. When we searched the assembled 

contigs to identify possible biological pathways present in five main categories (Figure 9), 

purine metabolism within the nucleotide metabolism represented 2111 (IB), 3042 (IQ), 2502 

(MQ), 2854 (AfC), 3177 (Ss) and 3028 (NigC) contigs compared to 458 for MED (Wang et 

al., 2010). However, the starch and sucrose metabolism pathway in MED contained 553 

contigs compared to 130 (IB), 253 (IQ), 206 (MQ), 294 (AfC), 325 (Ss) and 247 (NigC) 

contigs. Whereas, galactose metabolism matched 68 (IB), 127 (IQ), 87 (MQ), 150 (AfC), 

183 (Ss) and 141 (NigC) contigs compared to 183 contigs for MED (Wang et al., 2010). 

Here, we also noticed that the number of contigs matched to galactose metabolism are much 

higher for cassava populations than for non-cassava populations. These functional 

annotations provide a key reference to understand and investigate functions and metabolic 

activities of essential genes in different B. tabaci populations.  

To identify full length contigs, we used OHR statistics proposed by O’Neil et al., 2010. 

Based on that, we found that the large number of contigs with score <1.0 were either partially 

assembled or were not aligned fully due to insertions in ortholog sequences based on scoring 

matrices (Figure 4.12). This is probably due to the length of assembled contigs (~60%-70% 

were between 200 bp to 1000 bp) as shown in Figure 4.1. These results suggested that the 

assembled sequences were either failed to match the best BLASTx ortholog sequences 

probably due to the error in assembly or may be that the limited genomic resources are 

available for B. tabaci in public domains. The resulted contigs were also analysed to predict 

SSRs present in all six B. tabaci populations used in this study. SSR markers are useful for 

assessing genetic variation in organisms when full genome sequences are not available 

(Kalra et al., 2013). SSR markers developed using NGS data are much cheaper than the 

traditional isolation methods as the large amount of data can be produced using NGS 

technologies (Zhang et al., 2014). Microsatellites identified from B. tabaci transcriptome of 

MED, MEAM1 and Asia II 3 also showed that A/T motifs were most abundant in 

mononucleotide repeats and AG was the most frequent di-nucleotide class as found in this 

study. However, most prevalent tri-nucleotide repeats obtained for MED, MEAM1 and Asia 

II 3 were from AAG, AAG and ATG class, respectively (Wang et al., 2014) whereas, it is 

AAC for samples IB, IQ, MQ, Ss and AAG for AfC and NigC. These findings indicate that 

the potential SSR markers identified here may provide a useful resource for studying genetic 

diversity within B. tabaci populations. However, many of the identified SSRs could be the 
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result of isoforms present in transcriptome data and therefore further research is required to 

validate the real ones. 
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Chapter 5: Analysing transcriptome data for other potential mechanisms 

of evolution and diversity 

 

5.1 Introduction 

Bemisia tabaci is considered one of the world’s top 100 invasive species capable of causing 

extensive damage not only to cassava but also a wide range of vegetable, grain and fiber 

crops through direct feeding or by transmitting plant pathogenic viruses (Boykin et al., 2013; 

Wang et al., 2013). The B. tabaci species complex contains at least 11 major clades which 

are morphologically indistinguishable and hence complete mitochondrial genome 

information would be useful to identify and understand conserved and divergence patterns 

within species apart from traditional delimitation method based on partial mtCOI gene (Tay 

et al., 2014). To identify genetic diversity between populations used in this study and 

published mitochondrial genome of Asia I (Tay et al., 2014) and Mediterranean (Wang et 

al., 2013), we compared the transcriptome data of three non-cassava Israel B (IB), Israel Q 

(IQ), Montpellier Q (MQ) and three cassava East African cassava Nam (AfC), East African 

cassava Ssanje (Ss) and West African cassava Nigeria (NigC) B. tabaci populations. 

Symbiotic bacteria play an important role in eukaryotic evolution and diversity (Kikuchi, 

2009). Almost all insects are associated with heritable endosymbiotic bacteria which are 

widespread in nature and can be divided into several groups (Moran and Baumann, 2000). 

The most general types are: primary endosymbionts (P-endosymbionts) and secondary 

endosymbionts (S-endosymbionts) (Bing et al., 2013). P-endosymbionts are present in all 

host types and provide important nutritional requirements to their insect host.  S-

endosymbionts are facultative and play negative role in host survival as well as provide 

nutrients, parasitiods resistance and improve thermotolerance (Bing et al., 2013).  

As a sap-feeding pest, whiteflies have developed relationships with a wide range of primary 

and secondary endosymbionts (Sloan and Moran, 2012). All whiteflies harbour the primary 

endosymbiont Candidatus Portiera aleyrodidarum with an extremely reduced genome that 

provides only essential amino acids and carotenoids to host (Santos-Garcia et al., 2014). In 

addition to P-endosymbionts, genetically distinct whitefly B. tabaci hosts different 

combination of S-endosymbionts that may include Wolbachia, Rickettsia, Hamiltonella, 

Cardinium, Arsenophonus and Fritschea (Tajebe et al., 2014).  
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Recent studies on importance of endosymbionts within B .tabaci complex shows that these 

endosymbionts have diverse effects on their host and therefore it is essential to understand 

their exact functions and mechanisms within species (Bing et al., 2013). This study was 

carried out to identify the primary and secondary endosymbionts present in cassava and non-

cassava B. tabaci populations.  
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5.2 Methods 

5.2.1 Assembling mitochondrial genes  

To obtain mitochondrial gene sequences of samples IB, IQ, MQ, Afc, Ss and NigC, complete 

mitogenome sequence of published Asia I species of B. tabaci was downloaded from 

GenBank (KJ778614) and was used as a reference to search against Illumina reads. All 

mapped sequences were then retrieved and stored based on highest number of reads obtained 

for particular gene sequence using CLC Genomics Workbench 7.  

5.2.2 Comparative sequence analysis of 13 PCGs 

After mapping, all matched sequences were aligned using ClustalW (Thompson et al., 1994) 

to identify conserved regions within different B. tabaci populations and to see the differences 

in sequence lengths. The aligned sequences were then manually edited using MEGA6 

alignment explorer and were used to predict evolutionary trees based on concatenated 

alignment of 13 PCGs and also by individual sequence analysis of 13 PCGs using MEGA6 

(Tamura et al., 2013). The best scoring models from maximum likelihood models were 

selected based on automated model selection method. 

5.2.3 Identifying primary and secondary endosymbionts 

All assembled files were stored in a FASTA format and were searched using BLASTX 

(Altschul et al., 1990) against the non-redundant (nr) NCBI nucleotide database using a cut-

off E-value of 10-3.The top-hits from BLASTX results were used to identify primary and 

secondary endosymbionts present among all six samples.  

5.2.4 Phylogenetic analysis of Portiera, Cardinium, Hamiltonella and Rickettsia 

The 16S rDNA sequences of Portiera, Cardinium, Hamiltonella and Rickettsia taken from 

NCBI were aligned against assembled contigs using BLASTN for all samples. Sequences 

with >90% identity were retrieved and stored for phylogenetic analysis. The resulted 

sequences of 16S rDNA were then aligned using ClustalW and were manually edited to get 

best possible alignment score using MEGA6 sequence alignment explorer. All trimmed 

sequences were then used to predict best substitution model for phylogenetic tree 

construction. Phylogenetic trees were constructed using maximum-likelihood method by 

generating 1000 bootstrap values in MEGA6. The pair wise distance values for each 

alignment were generated using p-distance method using MEGA6.  
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5.3 Results 

5.3.1 Identifying mitochondrial genes 

To obtain mitochondrial gene sequences, 46 million paired end reads for sample IB, 81 

million paired end reads for sample IQ, 82 million paired end reads for sample MQ, 30 

million paired end reads for sample AfC, 38 million paired end reads for sample Ss and 43 

million paired end reads for sample NigC were used to retrieve the mitogenome sequences 

for each sample by mapping them against Asia I mitogenome sequences downloaded from 

GenBank. Number of reads mapped to each gene is shown in Table 5.1. Total of 31 contigs 

for IB, 31 contigs for IQ, 33 contigs for MQ, 14 contigs for AfC, 16 contigs for Ss and 16 

contigs for NigC were identified against published Asia I mitochondrial genes. These 

numbers varied with the published mitochondrial genome of MED and Asia I which encodes 

37 genes (Wang et al., 2013; Tay et al., 2014). The complete mitogenomes of MED and 

Asia I contain 13 PCGs (Protein Coding Genes) found in most metazoan genomes are 

present in all six samples used in this study apart from ND4L gene that was lacking in sample 

AfC. The 2 rRNAs genes were also present in all six samples with a variable length sizes 

compare to one found in MED and Asia I mitogenome. All tRNAs were absent in all cassava 

(AfC, Ss and NigC) samples apart from tRNA-Asp present in Ss and NigC compare to non-

cassava (IB, IQ and MQ) samples as shown in Table 5.2.  
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Table 5.1: Total number of mitochondrial genes against the total read number for each gene 

and sample. Here 0 indicates the absence of particular gene sequence in reads.  
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Table 5.2: Total number of mitochondrial genes against the length of that gene and sample 

compared with published Asia I and MED. The – sign indicates the absence of particular 

gene sequence for that sample.  
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5.3.2 Sequence divergence between cassava and non-cassava B. tabaci populations 

The sequence divergence of 13 mitochondrial PCGs for cassava and non-cassava B. tabaci 

populations is shown in Figure 5.1. The multiple alignment of concatenated 13 PCGs shows 

differences within B. tabaci populations. These may be due to the sequences not having 

assembled fully due to lack of sufficient coverage of genomic data, assembly errors or 

sequencing errors. Gaps within genes also represent the absence of particular portion of gene 

and the dark blue bar shows conserved regions of the genes. 
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Figure 5.1: Multiple sequence alignment of concatenated genomic sequences of 13 

mitochondrial PCGs. The alignment shows that the sequences are of different length and 

were not assembled fully. The conserved nucleotides are coloured according to % identity 

score from higher (blue) to lower (grey). Gaps are shown as solid horizontal line.   
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5.3.3 Evolutionary analysis of 13 mitochondrial PCGs 

To analyse the evolutionary relationships between different B. tabaci mitochondrial genes 

used in this study, 13 PCGs were compared against MED and Asia I genes (Wang et al., 

2013; Tay et al., 2014). The phylogenetic analysis on concatenated nucleotide sequences of 

13 mitochondrial PCGs is shown in Figure 5.2(A). The result shows that the two East African 

cassava B. tabaci populations AfC and Ss share a common ancestry path and are more 

homologous than the West African population NigC. Similarly, IQ, MQ and MED share a 

common node compared to IB and Asia I. Similar patterns were observed in individual 

phylogenetic analysis of 12 PCGs (Figure 5.2) apart from ND4L, due to the absence of gene 

sequence in sample AfC. The comparative analysis of ATP8 gene sequences produced less 

significant alignment due to relatively short gene length and were not included in 

phylogenetic analysis.     
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Figure 5.2(A): Maximum likelihood tree on concatenated nucleotide sequences of 13 

mitochondrial PCGs for all samples was generated using HKY + G substitution model in 

MEGA6. The rate variation among sites was modelled with a gamma distribution (5 

categories (+G, parameter = 0.3218)). The analysis involved six nucleotide sequences. All 

positions with less than 100% site coverage were eliminated. There were a total of 9056 

positions in the final dataset.  

 

Figure 5.2(B): Maximum likelihood tree showing the relationship of COI nucleotide 

sequences obtained from different B. tabaci populations. Tree was constructed using the 

Hasegawa-Kishino-Yano model with a discrete Gamma distribution was used to model 

evolutionary rate differences among sites (5 categories (+G, parameter = 0.3675)). The 

analysis involved eight nucleotide sequences. All positions containing gaps and missing data 

were eliminated. There were a total of 1537 positions in the final dataset. 
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Figure 5.2(C): Maximum likelihood tree showing the relationship of COII nucleotide 

sequences. Tree was constructed using the Hasegawa-Kishino-Yano model with a rate 

variation model allowed for some sites to be evolutionarily invariable ([+I], 58.3654% sites). 

The analysis involved 8 nucleotide sequences. All positions containing gaps and missing 

data were eliminated. There were a total of 647 positions in the final dataset. 

 

 

Figure 5.2(D): Maximum likelihood tree showing the relationship of ATP6 nucleotide 

sequences. Tree was constructed using the Hasegawa-Kishino-Yano model with a rate 

variation model allowed for some sites to be evolutionarily invariable ([+I], 53.9459% sites). 

The analysis involved 8 nucleotide sequences. All positions containing gaps and missing 

data were eliminated. There were a total of 474 positions in the final dataset. 
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Figure 5.2(E): Maximum likelihood tree showing the relationship of ND5 nucleotide 

sequences. Tree was constructed using the Tamura 3-parameter model with a rate variation 

model allowed for some sites to be evolutionarily invariable ([+I], 0.0010% sites). The 

analysis involved 8 nucleotide sequences. All positions containing gaps and missing data 

were eliminated. There were a total of 740 positions in the final dataset. 

 

 

Figure 5.2(F): Maximum likelihood tree showing the relationship of ND4 nucleotide 

sequences. Tree was constructed using the Tamura 3-parameter model with a rate variation 

model allowed for some sites to be evolutionarily invariable ([+I], 24.4732% sites). The 

analysis involved 8 nucleotide sequences. All positions containing gaps and missing data 

were eliminated. There were a total of 1156 positions in the final dataset.  
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Figure 5.2(G): Maximum likelihood tree showing the relationship of NDL4 nucleotide 

sequences. Tree was constructed using the Tamura 3-parameter model with a discrete 

Gamma distribution was used to model evolutionary rate differences among sites (5 

categories (+G, parameter = 0.5268)). The analysis involved 7 nucleotide sequences. All 

positions containing gaps and missing data were eliminated. There were a total of 156 

positions in the final dataset. 

 

 

Figure 5.2(H): Maximum likelihood tree showing the relationship of ND6 nucleotide 

sequences. Tree was constructed using the Tamura 3-parameter model with a discrete 

Gamma distribution was used to model evolutionary rate differences among sites (5 

categories (+G, parameter = 0.3304)). The analysis involved 8 nucleotide sequences. All 

positions containing gaps and missing data were eliminated. There were a total of 206 

positions in the final dataset.  
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Figure 5.2(I): Maximum likelihood tree showing the relationship of CYTB nucleotide 

sequences. Tree was constructed using the Hasegawa-Kishino-Yano model with a rate 

variation model allowed for some sites to be evolutionarily invariable ([+I], 54.2063% sites). 

The analysis involved 8 nucleotide sequences. All positions containing gaps and missing 

data were eliminated. There were a total of 897 positions in the final dataset.  

 

Figure 5.2(J): Maximum likelihood tree showing the relationship of ND1 nucleotide 

sequences. Tree was constructed using the Tamura 3-parameter model with a rate variation 

model allowed for some sites to be evolutionarily invariable ([+I], 59.5461% sites). The 

analysis involved 8 nucleotide sequences. All positions containing gaps and missing data 

were eliminated. There were a total of 705 positions in the final dataset. 

 



100 
 

 

Figure 5.2(K): Maximum likelihood tree showing the relationship of ND3 nucleotide 

sequences. Tree was constructed using the Tamura 3-parameter model with a discrete 

Gamma distribution was used to model evolutionary rate differences among sites (5 

categories (+G, parameter = 0.4757)). The analysis involved 8 nucleotide sequences. All 

positions containing gaps and missing data were eliminated. There were a total of 239 

positions in the final dataset. 

 

Figure 5.2(L): Maximum likelihood tree showing the relationship of COIII nucleotide 

sequences. Tree was constructed using the Tamura 3-parameter model with a discrete 

Gamma distribution was used to model evolutionary rate differences among sites (5 

categories (+G, parameter = 0.5393)). The analysis involved 8 nucleotide sequences. All 

positions containing gaps and missing data were eliminated. There were a total of 780 

positions in the final dataset.  
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Figure 5.2(M): Maximum likelihood tree showing the relationship of ND2 nucleotide 

sequences. Tree was constructed using the Hasegawa-Kishino-Yano model with a discrete 

Gamma distribution was used to model evolutionary rate differences among sites (5 

categories (+G, parameter = 0.4689)). The analysis involved 8 nucleotide sequences. All 

positions containing gaps and missing data were eliminated. There were a total of 756 

positions in the final dataset. 

Figure 5.2: The phylogenetic analysis of concatenated nucleotide sequences of 13 

mitochondrial PCGs and individual PCGs using maximum likelihood tree. 
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5.3.4 Identification of primary and secondary endosymbionts among B. tabaci 

populations 

Analysis of three cassava and three non-cassava B. tabaci population shows presence of P-

endosymbiont Portiera as well as three S-endosymbionts Wolbachia, Rickettsia and 

Cardinium in all samples as shown in Table 5.3. These results confirm that the B. tabaci 

populations used in this study contain a combination of endosymbionts. Portiera showed the 

highest number of hits followed by Wolbachia. There was no sequence homology found 

with Fritschea and the presence of Arsenophonus was found only in non-cassava populations 

IB, IQ and MQ. The number of hits found for Cardinium in MQ (n=19) was much higher 

than in other populations with 2 hits for IB, 3 for IQ, Ss and NigC, and 4 for AfC. 
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IB IQ MQ AfC Ss NigC

 
Portiera  
 

151 228 83 37 67 55 

 
Wolbachia 
 

28 33 42 42 47 47 

 
Rickettsia 
 

23 50 31 24 28 24 

 
Hamiltonella 
 

1 1 0 0 0 0 

 
Cardinium 
 

2 3 19 4 3 3 

 
Arsenophonus 
 

2 2 2 0 0 0 

 
Fritschea 
 

0 0 0 0 0 0 

 

Table 5.3: Summary of primary and secondary endosymbionts present in B. tabaci 

populations. 
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5.3.5 Phylogenetic analysis of primary endosymbiont Portiera based on 16S rDNA 

sequence 

The phylogenetic tree of 16S rDNA sequences of primary endosymbiont Portiera were 

constructed using sequences taken from NCBI database and sequences obtained from this 

study against Trialeurodes vaporariorum and Buchnera aphidicola as outgroup is shown in 

Figure 5.3. Analyses revealed that the phylogeny of three African B. tabaci primary 

endosymbionts of AfC, Ss and NigC were most closely related to B. tabaci collected from 

cassava KEN3 (AF400460) and SSA1-SG3 (KM386389) than UG25 and UG26. 

Interestingly, primary endosymbiont of MED is closely related to Asia I instead of MQ as 

observed in mitochondrial gene analysis (Figure 5.3). This may suggest that the phylogeny 

of B. tabaci host tree based on mtCOI was partially congruence with the phylogeny of B. 

tabaci primary endosymbiont. Similar results were found when calculated against pair wise 

sequence divergence between samples where IB, IQ and MQ shows 100% similarity with 

MEAM1 but not with MED as observed in phylogenetic analysis (Figure 5.4).  

The pair wise sequence divergence result shows that the divergence between primary 

endosymbionts of B. tabaci were generally observed between 0 to 1.5% apart from UG26 

and UG25, that diverged by 4.1 to 5.2% and 1.3 to 2.4% respectively. 
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Figure 5.3: Phylogenetic tree showing evolutionary relationships for primary endosymbiont 

of B. tabaci based on 16S rDNA sequence predicted using maximum likelihood method 

based on Kimura 2-parameter model. The analysis involved 22 nucleotide sequences. All 

positions with less than 95% site coverage were eliminated. There were a total of 928 

positions in the final dataset.  
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Figure 5.4: Percentage similarity between 22 nucleotide sequences of the primary 

endosymbiont Portiera identified in B. tabaci. Analyses were conducted using MEGA6 and 

all positions with less than 95% site coverage were eliminated. There were a total of 928 

positions in the final dataset.  
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5.4 Discussion 

As advances in next-generation sequencing are growing rapidly, many RNA-seq datasets of 

B. tabaci have been generated. However, only three MED (Wang et al., 2013), Asia I (Tay 

et al., 2014) and New World I (Thao et al., 2004) B. tabaci mitogenome were available when 

carrying out analyses. To obtain more information about mitochondrial genes and their roles 

in different B. tabaci populations, RNA-seq data of six different B. tabaci populations were 

used to analyse their mitochondrial genes. The published mitogenome of Asia I was used to 

identify mitochondrial gene sequences present in each sample using Illumina sequencing 

reads. Using this approach, most mitochondrial genes for each sample were identified.  

The comparison of six samples used in this study against published MED and Asia I 

mitogenome sequences indicated the number of genes present varied in numbers and also in 

their lengths. Expression profiles of all mitochondrial genes are different in different 

developmental stages as discovered in MED mitochondrial gene expression analysis (Wang 

et al., 2013). Although the complete mitogenome of all six samples was not retrieved using 

this technique, the data has provided necessary information for designing PCR primer 

sequences for further analysis. These data then can be used to identify differences within 

population, gene expression analysis, coding and non-coding regions and gene 

arrangements.   

Many phloem-feeding insects harbour array of vertically transmitted prokaryotes within a 

population and also in different populations as observed in aphids and psyllids (Zchori-Fein 

and Brown, 2002). Similar results were found in this study, when we compared different 

populations of B. tabaci to identify primary and secondary symbionts present within 

populations. The results show that the symbionts present in each B. tabaci population varied 

and appeared compositionally diverse in nature as found in other phloem-feeding insects 

(Zchori-Fein and Brown, 2002). The primary endosymbiont of B. tabaci were found in all 

six samples as expected. The secondary symbionts were only present in some samples. 

Similar endosymbiotic associations were observed in aphids and other insect species and 

thus it is supported that primary symbionts have long association with their host and are 

obligate and necessary for host survival (Zchori-Fein and Brown, 2002).  
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6. Conclusion 

Advances in high-throughput sequencing has led to sequencing and annotating genetic 

profiles of model and non-model organisms effectively and efficiently (O’Neil et al., 2013). 

To understand the genetic profile of different B. tabaci populations, we sequenced three 

cassava and three non-cassava B. tabaci populations using Illumina paired-end sequencing. 

Due to the absence of B. tabaci reference genome, we had to use de-novo assembly programs 

to assemble and annotate all samples. Due to the number of assembly programs available, it 

was crucial to compare and validate the assembly results using different evaluation methods 

available for RNA-seq datasets. Other important factors while assembling raw RNA-seq data 

are quality, input parameters and importantly the size of k-mer. Here, we used a multi k-mer 

approach to assemble the data as the transcriptome assembly using higher k-mer length can 

recover longer and contiguous fragments, while low k-mer length recovers poorly expressed 

transcripts (Surget-Groba and Montoya-Burgos, 2010). To ensure the quality of data, we 

used Cutadapt and FastQC program to remove adaptor contamination and base calling errors. 

In this study, we used four de novo assemblers: Trinity, CLC, SOAPdenovo-Trans and 

Velvet followed by Oases to assemble, compare and evaluate the performance of each 

assembly program based on contig statistics, assembly statistics and completeness of 

assembly. To compare and evaluate the performance of assemblies, we used TransRate, 

DETONATE, CRB-BLAST, BUSCO and TransDecoder programs and found that the 

assemblies generated using the Trinity performed best compared to other assembly programs 

but there was not any single dominant k-mer value observed in all results. To overcome this, 

we used a clustered assembly strategy by combining Trinity assemblies with the k-mer 25, 

27 and 29 into one for further analysis. Doing this, it resulted in many redundant contigs 

which can cause bias in downstream analysis and may be much harder to filter out at next 

level than now. To do so, we used CD-HIT-EST program which removed all redundant 

contigs using the percentage similarity which is 100% in this case.  

As currently (October 3, 2016), there are only about 12,094 EST, 14,359 protein and 260,065 

nucleotide sequences available for B. tabaci on NCBI (Source: 

http://www.ncbi.nlm.nih.gov), identifying and annotating essential B. tabaci genes are 

important to understand the roles of those genes in the biology of B. tabaci. These datasets 

will also provide useful information to understand and compare sequence divergence 
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between cassava and non-cassava colonizing B. tabaci populations. We used final non-

redundant clustered assembly for annotation using BLASTx to identify contigs that are 

identical with the ones available in non-redundant (nr) NCBI nucleotide database using a 

cut-off E-value of 10-3. We found that ~60% of contigs showed strong homology with 

database sequences with ~40% of contigs have a sequence similarity ranging from 40 to 60 

percent. Overall, this results showed significant assembly quality, despite having only 14359 

protein sequence deposits in NCBI database. While analysing all contigs against GO 

database, differentiation between cassava and non-cassava samples was not possible, and 

these results were very similar to previous study undertaken by Wang et al., 2012 when they 

compared the GO annotation results of MED, MEAM1 and Asia II 3 and found that all 

different populations of B. tabaci shares common function distribution. Whereas, when we 

analysed all samples to find possible biological pathways, we discovered some differences 

between published B. tabaci results and our findings. This may be due to methods used to 

do so or that the data sets were generated using different methods. Domain prediction results 

clearly differentiate the domain sharing between cassava and non-cassava populations as the 

results were highly varied in terms of common sharing domains between samples.  

We have also identified mitochondrial genes from all samples by mapping against Asia I 

mitochondrial genome. It was not possible to identify all mitochondrial genes. The primary 

endosymbiont Portiera was identified in all samples as well as a combination of secondary 

endosymbionts.  

Overall, the assembly, annotation and evaluation of six B. tabaci transcriptome dataset 

provides useful information about the genes and their role in the biology of B. tabaci as well 

provide useful resource to study and compare different B. tabaci populations and their 

specificity with different hosts. Our results and methods used in this study will also provide 

some guidelines for further transcriptome analysis studies and will serve as a useful 

repository.   
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