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ABSTRACT 

The prediction of coastal flood defence performance deterioration in the future plays an 

essential role in the reliability analysis and management process of these structures. The 

climate change effects and sea level rise will increase the hydraulic loads and frequency 

of the future extreme events, which lead to a more challenging performance deterioration 

prediction. The main failure mechanisms in coastal flood defences, e.g. wave 

overtopping and piping will be affected due to the change in hydraulic parameters and 

deterioration processes, which may decrease the reliability of the structures. Also, the 

uncertainties arising from the mentioned problems lead to a more expensive and 

inefficient management strategy to protect the lands, people and properties against 

floods.  

 

Hence, continuous innovations in flood asset management and structural reliability 

analyses methods are necessary to improve the accuracy and efficiency of the future 

performance evaluation in a changeable environment, and then to decrease the 

maintenance and management costs. In practice, parameters of probabilistic deterioration 

models can be estimated using available data from routine inspections and observations. 

For coastal defences, the condition assessment results and observations are collected 

using different inspection strategies, and deterministic grade-based deterioration curves 

are available in order to estimate structures residual life with respect to the structural 

conditions. However, probabilistic approaches to model the stochastic deterioration 

process with consideration of the changes in hydraulic loading parameters are not studied 

yet in coastal flood defences.       

 

This thesis proposes probabilistic state-based deterioration models and time-dependent 

reliability analyses for coastal flood defences, which help to predict the future 

performance deterioration and condition grades of the assets. The proposed deterioration 

models have four components: 1) using homogeneous (i.e. stationary) and non-

homogenous (i.e. time-dependent and non-stationary) Markovian models to forecast a 

coastal defence deterioration process, 2) employing stochastic theory and simulation 

techniques to establish the Markovian transition probability matrices for the assets, 3) 

utilising performance-based reliability models to predict the reliability of the structures 

regarding the predicted deteriorations and projected changes in hydraulic variables, and 
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4) utilising renewal replacement theory, and sequential decision-making model to select 

optimal multi-objective maintenance actions under partial information.  

 

The deterioration models were established through a process of conversion from 

deterministic data and conventional framework in coastal flood defences to a 

probabilistic system. The process of the system conversion is described, and the 

validation of the conversion is demonstrated by a number of numerical examples. The 

elements of the time-dependent transition probability matrices are calculated using 

Weibull distributed waiting times and non-linear optimisation techniques. The limit state 

equations for the reliability-based model are updated regarding the sea level rise and 

deterioration models, and the future performance is predicted using time-dependent 

reliability analyses. The validation and efficiency of the time-dependent reliability 

analysis are demonstrated by case studies. A Partially Observable Markov Decision 

Process is utilised to provide the optimal maintenance strategies for each time interval. 

Cost of imperfect information is adopted to control the optimisation process at each time-

step based on the stochastic deterioration model. 

 

The obtained results from the proposed method are examined by experimental and field 

data available. The applicability of the method is demonstrated by numerical examples, 

and the results show that the proposed methodology is capable of assessing the structural 

performance in the future and also can provide multi-objective optimised repair and 

inspection schedule during the lifetime of coastal defence structures. The knowledge 

gained in this study contributes to the better understanding of the performance 

deterioration of flood defences. Furthermore, the methodology presented in this study 

could be helpful in assessing the actual state of deterioration and to decrease the cost of 

management for flood defences.
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1. Introduction 

1.1. Background 

The world in its postmodernism era relies on civil infrastructure for protecting people, 

assets and economy. Coastal and fluvial floods defence structures are supposed to protect 

lands and coastlines which is necessary for running economies and societies. Coastal 

defence assets are aimed to be servicing for extended periods to protect shorelines, 

particularly infrastructure and habitats against flooding and coastal erosion. Sea defences 

provide essential protection for coastal lowlands against flooding. Hence they are 

considered as critical assets.  

 

The risk of land flooding can increase in the future due to the rise of sea level and change 

of wave conditions caused by climate change. Coastal flood defence structures are facing 

new challenges such as sea level rise due to climate change. Sea level rise results in storm 

amplifications, stronger wave attacks and undesirable changes in hydraulic parameters 

(Donovan et al. 2013). The influences of coastal floods and coastal erosions due to 

changing environment are significant to society and economy. The sea level rise affects 

the future hydraulic loading conditions acting on sea defence structures, leading to 

further deterioration of structural reliability and safety. It is essential to assess the 

reliability and integrity of the coastal defence structures accurately to make sure that the 

assets perform reliably during their service life.  

 

In order to effectively manage these risks, reliability analysis is often employed to 

provide a useful tool for quantitatively evaluating the risks of sea defence structures 

under future conditions and accurately predicting the probability of failure of the 

structures over time. As a result of reliability analysis, the dominant failure mechanisms 

that may lead to failure of the structure can be identified, and the decision for the risk-

cost optimised maintenance strategy can be evaluated. 

 

Time-dependent analysis of coastal defence systems is essential in order to assess the 

reliability performance of the structures over time. A time-dependent analysis involves 

looking at the deterioration process, sea level rise and the maintenance strategy during 

the structure’s lifespan. Deterioration processes such as internal or external erosions, 
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crest level settlement, sliding and instability are types of time-dependent processes that 

affect the resistance of a structure during the expected lifespan (Udale-Clarke 2009). 

Climate change effects such as sea level rise lead to increase in the frequency and 

intensity of extreme events (such as the event in Figure 1.1), which cause a faster 

deterioration process.  

 

 

Figure 1.1 A train passes through the coast at Saltcoats in Scotland (Picture from 

BBC, 2014). 

 

Changing environments due to global warming pose a new challenge for the structural 

performance of the coastal defences by increasing the hydraulic loads in the future. The 

projected climate change by United Kingdom Climate Projection 2009 (UKCP09) show 

a considerable increase in hydraulic parameters in UK waters. For example, in UK, it is 

expected to have an average rise in sea levels between +12 cm and +76 cm by the end of 

the 21st century for different emission scenarios. Wave heights are projected to change 

between -150 cm to +100 cm in UK waters (Jenkins et al. 2011). Wave heights are 

sensitive to the local (or site) conditions, for example, the South-West of UK will face 

increases in mean wave heights, while the North will face to a decrease.  

 

Over the last decade, the world has suffered from fatal and deadly coastal floods which 

raised new concerns about the capacity and effectivity of coastal defence structures. 

Unprecedented floods happened over the last century. For example, the disasters 

happened in UK during winter 2013/14, in the US in 2005 (Sandy and Hurricanes 

Katrina), in Myanmar in 2008, and in the Philippines in 2013 (Hallegatte et al. 2013; 
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Rosenzweig et al. 2011; Antonioli et al. 2017; Diakakis et al. 2015). The US storms killed 

about 2000 people and caused damage worth more than 200 billion pounds. In Myanmar, 

84000 people were killed, and 50 km of inland coastal width were submerged. In the 

Philippines, the event killed 8,000 people and destroyed tens of thousands of houses, 

mostly due to high sea levels.  

 

During winter 2013/14 UK storms, at least 17 people died, and it was estimated that the 

damage was more than £1bn. In other reports, more than 11 major storms occurred over 

various coastal cities, and flood defences failed to defend the cities (Burcharth et al. 2014; 

Wadey et al. 2014; Dahl and Fitzpatrick 2017). These events are a reminder of the ever-

present risks facing coastal flood defence scheme over the sea level rise and coastal 

population grow. The adverse impacts of climate change are likely to worsen with 

consideration of shoreline erosion and structural degradations. Recently, resilient flood 

defence criteria are proposed to protect coastlines against future environmental 

conditions (Agrawala et al. 2011; Wilby and Keenan 2012). The previous standards in 

coastal defence structures were based on the prevention of wave overtopping and other 

failure mechanisms, while a resilience flood defence mitigates the failure consequences 

regarding the priorities. Eliminating failure consequences (e.g. zero failure probability) 

approach is no longer cost-efficient and not reliable due to the changing environments.  

 

New approaches are not based on the “preventing” but based on the “mitigating” of 

failure in extreme events. Decision makers consider the new approach to be the new 

policy shifting to resiliency in coastal structures rather than avoiding the floods entirely. 

The time-dependent analysis of major hydraulic parameters, the return period and 

modified remaining life are taken into account as the main factors in this methodology 

(Sekimoto et al. 2013). The uncertainty in the projection of the sea level rise and the 

structural deterioration process are the primary problems to achieve a reliable flood 

defence in the future.   
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1.2. Research significance and contributions 

The reliability-based performance assessment techniques based on stochastic 

deterioration modelling has remarkable potential to provide cost-effective maintenance 

management such as inspection, repair, strengthening, and reconstruction in flood 

defences. For the time-dependent reliability analysis of coastal defences subject to 

deterioration process and changing environments, a practical evaluation of the damage 

associated with the resistance parameters during their service life is required. It is always 

beneficial to have a link between the deterioration levels and the asset condition grades 

to make the management policy more efficient.  

 

The developed method in this research will provide more accurate assessments of the 

failure risk in coastal defence structures for the researchers and professionals involved in 

managing these structures. The proposed method may be socio-economic and a reliable 

tool for decision makers regarding the future changing environments and deterioration 

processes to plan necessary maintenance strategies. Also, by consideration of imperfect 

information and possible errors in the inspection outcomes, the efficiency of the proposed 

model will be increased. The main contributions of this thesis are listed as follows: 

 The effects of sea level rise and changing environments over the hydraulic 

variables and the structural reliability are investigated. The changes in hydraulic 

variables such as water level, wave period and depth-limited significant wave 

heights are considered concerning different sea level rise scenarios. 

 A stochastic and grade-based deterioration model is developed to assess the 

deterioration process of coastal defence structures.   

 A time-dependent reliability analysis framework is proposed with consideration 

of the proposed deterioration model and the adopted functions for sea level rise 

effects.  

 A multi-objective maintenance model is proposed to optimise the maintenance 

strategies regarding partial observations and imperfect inspections. A Multi-

Objective Partially Observable Markov Decision Process (Mo-POMDP) is 

utilised to consider the effects of deterioration process, maintenance strategies, 

inspection techniques and structure’s condition grade.   
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1.3. Aim and objectives 

The research aim is to investigate how changing environments and non-stationary 

deterioration process of coastal flood defences can be incorporated into a reliability-

based approach, to assess the reliability of the structures against different failure 

mechanisms in the future, and to optimise maintenance strategy regarding partial 

information. The following objectives are defined: 

 To understand the mechanism of deteriorations and its effect of the structural 

reliability of the coastal defences. 

 To investigate climate change impacts such as sea level rise on hydraulic 

parameters on the future performance deterioration.   

 To define a quantitative link between the current qualitative condition grade 

system and structural damage. 

 To investigate the effects of crest level deterioration and internal erosion on 

overtopping and piping failure mechanisms. 

 To develop an analytical model to assess the time-dependent probability of failure 

with consideration of structural deterioration and changing environments   

 To propose a maintenance model to optimise multiple objectives concerning 

incomplete information/inspections.  

 

 

1.4. Scope of the thesis 

The primary focus of this thesis was the development of stationary and non-stationary 

deterioration models of coastal defences.  The model uses condition assessment manual 

(Environment Agency 2006) by application of available deterministic deterioration 

curves and inspection data. The deterioration models are used to assess time-dependent 

reliability analysis and generic fragility curves. The proposed models are sensitive to the 

accuracy of the initial quantitative and qualitative data. Hence, it is limited to use when 

the proper data are not available. Both deterioration models can be used in existing UK 

coastal and fluvial flood defences. Some calculations, assumptions and selections were 

considered to provide a proper and realistic analysis and maintenance optimisation. 

 

The response of a coastal flood defence to hydraulic loads depends on the geometry, 

material and operational conditions. The analysis of many dyke breaches (Nagy and 
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Toth, 2005; Horlacher, 2005) shows that structural failures of earth sea dykes due to 

overtopping and piping failure mechanisms are more than 85% of all various types of 

failures. Therefore, overtopping and piping failure mechanisms have been considered as 

major threats to the structural performance of sea dykes, and this thesis focuses on these 

two failure mechanisms. 

  

1.5. Methodology and outline of the thesis  

This research will first carry out a literature review on how failure mechanisms and 

deterioration processes affect the performance of the coastal defence structures like sea 

dykes in changing environments. For this, an extensive literature review has been 

undertaken on the following topics: climate change, sea level rise, deterioration 

processes, failure mechanisms, and time-dependent reliability analysis methods. The 

next step is to develop deterioration models to evaluate the resistance of the structures 

over time. Then, a stochastic and analytical model has established to assess a time-

dependent reliability with consideration of the possible hydraulic changes due to sea level 

rise. Available published field data by Environment Agency are investigated to provide 

necessary information to estimate the relevant parameters of the proposed models.   

 

A numerical model of failure probability assessment with consideration of joint 

probability between key variables will also be developed using MATLAB as 

programming and data processing tools. Evolutionary Algorithms will be applied for the 

effect of the deterioration process such as settlement in the developed model. Monte 

Carlo simulations will be utilised for sampling the future and current conditions. During 

the simulation and analysis processes, various methods of statistics and software such as 

MATLAB, R-CRAN or EXCEL will be used as analysis tools. The proposed model will 

be verified with the existing observed and experimental data. Case studies on sea dykes 

will be utilised for the application of the developed model.  

 

This thesis consists of seven chapters (Chapter 1 to 7), and a brief outline of each chapter 

is as follows: 

Chapter 1: introduction 

This chapter describes the background and significance of the research and introduces 

the aim and objectives and scope of the thesis. 
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Chapter 2: Literature Review 

This chapter presents fundamental theories and state-of-art methods in the relevant 

research. First, a brief overview of the existing coastal defences and reliability methods 

in this field are discussed. Then available publications about hydraulic variables and the 

effects of climate change are studied. Available condition assessment frameworks for 

coastal defences in UK are presented, and an overview of the deterministic deterioration 

curves is provided. Stochastic deterioration models are studied, and the applicability of 

the models for different types of deterioration processes are reviewed. Then reliability 

theory for coastal defences is investigated to understand the time-dependent reliability 

and performance evaluation methods. Finally, available maintenance models in this area 

are studied to find out the developments and the gaps regarding the maintenance policies 

in UK. 

 

Chapter 3: Condition monitoring and evaluating for coastal flood defences 

In this chapter, condition assessment model, hydraulic load monitoring, and climate 

change impacts on hydraulic boundary conditions are discussed. A quantitative link 

between structural damage and condition grading system is proposed. The available 

inspection strategies and deterioration curves are translated into probabilistic forms to 

use in the reliability model. A practical model is described to apply the impacts of sea 

level rise on the hydraulic parameters, and the model is utilised for extreme value 

analysis. A new technique is proposed to improve the dependence estimating between 

the joint extreme variables via a copula function. 

 

Chapter 4: Stochastic deterioration modelling for coastal defences 

In this chapter, new stochastic deterioration models are developed for coastal defence 

structures to model the deterioration processes such as crest level settlement and seepage 

length loss. A homogenous Markov model is adopted to model stationary deterioration 

process for a coastal defence that will be used in a generic fragility curve analysis. An 

inhomogeneous Markov model is utilised to model non-stationary and grade-based 

deterioration process for a coastal defence that will be used in a time-dependent reliability 

analysis. Case studies are provided at the end of the chapter to demonstrate the 

applicability of the models. 

 

 



  

8 

 

Chapter 5: Reliability-based performance assessment for coastal defences 

This chapter proposes reliability assessment models for the coastal defence structures 

with considering the impact of climate change and deterioration processes. Wave 

overtopping over the crest and piping underneath the dyke failure mechanisms are 

studied in a reliability analysis as two major failure mechanisms in coastal defences. 

Fragility curves are developed utilising the proposed homogeneous Markov deterioration 

model to analyse the reliability of the coastal defence. Time-dependent reliability 

analyses is considered utilising the proposed non-stationary deterioration model for 

coastal defences. Finally, fragility surfs are proposed for time-dependent reliability 

analyses associated with specific loads. Serviceability limit state (SLS) and Ultimate 

limit state (ULS) are also described in this section. SLS is defined in two distinct types: 

1) the state that the performance of the structure is acceptable, and 2) the state where the 

structure is no longer serviceable. ULS is defined in two distinct states as: 1) the state 

that the structure is no longer serviceable, and 2) the state that the structure has collapsed. 

Overtopping limit state equation is an example of serviceability limit state and piping 

limit state equation is an example of ultimate limit state.    

 

Chapter 6: Optimal maintenance strategy for coastal flood defences 

This chapter investigates the repair strategy for the deteriorating earth sea dyke on the 

basis of the estimations of failure probability, inspection strategies, available repair 

actions, costs of imperfect information, and the costs for the repairs. The effects of errors 

in inspection strategies over the maintenance optimisation process are considered. In 

order to model the maintenance optimisation regarding the inspection errors, Partially 

Observable Markov Decision Process (POMDP) is utilised. A renewal maintenance 

model is also studied to evaluate the optimal repair and inspection intervals. 

 

Chapter 7: Conclusions and suggestions for future research 

This chapter presents the summary and main conclusions drawn from the present 

research work followed by some suggestions for prospective studies. 
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2. Literature review 

2.1. Introduction 

In this chapter, firstly an overview of the existing coastal defences and conventional 

analysis methods in this field are discussed. Then available studies about estimating 

hydraulic parameters and the effects of climate change on the parameters are studied. 

Available condition assessment frameworks for coastal defences in UK are presented, 

and an overview of the deterministic deterioration curves is provided. Stochastic 

deterioration models are studied, and the applicability of the models for different types 

of deterioration processes is reviewed. Then reliability analysis theory for coastal 

defences is investigated to understand the time-dependent deterioration process and 

performance evaluation methods. Finally, available maintenance models in this area are 

studied to find out the developments and the gaps regarding the maintenance policies in 

UK. 

 

2.2. Current risk evaluation methods in UK 

In UK, common flood risk assessment methods are based on the source-pathway-

receptor-consequence (SPRC) framework as shown in Figure 2.1. The SPRC model has 

mainly four stages (Kortenhaus et al. 2002; McMillan et al. 2011): 1) sources of hydraulic 

loads (e.g. water levels or wave heights); 2) structures and their failure mechanisms; 3) 

receptors (e.g. the people, property and everything that are defenced against floods); and 

4) consequence or damage that might occur if the flood defence does not function 

properly.  

 

 

 

Figure 2.1 Source-pathway-receptor-consequence model to evaluate the risk for 

flood defences. 
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The method is well known as a risk-based method, and it is aimed to manage and 

maintain the flood defence structures in an acceptable performance level and minimum 

consequences for the receptors.  The principles and standards of the conventional risk-

based methods are described and guided by Environment Agency in many publications 

(see Bown et al. 2014; Flikweert et al. 2009). Also, Environment Agency provides “flood 

map for planning” to support the risk-based management (the map includes interactive 

tools and data in the local and national scales) (Environment Agency, 2017). Figure 2.2 

shows an example of the mentioned map for Medway area. Flood zone definitions are 

set out in the National Planning Policy Guidance as: 

 Flood zone 1 - land assessed as having a less than 1 in 1,000 annual probability 

of river or sea flooding (<0.1%). 

 Flood zone 2 -  land assessed as having between a 1 in 100 and 1 in 1,000 annual 

probability of river flooding (1% – 0.1%), or between a 1 in 200 and 1 in 1,000 

annual probability of sea flooding (0.5% – 0.1%) in any year. 

 Flood zone 3 - land assessed as having a 1 in 100 or greater annual probability of 

river flooding (>1%), or a 1 in 200 or greater annual probability of flooding from 

the sea (>0.5%) in any year.  

Furthermore, in 2004, a tiered framework is developed in Performance Based Asset 

Management System (PAMS) (Long et al. 2013), to improve flood risk management 

methods, especially in local scale. The conventional reliability analysis methods (risk 

models) in flood defence scheme are composed of three main stages as (Gelre et al. 

2008): 1) objective setting, 2) condition assessment, and 3) performance assessment. The 

objective setting means to set a goal or threshold for a structure or asset that is going to 

perform against a specific load, and usually, the objectives are set by decision makers 

regarding the priorities. The condition assessment stage is currently assessed through 

deterministic models, visual inspections or quantitative measurements (Long et al. 2013). 

Finally, the performance assessment stage is commonly based on probabilistic methods 

and generic fragility curves as high-level risk evaluation approach (Simm et al. 2008).  
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Figure 2.2 Flood-map-planning online application demostratres the 

recommendations for flood risk in Chatham area.   

 

Joint probability methods for the source of loads in UK  

Significant research into joint probability methods has been carried out by the 

Environment Agency and researchers since the 1990s. Several variables (e.g. wave 

height, wave period, wave direction, water level, beach elevation and traffic loads) 

influence some of the primary failure mechanisms in flood defences. Joint probability 

estimations for various variables and the application of these methods in coastal defences 

have been studied (e.g. Hawkes 2008; Reeve 2007; Jonathan et al. 2013). Conventional 

joint probability methods in flood defence structures for combination and interpretation 

of the source data can be divided into four approaches: 

 Event definition approach. 

 Desk study approach. 

 JOIN-SEA approach. 

 Dependence Measure and Monte Carlo simulations approach. 
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An event definition is a more sophisticated version of the single-variable extreme 

analysis. In this method, the traditional statistical analysis is carried on one specific 

variable to find out the extreme variables. Then a subsequence analysis is also carried 

out to assess another extreme aspect of the first variable. For example, a statistical 

analysis of peak river flow is conducted, and then a subsequent river modelling will be 

undertaken to assess flow duration. This method can produce some distributions from 

two different types of data (which could be unmatched). This method is used in several 

applications (e.g. Taylor et al. 2014). This method is simple and useful for an initial 

evaluation of extreme events for small areas, however, not capable to consider the effects 

of time-dependent and changeable parameters. 

 

Desk study approach to joint probability analysis is a method for creating a table of joint 

exceedance extremes. The dependency estimation between the critical variables in this 

method is deterministic, and it is from UK dependency maps provided by Environment 

Agency (Hawkes and Svensson 2006). Desk study method is widely used in UK, as the 

technical instructions and necessary tools are available publicly.  However, it is not 

suggested for important structures due to lack of flexibility to adjust site-specific 

information and time-dependent variables in the model (Gelder et al. 2004).  

 

JOIN-SEA approach to joint probability analysis is a method based on freely available 

software provided by Environment Agency. The software is designed and developed for 

joint probability extreme analysis on a FORTRAN programme. The programme fits 

distributions, estimates dependency between the key variables and extract extreme values 

from the simulated data. JOIN-SEA algorithms are based on formulas from Owen et al. 

(1998). Although the software covers joint probability analysis comprehensively, some 

level of computer knowledge and considerable time-consuming practices are needed for 

individual operators (HR Wallingford 2000). Also, since the presenting of the project, 

some equations such as overtopping rate formulae has been adjusted, so the software is 

out of date and will not be discussed in this thesis.   

 

The last approach (Dependence Measure and Monte Carlo simulations approach) is still 

considered as a research topic. This approach is still a research topic because the 

correlations of major variables in a flood risk model and the effect of changing 
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environments on the variables in the future is not clear yet (e.g. Lorenzoni et al. 2016) . 

The main steps in this method are similar to the previous approaches such as extreme 

value analysis of the key variables and preparation of the initial data. Following the 

mentioned steps, marginal distribution analysis, fitting of the dependence, joint extreme 

analysis and result presentation should be investigated and will be discussed later. In a 

joint probability analysis for a coastal defence, often, sea level and wave heights are 

considered as major variables. However, other combinations of variables are also 

common, e.g. (rainfall + tidal surge) and (wave height + tidal surge) (Hawkes et al. 2005). 

 

2.3. Hydraulic conditions for coastal flood defences 

2.3.1. Hydraulic loads and parameters  

Sea level 

Sea water level is a crucial parameter to estimate loads on coastal defence structures and 

estimating crest level of a coastal defence structure. Accurate estimation and prediction 

of extreme values of sea level are essential for a reliable performance of coastal defence 

structures during their operation.  Sea level term may describe values of (CIRIA 2007):  

 Mean sea level. 

 Tide level. 

 Storm surge level.  

Mean sea level is a site-specific parameter and should be obtained from a consistent 

recorded period/data of local gauges. Climate change and its effects such as sea level rise 

considerably increase the amount of uncertainty for evaluating mean still water in the 

future (Nicholls and Cazenave, 2010). Tidal levels are consequences of astronomical 

effects and then entirely predictable with an acceptable degree of accuracy. Tidal levels 

change due to the astronomical forces, and they are expressing as relative values to a zero 

of the chart datum (Purvis et al. 2008). Hence, there is a low-high or neap-spring cycle 

of tide levels, which should be considered in the prediction of extreme water levels. 

Storm surge is an abnormal rise of water generated by a storm, over and above the 

predicted astronomical tide. It’s the change in the water level that is due to the presence 

of the storm (Met office 2017). Figure 2.3 shows the schematic of the described datum 

and their differences. 
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Figure 2.3 The defined datum in UK and their approximate relevant position to 

each other. 
 

Wave conditions  

Wave height is another major parameter for estimation of hydraulic loads in some failure 

mechanisms. Wave data/observations including height and period are obtained or 

generated through many techniques such as buoys, laser measurements, satellite images, 

and numerical wave models. The reliability of buoy measurements is more than other 

methods, but the spatial coverage is limited. Satellite data are the most available and may 

be an alternative for estimation of wave heights. However, the level of uncertainty in this 

technique is high (Khon et al. 2014; Vincest 1982). 

 

The behaviour of wave heights changes when they transit from deep waters to surf zone 

due to depth-limited effects. In general, parameters such as wave steepness, the slope of 

bathymetry and offshore wave heights have significant influences on the evaluation of 

depth-limited wave heights. Goda (2010) and Owen (1980) suggested two empirical 

models estimating depth-limited wave heights by considering shoaling and wave 

breaking factors. Goda’s method uses an upper limit of significant wave heights while 

Owen’s method provides an initial estimate of depth limited significant wave height in 

any water depth.  

 

Significant wave height at the toe of a structure is a critical variable in hydraulic loads, 

and it is defined as the average of the highest third of the waves H1/3. Zero moment wave 
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heights 𝐻𝑚0 and the highest third of the waves 𝐻1/3 are often called significant wave 

heights because they have similar values in deep water zone (Goda 2010). However, the 

effects of wave breaking and depth-limited in surf-zone could change the behaviour of 

significant wave heights considerably as shown in Figure 2.4. Hence, significant wave 

heights in deep and shallow waters are different due to wave breaking process (Pullen et 

al. 2007; Van-der-Meer et al. 2016). Wave period is another critical parameter in 

hydraulic load evaluation. Literature before 2012 supposed that wave period remains 

consistent subject to sea level rise because in the process of wave breaking the wave 

periods remain unchanged (Pullen et al. 2007). However, new pieces of evidence show 

that wave periods increases over time due to climate change (Van-der-Meer et al. 2016).  

 

 

Figure 2.4 The schematic of wave changes when entering surf zone. 

 

Causes of coastal floods 

The leading causes of coastal floods for a typical flood defence shown in Figure 2.5 

include (Gouldby et al. 2014; Batstone et al. 2013): 

 Combination of high tides, storm surges and waves. 

 Rising sea levels (Eustatic) and land movement (Isostatic). 

 Tsunamis. 

 Reclaimed lands. 

Sea level rise due to climate change or land movements is considered as one of the sea 

flood causes. However, the effect of climate change is still vague, as the climate change 
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may increase the likelihood and severity of storm surges and winds (Dahl et al. 2017). 

Tsunamis are giant waves resulting from earthquakes, volcanic eruptions, meteor 

impacts, and any significant displacement of water in the ocean. The tsunami waves surf 

very quickly and not easy to be detected immediately (Atwater et al. 2016). Fortunately, 

it is very uncommon for the British Isles to be affected by tsunami waves. During the last 

century, only two weak tsunamis are recorded within UK, i.e. Meteo-tsunami (1929) and 

South-east tsunami (2011). The first one killed two people and had 3.5 metres peak wave 

heights struck the south coast including beaches at Worthing, Brighton, Hastings and 

Folkestone. The second one was a small tsunami with a peak wave height of 0.40 m 

occurred along the south coast of England (British Geological Survey 2017). 

 

 

 

Figure 2.5 Cross section of a coastal defence embankment with its geometrical 

surfaces (adopted from Hall et al. 2007). 

 

Land reclamation, also known as reclamation, is the process of creating new land from 

the sea and other water sources. The land reclaimed is known as reclamation ground or 

landfill, and it is because of coastal management or intends to attach and spread more 

lands to the beach (Lorenzoni et al. 2016). In UK, land reclamation has been implemented 

since the 1600s, for example in Dogger Bank in the North Sea, Chatham maritime in 

Kent, and St Mary Island in Chatham. These areas are low lying, flat and willing to 

significant settlements, so a small rise in sea level from a mild storm surge is enough to 

flood it and cause extensive damage. 

 

Regarding the mentioned causes of the coastal floods, it is also important to consider the 

contribution of each one in floods. Unfortunately, there is not much research undertaken 

to analyse the role for each cause of the flood. Schaller et al. (2016) and Wadey et al. 
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(2016) are two interesting studies that investigated the leading causes of several floods 

in England during winter 2013/14. Also, in the briefing report on the 2014 winter storms, 

UK Met Office (Met office 2017) provides a comprehensive description of the tide, wave 

and storm surge contributions to UK floods in the main body of the report. 

 

In the mentioned literature, Newlyn in Cornwall was the datum of the tidal contribution 

in South-west England. Results show an exceptionally high tide of 5.4 m in the evening 

and low tide of 0.7 m at Newlyn on 5th January 2014. It is known that 1 mbar pressure 

change can result in a change on the water level of 1 cm (Met office 2017). The mean 

barometric pressure along the South coast of England is about 1016 mbar. However, the 

atmospheric pressure on the mentioned day was about 950 mbar, which means about 66 

cm increase in water level only due to pressure change (Met office 2017). 

 

According to the Met Office report, the observed significant wave heights were 16.0 m 

at the south-west of UK, in January 2013, consistent with other estimates of wave heights 

exceeding 15.0 m. The Newlyn tide gauge has shown a total sea level rise of 18.0 cm and 

-11.0 cm land movement in the period 1910 to 2010 (Met office 2017). Hence, coastal 

flooding of south-west England, in winter 2013/14 caused by a storm surge with 

exceptionally high tides. The direct contribution from rising sea levels might consider 

negligible. However, the indirect contribution of climate change such as stronger winds 

and longer storm surges is still unclear. Figure 2.6 shows the approximate contribution 

of different causes to the 2014 winter floods. 

 
Figure 2.6 Approximate contributions to coastal flooding, SW England, early 

January 2014. 
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2.3.2. Climate change impacts on hydraulic loads 

Climate change refers to change in the statistical distribution of weather patterns over an 

extended period of times. It caused by many natural or human activities. Human activities 

have a significant contribution to climate change which is often referred to global 

warming according to International Projection of Climate Change IPCC (Hansen 2013). 

Small increases in global mean temperature and just a few degrees of polar warming 

relative to the pre-industrial period lead a substantial increase in global mean sea level 

rise, which affects the performance of coastal defence structures in particular.  

 

Coastal flood defences can be affected by changing environments such as sea level rise 

and storms, which may lead to failures against unexpected loads. Hydraulic variables 

such as sea level, wave heights and wave periods are often considered as critical 

parameters in a coastal defence structure, which are affecting from sea level rise 

(Mehrabani and Chen 2015; Sterr 2007). Overtopping related failures, as most common 

failure mechanisms are sensitive to wave parameters and sea level. Hence, both discharge 

rate and frequency of overtopping events are expected to increase. 

 

Hinkel et al. (2014) assessed coastal flood damage and adaptation costs regarding the 

projected climate change scenarios with consideration of a wide range of parameters, 

including vertical land movement, population size, maintenance strategies, socio-

economic developments and sea level rise. The results show that without adaptation plans 

by assuming poor or late time investments, 0.2% to 4.6% of global population is expected 

to be flooded annually before 2100 due to 25 to 123 cm sea level rise, respectively. The 

expected economic losses due to sea level rise are predicted to be 0.3% to 9.3% of the 

global production. The estimated value of damage is too significant for some countries 

and may lead to fall of societies and governments. 

 

Hallgate et al. (2013) demonstrated that the magnitude of losses and damage due to the 

future coastal floods on coastal structures would increase more than 50% by 2050 as the 

strength and frequency of the floods will increase due to sea level rise. Bosello et al. 

(2013) presented that without adaptation to the projected sea level rise, 12% of lands in 

European continent will be sunk by the end of the century, while the loss could be 

reduced more than 85% by adopting the protection in coastal defence structures. The 
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projected future changes in environments have a unique impact on coastal defence 

systems as well as 6 % of the European population who live in flood area during the next 

100 years (Hallgate et al. 2013).  

 

Changes in sea level and significant wave heights due to global warming have 

considerable influence on the performance of earth sea dykes. The deterioration process 

will be boosted dramatically due to sea level rise (Rangel-Buitragoa et al. 2015; Esteban 

et al. 2014). The structural reliability of the coastal defence structures in the next decades 

will reduce significantly if the resistance of the structures is not improved (Chen 2015; 

Buijs et al. 2009; Mehrabani and Chen 2016; Firth et al. 2013). It has been demonstrated 

that the probability of failure of coastal defence structures due to overtopping and piping 

failure mechanisms will increase, and without structural adaptations e.g. increase in crest 

level height, it is expected that the lifespan of the structures decreases significantly (Chen 

2015; Mehrabani and Chen 2015).  

 

2.3.3. Projected sea level rise  

The projected sea level rise is different in different regions. Also, the vertical movement 

of lands should be considered to project long-term sea water level rise. The projection of 

rising above mean sea level in UK waters is provided in the United Kingdom Climate 

Projection UKCP09 (Jenkins et al. 2011). A summary for estimated changes in sea water 

level is presented in this section. Mean sea level has projected to increase between +22 

to +82 cm with a 95th percentile confidence level for various emission scenarios by 2095 

(Jenkins et al. 2011). In order to estimate efficient extreme sea water level in the future 

to consider the sea level rise effects, UKCP09 suggests to utilise skew surge method to 

find out storm surge level (Jenkins et al. 2011). The details of the projected sea level rise 

and mathematical model to consider the influences of the sea level rise will be discussed 

in next chapter. 

 

2.3.4. Projected wave conditions  

Significant wave heights are also estimated to have a change between -1.50 m to +1.00 

m, as shown in Figure 2.7. Meanwhile, Anglia Coastal Monitoring programme published 

site-specific reports for different stations around UK to provide a more accurate 
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estimation of local wave conditions (Eade 2015). The wave steepness 𝑆𝑜𝑝 is expected to 

have a linear increase due to sea level rise over time and given as (Pullen et al. 2007) 

 𝑆𝑜𝑝 =
𝐻𝑠𝑜

𝐿𝑜𝑝
 (2.1) 

where 𝐻𝑠𝑜 is wave height; and 𝐿𝑜𝑝 is wave length. There are large uncertainties associated 

with projected changes in wave heights due to sea level rise, especially with the extreme 

values. Projections of more extreme, i.e. longer return periods, wave heights reflect the 

same pattern as the mean changes but with increased uncertainty (Jenkins et al. 2011). 

 

Townend and Burgess (2004) proposed a model to estimate change of wave heights due 

to change in sea level, which is derived from Weggel’s (1972) formula, and based on 

laboratory experiments. Townend and Burgess (2004) used Weggel (1972) formula for 

calculation of relative change of wave heights due to sea level rise. The accuracy of the 

proposed model is tested by Oh et al. (2009) and Lee et al. (2013), and has compared 

with other verified models such as Goda (2010). The model by Townend and Burgess 

calculates roughly larger wave heights than the classic models especially on a surf-zone.  

 

            

Figure 2.7. Projected UK mean significant wave height (m) relative changes at 

various locations from 1990–1999 to 2090–2099 (adopted from Jenkins et al. 

2011). 
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2.4. Coastal flood defence condition assessment  

2.4.1. Condition grading system 

Coastal flood defence structures are designed to serve reliably for decades. By 

considering changing environments and climate change effects such as sea level rise, it 

is a significant challenge for authorities to keep existing structures at an acceptable level 

of structural performance. Therefore, routine condition assessments are essential for 

observing the assets performance level and for a sufficient management policy 

(Mehrabani and Chen 2016; Chen and Alani 2013). Condition Assessment Manual 

(CAM) is a condition grade assessment criterion in the context of grade-based asset 

management (Environment Agency 2006). Condition grades are defined to offer a 

standardised approach to assess the deterioration of flood defence structures and to assist 

decision makers to manage the maintenance strategies. In an inspection process based on 

CAM, each component is visually inspected by a trained inspector, and it is ranked into 

one of five condition grades from 1 to 5 (1 for very good and 5 for very poor), as 

described in Table 2.1. 

Table 2.1 Condition grades and descriptions adopted by Environment Agency (EA 

2006). 
Grade Rating Description 

1 Very Good Cosmetic defects that will have no effect on 

performance. 

2 Good Minor defects that will not reduce the overall 

performance of the asset. 

3 Fair Defects that could reduce the performance of the asset. 

4 Poor Defects that would significantly reduce the performance 

of the asset.  

5 Very poor Severe defects are resulting in complete performance 

failure. 

 

Environment Agency keeps records of individual flood defence asset’s inspection results 

to have a better understanding of their structural performance. The database is also 

essential for flood risk management regarding the present condition and the deterioration 

rate. Generic deterioration curves are determined based on CAM system to quantify the 

residual life of an asset with and without maintenance plans (Simm et al. 2008). Although 

the provided deterministic deterioration curves are used to determine the residual life of 
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flood defence structures, the level of uncertainty is still significant due to nature of 

deterioration process.  

 

In order to assess the condition grade of the structures by inspectors, each organisation 

or firm has its own approach to assessing asset condition. However, all approaches need 

to follow Environment Agency practice built on the following documents: 

 Condition Assessment Manual (CAM).  

 Internal Operational Instructions used by the Environment Agency to standardise 

the approach to inspections and the frequency of these relating to the risks. 

 Asset inspectors’ training and accreditation through the T98 programme.  

In addition, the principle of weighting for different elements in an asset is described in 

section 2.3.3 of asset inspection guidance APT 2 report (Environment Agency 2014). An 

example of the Environment Agency method is shown in Table 2.2. As shown in the 

figure, the overall grade of the asset is the sum of (weightings × condition grades) divided 

by the sum of the weightings. However, if any individual element with a weighting of 9 

(a critical element) falls below the target condition and the above calculation shows the 

asset is numerically meeting its target condition, this should be overridden to give an 

overall condition grade below the target. Full description of the inspection guidance, data 

quality, reports and inspection approaches for different parts of an asset is provided in 

the appendix section. Figure 2.8 provides examples of flood defences in different 

condition grades.  

 

Table 2.2 Example calculation of condition grade from grade and weighting for a 

flood defence adopted from Environment Agency (2014). 

Element  Weighting (W) Condition grade (CG) W*CG 

Channel side 3 3 9 

Berm 5 2 10 

Exposed face 8 (9) 4 32 (36) 

Crest 8 1 8 

Landward face 8 2 16 

Sum (W) 32 (33)   

Sum (W*CG)   75 (79) 

Overall CG 75/33=2.34= CG2 

79/33=2.39= Override to CG3 
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Figure 2.8. Sea defences examples with different condition grades, the second asset 

is in condition grade 2 due to animal burrow and erosions. The arrows show the 

defects areas. 
 

Condition grade 1 

Condition grade 2 
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2.4.2. Quantitative damage assessment 

Quantitative Assessment Manual for the monitoring and inspection of flood defences 

provides a framework to monitor the structures through the collection of quantitative data 

(Long et al. 2013). In the same year of publishing CAM manual, an improved approach 

to condition assessment was published to undertake a quantitative condition assessment 

based on expert judgment, damage level, and performance deterioration. The report 

suggests ranking assets according to their performance level, surface conditions and risk 

posed. In fact, the report was one of the first steps to rank an asset by considering the 

intensity (slight, minor and major) and magnitude of the damage.  

 

According to the manual, slight damage is defined as condition grade 1, minor damage 

for condition grades 2-3, and major damage for condition grades 4-5. The condition grade 

of dykes is considered as an indicator of the robustness of the dykes and their likely 

performance when subjected to extreme loads (Long et al. 2013). This manual improves 

the efficiency of condition assessment manual by integrating quantitative measurement 

into visual inspection and provides a more accurate assessment of condition grades. The 

framework provides instruction for different types of flood defence structures (e.g. 

vertical walls and sheet piles) and various inspection techniques (not only visual 

inspection). 

 

2.5. Deterioration processes and modelling 

The existing deterioration models are classified into two main categories based on their 

evaluation process: 

 Deterministic models 

 Stochastic models  

Linear and nonlinear models are two well-known types of deterministic models. In 

deterministic models, the output of the model is fully determined by the parameter values 

and the initial conditions. In a deterministic model, the relationship between input and 

output is described by a mathematical function, and it is suitable for a stable environment. 

However, this model is not appropriate for a complex system where the correlation 

between the critical parameters needs to be assessed, and the phenomenon of the structure 

is changeable (Edirisinghe et al. 2013). Stochastic calculation methods can be 
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categorised into three levels since each level satisfies the specific amount of accuracy. 

Level 3 methods approximate the integral of limit state equation ( Voortman and Vrijling, 

2000). Monte Carlo and directional sampling methods are examples of level 3 

probabilistic methods where a large number of simulations are generated for the defined 

parameters of the limit state function (Wadey et al. 2014). Gamma process and Markov 

Chain are two examples of stochastic models.  

 

2.5.1. Deterministic vs stochastic deterioration models 

In a deterministic model, all variables are individually determined by parameters in the 

model and by sets of the previous history of the variables. Hence, a deterministic model 

always has the same outcome for given input variables. In contrary, in a stochastic model 

variables are defined with respect to uncertainty parameters, and are not described by 

unique values, but rather by probability distributions. In flood defences, deterministic 

models cannot describe the nature of problems due to the inherent stochastic behaviour 

of the input variables. In a deterministic model, hydraulic events, loading and conditions 

of the asset are defined in the model based on exact and constant values. By defining 

some or all the input parameters in a stochastic form, the simulation becomes stochastic. 

Hence, in a stochastic approach, every time the simulation is run, it will have a slightly 

different outcome, although the input variables are the same.   

 

In deterministic models, the relationship between loading and probability of failure is 

established by a safety factor, to describe the strength of the asset. Deterministic models 

in flood defence structures are adopted from European standards, where the standards 

are absolute values of the strength or resistance divided by a factor. Hence, the 

probability of failure is zero until the design load event is reached at the point where the 

failure probability is equal to 1.  

 

In a stochastic analysis, many uncertainties in the estimation of the input variables are 

considered to evaluate failure probabilities (generally with lower and upper bound). For 

example, in a stochastic model, one can say the possibility of occurring each sea level 

rise scenario is equal in a period of 100 years. However, the probability of rising sea level 

in a period of five years is in a specific range according to today’s information, and 

cannot suddenly rise or drop over or below a specific value.    



  

26 

 

2.5.2. Stochastic deterioration models 

Gamma process 

Gamma process is an appropriate model for stochastic deterioration modelling to failure 

assessment (lifetime), and the average rate of deterioration per unit time is defined as 

random variables with a gamma distribution. Since deterioration is uncertain and non-

decreasing i.e. if the structure is subjected to do-nothing maintenance strategy, it can be 

regarded as a gamma process (Abdel-Hameed 1975), which gives an appropriate model 

for random deterioration over time. Initially, Abdel-Hameed (1975) was the first to 

propose the gamma process as an appropriate model for deterioration process over time 

and called this model as “gamma wear process”. 

 

 

 

 

 

 

  

 

 

Figure 2.9 Grade (G) transition and transition time (t) of a typical Markov process. 

 

The Gamma process has independent and non-negative increments defined by a gamma 

distribution with identical scale parameter and a time-dependent shape parameter. Details 

about the mathematical aspects of gamma processes and its application in deterioration 

modelling can be found in literature (Pinsky and Karlin 2011; Noortwijk, 2009; Chen 

2006), and will be discussed in detail in Chapter 4. Noortwijk (2012) investigated the 

applicability of gamma process to predict infrastructure degradation in the future and 

demonstrated that it is a suitable model to estimate evolving deteriorations such as 

settlement on crest level. A stochastic gamma process can be incorporated the temporal 

uncertainty associated with the evolution of deterioration (Chen and Alani, 2012; 

Noortwijk, 2009). The gamma process is, therefore, suitable to model gradual damage 
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that are monotonically accumulating over time in coastal flood defences. An advantage 

of modelling deterioration processes through gamma processes is that the required 

mathematical calculations are relatively straightforward.  

 

Markov chain 

Markov chain is a stochastic process to estimate the future event as random outcomes 

based on the present condition of the system (Bocchini et al. 2012; Duchesne et al. 2013). 

It is a homogeneous process if the transition probabilities are independent of time. For 

example, for the same length of 2 years as a time step, the deterioration follows the same 

pattern no matter when it starts. A non-homogeneous Markov chain model has a 

transition probability matrix that is not a constant but a function of time. For example, 

hydraulic loads subject to a scenario of climate change may change the deterioration rate 

of coastal defence due to more frequency of extreme events. Markov chain is a common 

tool to predict the deterioration of structures and helps to deal with deterioration 

uncertainties (Norris 1997). A Markov chain is considered as a series of transitions 

between certain condition grades. Figure 2.9 shows a schematic diagram of a Markov 

process with its transition points. 

 

The transition probability matrices are estimated using available data (e.g. inspection 

results for a period) and can be calibrated by minimising the difference between the 

observed and the predicted condition grades of the asset, typically: 

1. By minimising the sum of the squared differences between each of the data points 

and the average condition calculated from the distributions of the condition. 

2. A regression analysis is performed first using the collected data. Then, the 

squared differences between the regression line and the observed data are 

minimised. 

3. The initial data are presented in the form of distributions and the squared 

differences between the observed distributions and the predicted distributions 

should be minimised. 

Also, for homogeneous of Markov chain models, a zoning concept needs to be applied if 

the lifespan of the structure is long. The zone times help to overcome the limitation of 

the model about changing deterioration rate over time. For example, in most realistic 
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infrastructures the deterioration rate is higher when the structure is closer to the end of 

its lifespan than the time where the structure is newly constructed. A zone is a specified 

period that assumed to produce constant transition probabilities, and the period for a zone 

is based on expert judgment and inspection intervals.  

 

Markov chain vs Gamma process 

Although both Markov chain and Gamma process are widely used in deterioration 

modelling, they have their specific features. Gamma process can only to be used for non-

decreasing processes, while Markov chain can be transited to a new condition grade, e.g. 

improved or deteriorated. Markov chain models are often used in a discrete-time and 

single step degradation model, while Gamma process is suitable for continuous 

deterioration process. Both Gamma and Markov processes can be utilised in grade-based 

case studies. For example, Bocchini et al. (2012) applied Markov chain to a condition-

based deterioration model for future assessment of a component condition, while 

Edirisinghe et al. (2013) applied Gamma process in a condition-based deterioration 

model for bridge elements. It should be noted that Gamma process is not independent of 

the history of the structure’s condition, while Markov chain model is only based on the 

present condition of the system.  

 

2.5.3. Lifetime reliability models  

Continues and non-decreasing statistical distributions can describe time to failures (TTF) 

of a system, in order to simulate the behaviour of a structure in a lifetime reliability model 

with consideration of parameter uncertainties. Then, the lifetime reliability model can be 

utilised to plan (or optimise) inspection, repair and maintenance strategies.  

 

Lifetime reliability using gamma process   

In the gamma process model, the cumulative deterioration at time 𝑡 follows a gamma 

distribution with the shape function 𝜆(𝑡) > 0, and a constant scale parameter 𝛽. To 

represent the increase of deterioration rate over time, the shape function may be an 

increasing function of time. The damage increment from any time step is an independent 

random variable, and it is a consequence of Gamma process parameters, hence, the 

cumulative deterioration is also gamma distribution. The cumulative distribution 

function of the lifetime can be derived as (Le Son et al. 2013) 
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𝐹𝑇(𝑡) = Pr[𝑋(𝑡) ≥ 𝜌] = 1 − 𝐺𝐴(𝜌𝑚|𝜆(𝑡), 𝛽) (2.2) 

where 𝑋(𝑡) is the random variable at time 𝑡; and 𝜌𝑚 is the design margin or a 

deterioration threshold. 

 

Lifetime reliability using Markov process   

In Markov process, the system provides information for the future state (including 

deterioration level), where the future state is independent of the past state given that the 

present state is known. The statistical parameters such as mean and variance of the 

deterioration level depend on whether the process is stationary or non-stationary. In the 

case of a stationary process, the parameters will not change, while in a non-stationary 

process, the parameters are time-dependent. Since the initial condition state 𝑆𝑡0  is known, 

the expected condition of the next state 𝐸(𝑋) regarding the loading parameters ℓ and 

time-step 𝑡 is given as (Bocchini et al. 2012) 

𝐸(𝑋) = 𝑆𝑡0 ∙ 𝑃𝑛(ℓ) ( 2.3) 

where 𝑃 is the transition probability matrix regarding the load ℓ.  

 

2.5.4. Sources of deteriorations in coastal defences 

Deterioration is defined as the act or process of becoming worse. In a structural concept, 

it involves a decline in the state of structural resistance and material. Processes of 

deteriorations in coastal defence structures are categorised into three groups as: 

 External erosion; External erosion is the wearing of a surface (bank, 

embankment or another surface) by floods, waves, wind or any other natural 

process (Rangel-Buitragoa et al. 2015). 

 Internal erosion; Internal erosion occurs when soil particles within a levee or 

its foundation are carried downstream by seepage flow (Bonelli et al. 2013). 

 Instability; Instability occurs when the strengths of soil particle movement 

exceed the resistant strengths. Excessive loading on a levee, or weak physical 

properties of the levee materials or the foundation soils generates sliding 

along a shear surface within the levee embankment and/or foundation soils 

that damage the levee (Sayers et al. 2015). 
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External erosions occur when the shear stress in the outer surfaces of a structure (levee), 

which is induced by hydrodynamic forces. Currents, waves and tides, when transforming 

to an overtopping or overflowing, may act as the principal inducer of the surface erosion 

(Rangel-Buitragoa et al. 2015). Internal erosions occur when soil particles inside the 

structure induced by hydrodynamic forces (most often in porous layers). The primary 

cause for the development of internal erosions is seepage. Bonelli et al. (2013) 

categorised the mechanism of internal erosion into two groups as; 1) piping or backward 

erosion when the seepage gradient exceeds the flotation gradient of the soil with 

concentrated erosion; 2) contact erosion where the fine soil is washed into the coarse soil 

by the horizontal flow. 

 

An important type of instability is due to the geotechnical configuration of the structure 

such as consolidation and settlement (Baars and Kempen 2009). Coastal defence 

foundations are built on layers of soft clay and expected to undergo relatively time-

dependent settlement and consolidation under the imposed load, especially for 

embankment higher than two meters. The time-dependent nature of consolidation and 

settlement processes may increase the level of uncertainty in reliability assessment and 

maintenance plans. Another problem caused by the settlement is distortion-induced 

cracking of the potentially brittle fill material. The cracks will make the embankment 

more permeable as well as be more prone to damage and possibly breach because of 

overtopping/overflowing (Sayers et al. 2002). 

 

A case study in Germany provided by Baars and Kempen (2009) showed the contribution 

specific deterioration processes to different failure mechanisms in coastal defence 

structures. Studies of 100 levee breaches demonstrated that almost 70% of the failures 

are related to external erosions due to wave overtopping. 17% of the breaches are related 

to stability failures due to instability erosions such as settlement and slope breach, 12% 

related to internal erosions due to piping, and 1% for other deterioration processes (Baars 

and Kempen 2009).  

 

2.6. Structural reliability analyses 

The risk posed by the combined effect of two or more extreme variables and the effect 

of sea level rise on the hydraulic variables have significant impacts on the performance 
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of coastal defences. Many failure modes in coastal defence structures such as 

overtopping may occur in extreme events, which shows the necessity of joint extreme 

analysis in failure probability estimation for the structures (CIRIA 2007). The failure 

mechanisms in coastal defences are mainly relevant to two major types of limit states 

(CIRIA 2007):  

 Ultimate Limit State (ULS) - corresponding to the maximum load carrying 

resistance such as piping and uplifting.  

 Serviceability Limit State (SLS) - corresponding to the criteria applicable to 

normal use or durability such as overtopping.  

Therefore, time-dependent analysis of serviceability failure mechanisms such as wave 

overtopping and ultimate failure mechanisms such as piping appears to be necessary to 

improve reliability and integrity of coastal defence structures (Chen 2015). Sea level rise 

and deterioration processes are considered as significant threats to coastal flood defences 

due to their uncertainties. Hence, probabilistic methods for risk evaluation will be more 

appropriate to evaluate the risk of changing environments. 

 

2.6.1. Failure modes of coastal flood defences 

A failure is a state to express the inability to achieve a defined performance threshold or 

performance indicator for a given function (Hall et al. 2008), which is categorised into 

hydraulic and structural failures in coastal defence context (Gouldby et al. 2014): 

 Hydraulic failures; they happen if water ingress into the leveed area by overflow 

or overtopping of the structure without prior damage to the coastal defence 

structure.  

 Structural failures; they happen by a breach in the coastal defence system due to 

damage. 

Hydraulic failures are classified into three main groups (Reeve 2009): 

 Wave-hydraulic failures: failure and breach is a result of overtopping and wave 

forces. 

 Geo-hydraulic failures: failure and breach are because of seepage flow through 

dyke core or foundation, which lead to piping or macro-instability. 
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 Global static failures: failure and breach are because of water, wind or ice 

pressure. 

A structural failure scenario may lead to a breach, and it includes a failure mode 

involving both physical and functional phenomena. Deterioration and damage are part of 

the physical domain that might lead to failure in the functionality of a coastal defence 

(Allsop et al. 2007). A failure mechanism is a time-dependent process resulting in 

deterioration, damage and finally failure. A failure mechanism is expressed by a limit 

state function, a function in which describes the process of failure mathematically. 

 

The response of a coastal flood defence to hydraulic loads depends on the geometry, 

material and operational conditions. The analysis of 117 historical dyke breaches in 

Hungary (Nagy and Toth, 2005) and 84 dyke breaches in Saxony (Horlacher, 2005) are 

two examples to show the weight of various failure mechanisms in coastal flood defence. 

Structural failures of earth sea dykes due to overtopping, piping and other failure 

mechanisms in the first study are reported as 69%, 20%, and 11%, respectively. In the 

second study, failure rates of coastal defences due to overtopping, piping and other failure 

mechanisms were 71%, 10%, and 19%, respectively. Therefore, overtopping and piping 

failure mechanisms have been considered as major threats to the structural performance 

of sea dykes, and this thesis focuses on these two failure mechanisms. 

 

Table 2.3 Consequence of mean overtopping discharge on flood defence structures 

(Van der Meer et al., 2016). 

Mean overtopping discharge  

(𝑙/𝑠/𝑚) 

 Consequence of overtopping discharge 

𝑞 <  0.1  Insignificant 

𝑞 =  1.0   Crest and inner slopes may start to erode 

𝑞 =  10.0  Significant for dykes and embankments 

𝑞 =  100.0  Crest and inner slopes have to be highly protected 

 

Excessive wave overtopping failure mode 

Wave overtopping is often described as mean discharge 𝑞 per meter of width in 𝑚3/𝑠/𝑚 

or 𝑙/𝑠/𝑚 (Van der Meer et al. 2016). Wave overtopping rate is described as mean or 

average term because in reality there is no constant discharge over the crest of a structure. 

Wave overtopping discharge increases significantly by increase in the height of waves. 

For example, lower waves will not produce overtopping while a high wave can result in 
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a large amount of overtopping discharge in a shorter time less than a wave period (Van 

Der Meer 1998). A predefined mean overtopping discharge is often considered as 

threshold criteria to meet the quality performance of a structure. The allowable values of 

mean overtopping discharge are different more or less in various references (for example 

EurOtop manual (Van der Meer 2016)). Table 2.3 shows classification of different range 

for mean overtopping discharge rates by EurOtop manual (Pullen et al. 2007; Van der 

Meer et al. 2016). 

 

Piping failure mode 

Piping failure belongs to geo-hydraulic failure type with hidden indicators that warn the 

high possibility of piping failures such as seepage through the sand layer beneath the 

dyke, rupture of clay layer in a landslide, and progressive erosion at the toe dyke (Weijers 

and Sellmeijer 1993). Piping in the dyke foundation and slope occurs because of seepage 

flow through a dyke core (micro-instability) (Vorogushyn et al. 2009). In the dyke 

foundation, the deterioration processes result in a formation of pipes, which decrease the 

stability of structure due to piping failure mechanism (Voortman and Vrijling 2001). 

Finally, inner erosion of the dyke core may occur as a result of material transport via 

flow paths such as animal holes towards the seaside dyke slope leading to the slope and 

core failure. 

 

A critical resistant element to protect sea dykes is the sheet piling under the structure that 

prevents seepage & piping, and increases stability. Some significant failures during 

Hurricane Katrina occurred because of an insufficient length of these sheet pilings (Liu 

et al. 2005).  A dyke fails due to piping when two subsequent failure mechanisms occur. 

First uplifting failure mechanism causes openings in the impervious clay layer covering 

the sand layer. Secondly, a flow of water through these openings initialises a deterioration 

process. The deterioration process takes the form of pipes undermining the foundation of 

the dyke and eventually causes failure (Baars et al. 2009).  

 

Piping is the sub-mechanism that describes the growth of water-bearing ‘pipes’ due to 

increasing pressure of the water on the outside of the dyke. The dyke fails as a 

consequence of piping if the difference between the local water level and the inside water 

level reduced with a part of the vertical seepage length exceeds the critical water level. 

Weijers and Sellmeijer (1988) defined the critical parameters of a piping failure 
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mechanism as: (1) water level as a function of a factor reflecting the effect of the finite 

thickness of the water-bearing layer, (2) the characteristics of the sand properties in the 

resistance layer, and (3) the seepage length. Vorogushyn et al. (2009) defined the piping 

failure probability related to rupture and seepage by  

𝑃𝑓 = 𝑃𝑝𝑖𝑝𝑖𝑛𝑔 ∙ 𝑃𝑐𝑟|𝑝𝑖𝑝𝑖𝑛𝑔 (2.4) 

𝑃𝑝𝑖𝑝𝑖𝑛𝑔 = 𝑃𝑟𝑠 ∙ 𝑃ℎ𝑐𝑟|𝑟𝑠 (2.5) 

𝑃𝑟𝑠 = 𝑃𝑠𝑒𝑒𝑝𝑎𝑔𝑒 ∙ 𝑃𝑟|𝑠𝑒𝑒𝑝𝑎𝑔𝑒 (2.6) 

where 𝑃𝑓 is the probability of dyke failure due to piping; 𝑃𝑐𝑟|𝑝𝑖𝑝𝑖𝑛𝑔 is conditional 

probability of piping associated with the critical seepage length after erosion or 

deterioration; 𝑃𝑝𝑖𝑝𝑖𝑛𝑔 is the probability of progressive piping; 𝑃ℎ𝑐𝑟|𝑟𝑠 is the conditional 

probability rupture after water level reaches to critical head difference; 𝑃𝑟𝑠 is the 

probability of rupture and seepage; 𝑃𝑟|𝑠𝑒𝑒𝑝𝑎𝑔𝑒 is the conditional probability of rupture 

associated with the seepage level. 

 

2.6.2. Limit state equation 

In structural reliability analysis, the first step is to define the desired/required 

performance of the structure. The decision maker or authorities are asked to describe the 

required/desired target service life, and the period that coastal defences are needed to 

service regarding the budget, the expected extreme events and the importance of the 

receptors. Performance of the structure represents the combined short term and long term 

fulfilment of the functional requirements including safety, serviceability and 

functionality of the structure during the service life. In a performance-based context, 

these functional requirements are defined as the limit states (Van et al. 2007). 

 

The limit state is the function of the boundary conditions including its loads and the state 

of the structure including its resistance. In order to evaluate the risk of each specific 

failure, a limit state equation 𝑍 should be described.  A limit state equation in its general 

form is expressed by (Allsop et al. 2007) 

                                                        𝑍 =  𝑅 –  𝑆                                                     (2.7) 
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where failure is defined when 𝑍 ≤ 0; 𝑅 is the strength of the structure; and 𝑆 is the 

loading on the structure. Both strength and load may interpret to time-dependent 

stochastic random or deterministic variables. For a probabilistic approach, the schematic 

diagram of a limit state equation and the visual interpretation of failure probability is 

illustrated in Figure 2-14. In the case of environmental change over time, hydraulic 

variables may change due to rise in sea level, and the resistance of the structure is 

decreased due to deterioration processes.  

 

 

Figure 2.10 Illustration of probabilistic limit state equations; 𝑃𝑓 failure 

probability; 𝛽 is reliability index; and 𝜎 standard deviation of the safety distribution 

(Adopted from Allsop et al. 2007). 
 

 

 

2.6.3. Fault tree analysis 

A fault tree is a logical tree shape diagram to describe the interaction and influence of 

extreme events or component failures in a system into the total system failure (Gelder 

2013). A fault tree is useful as it illustrates a general overview of the system and contains 

the different chains of events/failure modes, leading to a top event representing the total 

failure. In other words, the reliability of an element or a system is expressed visually and 

logically. The primary purpose of constructing a fault tree is to describe the logical 

connection between component failures, and to estimate the probability of system 

reliability, eventually to calculate the probability of the major event occurring.  

 

The eventual failure probability of whole system failure is estimated according to logical 

gates in the fault tree. In a parallel coastal defence ring (system), the final probability of 
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failure is the maximum failure probability between each asset. In contrary, in a series 

ring system, the reliability of the ring system is calculated from the reliability of its 

defence structures in which failure probability is passed from one hierarchical level to 

the next (Kortenhaus et al. 2002). However, in a single dyke or systems, different failure 

mechanisms may be in parallel or series relationships. In the case of 𝑛 parallel failure 

mechanisms such as wave overtopping and overflow, the total probability of failure is 

expressed as 

Pr[ 𝑡𝑜𝑡𝑎𝑙 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦|𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙] = ∏𝑃𝑓,𝑖

𝑛

1

 (2.8) 

while the total probability of failure of 𝑛 series failure mechanisms such as piping and 

uplifting is given as  

Pr[𝑡𝑜𝑡𝑎𝑙 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦|𝑠𝑒𝑟𝑖𝑒𝑠] = 1 − ∏(1 − 𝑃𝑖)

𝑛

1

 (2.9) 

Most systems, including coastal flood defences, cannot be described in a simple parallel 

or series system, as they are often a combination of both models (OUMeRAcI 2005). 

Hence, fault tree analysis is best fits to systems with two-state components (e.g. binary 

systems) and not appropriate to a complex phenomenon such as coastal defence systems. 

However, most UK authorities in flood defence scheme including Environment Agency 

use fault trees to describe qualitative risk assessment (Reeve 2009). 

 

Figure 2.11 shows a generic fault tree which illustrated the hierarchic of the failure modes 

in coastal defence structures (Naulin et al. 2011), and it describes a detailed view of a 

fault tree. The figure shows each of the failure mechanisms is organised in a fault tree, 

and the structure of a fault tree represents the different chains of events leading to an 

overall failure of a sea dyke (top event), which is defined as breaching the structure and 

flooding in the protected lands. Conventional fault trees in coastal defence structure 

describe according to structural failures (ultimate failures) and non-structural failures 

(serviceability failures). Naulin et al. (2011) investigated the fault trees in coastal 

defences and concluded the following shortcomings as:  

 Insufficient data to assign failure probabilities to individual components. 

 Fault trees are essentially binary (e.g. components either work or fail). However, 

in coastal defence structures, different levels of performance are available. 
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 The events and failure mechanism in coastal defences have significant overlap in 

functions, and they are too correlated together to be considered as independent 

parts.  

 

Figure 2.11 Failure probabilities and extract of fault tree for a typical dyke (adopted 

from Naulina et al. 2008). 

 

The gaps in the conventional fault trees have prompted cause-consequence fault tree 

diagrams (Naulin et al. 2011). The cause-consequence fault trees can describe possible 

changes in the system and link these to consequences, then provide a complete 
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description of the system. Cause-consequence fault tree for a flood defence summarises 

the combination of the different limit state equations and some technical failure 

mechanisms concerning the correlation between them. The steps of establishing the 

diagram are as follows: 

1. Consider some or all modes of failure, other modes of failure are excluded. 

2. Recognise the events that are affecting the structure. 

3. Assign probabilities of failure to each failure mechanism. 

4. Define a time scale as an event has a duration (e.g. the probabilities of failure are 

interpreted as annual probabilities). 

The lower parts of the cause-consequence trees have less influence on the main extreme 

event, and the highest raw of the tree, which is considered as significant failures or 

events, is also dependent on another sub-failures. It means that in a coastal defence 

structure the process of failure is not a sudden event and needs several sub-failures, 

(except poor estimation of load). The cause-consequence fault trees are giving the 

decision makers enough time to improve the reliability performance of the structure after 

observing of low-level sub-failures/events (Naulin et al. 2011).   

 

2.6.4. Time-dependent reliability 

Coastal flood defence structures need to be analysed over time as described in Buijes et 

al (2009): 

1. Hydraulic loads are time-dependent especially with consideration of sea level rise 

and changing environments. 

2.  The strength of the coastal defences is time-dependent because of the 

deterioration process.  

As discussed in the previous section, failure mechanism can be defined by a limit state 

equation. Thus a general time-dependant limit state equation can be written as 

𝑍(𝑡) = 𝑅(𝑡) − 𝑆(𝑡) (2.10) 

Let the lifetime probability distribution function be (Buijs et al. 2005; Li et al. 2015) 

Pr[𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒] = 𝑓𝐿≤𝑡 = 𝑓𝐿[𝑡|𝑍(𝑡) ≤ 0] =
𝑑𝐹𝐿(𝑡)

𝑑𝑡
 (2.11) 
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where 𝐿 is the lifetime; 𝑡 is the time of interest; and 𝑓𝐿(𝑡) is the probability of structural 

failure in the interest time period. The lifetime probability density function can be written 

as 𝑓𝐿(𝑡) (Allsop et al. 2007) 

𝑓𝐿(𝑡)𝑑𝑡 = Pr[𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑓𝑜𝑟 (𝑡, 𝑡 + 𝑑𝑡) ∩ (𝑛𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑓𝑜𝑟 (0, 𝑡)] (2.12) 

The above equation means the probability of failure for a specified period of time. The 

failure surface and the domain of integration change with time. Thus the failure 

probability itself is time-dependent. The time-dependent process can be described as 

failure events that out-crossed of the load distribution over the strength distribution 

during the operation time, as shown in Figure 2.12. The exact solution/estimation of the 

out-crossed area provides the reliability of the system. However, it is not possible to find 

the exact solution due to uncertainty and inherent stochastic features. 

 

In coastal defence engineering, the time-dependent parameters for limit state equation 

are often both strength and loads. The strength, which could be decreased or increased 

due to deterioration or repair, and the hydraulic loads on the asset, which are often 

increased due to environmental changes, often need to be evaluated in terms of extreme 

values for a specific period of time, e.g. 250 years return period. 

 

 

 

 

 

 

 

Figure 2.12 Illustration of the time-dependent failure probability and the lifetime L 

(Adopted from Buijs et al 2005). 
 

  

2.6.5. Fragility curves 

The probability of failure for a structure concerning loading variables creates a curve 
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demonstrate the probability of failure on a given load, and to describe the function of 

failure, not the point of failure. Fragility curves are interpreted in absolute terms to 

provide a more comprehensive understanding of the reliability of a structure. The curves 

provide more information regarding system response associated with the load variables. 

Effectiveness and benefits of fragility curves for coastal flood defences have been 

investigated and demonstrated in many kinds of literature (e.g. Buijs et al. 2005; Suppasri 

et al. 2012).  

 

Carter et al. (2013) utilised fragility curves for joint probabilities of waves and water 

level in coastal defences to determine the reliability of a structure over time with 

consideration of deterioration processes. VanderMeer et al. (2013) applied and compared 

various methods to improve reliability assessment with a combination of different data 

sources, and demonstrated that fragility curves provide better understanding in 

comparison with other failure probability presentation models.  

 

The fragility curves give the ability to illustrate the performance of a coastal defence 

structure or system in a curve, and it is practical for a reliability analysis. For each 

fragility curve, materials, failure mechanisms and load variables are considered to 

understand the structural response to environmental conditions in a defence system. 

There are five stages of drawing a fragility curve given as (Simm et al. 2008): 

1. Recognize the relevant failure modes. 

2. Provide limit state functions.  

3. Define the critical parameters and their uncertainties.  

4. Provide fault tree analysis (hierarchy of failure modes).  

5. Carry out reliability analysis.  

 

2.7. Optimal maintenance strategies 

Reliability of civil engineering infrastructure including coastal defence systems is not 

only affected by quality and reliability of its components against different failure 

mechanisms but also depends on maintenance and inspection strategies. This means that 

maintenance and inspection activities should be optimally planned in order to ensure the 

performance of the structure stays higher than the predefined threshold, while minimising 

the maintenance and operational costs. 
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2.7.1. Renewal maintenance model 

Preventive maintenance and inspection models are defined with repair or replacement 

actions (preventive or corrective maintenances) of a structure or part of it. In corrective 

maintenance, a repair action is implemented after failure event (or below the required 

serviceability levels) to restore the structure to the predefined performance level (often 

as good as new). In preventive maintenance, the action is carried out at predetermined 

intervals or corresponding to prescribed criteria, and is intended to reduce the probability 

of failure or the degradation rate of the structure. Preventive and replacement 

maintenance models are developed mainly targeting based on (Grall et al. 2002; Hong et 

al. 2014): 

 Cost minimisation: to achieve the minimum cost of maintenance per unit time for 

constant interval replacement policy or replacement at a predetermined age. 

 Downtime minimisation: to minimise the unavailability of the structure per unit 

of time for constant interval replacement policy or replacement at a 

predetermined age. 

Damnjanovic and Zhang (2008) presented a flexible framework for quantifying the 

reliability-based maintenance regarding cost optimisation for preventive maintenance 

and replacement strategies. The developed framework consists of three components, the 

reliability-based performance model, the preventive and corrective maintenance, and the 

cost model. The results show that the model can be used to estimate a reasonable cost for 

a reliable maintenance strategy. 

 

Saydam and Frangopol (2014) proposed a risk-based maintenance optimisation model 

for bridges to find the optimum maintenance options and their time intervals. The model 

is formulated as a multi-criteria optimisation in which the maximum lifetime value of 

expected losses associated with failure and the lifetime total expected maintenance cost. 

It also accounts for different deterioration levels of bridge components and consequences 

of both component failure and system failure, which provides comprehensive 

information and solution for decision makers. Chen and Alani (2012) applied optimal 

repair planning during the service life of sea defence structures, based on reliability 

analysis by optimising the balance between the risk of failure and the costs of 
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maintenance. The results show that the optimal repair time largely depends on the 

deterioration rate of structural resistance and the relative cost of preventive maintenance.  

 

2.7.2. Markov decision process 

Markov decision process (MDP) provides a mathematical framework for modelling 

decision making in situations where outcomes are both dependent on the transition 

matrices and the decision maker actions (Frangpool et al. 2004). A Markov decision 

process is a discrete-time transition process, and the system or structure moves through 

a sequence of defined states. The transition between the states is not only dependant on 

the deterioration rate and transition matrix, but also depends on the maintenance actions 

during its lifetime. Hence, the outcomes of the actions of the system or the structure are 

not deterministic. Objective functions (single or multiple) may control the maintenance 

strategy by choosing optimal policies at each time-step in a period of the finite or infinite 

horizon (Cheng et al. 2015).  

 

Policies Π = {𝜋1, … , 𝜋𝑛} represent available strategies in Markov decision processes 

which map from states to actions. In order to evaluate a policy, total rewards for 

deterministic actions or expected total rewards for stochastic actions are estimated. Note 

that the state of the structure over time with or without performing maintenance actions 

can be modelled, the optimisation of inspection and maintenance policies using this 

process can be performed. For example, when the system is in state 𝑖, the expected 

discounted costs over an unbounded horizon are given by the recurrent relationships 

given here as (Frangpool et al. 2004) 

 𝑉𝛼(𝑖) = 𝐶(𝑖, 𝑎) + 𝛼 ∑𝑃𝑖𝑗(𝑎)𝑉𝛼(𝑗)

𝑁

1

 (2.13) 

where 𝛼 is the discount factor for one year; 𝑉𝛼 is the value function using 𝛼; 𝑃𝑖𝑗(𝑎) is the 

transition function; and 𝐶(𝑖, 𝑎) is the cost function regarding the action 𝑎 over state 𝑖. A 

cost-optimal decision can now be found by minimising the above equation with respect 

to the action 𝑎. MDP based models are used in pavement management systems (e.g. 

Cheng et al 2015) and Bridges (e.g. Papakonstantinou and Shinozuka 2014). Bennett and 

Hauser (2013) illustrates how to maximise the condition of the road system under a 

budget constraint or how to minimise the maintenance cost under a minimum safety 
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constraint. This can be achieved by using the original linear programming formulation 

or with its dual formulation.  

 

Markov decision processes are able to model sequential decision problems in which there 

is a decision required at each time-step. Other advantages of using MDPs is the 

computational time required for solving MDP models, which is much smaller than that 

for solving other maintenance models. This is useful particularly when the problem is 

very complex, and has large state and action spaces. Markov decision processes also have 

some limitations. First, extensive data are required because data are needed to estimate a 

transition probability function and a reward function for each possible action. In infinite 

horizon MDPs it is assumed that the rewards and the transition probabilities are 

stationary. In cases where rewards and transition probabilities are not stationary, finite 

horizon MDP is suggested to solve because of the difficulties in computational 

calculations. Furthermore, there is no available user friendly software for solving MDPs, 

and some level of programming are needed to simulate the concerned problem. 

 

2.8. Research questions and gaps 

In this chapter, an overview of the climate change effects, deterioration processes, and 

deterioration models in coastal defences is presented. Also, the conventional methods to 

evaluate failure probability as well as maintenance optimisation models are discussed. 

From the review of existing studies following gaps and research questions are identified:  

 Performance deterioration of coastal defence structures mainly depends on the 

future hydraulic variables and resistance degradation of the geometrical surface 

of the assets. However, only a few investigations have been carried out to study 

the effect of changing environment over the resistance degradation such as crest 

freeboard loss.    

 Although few attempts have been made using analytical approach but there is still 

a need to investigate the impacts of climate change on the reliability of coastal 

defences in the future with consideration of different failure modes. 

  The life cycle performance of coastal defence structures associated with 

serviceability (i.e. excessive wave overtopping) and ultimate (i.e. piping 
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underneath a dyke) limit state equations considering the realistic behaviour of 

deterioration process is not investigated comprehensively. 

 In lifecycle performance assessment, implication of a stochastic and state-based 

deterioration model (i.e. using Markov model) on time-dependent reliability 

analysis is less studied. Although few stochastic models are studied to simulate 

the deterioration process in coastal defences, state-based deterioration model is 

not yet studied. 

 Condition-based maintenance model to investigate the optimal repair strategy of 

coastal defence structures with consideration of inspection errors is not yet 

studied. The effects of imperfect information on maintenance optimisation in 

flood defences are not investigated. Additionally, sequential decision making 

models (i.e. Markov Decision Process) are not studied in coastal defence 

structures, while these models are useful as the environment of the assets are 

changeable, i.e. due to climate change, and a sequential decision making model 

can be adopted accordingly in each time-step. 

 There are many disagreements in literatures dependency evaluation between the 

key hydraulic parameters for coastal defences are limited, and few studies are 

carried out to investigate the effect of climate change on dependency coefficient. 

Hence, more investigations are necessary to discover the effects of climate 

changes on the dependency parameters. 

 In quantitative and qualitative methods for condition grade assessment of flood 

defence structures, probalistic models to investigate the condition of the assets in 

the future in not yet studied. 

 The correlation between damage indicators (i.e. the visual indicators in a sea dyke 

such as crest level settlement) and condition grading system is not available. 

Hence, it is not possible to translate the qualitative inspection results into 

quantitative values for risk assessment.  

 

2.9. Summary and conclusions 

This chapter provides a literature review and background information about hydraulic 

parameters, climate change, reliability analysis, deterioration processes and maintenance 

models in coastal defence structures. The existing and common risk evaluation 

approaches for the existing structures are investigated and summarised. The concept of 
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the joint probability, the extreme values of the hydraulic variables and impacts of climate 

change on the key variables are studied. Causes of floods, the contribution of each cause 

and the projection of flood defence scheme over the next century are discussed to give a 

transparent background of main issues in this field. In particular, sea level and wave 

height features are reviewed to assess their change over time and the impacts on 

performance of the coastal defences.  

 

Stochastic deterioration models such as Gamma process and Markov chain are studied 

and aimed to be embedded into coastal defence deterioration modelling. The sources of 

deteriorations, the weaknesses of current coastal defences and common failure modes are 

discussed. The fragility curve concept in reliability based method is studied. The 

definitions in structural reliability are given, and probabilistic approaches are explained. 

Performance deteriorations in coastal defence scheme are discussed in detail for various 

types of damage and failure. A general overview of failure probability calculation is 

provided. Finally, available maintenance models for different types of reliability analysis 

are discussed. 

 

In order to develop the methodologies and to cover some of the mentioned gaps, this 

research aims to: 

1. Develop and translate current deterministic deterioration curves to stochastic 

state-based models with consideration of the quantitative condition assessment 

and damage inspection results. 

2. Develop appropriate limit state equations to consider changing environments for 

different failure mechanisms in coastal defences with consideration of the 

degradation in the resistance of the strictures over time in order to apply in 

reliability analyses. 

3. Investigate homogeneous and inhomogeneous (stationary and non-stationary) 

effects of deterioration rates in the proposed deterioration models in a time-

dependent reliability analysis for coastal defences. 

4. Develop maintenance model in order to optimise the cost of inspection and repair 

in coastal defences while maintaining the assets at a reliable performance level   

concerning the cost of imperfect information such as inspection error. 
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3. Monitoring and assessment of coastal defences’ condition  

3.1. Introduction 

For an effective reliability and maintenance management, it is necessary to understand 

the consequence of failure, the expectation of performance, and the actual loading on the 

coastal defence. Without the understanding of these topics, it is difficult to target 

resources for necessary inspections, maintenance and developments. In this chapter, 

condition assessment model, hydraulic load monitoring, and climate change impacts over 

these topics are discussed. The main contributions of this chapter are as follow: 

 A link between structural damage and condition grading system is proposed. This 

relationships will help to standardise the deterioration model used in the 

reliability analyses.  

 The available inspection strategies and deterioration curves are translated into 

probabilistic forms used in the reliability analyses. 

 A practical model is proposed to apply the impacts of sea level rise on the 

hydraulic parameters, and the model is utilised for extreme value analysis. 

 A new technique is proposed to improve the dependence estimating between the 

joint extreme variables via a copula function. 

 

3.2. Grade-based condition assessment  

The condition observations have been collected since 1990s, and condition assessment 

manual (CAM) is proposed to guide and train the inspectors, as mentioned in the 

literature review (Environment Agency 2006). The deterministic deterioration curves are 

developed based on the collected data and expert judgement for various types of flood 

defence structures (Halcrow Group 2013). However, existing deterioration curves are 

deterministic and may not provide a reliable grade-based deterioration model for a long 

period due to uncertainties. To tackle the limitation, the deterministic deterioration 

curves and the outcome of the inspection strategies should translate to probabilistic 

frameworks in order to use them in a stochastic model.  

Deterministic deterioration curves 

In 2013, Environment Agency proposed a series of asset deterioration curves for different 

types of coastal and fluvial defences to estimate the residual life of an asset or structure 
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concerning the condition grading system (Halcrow group 2013), as shown in Figure 3.1. 

Deterioration curves predict the condition grade of assets associated with time based on 

historical data and expert judgments. The curves are categorised according to the asset 

class, materials, asset type, and environment of the asset. Two more factors affect the 

deterioration curves: the rate of deterioration and maintenance strategy.  

 
Figure 3.1 Example of deterioration curves provided by Environment Agency for 

coastal defence structures with toe/slope protection (Halcrow group 2013). 

 

Parameters of selecting a deterioration curve for an existing flood defence  

The parameters that are considered in a deterioration curve selection are (Halcrow Group 

2013) 

 Asset class, e.g. earth dyke, vertical walls  

 Asset type, e.g. defence, embankment  

 Materials, e.g. concrete, clay  

 Environment, e.g. fluvial, coastal  

 Rate of deterioration, e.g. medium or fast 

 Maintenance strategy, e.g. low, high 
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The first four parameters are constant, time-independent and deterministic, and can be 

identified or recognised in a site inspection. In contrary, the rate of deterioration and 

maintenance strategy need to be investigated and determined, which is also changeable 

over time, e.g. due to change in the maintenance strategy because of requirements. 

Deterioration rates are classified into slow, medium and fast rates with respect to the pace 

of structural deterioration. In order to choose the appropriate rate, site-specific 

information about the loads and environmental conditions should be considered.  

 

The medium deterioration rate assumes standard or average conditions, and a faster or 

slower rate of deterioration should be chosen based on the severity of the environmental 

conditions (Flikweert and Simm. 2008; Taylor et al. 2014). However, each case study 

needs to be expertly judged to determine the appropriate deterioration rate with 

consideration of site-specific observations. In coastal defence context, three major types 

of maintenance are defined by Environment Agency as (Flikweert et al. 2009): 

 Regime 1: Low or basic maintenance with the minimum repair. 

 Regime 2: Medium maintenance for maintaining at target condition grade 3. 

 Regime 3: High maintenance for maintaining at target condition grade 2. 

Regime 1 or low maintenance is non-structural maintenances, e.g. handrail maintenance 

or painting if necessary. Hence it does not improve the structural strength or performance. 

Thus, it is a do-nothing maintenance in a reliability analysis and does not affect 

deterioration rate. Regime 2 and 3, are also considered as minor and major maintenances, 

respectively, and both of them are implemented in specific time intervals (Flikweert et 

al. 2009; Thorne 2014).  

 

Apart from the mentioned parameters in deterioration curves, some other site-specific 

parameters need to be considered regarding the type of the structure. For example, for a 

sea dyke, site-specific parameters that should be considered are a risk of vandalism, level 

of traffic, increase/lose vegetation condition, the degree of cracking and reduction in 

foreshore level. Figure 3.2 shows the process of evaluating the current condition grade 

and selecting deterioration curve. 
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Figure 3.2 The stages of evaluating the current condition grade and selecting an 

appropriate deterioration curve. 

 

Identify the type of 
asset

• The type of material that the asset is made of.

• Narrow or wide (wide means the width of the asset crest width 
is 4 m or greater).

Identify the factors 
influencing the 

asset life

• The environment which influences the asset: fluvial or coastal

• Maintenance Regime 1, 2 or 3.

Determine the 
deterioration curve

• Using engineering judgement and local experience, determine 
the deterioration curve by selecting or interpolating between 
fastest, medium and slowest deterioration curves.

Forecast the 
current condition 

grade

• Forecast the current condition grade and expected deterioration 
time to next condition grade according to : strategic planning,  
regional asset management, asset-specific assessment.

Identify the 
appropriate 

deterioration curves

• The appropriate deterioration curve in the deterioration table 
for that asset.
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Limitations of the deterministic deterioration curves 

The deterioration curves are designed to predict the deterministic transition through the 

five condition grades for the asset. Although the deterioration rates account for a wide 

range of parameters including environmental aspects, the outcome of the curves is too 

generic. Hence, it cannot be utilised for prediction of asset performance without 

stochastic analysis and expert judgment. Moreover, the inspection outcomes are 

qualitative, while quantitative data are needed for a structural failure analysis. For 

example, assume an inspector assigns the condition grade of different parts of a sea dyke 

as 1, 3 and 4, respectively. The overall condition grade of the dyke will be 4. However, 

it is not clear that which part is more vulnerable to a specific failure mechanism. 

Consequently, the deterministic method to evaluate overall structural performance is not 

scientific and it is ambiguous. 

 

3.3. Performance-based asset management    

Quantitative damage measurements are essential for evaluating the performance level of 

an asset, e.g. measuring crest height loss to evaluate the strength of a sea dyke against 

wave overtopping. Also, accurate assessment of an asset geometry is useful for reliability 

performance assessment, while the qualitative judgment of an asset, such as discussion 

in the previous section, is not sufficient for statistical models. For example, crest height 

has a critical role in the asset performance against wave overtopping, and it represents 

the standard of protection, which cannot be assessed through visual inspection accurately 

(Long et al. 2013).  In addition, some geotechnical parameters related to subsurface or 

the core of the flood defences can only be assessed via specific inspection techniques, 

not visual inspections. The primary objectives of quantitative asset monitoring are (Long 

et al. 2013):  

1. To have a more accurate condition grade assessment.  

2. To understand the performance of the asset rather than its residual life. 

3. To identify optimal maintenance strategy. 

 

Inspection strategies  

Effective management of valuable and vital assets in coastal and fluvial areas is one of 

the leading objectives for Environment Agency in UK. Routine inspections of these 

assets help authorities to have essential information about the performance of the assets 
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level by observing and recording the structural condition. Eventually, with studying and 

analysing the recorded data, it is possible to achieve the optimal maintenance plan. The 

asset inspection strategy needs to be regularly reviewed and updated in response to 

changing conditions such as changes in asset condition grade or loading conditions. 

There are three main types of inspection strategy, as (Flikweert et al. 2009): 

 Tier 1: the default level, routine inspection.  

 Tier 2: more detailed, non-intrusive inspections. 

 Tier 3: highly detailed, intrusive inspections. 

A tier 1 inspection is routine asset inspection which discussed in the Environment 

Agency Condition Assessment Manual, and it is the lowest level of monitoring. It 

includes the techniques that operate at a fixed location or single asset, e.g. traditional 

methods of visual inspection. Tier 2 and 3 inspections are activities that seek more 

detailed information than is routinely collected in tier 1 strategy. Both Tier 2 and 3 need 

to be carried out by appropriate experts, and each can be triggered after proper 

consideration about the general condition of the structure (Flikweert et al. 2009). 

 

3.3.1. Quality of inspection strategies  

One of the main objectives of condition grade assessment and inspections is to evaluate 

the performance level of the structure. Hence, the accuracy of the inspection technique 

and utilising the results for a risk assessment model is critical. The accuracy of an 

inspection method is defined as the closeness of a measured quantity to the actual true 

value (Papakonstantinou and Shinozuka 2014). It is almost impossible (or too expensive) 

to have a 100% accuracy in the observation results. However, inaccuracy in the condition 

assessment may lead to inefficient and more expensive maintenance costs.  

 

The gathered information during damage and condition assessment is used as the basic 

information of reliability analysis, which means the errors may cause the entire analysis 

in danger. Especially, this happens when the quantitative observation outcomes are 

relative values (Ossa et al. 2016), because the difference between two measurements may 

show the difference between the upper bound and lower bound observations, not the 

mean values. In other words, the measured damage may not reflect the change of real 

damage in a time interval but instead may reflect the imprecision of the inspection results. 
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This problem could be mitigated by repeating the inspections at each time-step to 

increase the precision of the results. However, it does not improve the accuracy of the 

inspection technique. Hence, it is essential to translate the effectiveness of the inspection 

techniques and condition grade observation results into a probabilistic from. 

 

The probabilistic form can describe the accuracy and precision of an inspection strategy 

by considering the error and standard deviation of the observations. The inspections in 

coastal defences are not a continuous function, but a series of discrete observations and 

sometimes for specific damage detection. Table 3.1 shows the three main inspection 

strategies, lower bound and upper bound errors, and their standard deviations of possible 

error for each strategy. The values and assumed distribution in Table 3.1 are from the 

referenced case studies. According to the case studies, the assumption of normal 

distribution is arbitrary, however, the observations and empirical results show that the 

assumed distribution is suitable. The quality of inspection techniques are also stated in 

the case studies, and they are evaluated according to the Asset Inspection Guidance 

(Environment Agency 2014) with respect to the inspector skills and the applied 

instruments. The standard deviations 𝜎𝑖𝑛𝑠 are evaluated based on the upper bound UB 

and lower bound LB errors, and the values represent the average of LB-UB based on 

various case studies observations. The case studies are from UK, and the results are 

observed by different companies/contractors with different inspection techniques.  

Table 3.1 Parameters associated with three inspection strategies. 

Inspection 

strategy 

Inspection 

technique 
Case study/ report 

LB 

 (m) 

UB 

(m) 

𝜎𝑖𝑛𝑠 

(m) 
Distribution 

Tier 3 Local GPS Thames Estuary 2100 -0.01 +0.01 0.0078 Normal 

Tier 2 LIDAR HR Wallingford (2006) -0.27 +0.27 0.2100 Normal 

Tier 2 N/A Statutory Defence Levels -0.30 +0.30 0.2610 Normal 

Tier 2 N/A Haskoning Defence Database -0.37 +0.37 0.3130 Normal 

Tier 1 N/A IA3  -0.47 +0.47 0.3390 Normal 

Tier 1 Visual  Thames Tidal Database  -0.50 +0.50 0.3640 Normal 

Tier 1 Visual Thames Estuary 2100 -0.60 +0.60 0.3900 Normal 

 

This ability/quality is defined based on the intensity of the structure damage. The damage 

intensity factor 𝜂 is described here as (Blong 2003), 
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𝜂 =
𝐿𝑖𝑛𝑖 − 𝐿𝑡

𝐿𝑖𝑛𝑖
 (3.1) 

where 𝐿𝑡 is the deteriorated length at time 𝑡 (in X, Y or Z direction); 𝐿𝑖𝑛𝑖 is the initial 

length (in X, Y or Z direction).The damage intensity is from 0, indicating no damage, to 

a value of 1, indicating entire length loss. Table 3.2 shows the parameters that describe 

the quality of inspection strategies, where 𝜂0.5 is damage intensity where the probability 

of observing the damage is 50%, and the suggested values in the table are according to 

Lin and Breslow (1996); 𝜂𝑚𝑖𝑛 is minimum damage observation and below this level is 

impossible to be detected; 𝜂𝑐𝑒𝑟 is the certainty level that above this level the damage is 

certainly observed by the inspector; and the inspection cost in arbitrary unit represent the 

schematic cost difference between the strategies. 𝜂𝑐𝑒𝑟 and 𝜂𝑚𝑖𝑛values are calculated from 

three standard deviation above and below the mean, namely 

𝜂𝑐𝑒𝑟 = 𝜂0.5 + 3 𝜎𝑖𝑛𝑝 (3.2) 

𝜂𝑚𝑖𝑛 = 𝜂0.5 − 3 𝜎𝑖𝑛𝑝 (3.3) 

where 𝜎𝑖𝑛𝑝 is the standard deviation of the inspection strategy. 

Table 3.2 Parameters associated with three inspection strategy. 

Inspection 

strategy 
𝜂0.5 𝜂𝑚𝑖𝑛 𝜂𝑐𝑒𝑟 𝜎𝑖𝑛𝑠 

Inspection 

cost 

(unit) 

Tier 3 0.10 0.01 0.19 0.03 80 

Tier 2 0.30 0.12 0.48 0.06 30 

Tier 1 0.60 0.30 0.90 0.10 10 

 

The probability of observing the damage at an inspection session is given here as (Ang 

and Tang 2007) 

𝑝𝑑𝑒𝑡 = Φ
𝜂 − 𝜂0.5

𝜎𝑖𝑛𝑝
 (3.4) 

where Φ is the standard normal value and can be found in normal distribution table from 

Ang and Tang (2007). Figure 3.3 shows the cumulative distribution of the results 

estimated by Equation (3.4) for the three inspection strategies for flood defence context. 
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 Figure 3.3 Probability of damage detection for three inspection strategies. 

 

3.3.2. Correlating quantitative assessment and failure mechanisms 

Deterioration curves focus explicitly on condition grades and do not necessarily provide 

information about structural deteriorations such as settlement. In order to cover the 

limitation, it is necessary to estimate structural deterioration by utilising transition 

probabilities between condition grades through stochastic process. The first step to 

describe the deterioration transition process is to establish a link between visual damage 

indicators, which are observable through inspection processes, and structural failure 

mechanisms. Table 3.3 shows overtopping and piping failure mechanisms with their 

measurable properties and physical evidence that are used for inspectors to grade the 

conditioning surface of a dyke or embankment. 

 

Failure mechanisms and visual indicators 

An improved approach for condition assessment was suggested to develop the inspection 

quality based on expert judgment and quantitative measurements (Long et al. 2013). The 

approach was conducted with objectives of finding accurate linkage between indicative 

structural damage and their relative failure mechanisms. The damage in the surface of an 

earth dyke divided into slight, minor, and major deteriorated conditions to characterise 

the intensity of damage level, and the relevant failure mechanism is specified (Long et 

al. 2013). 
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Table 3.3 Details of failure modes and measurable properties for an earth dyke 

(adopted from Long et al. 2013). 

Failure mode Description Measurable 

properties 

Physical evidence of 

potential problems 

Overtopping Water running down outer 

slope leads to degradation 

of surface protection and 

eventual erosion of outer 

slope over time. 

Eventually, leads to a 

breach of defence. 

 

Crest height. 

Grass quality. 

Slope angle. 

Rutting of the crest. 

Crest height below 

the standard of 

protection. 

Vegetation on outer 

slope. 

Piping A pathway for water to 

pass through or under the 

embankment forms (due to 

poor soil condition and/or 

vermin infestation etc.). 

Water seeps into the asset 

washing out fill material. 

Eventual creation of a 

piping channel from inner 

to the outer side of the 

embankment. 

Embankment 

width. 

Soil 

coefficients. 

Seepage 

length. 

Water level 

Difference. 

Creep ratio. 

Signs of seepage. 

Presence of washed 

out Fines. 

Animal burrowing. 

Altered vegetation 

on Bank. 

          

The report suggests to rank assets damage according to their likely performance, general 

conditions and risk posed. Regarding the magnitude and intensity of eroded surface, 

slight damage are considered for condition grade 1, minor damage for condition grades 

2-3, and major damage for condition grades 4-5. The condition grade of a dyke is 

considered as an indicator of the robustness of the dykes and their likely performance 

when subjected to extreme loads. 

 

In Chapter two, the main failure modes for an earth sea dyke were discussed (e.g. Allsop 

et al. 2007, Hall et al. 2007). In this thesis, two main failure mechanisms are focused, 

wave overtopping and piping. Visual indicators in a condition assessment framework 

may be evident that the failure modes are occurring. Visual indicators for overtopping 

progress gradually, which means that they appear earlier than the critical point to the 

inspectors. In contrary, visual indicators for piping underneath the dyke progress with 

little visual warnings and after passing the safety threshold rapidly close to the critical 
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point. Geometrical features and dimensions of the asset are required to correlate between 

the visual indicators and failure modes.  

 

Table 3.3 (previous table) shows the measurable properties that could be indicators of a 

deterioration process for two primary failure mechanisms in a sea dyke. According to 

Long et al. (2013), some performance parameters related to failure mechanisms are 

identified to conduct surface condition appraisal and monitoring. The performance 

parameters are measurable properties that are used to assess the dyke’s performance. In 

order to have a quantitative assessment of physical evidence or visual indicator, their 

location in an earth dyke needs to be identified. However, it should be noted that the 

severity of defects strongly depends on the local situation. Table 3.4 illustrates the 

location of each visual indicator with their likely position and direction on an earth dyke 

or embankment. The value of damage is also divided into three different intensities as 

slight, minor and major evaluated from expert judgment (Long et al. 2013). 

 

Table 3.4 will be used throughout the following sections as the table illustrates the size 

of features that any inspection method should be able to identify. However, in this table, 

the linkage between condition grades and surface damage is not available. It is suggested 

to link the dimension values given in Table 3.4 in a condition grade ranking system 

defined by Environment Agency. Table 3.5-3.7 show the combination of a qualitative 

condition grading system with quantitative damage evaluations for three main structural 

parts, i.e. seepage length, slope angle and crest level, respectively.  

 

Seepage length has a crucial role in the reliability of a sea dyke against piping failure 

mechanism, as discussed in the literature review, while slope angle and crest level will 

be considered for overtopping failure mechanism. The tables help to set a relationship 

between the visual indicators of a specific failure mechanism and the condition grade 

system to develop a grade-based deterioration model. To translate the condition grades 

into probabilistic parameters, it is assumed that condition grade transition over time is 

linear and the deterioration intensity has a normal distribution. 
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Table 3.4 Surface features related to damage and failure for an embankment 

(adopted from Long et al. 2013). 

 
  Dimension (m) 

Visual 

Indicator 

Location Description Slight Minor Major 

Rutting Crest 

Slope 

Wearing of crest or 

slope due to traffic 

(human or livestock) 

X: 0.1–0.3 

Y: 0.2–0.5 

Z:0.05–0.1 

X: 0.3–0.6 

Y: 0.5–1.0 

Z: 0.1–0.3 

X: 0.6+ 

Y: 1.0+ 

Z: 0.3+ 

Vermin 

holes 

Slope Holes in slope caused 

by vermin: 

slight = hole/rat size 

minor = rabbit size 

major = badger/fox size 

X: 0.05–0.1 

Y: 0.05–0.1 

Z: 0.05–0.2 

X: 0.1–0.3 

Y: 0.1–0.5 

Z: 0.1–0.3 

X: 0.3–0.6 

Y: 0.3–0.6 

Z: 0.3–0.6 

Slumping Toe 

Crest 

Depression at toe or 

crest. If at toe, there 

may also be movement 

of slope above slump 

leading to a change in 

slope angle (SA) 

X: 0.1–0.2 

Y: 0.1–0.3 

Z: 0.02–0.05 

X: 0.2–1.0 

Y: 0.2–1.0 

Z: 0.05–0.4 

 

X: 1.0+ 

Y: 1.0+ 

Z: 0.4+ 

      

 

The distributions are normal except the first and last condition grades, which assumed to 

be lognormal, as the dyke will not improve due to deterioration for condition grade 1. 

Dyke failures occur with very tiny visual indicators at the surface, but large-scale change 

may be occurring within the dyke. For example, Table 3.5 shows likely seepage length 

loss for various condition grades that is useful to evaluate piping in the embankment or 

dyke. Table 3.5-3.7 show the expected crest height and slope angle loss for condition 

grades from 1 to 5 with other visual indicators, such as surface protection that may be 

considered in overtopping discharge calculations. The value of loss in the tables are 

referred to critical values of surface feature related to damage according to Table 3.4. 

X 

Z 

Y 
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The slight damage is categorised into condition grade 1, minor damage into condition 

grades 2-3, and major damage into condition grades 4 and 5. For example, rutting and 

slumping may degrade the crest level as stated in column 2 of Table 3.4. Hence, the slight 

degradation in the crest height direction (Z direction) is between 0.05 m and 0.1 m due 

to rutting, and 0.02 m to 0.05 m due to slumping. Therefore, the critical values for slight 

degradation is between 0.02 to 0.05 m, and it is assumed that the structure’s crest level 

is in condition grade 1 since the deterioration level is less than 0.05 m. It should be noted 

that the severity of defects strongly depends on the local situation and values given in the 

tables are illustrative, not absolute. Apart from the mentioned parameters, some other 

visual indicators such as soil conditions and holes in slope should be considered to 

evaluate the deterioration level. 

Table 3.5 Seepage length loss in earth embankments (Long et al 2013) and 

suggested condition grade. 

Condition 

grade 

Intensity 

of surface 

damage 

Description 
Loss of seepage 

length (m) 

1 Slight Cosmetic defects, very good soil condition, no 

vermin holes, slight width loss (<5 cm). 

0.00-0.05 

2 Minor Good soil condition, slight (rat size) holes in 

slope, slight width loss (>5 cm but <15 cm). 

0.05-0.15 

3 Minor Fair soil condition, minor (rabbit size) holes in 

slope, minor width loss (>15 cm but <30 cm). 

0.15-0.30 

4 Major Poor soil condition, major (fox size) holes in 

slope, major width loss (>30 cm but <60 cm). 

0.30-0.60 

5 Major Very poor soil condition, major (fox size) 

holes in slope, major width loss (>60 cm). 

0.60+ 

 

Table 3.6 Slope loss in earth embankments (Long et al 2013) and suggested 

condition grade. 

Condition 

grade 

Intensity 

of surface 

damage 

Description 
Loss of slope 

(degree°) 

1 Slight Cosmetic defects (<2.5 °). 0-2.5 

2 Minor Slight depression at toe or crest 

 (>2.5 ° but < 4 °). 

2.5-4.0 

3 Minor Depression at toe or crest, lowering of slope 

section (> 4 ° but < 6 °). 

4.0-6.0 

4 Major Depression and lowering in crest and toe, 

movement of slope above slump leading to 

change in slope angle (>6 ° but <10 °). 

6.0-10.0 

5 Major Presence of sever slope change (>10 °). 10.0+ 
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Table 3.7 Crest height loss in earth embankments (Long et al 2013) and suggested 

condition grade. 

Condition 

grade 

Intensity 

of surface 

damage 

Description 
Loss of height 

(m) 

1 Slight Cosmetic defects, very good surface protection, the 

slight wearing of crest elevation (< 5 cm). 

0.00-0.05 

2 Minor Slight rutting, good embankment surface protection, 

slight wearing of crest elevation (> 5 cm but <10 cm). 

0.05-0.10 

3 Minor Minor rutting, fair embankment surface protection, the 

minor wearing of crest elevation (> 10 cm but <20 

cm). 

0.10-0.20 

4 Major Major rutting, poor embankment surface protection, 

the major wearing of crest elevation (> 20 cm but <40 

cm). 

0.20-0.40 

5 Major Major rutting, very poor embankment surface 

protection, the major wearing of crest elevation (>40 

cm). 

0.40+ 

         

3.4. Translating quantitative assessment to a probabilistic framework 

A probabilistic approach for the dyke may provide a more comprehensive understanding 

of the structural condition in the present and the future. If the condition assessment is 

probabilistic and is defined by the condition grading system, then a stochastic and grade-

based risk assessment would be possible. In this section, the deterministic and qualitative 

inspection results are transformed into a probabilistic framework by the properties of the 

statistical distribution. In the probabilistic approach used in condition grading system, 

the following assumptions are considered:  

 It is assumed that the distribution for each condition grade is normal and 

independent. However, for the first and the last condition grades, e.g. grades 1 

and 5, a different type of distributions may be used to have a better presentation.  

 The second assumption is that the accuracy of the inspection results is consistent 

with an accuracy of inspection strategies. The accuracy of three different 

inspection strategies is discussed earlier this chapter. 
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Statistical distributions and parameter estimations 

For middle condition grades, e.g. grades 2, 3 and 4, it is assumed that deterioration 

intensity is normally distributed. To have a conservative evaluation, it is also assumed 

that the structural element, e.g. crest level or seepage length, is initially at the halfway 

point of a specific condition grade and progressively shifts to the right over time. The 

standard deviation of the distribution is determined by the quality of the inspection 

strategy, to include the error in the inspection strategy. Normal (or Gaussian) distribution 

is a standard continuous probability distribution. Normal distributions are important in 

statistics and are often used to represent real-valued random variables whose 

distributions are not known. The probability density and cumulative distribution function 

are given here representing as (Coles et al. 2001), 

𝑓(𝑥; 𝜇, 𝜎) =
1

√2𝜋𝜎2
𝑒

−
(𝑥−𝜇)2

2𝜎2  (3.5) 

𝐹(𝑥; 𝜇, 𝜎) =
1

√2𝜋𝜎2
∫ 𝑒

−
(𝑦−𝜇)2

2𝜎2

𝑥

−∞

𝑑𝑦 (3.6) 

where 𝑥 is random variable; and 𝜇, 𝜎 are mean and variance, respectively. The density of 

the normal distribution is symmetric with respect to the line 𝑥 =  𝜇, and its width 

depends upon the standard deviation 𝜎.  

 

Assume a sea dyke is in condition Grade 2 for the deterioration of sea dyke crest between 

5-10 cm (see Table 3.7). The accuracy of the inspection strategy need to be estimated for 

different case using the described method in section 3.3.1, however, here an arbitrary 

assumption of 92% is considered to demonstrate the numerical example. The mean start 

value is 7.5 cm crest level loss with consideration of the 8% wrong inspection results, 

which is 4% from each side, e.g. to be higher than 10 cm or lower than 5 cm. The 

probability of obtaining a value of 5 < ∆𝐻𝑑 < 10 cm when the structure is actually in 

condition grade 2 is 92%, or relative crest settlement ∆𝐻𝑑 < 10 is 96%. The standard 

deviation can be computed as (Ang and Tang 2007) 

Pr(∆𝐻𝑑 < 10) = 0.96 = Φ(
10 − 𝜇

𝜎
) = Φ(

10 − 7.5

𝜎
) (3.7) 
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𝜎 =
10 − 7.5

Φ−1(0.96)
=

2.5

1.76
= 1.42 𝑐𝑚 (3.8) 

where Φ is the standard normal value and can be in page 6.0found in normal distribution 

table (Ang and Tang 2007). As time goes, the structure deteriorates and the mean value 

shifts to the right side (see Figure 3.4). It means the crest elevation loss will increase over 

time (move to the right) when the structure is in condition grade 2 until the mean value 

reaches to condition grade 3. As mentioned earlier, the first and last condition grades, 

e.g. grades 1 and 5, follow a different pattern, because it is not possible to inspect a 

negative value of deterioration for condition grade 1. For the last condition grade, all 

deterioration values more than the specified threshold are considered as the last condition 

grade. In this case, the normal distribution may not accurate to show the distribution tails, 

and lognormal distribution is suggested. 

 

Figure 3.4 Conservative random distribution of deterioration for an asset in 

condition grade 2 (CG2) when inspecting are correct at 92% of the time. 

 

The lognormal distribution is useful for modelling natural variables and often provides a 

good representation of a positively skewed physical quantity that extends from zero to 

infinity (+∞). The probability density and cumulative distribution function for a 

lognormal distribution are representing here as (Coles et al. 2001) 
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𝑓(𝑥; 𝜇, 𝜎) =
1

𝑥√2𝜋𝜎2
∙ 𝑒

−
(ln𝜇𝑥)2

2𝜎2       ;   𝜇, 𝜎 > 0 (3.9) 

𝐹(𝑥; 𝜇, 𝜎) =
1

√2𝜋𝜎2
∫

1

𝑦
∙ 𝑒

−
(ln𝜇𝑦)2

2𝜎2

𝑥

−∞

∙  𝑑𝑦     ;   𝜇, 𝜎 > 0 (3.10) 

where 𝑥 is random variable; and 𝜇, 𝜎 are mean and variance, respectively. It should be 

noted that the error of the condition grading results are considered from one side. For 

example, assume that the quality the inspection assessment for condition grade 1 is 90%, 

and the right side error tail is 10% (and zero error for left side). Figure 3.5 shows the plot 

for the lognormal distribution of crest level settlement for a sea dyke assuming in 

condition grade 1 and 10% error in inspection results. 

 
Figure 3.5 The probability density and cumulative lognormal distribution for the 

example. 
 

 

Verification of the estimated parameters 

There are several methods to verify the values of the estimated parameters (e.g. 

Garthwaite et al. 2005; Wilks 2011). A simple and straightforward method is utilised 

here by checking the value of cumulative distribution function. Let 𝑥𝑚𝑖𝑛,𝑖 and 𝑥𝑚𝑎𝑥,𝑖 be 

the minimum and maximum values of the loss for condition grade 𝑖. For normal 
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distribution in condition grade 𝑖, the cumulative probability of the variables between the 

minimum 𝑥𝑚𝑖𝑛,𝑖 and maximum 𝑥𝑚𝑎𝑥,𝑖 values is expressed as  

𝐹(𝑋,  𝑥𝑚𝑎𝑥,𝑖 ≥ 𝑥 ≥ 𝑥𝑚𝑖𝑛,𝑖|𝜇𝑛,𝑖, 𝜎𝑛,𝑖) = 1 − Pr(𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟) (3.11) 

For lognormal distributions, the cumulative probability of the first condition grade and 

the last condition grades is different, as  

For the first condition grade: 

𝐹(𝑋, 𝑥 ≥ 𝑥𝑚𝑎𝑥,1|𝜇𝑙𝑜𝑔,1, 𝜎𝑙𝑜𝑔,1) = Pr(𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟) 
(3.12) 

For the last condition grade: 

𝐹(𝑋, 𝑥 ≤ 𝑥𝑚𝑖𝑛,𝑖|𝜇𝑙𝑜𝑔,𝑖, 𝜎𝑙𝑜𝑔,𝑖) = Pr(𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟) 
(3.13) 

where 𝐹(𝑋, 𝑥 ≥ 𝑥𝑚𝑎𝑥,1|𝜇𝑙𝑜𝑔,1, 𝜎𝑙𝑜𝑔,1) represents the cumulative distribution value 

where 𝑥 is more than the expected value for the first condition grade  𝑥𝑚𝑎𝑥,1; 

and 𝐹(𝑋, 𝑥 ≤ 𝑥𝑚𝑖𝑛,𝑖|𝜇𝑙𝑜𝑔,𝑖, 𝜎𝑙𝑜𝑔,𝑖) represents the cumulative distribution value where 𝑥 

is less than the 𝑖𝑡ℎ condition grade values (for the highest condition grade).  

 

3.5. Hydraulic load monitoring and evaluation 

Effective management of flooding requires accurate models that are capable of 

quantifying failure risk. Quantification of flood risk involves both the quantification of 

probabilities of extreme events and the associated consequences. Coastal defence risk 

evaluation models account for the probabilities of extreme hydraulic loading events and 

also include a probabilistic representation of the performance of defence infrastructure 

and its associated reliability. The evaluation of the dependency coefficient between the 

hydraulic variables makes the extreme value evaluations complex. In this thesis, the 

conventional methods to evaluate dependency between extreme values in England and 

Wales are developed.  

 

The primary aim of the application of the multivariate approach is to increase the 

applicability and accuracy of the model with an explicit consideration of the dependence 

in the extremes of the hydraulic loads. It should be noted that the dependence in the 

extremes is likely to vary significantly between the sites. The statistical model needs to 

be sufficiently flexible to capture the range of dependence between the variables 
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accurately. Of the range of multivariate extreme value models available, the approach of 

Carter et al. (2013) offers the most flexibility in capturing the range of dependence of 

hydraulic variables. Other approaches, for example Coles (2001) and Grimaldi and 

Serinaldi (2006), have restrictive assumptions relating to the dependence among multiple 

variables. The Carter et al. (2013) approach is therefore the model of choice for this study 

to be improved regarding dependency estimations. 

 

3.5.1. Extreme values analysis 

It is very common in coastal defence context to design a structure to resist a condition so 

extreme that no similar condition may be found in available measurements or records. 

This is because even one failure against a rare event may cause to a massive disaster 

either economically or socially. Hence, probability distributions are utilised to fit the 

available data and extrapolate the data to find the extreme conditions or events that are 

likely to occur, taking account of the uncertainties. It should be noted that all hydraulic 

variables in coastal engineering, e.g. sea levels and wave heights, are continuous 

functions while measurements are taken at fixed intervals, resulting in a discrete set of 

values over time or time series. The traditional methods to estimate extreme values, either 

a high level or low level, relies on the ranking of the quality and period of observations. 

To have a reliable estimation the minimum period of observed data should not be less 

than 15 years (Tawn 1992; Weisse et al. 2014). 

 

Block maxima vs peak-over-threshold 

The definition of the extreme events in peak-over-threshold is the values that are greater 

than a threshold value. Instead, in block maxima, the data are “blocked” into sections of 

a fixed period, and the maximum value from each block is considered for extreme value 

evaluation. In block maxima method, instead of using all recorded wave heights, the only 

maximum value of annuals, seasons or defined blocks are considered to estimate extreme 

wave heights, and this method is compatible with Generalised Extreme Value (GEV) 

model. On the other hand, in peak-over-threshold (POT), the recorded data over a 

specific threshold are selected rather than using only maximum annual values, hence, a 

wider range of data is utilised for estimation, which is appropriate for joint extreme 

analysis. POT method is a useful technique in Generalised Pareto Distribution (GPD). 

However, this method is too dependent on the selected threshold value, which needs an 
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expert judgment to choose an appropriate threshold (Olbert et al. 2017; Karamouz et al. 

2017). 

 

Generalised extreme values (GEV) 

In probability theory, the generalised extreme value (GEV) distribution is a continuous 

probability distribution. In coastal defences, the generalised extreme value distribution 

is the limit distribution of properly normalised maxima of a sequence of independent and 

identically distributed random variables. Hence, the distribution is often used as an 

approximation to model the block maxima for sequences of random variables. The 

cumulative density function is given here as (Bali 2003) 

𝐹(𝑥; 𝜁, 𝜃, 𝜅) = exp [− {1 − 𝜅 (
𝑥 − 𝜁

𝜃
)}

1/𝜅

] (3.14) 

where 𝜅 is shape parameter, for 𝜅 > 0 the distribution is Freshet (Type II), for 𝜅 < 0 the 

distribution is Weibull (Type III), and for 𝜅 = 0 the distribution is Gumbel (Type I); 𝜁 is 

location parameter; and 𝜃 is a scale parameter. The probability density function is given 

as (Garthwaite et al. 2005) 

𝑓(𝑥; 𝜁, 𝜃, 𝜅) =
1

𝜎
{1 − 𝜅 (

𝑥 − 𝜁

𝜃
)}

1
𝜅
−1 ∙ exp [−{1 − 𝜅 (

𝑥 − 𝜁

𝜃
)}1/𝜅] (3.15) 

Subject to 

1 − 𝜅 (
𝑥 − 𝜁

𝜃
) > 0;     𝜃 > 0 (3.16) 

The distribution is shown in Figure 3.6 with different shape parameters. There are several 

mathematical methods in order to estimate parameters of the distributions, which are 

presents the data for reliability analysis (Martins and Stedinger 2000). This study utilises 

maximum likelihood method because this method can be applied to a wide range of 

variables in coastal flood context. 
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Figure 3.6 GEV probability density function with various parameter values. 

 

Verification of parameters, and simulations  

Block maxima and generalised extreme values are often used together because they are 

naturally compatible. The initial data with its original distribution need to be transformed 

to a black maxima form with independent time intervals, and the original distribution 

determines the shape parameter (Garthwaite et al. 2005) of the GEV. For example, 

assume the frequency of daily water level for five years data is shown in Figure 3.7, 

where a monthly block within 60 maximum values are considered for 60 months. 

 
Figure 3.7 Frequency of hypothesis daily water levels for 5 years. 
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By utilising the MLE method, the values of shape parameter and scale parameter are 

estimated as 0.0378 and 0.6412, respectively. The 95% confidence interval for the 

parameters are also calculated, i.e. 0.0050 and 0.0706 are for shape parameter, and 

0.6173 and 0.6660 for scale parameter, respectively. The GEV distribution is the type II 

extreme value distribution as shown in in Figure 3.8, where the tail is heavier than a 

normal distribution tail. The second step is to check visually whether the estimated 

parameters are acceptable or not. The fitted probability density function (PDF) is plotted 

over the block maxima values as shown in Figure 3.8  where the GEV distribution is 

fitted to the block maxima values, not the original data. It shows that the histogram of 

the monthly maxima data overlaid with the PDF for the fitted GEV model, with relatively 

good fit. 

 

 
Figure 3.8 The probability density of the block maxima values with a GEV fitted 

line. 

 

In block maxima, the return level is defined as the block maxima value expected to be 

exceeded only once in 𝑚 blocks, which is (1 − 1/𝑚)'th quantile. Hence, by adopting the 

estimated parameters into the inverse cumulative distribution function (CDF), return 

level 𝑅 for 𝑚 is estimated. The critical value that determines the compatible region with 

the data is based on a chi-square approximation, and lowest confidence level. Therefore, 

for example for the smallest 𝑅10 value within the critical region of the estimated shape 

parameter, the negative log-likelihood is larger than the critical value, which means the 

estimated shape parameter is acceptable, as shown in Figure 3.9.  
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Figure 3.9 The smallest R10 value achieved within the critical region of the shape 

parameter. 

 

Generalised Pareto distribution (GPD) 

Generalised Pareto distribution is naturally compatible with peak-over threshold method. 

The combination of POT and GPD is widely utilised for extreme value analysis, 

especially for joint extreme values. The threshold value must be chosen properly because 

the final results are very sensitive to the threshold value 𝑢. Let the conditional distribution 

of the variable 𝑋, given 𝑋 > 𝑢, be (Coles 2001) 

Pr(𝑋 ≤ 𝑥|𝑋 > 𝑢) = 𝐹 (𝑋 ≤ 𝑥|𝑋 > 𝑢),       𝑥 > 𝑢 (3.17) 

where 𝐹 is the distribution function of 𝑋. Then, the generalised pareto distribution 

function is 

𝐹(𝑋 ≤ 𝑥|𝑋 > 𝑢) = 1 − {1 −
𝜅(𝑥 − 𝑢)

𝜃
}

1/𝜅

 (3.18) 

where 𝑋 is greater than the threshold value 𝑢; 𝜃 (𝜃 > 0) is a scale parameter; and 𝜅 is a 

shape parameter, and for 𝜅 = 0 the function is exponential. Generalised Pareto 

distribution is often used to model the tails of another distribution. It is useful for extreme 

value analysis in coastal defence. The generalised Pareto distribution has the following 

properties (Armagan et al. 2013): 
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 Generalised Pareto shape parameter of zero when the other distribution’s tail 

decreases exponentially, e.g. normal distributions. 

 Generalised Pareto shape parameter of positive value when other distribution’s 

tail decreases as a polynomial. 

 Generalised Pareto shape parameter of negative value when other distribution’s 

tail is finite. 

Figure 3.10 shows the example of the GPD with different scale parameters that produce 

tails for various types of distributions.  

  

The probability density function 𝑓 of a GPD distribution with location 𝜁, scale 𝜃 and 

shape 𝜅 parameters, as expressed here (Coles et al. 2001) 

 𝑓(𝑥) =
1

𝜃
(1 + 𝜅)−(1/𝜅+1) (3.19) 

where 𝑥 stands for the desired variable, e.g. sea level or wave height; and 𝑧 = (𝑥 − 𝜁) ⁄

𝜃. The scale and shape parameters can be estimated by the maximum likelihood method 

discussed in following section. This method estimates unbiased parameters with smallest 

mean square errors especially for large samples. 

 

Figure 3.10 GPD probability density for various parameter settings. 
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Parameter estimation (GPD) 

Maximum likelihood method is a common method for parameter estimation process as 

mentioned before. The first step is to define a likelihood function𝜄 which is the function 

of observed data and the density function 𝑓. The function needs to be maximized with 

consideration of the selected distribution. The likelihood function is given as (Rakonczai 

and Zempleni 2012) 

ι(𝑥|𝜃, 𝜅) = ∏𝑓𝑋(𝑥𝑖|Θ𝑑)

𝑛

𝑖=1

 (3.20) 

where Θ𝑑 is the set of parameters for the density function. As the density function 

described in the previous section is in exponential form, hence the log-likelihood 

function is more appropriate for formulation. Let 𝑥𝑖 be a sample with size 𝑛, the log-

likelihood function for generalised pareto distribution is expressed here as (Castillo and 

Daoudi 2009) 

𝜄(𝜗, 𝜅) = − log(𝑠 𝜅𝜃) −
1 + 𝜅

𝜅 𝑛
 ∑ log(1 + 𝑠 (

𝑥𝑖

𝜃
))

𝑛

𝑖=1

 (3.21) 

where 𝑠 = 𝑠𝑖𝑔𝑛 (𝜅) is the sign of the empirical coefficient of variation of the sample. If 

𝜅 < 0 it is assumed 𝜃 > 𝑀 = max 𝑥𝑖, otherwise the likelihood is zero. The restriction 

−0.5 <  𝜅 <  0.5 is usually assumed for both practical and theoretical reasons, since 

GPD with 𝜅 < −0.5 has finite end points and the probability density function is strictly 

positive at each endpoint, and GPD with 𝜅 >  −0.5 has infinite variance (Davison and 

Smith, 1990; Castillo and Hadi, 1997). Then, by equating the derivate of above equation 

to zero, the parameters can be estimated as (Castillo and Daoudi 2009) 

�̂� =
1

𝑛
 ∑log(1 + 𝑠 (

𝑥𝑖

𝜃
))

𝑛

𝑖=1

 ( 3.22) 

 

Threshold selection for GPD 

As discussed earlier, threshold selection is a critical step to have an appropriate GPD fit, 

because choosing a too high threshold leads to insufficient data to estimate a proper 

exceedance probability, while choosing a too low threshold leads to overestimated and 

disqualified data simulations (Davison and Smith 1990). A common and reliable 

approach to select a suitable threshold 𝑢 is to use mean residual lie plot suggested by 

Davison and Smith (1990). Let 𝑋 be 𝑋 − 𝑢|𝑋 > 𝑢 has a 𝐺𝑃𝐷 distribution with (𝜃, 𝜅) 
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parametres, then for all thresholds �̂� > 𝑢, 𝑋 − �̂�|𝑋 > �̂� is 𝐺𝑃𝐷 distribution with (𝜃 +

𝜅(�̂� − 𝑢), 𝜅) parametres. It is expressed here as (Rinker 2013) 

𝐸(𝑋 − �̂�|𝑋 > �̂�) =
𝜃 + (�̂� − 𝑢)𝜅

1 − 𝜅
 (3.23) 

where 𝐸 shows that the mean excess of 𝑋 over �̂� is a linear function of �̂�. Hence, by 

plotting the residual life plot, the threshold is the value that the plot shows approximately 

a linear behaviour.  

 

Verification of the parameters and simulations 

Generalised Pareto distribution is often defined in terms of exceedance probability. The 

original distribution of the variable, e.g. wave height, is divided by the selected threshold, 

and the values below the threshold are omitted. Hence, the distribution of the retained 

values is almost a GPD. However, the original distribution controls the shape parameter 

of the resulting distribution. For example, 1500 recorded data of wave heights are 

assumed as shown in Figure 3.11. Figure 3.12 shows the mean residual life plot, where 

a graphical procedure for identifying a suitably high threshold for modelling extremes 

via the GPD model is used. In this plot, for a range of threshold values, the corresponding 

mean threshold excess is identified, and the threshold value from linear part in the plot 

is selected. From the plot, linearity in Figure 3.12 might be suggested above 1.30 m, 

where information on the far right–hand–side of these plots is unreliable. 

 

 
Figure 3.11 Frequency of the the wave heights. 

 

The maximum likelihood method is utilised to estimate the parameters of the distribution 

for two different threshold values i.e. 1.30 m and 2.50 m for comparison. The MLE gives 

0 1 2 3 4 5 6
0

50

100

150

200

250

300

350

Significant wave heights (m)

F
re

q
u

e
n

cy



  

72 

 

0.0331 for shape parameter, and 0.6362 for scale parameter by assuming the threshold is 

1.30 m, and gives -0.0243 for shape parameter and 0.5920 for scale parameter, by 

assuming the threshold is 2.50 m. The diagnostic plots are provided for two selected 

thresholds in Figure 3.13 and Figure 3.14. A comparison between the plots verifies the 

superiority of 1.30 threshold value. The density plot shows that how the first GPD fitted 

models covers more data, and the probability plot proves that the simulated model for 

the first GPD model is much closer to the original data. 

 

 
Figure 3.12 Mean residual life plot for the significant wave heights (dots) with 95th 

percentile (dashed lines). 
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Figure 3.13 Diagnostic plots for the GPD model with a threshold value of 1.30 m. 
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Figure 3.14 Diagnostic plots for the GPD model with a threshold value of 2.50 m. 
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3.5.2. Joint probability of sea level and significant wave height 

Joint probability is useful in the situations that two or more conditions have a chance to 

occur at the same time. In these circumstances, the dependency between two or more 

conditions is neither zero (independent) nor one (entirely dependent). In the case of 

coastal defence structures, there is usually a degree of dependence between critical 

parameters, which vary from place to place due to hydraulic and meteorological effects 

(Hawkes 2008; Kuczera et al. 2006).  

 

Therefore, joint probability method is a useful tool to estimate the probability of 

simultaneous occurrence of crucial hydraulic variables. Figure 3.15 shows an example 

of joint probability illustration with marginal distributions for arbitrary variables. It 

shows the density distribution of variables 1 and 2 are at highest probability, when they 

are around values -0.5 and 2.0, respectively, at the same time. It is essential to evaluate 

extreme values for the combination of key variables such as significant wave heights and 

sea level. It is also necessary to evaluate the failures caused by individual variables in 

risk analysis of coastal flood defences.  

 

Figure 3.15 Illustration of a joint probability distribution example. 
 

Failures in coastal defence structures may occur due to only high water level such as 

overflow or excessive overtopping, or may occur due to both high wave heights and high 

sea level. Studies show main variables in coastal defence hydraulic loads are not 

independent, and assuming independency between them leads to an underestimated 
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extreme value evaluation (Ewans and Jonathan 2014; Pugh and Vassie 1980). Technical 

reports published by Environment Agency consider dependency to use the joint 

probability mathematical functions. Joint probabilistic methods provide the ability of 

considering both correlation and uncertainties in the key parameters with consideration 

changing environments.  

 

Joint probability method in coastal defences 

Hawkes (2008) and Hawkes et al. (2008) introduced joint probability methods in coastal 

defences by several case studies.  The joint probability method used in this study focuses 

on three factors: water level, significant wave height and wave period. Five stages of the 

method are defined as (Hawkes 2008):  

 Preparation of initial data. 

 Distribution fitting of single variables. 

 Extreme value analysis of single variables. 

 Dependency analysis between variables. 

 Combination and interpretation of results to understand the behaviour of joint 

variables together. 

Preparation of data and distribution fitting of single variables are based on statistical and 

observational methods. The initial data should cover an acceptable range of period to 

provide proper information on hydraulic conditions including extreme events. Then, the 

data should be fitted to a suitable distribution, e.g. Generalised Extreme distribution. 

Extreme values of each variable are estimated using the mentioned GEV or GPD models. 

The next step is an estimation of dependency between variables that are necessary for 

data simulations. Finally, the results should be combined and present in a proper way to 

demonstrate the extreme conditions of the case study. 

 

Joint probability methods in coastal and fluvial defence structure risk assessment are still 

at the level of researching, e.g. Garrity et al. (2006) and Gelder et al. (2004). Cai et al. 

(2007) developed the correlation assessment methods for simulations of large samples of 

data. Chini and Stansby (2012) introduced a method for extreme values of wave 

overtopping to estimate the projected failure due to the joint probability of sea level rise 

and wave height change. Rakonczai and Zemplénia (2011) developed a joint probability 

method to evaluate bivariate or multivariate extreme values. The method is suitable for 
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sea level rise issue. Joint probability methods are still under development to improve the 

accuracy of estimations (Ewans and Jonathan 2013; Mazas et al. 2014). Generally, the 

joint distribution of two random variables 𝑋 and 𝑌 are defined as 

𝐹(𝑥𝑣, 𝑦𝑣) = Pr[(𝑋 ≤ 𝑥𝑣) ∩ (𝑌 ≤ 𝑦𝑣)] = ∬ 𝑓(𝑥𝑣, 𝑦𝑣)𝑑𝑥𝑑𝑣
𝑥𝑣,𝑦𝑣

−∞

 (3.24) 

where 𝑥𝑣 and 𝑦𝑣 are arbitrary variables; and 𝑓(𝑥𝑣, 𝑦𝑣) ≥ 0 is the joint probability density 

function, and the total area under the joint density function is unity. For each variable, 

e.g. 𝑋, 𝐹𝑋 and 𝑓𝑋 are the marginal cumulative and density functions, respectively. The 

marginal density functions are given here as (Ewans and Jonathan 2013) 

 𝑓𝑥(𝑥𝑣) = ∫ 𝑓(𝑥𝑣, 𝑦𝑣)𝑑𝑦
∞

−∞
 

𝑓𝑦(𝑥𝑣) = ∫ 𝑓(𝑥𝑣, 𝑦𝑣)𝑑𝑥
∞

−∞

 
(3.25) 

The joint distribution of sea water level 𝐻𝑤 and depth limited significant wave height 

𝐻𝑚0 can be expressed as 

𝐹(𝐻𝑤, 𝐻𝑚0) = Pr[𝐻𝑤 > 𝑥𝑣,  𝐻𝑚0 > 𝑦𝑣] (3.26) 

where 𝑥𝑣 and 𝑦𝑣 are extreme values of the variables. The probability is estimated as 

above, forms a contour line which is obtained by (Reeve 2009) 

 Pr[𝑥0 < 𝐻𝑤 < 𝑥1,  𝑦0 < 𝐻𝑚0 < 𝑦1] = 𝐹(𝑥0, 𝑦0) + 𝐹(𝑥1, 𝑦1) −

𝐹(𝑥0, 𝑦1) − 𝐹(𝑥1, 𝑦0) 
(3.27) 

In this study, copula dependence function 𝐶 and Monte Carlo simulations are applied to 

joint probability analysis for bivariate random variables with identical marginal 

distributions. The dependence measure provides an estimate of the probability of one 

variable being extreme, given that the other one is extreme. The dependence model is 

defined by transforming the variables to a bivariate form. The correlation between the 

hydraulic variables has a considerable effect on the joint probability results (Hawkes et 

al. 2008).   

 

Marginal distribution for joint probability 

Before considering the joint probability between the variables, the marginal distribution 

of these variables needs to be determined. For the marginal distributions, the GPD model 

is selected due to the discussion in this chapter. However, GEV model is also used to 
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estimate the extreme values. Selection of a suitable threshold for marginal distributions 

depends on expected lifespan of the structure, hydraulic condition of the site and intended 

use of the structure. An optimum threshold of acceptable return period will consider both 

economic and safety matters of a coastal defence system.  

 

Correlation between the variables 

The estimate of correlation coefficient 𝜌 between two variables proposed by CIRIA 

(2007) could be rewritten for sea level 𝐻𝑤 and significant wave height 𝐻𝑚0, expressed 

here as (HR Wallingford 2000)  

 𝜌 =
𝐶𝑜𝑣(𝐻𝑤, 𝐻𝑚0)

√𝑉𝑎𝑟(𝐻𝑤)𝑉𝑎𝑟(𝐻𝑚0)
 (3.28) 

where 𝐶𝑜𝑣 is the covariance between the variables, and 𝑉𝑎𝑟 is the variance. The range 

of correlation interval is between [0, +1], where 𝜌 = 0 means the variables are 

independent and 𝜌 = 1 means the variables are fully dependent.  

 

Marginal distributions are determined by fitting either a generalised Pareto distribution 

(GPD) or generalised extreme value (GEV) to the key variables, as disused in previous 

sections. In order to combine the marginal distribution and evaluate dependence 

structure, a copula function is integrated. The copula function 𝐶 is a multivariate 

distribution with uniform marginal distributions, and expressed here as (Grimaldi and 

Serinaldi 2006) 

𝐶(𝑢, 𝑣) = Pr[𝑢 ≥ 𝑈, 𝑣 ≥ 𝑉] 
(3.29) 

Let 𝐻(𝑥𝑣, 𝑦𝑣) be the joint distribution of the variable 𝑥𝑣 and 𝑦𝑣, e.g. water levels and 

wave heights, hence 

𝐻𝑥,𝑦(𝑥𝑣 , 𝑦) = 𝐶 (𝐹𝑥(𝑥𝑣), 𝐹𝑦(𝑦𝑣)) (3.30) 

In this study, the Metaellipical copulas model is used, which is described by Genest et 

al. (2007). The joint exceedance and the joint return period value 𝑇(𝑥𝑣, 𝑦𝑣) is given as 

(Zhang and Singh 2007) 

Pr[𝑋 > 𝑥𝑣 , 𝑌 > 𝑦𝑣] = 1 − 𝐹𝑥(𝑥𝑣) − 𝐹𝑦(𝑦𝑣) + 𝐻𝑥.𝑦(𝑥𝑣 , 𝑦𝑣) (3.31) 

𝑇(𝑥𝑣 , 𝑦𝑣) =
1

𝜆𝑗(1 − 𝐹𝑥(𝑥𝑣) − 𝐹𝑦(𝑦𝑣) + 𝐻𝑥.𝑦(𝑥𝑣, 𝑦𝑣))
 (3.32) 

where 𝜆𝑗 is the mean number of events per year. 
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Figure 3.16 The effect of various dependency coefficients between two arbitrary 

parameters. 

 

Simulation process for major variables   

For Monte Carlo simulations, selecting a distribution and its parameters for each 

individual variable is often straightforward, but deciding what dependencies should exist 

between the inputs is complicated (Binder et al. 1993; Cai et al. 2007). Original 

observations data to a simulation should reflect the dependence among the variables 

being modelled. The process of data analysis and simulation in this thesis is as follows: 

1. Fit extreme value to key variables e.g. water level and wave height. 

2. Transform each variable, changing the marginal distributions into lognormal. The 

transformed variables still have a statistical dependence. 

3. Transform the data to the copula scale (unit square) using a kernel estimator to 

find out the dependence value. 

Interpretation of the joint probability results  

Joint probability results can be presented in three common ways: 
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 A structure function. 

 Joint exceedance. 

Joint probability density is a form of joint density function, which is only suitable for full 

analytical approaches, i.e. JOIN-SEA and dependence measure 𝜒. In this method Monte 

Carlo simulations of data are visualized as a scatter diagram with the information on 

probability density, extreme values, and dependency of variables. Structural function 

illustrates a response based on the selected variables. This method for coastal defence 

structures can be used for mean overtopping rate and wave run-up, as they can be 

described as a function of a constant structural function such as crest level or seaside 

slope. This is an effective method for estimation of high and extreme values of a 

particular structural variable, which could reduce a joint probability problem to a single-

variable problem. However, calculations should be repeated for other structural functions 

or for other structures in that coastal defence system (Hawkes 2008).  

 

Joint exceedance illustrates the probability of specific values of one variable that will be 

exceeded at the same time for a given value of the second variable. It could be expressed 

as return period for extreme values. However, the results should be tested for various 

combinations of the same return period to find out the most critical combination of 

design. In this method, the higher joint return values are used, the higher reliability occurs 

in the future (Hames and Reeve 2006). Figure 3.17 shows joint exceedance and joint 

structural probabilities on a bivariate diagram. 

 

3.6. Climate change impacts  

Studies have been carried out recently to undertake the reliability and failure analysis of 

coastal defence affected by future climate changes as discussed in literature reviews. 

However, the knowledge about the effects of climate change over the hydraulic variables 

is still very limited (Masselink and Russell 2013). For example, most literature published 

by 2014 claimed that the wave heights remain unchanged during the projected sea level 

rise (e.g. Hallegatte et al. 2011), but latest studies show that the wave periods will 

increase due to the sea level rise (e.g. Dahl et al. 2017). 
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Figure 3.17 Joint exceedance probabilities for wave overtopping failure mechanism 

(Adopted from HR Wallingford, 2000). 
 

Another problem of the controversial models for estimating the effects of sea level rise 

on the hydraulic variables are their complexity. The studied models that predict the future 

behaviour of wave conditions are time-consuming and complicated. This thesis is 

presenting a straightforward model to estimate the future primary hydraulic variables 

subject to sea level rise. However, it should be noted that the proposed model is only 

useful for the studied failure mechanisms described in this thesis (e.g. wave overtopping 

and piping), and more studies are necessary for other failure mechanisms.     

 

Sea level rise will increase the wave attack on sea flood defences if the wave heights are 

depth-limited. The depth-limited significant wave height 𝐻𝑚0 depends on many factors 

including still water level at the toe of the sea defence. The depth-limited significant 

wave height 𝐻𝑚0 is estimated from the interpolation between local relative water depth 

ℎ𝑙 and deep-water wave steepness 𝑆𝑜𝑝 considering the foreshore slope [25]. The local 

water level ℎ𝑤(𝑡) at the toe increases with time due to sea level rise ∆ℎ𝑤(𝑡), expressed 

here as 

ℎ𝑤(𝑡) = ℎ𝑤(0) + ∆ℎ𝑤(𝑡) (3.33) 

where ℎ𝑤(0) is the initial water level at present day and it is associated with the design 

water level within a chosen return period. From the energy decay numerical model for 
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uniform foreshore slope by Van der Meer (1990, 2016), the depth-limited significant 

wave height 𝐻𝑚0 can be estimated from hydraulic conditions including local relative 

depth ℎ𝑙(𝑡), deep-water wave steepness 𝑆𝑜𝑝 and foreshore slope. The local relative water 

depth ℎ𝑙(𝑡) is expressed as  

ℎ𝑙(𝑡) =
ℎ𝑤(𝑡)

𝐿𝑜𝑝
 (3.34) 

where peak wave length 𝐿𝑜𝑝 is related to peak wave period 𝑇𝑝, and it is estimated as 

𝐿𝑜𝑝(𝑡) =
𝑔 ∙ 𝑇𝑝

2

2𝜋
 (3.35) 

where 𝑔 is the acceleration due to the gravity. The rise in wave periods due to climate 

change is negligible (Van der Meer et al. 2016) and it is ignored in this study. The 

deep-water wave steepness 𝑆𝑜𝑝 is defined as deep-water significant wave height 𝐻𝑠𝑜 

over peak wave length 𝐿𝑜𝑝, given here as 

𝑆𝑜𝑝 =
𝐻𝑠𝑜

𝐿𝑜𝑝
 (3.36) 

where 𝐻𝑠𝑜 is significant wave height at deep-water. The depth-limited significant wave 

height associated with sea level rise over time can be estimated if the wave parameters 

together with the deep-water significant wave height are available. 

 

3.7. Case study at Portsmouth 

A numerical example for a system of three different types of earth dykes situated at 

Portsmouth, England described by Taylor et al. (2009) is utilised for showing the 

condition assessment and load evaluation with consideration of the sea level rise. The 

average crest level is 4.80 mOD, crest width 6.00 m, seaside slope 𝐶𝑜𝑡(𝛼) =  5.5, 

seabed slope 1:30 with turf and different core materials. A public access area/walkway 

is located on the landward side of the dykes. It is assumed that the sea dykes are in very 

good condition (condition grade 1).  

Table 3.8 Transition of the dykes condition grades from 1 to 5 over time (Harlcrow 

2013).  

 Slowest estimate (yr) Medium estimate (yr) Fastest estimate (yr) 

 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Dyke 1 0 18 35 62 74 0 14 32 52 55 0 12 18 35 55 

Dyke 2 0 20 34 60 70 0 16 28 50 60 0 10 20 38 48 

Dyke 3 0 22 36 56 68 0 15 30 48 58 0 9 22 40 50 
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3.7.1. Selecting the deterioration curve 

The first step is to select an appropriate deterministic deterioration curve for the sea dyke. 

There are three types of earth dykes with turf and impermeable materials, which is 

situated in coastal and estuary environment. The structures are wide (crest width more 

than 4.00 m), and according to Halcrow (2013) the lifecycle for the condition grades of 

these three structures are given in Table 3.8. In order to estimate the critical transition 

year for the dyke system, the minimum year transition to a new condition grade among 

the three dykes should be considered for the system, as highlighted in bold in the table. 

Table 3.8 provides the information for slow, medium and fast deterioration rates, where 

the medium deterioration rate is often considered for standard conditions. For each 

deterioration rate between the three types of dykes, the minimum values are identified 

(bold value). The final deterioration curve is shown in Figure 3.18, and will be used in 

deterioration process analysis which will be discussed in the next chapter. 

 

 
Figure 3.18 Estimated times to next condition grade from condition grade 1 for the 

dyke system. 
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system. Finally, the methodology to describe the damage using probabilistic distributions 

1

2

3

4

5

0 10 20 30 40 50 60 70

C
o
n
d
it

io
n
 g

ra
d
es

Time (year)

Fastest rate

Medium rate

Slowest rate



  

84 

 

is given. The proposed method is utilised to present grade-based distributions for damage 

relevant to overtopping and piping failure mechanisms in this case study.   

Table 3.9 Suggested condition grade for geometrical loss in earth sea embankments 

and their density distribution referred to Tables 3.5-3.7. 

Condition 

grade 

Seepage 

length loss 

(m) 

Crest level 

loss (m) 

Slope lowering 

(degree) 
Density distribution 

1 0.00-0.05 0.00-0.05 0.00-2.50 Lognormal 

2 0.05-0.15 0.05-0.10 2.50-4.00 Normal 

3 0.15-0.30 0.10-0.20 4.00-6.00 Normal 

4 0.30-0.60 0.20-0.40 6.00-10.00 Normal 

5 0.60+ 0.40+ 10.00+ Lognormal 

Table 3.9 shows the suggested condition grade for the loss in seepage length, crest level 

and slope in the dykes with respect to their condition grade. The values in the table are 

general values that discussed previously in this chapter and gathered from Environment 

Agency publications (e.g. Long et al. 2013). It should be noted that the values could be 

slightly different if a site-specific investigation implemented. The first and the last 

condition grades are represented by lognormal distributions while the other condition 

grades are assumed to be normally distributed. The distributions of the loss for three 

different visual indicators are presented in Figure 3.19 and Figure 3.20, by assuming the 

inspection strategies are Tier 3 and Tier 1, respectively. The mean and standard deviation 

of the distributions are calculated using Equations (3.5-3.12) and verified by the proposed 

method in the current chapter. For example for a sea dyke in condition grade 4, the crest 

level loss due to deteriorations is between 20 and 40 cm with a mean value of 30 cm. 

According to the case study report, the accuracy of the inspection strategies are 80% and 

94% for Tier 1 and Tier 3 strategies, respectively. The standard deviations of the 

distributions are 5.3 and 7.9 for Tier 3 (94% correct) and Tier 1 (80% correct) inspection 

strategies, respectively. Hence, the cumulative probability between the values of 

minimum and maximum (20 and 40) needs to be about 94% and 80% for Tier 3 and Tier 

1 inspection strategies, respectively. Figure 3.21 shows the cumulative probabilities for 

the condition grade 4 for Tier 3 strategy and verifies the estimated parameters for the 

distribution are acceptable. The plot is obtained using Equation 3.5 for probability 

density of normal distribution, and the verification is obtained using Equation 3.11. 
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The estimated mean and standard deviations for seepage length and crest level loss in 

condition grade 1 (Lognormal distribution) are 0.60 and 0.58 for Tier 3, 0.60 and 1.19 

for Tier 1 inspection strategies, respectively. This means the cumulative probabilities for 

maximum value in condition grades 1 or 5 should be equal to 0.94 and 0.80 for Tier 3 

and Tier 1, respectively. Table 3.10 verifies the estimated parameters for the lognormal 

distribution and shows the cumulative probabilities for the condition grade 1 for Tier 3 

and Tier 1 strategies, which are about 94% and 80%, respectively. 

 

 

 

Figure 3.19 Probability density distributions associated with condition grade (CG) 

of the earth sea dyke regarding the Tier 3 inspection strategy. 
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Figure 3.20 Probability density distributions associated with condition grade (CG) 

of the earth sea dyke regarding the Tier 1 inspection strategy. 
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Figure 3.21 Verification of the estimated normal distribution parameters. 

 

 

 

Table 3.10 Verification of the estimated lognormal distribution parameters for the 

example. 

𝝁 = 0.60  𝝁 = 0.60   

𝝈 = 1.19 𝜎 = 0.65   

Quantiles Cumulative 

distribution  

Quantiles Cumulative 

distribution  

𝒓 𝑞𝑟 𝑥 𝐹(𝑥) 𝑟 𝑞𝑟 𝑥 𝐹(𝑥) 

0.1 0.40 1 0.30706 0.1 0.79 1 0.17798 

0.25 0.82 2 0.53120 0.25 1.18 2 0.55697 

0.5 1.82 3 0.66239 0.5 1.82 3 0.77849 

0.75 4.07 4 0.74561 0.75 2.82 4 0.88680 

0.9 8.37 5 0.80186 0.9 4.19 5 0.93979 
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3.7.3. Extreme values analysis 

In this section, the extreme values of the hydraulic variables are evaluated for the case 

study. Original data for sea levels and wave conditions are gathered from south station 

dataset available from Met-Office within 14 years recorded data. Data from four tide 

gauge stations nearby the location concerned are used to provide original mean sea level 

and tidal data. The recorded data for fourteen years during 2000-2014 from the stations 

are analysed in this study to evaluate the extreme values of the sea water level and 

significant wave height. Both GEV and GPD models are considered in this section to 

illustrate the difference between the estimated extreme values.  

 

The mean residual life plots are presented for present significant wave heights and sea 

levels in Figure 3.22 to estimate high thresholds for modelling extreme values via the 

GPD fit. In the plots, linearity might be suggested above 1.20 and 0.5 m for water levels 

and wave heights, respectively, where information on the far right–hand–side of these 

plots is unreliable. The diagnostic plots are provided for both GEV and GPD models to 

analyse the suitability of the suggested models from Figure 3.23 to 3.26. The P-P and Q-

Q plots for water levels show that the GEV fit may be a more appropriate model for 

extreme value analysis, because the deviation (errors) between the model and the data 

are less significant. In another word, the original water level data have a closer pattern to 

a generalised extreme distribution than a generalised Pareto distribution. However, the 

level of error for GPD model is not significant, and the original data can be modelled as 

GPD distribution regarding an appropriate threshold as well.  

 

The comparison between the probability density plots in water levels also suggests that 

GEV model is a better fit for water level as it covers more data. However, it should be 

noted that the GEV model tends to estimate higher extreme values than GPD model as 

shown in Figures 3.23 and 3.24. The P-P and Q-Q plots for significant wave heights show 

that both models are suitable and the error in both GEV and GPD models is insignificant. 

However, the probability density plots suggest that the GPD model may cover more 

realistic extreme values for wave height than a GEV model, as shown in Figure 3.26. The 

fitted models are used to estimate the return periods for the variables and the results are 

illustrated in Figure 3.27. The frequency analysis is often used to evaluate the hydraulic 
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parameter values for various return periods. The return period here refers to the average 

period between occurrences of an unusually high value of the variable. Recurrence 

interval plots for sea water level and wave height are provided for the GEV and GPD 

fitted models, respectively. According to the results, the estimated extreme values for 

significant wave height at 1000-year return period are 2.53 m and 2.59 m for GPD and 

GEV fitted models, respectively. The extreme values for water level at the same return 

period are 4.68 and 4.82 mOD for GPD and GEV fitted models, respectively. The GEV 

fitted model estimates higher values in comparison with the GPD model, and the 

difference is more significant for higher return periods. 

 
 

 

Figure 3.22 Mean residual plots for present water level and significant wave height. 
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Figure 3.23 Diagnostic plots for the GEV analysis of the present water levels data. 
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Figure 3.24 Diagnostic plots for the GPD analysis of the present water levels data.  
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Figure 3.25 Diagnostic plots for the GEV analysis of the present significant wave 

height data. 
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Figure 3.26 Diagnostic plots for the GPD analysis of the present significant wave 

height data. 
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Figure 3.27 Recurrence interval plots for present sea water level (SWL) and 

significant wave height (SWH). 
 

3.7.4. Effects of sea level rise on extreme values 

The projected sea level rise due to low, medium and high emission scenarios is adopted 

from UKCP09 (Jenkins et al. 2011) to analyse the future hydraulic conditions. According 

to UKCP09 low emission scenario, the projected sea level rise including vertical land 

movements over a period of 1990-2095 is between 15-48 cm, or 3.2 mm/year in average 

(Jenkins et al. 2011). The projected increase in peak wave periods subject to low emission 

scenario after 50 years from the initial day is about 1% (Dahl et al. 2017). For medium 

emission scenario, the projected sea level rise including vertical land movements over 

the same period is between 21-68 cm, or 4.4 mm/year in average (Dahl et al. 2017). The 

projected increase in peak wave periods subject to medium emission scenario after 50 

years from the initial day is about 2% (Dahl et al. 2017). The estimated sea level rise for 

high emission scenario including vertical land movements over the same period is 

between 28-84 cm, or 5.6 mm/year (Dahl et al. 2017). The increase in peak wave period 

subject to high emission scenario is about 4% after 50 years from the present day. 
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applied to the original data to estimate the extreme values in the future, as shown in 

Figure 3.29. The extreme values of water level at a 1000-year return period subject to the 

different emission scenarios are between 4.92 and 5.52 mOD, which shows a significant 

increase in the hydraulic loads. For the significant wave heights, the estimated extreme 

values subject to the different emission scenarios are between 2.90 and 3.27 m.  

 

The results also show that for the lower return periods, i.e. less than 10-year, the 

difference between the estimated values through GEV or GPD fitted models are 

insignificant. Both GEV and GPD fitted models have similar return period values for 

return periods lower than 10 years. However, for the higher return periods, the GEV fitted 

model estimates higher extreme values, with the more significant difference due to the 

uncertainty from the predicted sea level rise. 

 

 
Figure 3.28 Relative increase in sea level for the different emission scenarios with 

95th confidence intervals (dashed lines). 
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Figure 3.29 Recurrence interval plots with and without sea level rise after 50 years 

subject to low (L), medium (M) and high (H) emission scenarios for two extreme 

value models. 
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3.7.5. Joint probability evaluations 

The dependence coefficient matrix between the original data of sea water level and 

significant wave heights 𝜌1, and between significant wave heights and wave periods 𝜌2 

are estimated for all scenarios. The estimated dependence values for the original data are 

given here as 

𝜌1 = [
1.00 0.11
0.11 1.00

] , 𝜌2 = [
1.00 0.71
0.71 1.00

] (3.37) 

The estimated parameters are used to generate 10e5 simulated data for all variables 

subject to the three emission scenarios. Monte Carlo simulations are utilised to generate 

the samples of water level, significant wave height, and wave period. Figure 3.30 shows 

scatter plot of the original and simulated data for wave periods against wave heights in 

the case study. The distribution of the dots show strong correlation between wave height 

and wave period, and by increasing the wave height the wave period is increased. 

However, the extreme values of wave periods do not exceed from 6 second.  

 
Figure 3.30 Scatter plot of original and simulated data for wave periods against  

significant wave heights.  
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The joint exceedance results for the present wave heights and water levels are given in 

Figure 3.31 as the contour lines. The contour lines, e.g. in 50, 100 and 1000-year return 

periods for both GEV and GPD fitted models, are presented over the simulated data. The 

GEV fitted values show a more conservative evaluation of the extreme events in the 

future. However, the simulated results emphasise that the GPD fitted evaluation may be 

closer to the reality. The worst case of wave overtopping for present data by assuming a 

1000-year event may be at (2.20 m, 4.55 mOD) for significant wave height and water 

level (GEV model), respectively. On the other hand, the worst point is estimated to be 

(2.10 m, 4.35 mOD) for GPD fitted model. However, more extreme values, such as (2.30 

m, 4.0 mOD) and (1.50 m, 4.60 mOD), should be considered in a failure probability 

analysis. Figure 3.32 shows the joint exceedance plots for water levels and significant 

wave heights subject to the three emission scenarios. The estimated worst case (GEV 

model) for low, medium and high emission scenarios are (2.25 m, 4.80 mOD), (2.30 m, 

5.10 mOD) and (2.42 m, 5.25 mOD), respectively. The worst case for the same scenarios 

but GPD fitted model are (2.20 m, 4.70 mOD), (2.25 m, 4.95 mOD) and (2.30 m, 5.05 

mOD), respectively. The results show that for a more cost-efficient result, GPD model is 

suggested. However, a reliability analysis needs to be undertaken to make sure about the 

performance level of the structure in the future. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.31 Joint probability return periods in contour lines and simulated data 

marked in dots for water level and significant wave height for the case without sea 

level rise.  
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Figure 3.32 Joint probability return periods (contour lines) for water level and 

significant wave height subject to various scenarios. 
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3.8. Summary and conclusions 

In this chapter, a new probabilistic method for analysing the evolution of flood defence 

condition grades is proposed regarding Environment Agency condition assessment 

manual. The available inspection strategies are translated into a probabilistic framework 

to be capable of using them in reliability analyses. A correlation between the visual 

indicators of the major failure mechanisms are defined and studied using the proposed 

method. The effects of climate change on the hydraulic variables are discussed, and a 

simplified model is developed to estimate the future wave conditions. A dependence 

copula function model is provided to use in the joint probability model. Finally, a 

numerical example provided to show the applicability of the proposed models. 

 

From the results obtained by proposed model, following conclusions are drawn: a) the 

deterministic deterioration curves for coastal defences can be transformed into a 

probabilistic model to develop a stochastic deterioration model; b) the comparison 

between the GEV and GPD models show that the GPD model may give a more realistic 

and cost-efficient results; c) the proposed functions for adopting the effects of sea level 

rise over major hydraulic variables lead to a more straightforward model for predicting 

the future conditions, which are less complicated and more accurate; and d) the 

dependence evaluation through the copula function improves the quality of the simulated 

results  in comparison with the original data.
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4. Stochastic deterioration modelling for coastal defences  

4.1. Introduction 

In reliability analysis, it is often essential to deal with quantities that vary as a function 

of time, e.g. deterioration processes. To imply the variation of the deterioration process 

during the desired time in the reliability analysis, the concept of stochastic process is 

required. Mathematically, a stochastic process is a rule for assigning to every outcome 

of a simulation through a stochastic function. In this chapter, novel stochastic 

deterioration models are developed for coastal defence structures to model the 

deterioration processes such as crest level and seepage length loss. The main 

contributions of this study in this chapter are as follow:  

 A homogenous Markov model is developed to model stationary deterioration 

process for a coastal defence that will be used in a generic fragility curve analysis. 

 An inhomogeneous Markov model is developed to model non-stationary and 

grade-based deterioration process for a coastal defence that will be used in a time-

dependent reliability analysis. 

 

4.2. Stochastic Gamma process 

Deterioration process is generally stochastic and non-decreasing process, which is 

suitable to be modelled by a gamma process (Van Noortwijk 2009). This process is used 

to model the uncertainty over time to failure and deterioration rate in many engineering 

fields such as the settlement of crest level in flood defence structures. In a non-stationary 

gamma deterioration model, let 𝑋 be the random variable, then the probability density 

function of 𝑋 is given as (Van Noortwijk 2009) 

 𝐺𝑎[𝑥|𝜅, 𝜃] =
𝜃𝜅

𝛤[𝜅]
𝑥𝜅−1𝑒−𝜃𝑥𝐼(0,∞)(𝑥) (4.1) 

where 𝜅(𝑡) > 0 and 𝜃 > 0 are shape function and scale parameter of gamma distribution, 

respectively; 𝐼(𝑥) = 1 for  𝑥 ∈  𝐴, 𝐼(𝑥) = 0 for 𝑥 ∉  𝐴; 𝛤[𝑣] is the gamma function 

defined as (Van Noortwijk 2009) 
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 𝛤[𝑣] = ∫ 𝑧𝑣−1𝑒−𝑧𝑑𝑧

∞

0

 (4.2) 

Let 𝜅(𝑡) be a time-dependent and non-decreasing shape function for 𝑡 > 0, 

then 𝑋(𝑡 + 𝛥𝑡) − 𝑋(𝑡) ≈ 𝐺𝑎(𝜅(𝑡 + 𝛥𝑡) − 𝜅(𝑡), 𝜃). The resistance of flood defence 

structures deteriorates with time due to many factors such as degradation of crest level 

and seepage length. Here, the gamma process is utilised for modelling a stochastic 

deterioration process to evaluate the resistance of ageing sea defence structures. The 

probability density function of the deterioration increments Δ𝑦 occurring at time 𝑡 (𝑡 ≥

0) is given here as 

𝑓Δ𝑦(Δ𝑦) = 𝐺𝑎(Δ𝑦|𝜅(𝑡), 𝜃) = {
𝑏𝜅(𝑡)

𝛤[𝜅(𝑡)]
Δ𝑦𝜅(𝑡)−1𝑒−𝜃Δ𝑦  , 𝑓𝑜𝑟 Δ𝑦 > 0

0  ,                                        𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 (4.3) 

where the shape function and scale parameter are given as 

 𝜃 =
𝜇

𝜎2
    , 𝜅(𝑡) =

𝜇2𝑡

𝜎2
 (4.4) 

where 𝜇 and 𝜎 are the mean and the standard deviation for average deterioration rate, 

respectively. The process is a pure-jump increasing Levy process (Van Noortwijk 2009). 

 

4.2.1. Parameter estimation 

The maximum likelihood method is utilised to estimate the parameters of the gamma 

process. It is assumed that the expected deterioration at time 𝑡 is proportional to a power 

function, given as (Edirisinghe et al. 2013),  

𝐸(𝑋(𝑡)) =
𝜅(𝑡)

𝜃
=

𝑐𝑡𝜚

𝜃
 (4.5) 

where 𝑐 and 𝜚 are related to the structure and environment conditions and always 

positive. The likelihood function of the deterioration increments 𝛿𝑖 = 𝑥𝑖 − 𝑥𝑖−1 is a 

product of independent gamma densities as  

𝜄(𝛿1, … , 𝛿𝑛|𝑐, 𝜃) = ∏ 𝑓
𝑋(Δ𝑡)

(

𝑛

1

𝛿𝑖) = ∏
𝜃𝑐(Δ𝑡𝜃)

Γ(𝑐(Δ𝑡𝑏))
𝛿𝑖

𝑐(Δ𝑡𝜃)−1 exp(−𝜃𝛿𝑖)

𝑛

1

 (4.6) 
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By solving the first partial derivatives of the two following equations, the values of �́� and 

�́� can be estimated as  

�́� =
�́�𝑡𝑛

𝜚

𝑥𝑛

𝑡𝑛
𝑘 log

�́�𝑡𝑛
𝜚

𝑥𝑛
= ∑(Δ𝑡Δ𝑖

𝜚
)

𝑛

1

(𝜓(�́�(Δ𝑡Δ𝑖
𝜚

) − log 𝛿𝑖)

 (4.7) 

where  𝜓 is the derivative of the logarithm of the gamma function.  

 

4.2.2. Simulation 

There are many simulation methods for gamma process such as compound Poisson 

simulation and gamma-bridge sampling. This research uses gamma-increment sampling 

for the simulation of the discrete time deterioration in flood defence assets such as 

settlement. Gamma-increment sampling is defined as drawing independent samples of 

deterioration steps 𝛿𝑖 = 𝑥𝑖 − 𝑥𝑖−1, where the initial deterioration is zero, expressed here 

as (Strauss et al. 2015; Strauss et al. 2013) 

𝐺𝑎(𝛿|𝜅(𝑡𝑖) − 𝜅(𝑡𝑖−1), 𝜃) =
𝜃𝑐(Δ𝑡𝜃)

Γ(𝑐(Δ𝑡𝜃))
𝛿𝑖

𝑐(Δ𝑡𝜃)−1 exp(−𝜃𝛿𝑖) (4.8) 

for every 𝑖 = 1,2, … , 𝑛.  

 

Figure 4.1 shows the simulated deterioration process for crest level loss of a hypothesis 

sea dyke subject to three different deterioration rates. The parameter estimation for the 

gamma process requires in-situ data from the case study. In this example, the parameters 

for different deterioration rates are assumed not estimated in order to show the simulation 

process. Hence, the parameters are not evaluated and only utilised to show the 

applicability of the equation in a coastal defence case study. For each deterioration rate, 

five distinct simulations are run to increase the accuracy of the results by taking the mean 

values. The results show that the expected mean crest deterioration over 60 years is about 

15, 26, and 44 cm subject to slow, medium and fast deterioration rates, respectively. 
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Figure 4.1 Simulated Gamma deterioration process for a sea dyke crest level subject 

to three different deterioration rates. 

 

4.3. Homogenous Markov chain  

As discussed in Chapter 2, a Markov model is a memoryless stochastic process that 

evolves during time, and the future of the process is only conditional on the current 

condition of the system or asset (Wellalage et al. 2015). The degradation process for 

coastal flood defence structures is only conditional on the present deterioration rate of 

the system and not to its previous deterioration rate. This is because the deterioration rate 

of the asset depends on its current resistance level and operational parameters. 

Consequently, the degradation process is memoryless and the deterioration process at 

random conditions in the future follows different random rates. 

 

A Markov chain is considered as a series of transitions between certain condition grades. 

The stochastic process  𝑋 = {𝑋𝑛; 𝑛 = 0,1,2, … } with discrete and finite state space is a 

Markov chain if the following holds for each 𝑖, 𝑗 ∈ 𝐸 (Bocchini et al. 2012) 

Pr(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖𝑛, 𝑋𝑛−1 = 𝑖𝑛−1, … , 𝑋0 = 𝑖0) = 

Pr(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖𝑛) 
(4.9) 
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where for any set of states 𝑖0, … . 𝑖𝑛 in the state space the conditional probability does not 

change over time 𝑡 ≥  0. When the Markov chain is used to model deterioration of a 

system in state 𝑖, a fixed probability, i.e. stationary transition probability, exists when a 

system changes from state 𝑖 to state 𝑗 during the period. 

Pr(𝑋1 = 𝑗|𝑋0 = 𝑖) = Pr(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖) (4.10) 

The stationary transition probabilities mean that the Markov chain is homogenous. Since 

the probabilities are stationary, the only information needed to describe the process is the 

initial condition state and the one-step transition probabilities.  

 

4.3.1. Transition probability matrix 

Estimation of the transition probabilities for a defence structure requires adequate 

available inspection data history. Generating an accurate and reliable transition 

probability matrix is a critical step in the Markov model (Ortiz-García et al. 2016). The 

deterioration rate of typical earth sea dykes with the progress of age is represented by 

five different condition grades as discussed in Chapter 3. The deterioration of flood 

defences is considered to be discrete in time, and is assumed that: 

 Condition grade change over time follows stochastic process. 

 The future condition of an asset only depends on present condition. 

 The transition matrix is stationary. 

 The transition in condition grades is an only one-state transition, i.e. only transit 

to next state due to deterioration. 

 Each transition matrix is only valid for one failure mechanism. 

The general form of transition probability matrix 𝑃 with condition grades {1,2, … ,𝑚} is 

expressed as 

𝐏 = [

𝑝11 𝑝12

𝑝21 𝑝22
⋯

𝑝1𝑚

𝑝2𝑚

⋮ ⋱ ⋮
𝑝𝑚1 𝑝𝑚2 ⋯ 𝑝𝑚𝑚

] 
       

(4.11) 
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𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜             ∑ 𝑝𝑖𝑗 = 1         𝑓𝑜𝑟  𝑖 =𝑚
𝑗=1 1,2, … ,𝑚         

Each element in the transition probability matrix 𝐏 represents the probability that the 

condition of the system or component concerned will transfer from state 𝑖 to state 𝑗 during 

a certain period of time 𝑡. Estimating the transition probability matrix 𝐏 for a flood 

defence structure is based on available inspection data. Deterioration of flood defence 

structures is represented through the elapsed time to increase in condition grade ranging 

from 1 to 5, and it is assumed to have the initial information based on expert judgment 

and long term observations. Therefore, the transition probability matrix of Markov chains 

from grade 𝑖 to 𝑗 in Equation (4.11) is represented by a 5 × 5 matrix. 

 

In addition, under the assumption of do-nothing, which means no maintenance is applied 

to the components or structure during the service life, the asset will gradually deteriorate. 

Hence the corresponding condition grade either transits to a higher number or remains 

unchanged during the inspection period. This means the condition to deteriorate by no 

more than one grade in one specific period of time, in order to simplify the model. 

However, it is important to choose appropriate time intervals. One more condition applies 

to the process when it is used to simulate coastal flood defence deterioration, 

namely  𝑝55 = 1, indicating condition grade where the structure has reached its worst 

condition (condition grade 5) and cannot deteriorate further. The transition probability 

matrix 𝐏 in Equation (4.11) by assuming a homogenous condition can be expressed as  

𝐏 =

[
 
 
 
 
𝑝11

0
0
0
0

1 − 𝑝11
𝑝22

0
0
0

0
1 − 𝑝22

𝑝33

0
0

0
0

1 − 𝑝33
𝑝44

0

0
0
0

1 − 𝑝44

1 ]
 
 
 
 

 (4.12) 

A Markov process on a sea dyke is defined once its transition probability matrix and 

initial condition grade 𝑋0 are specified, where 𝑋0  is described as a distribution vector. 

In a Markov process, the probability of condition grade 𝑖 of the stochastic process 

{𝑋𝑛+1, (𝑛 > 0)}, where the transition time interval could be taken as 1 year for the 

convenience in calculations, is independent of the previous asset’s condition 

𝑋0, 𝑋1, … , 𝑋𝑛−1 but depends on 𝑋𝑛. Hence, the probability of the transition from 

condition grade 𝑖 to condition grade 𝑗 within 𝑛-steps, can be estimated. The expected 

condition grade for 𝑛 transitions 𝔼𝑋𝑛 can be estimated from 
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𝔼𝑋𝑛 = 𝑋0 ∙ 𝑃𝑛 ∙ 𝐺𝑇 (4.13) 

where 𝐺𝑇 is the transpose of condition grade vector 𝐺 = [1 2 …  𝑀]. In most situations, 

the initial distribution vector 𝑋0 is available, but transition matrices are probabilistic 

because of the uncertainty in predicting deterioration from inspection data and the 

inherent stochasticity of the deterioration process.  

 

4.3.2. Calibration of transition probability matrix 

A regression-based non-linear optimisation method is utilised to minimise the difference 

between the observed condition grades and expectation of the model. This study utilises 

this method because it is useful when the observed data are not sufficiently available (e.g. 

lack of observations for some periods), which is common for coastal flood defence. The 

objective of this method is to minimise the squared difference between the regression 

curve and the expected transition probability fitted curve (Jiang and Sinha 1989).  

 

Non-linear function, 𝑌(𝑛), as a function of step, is obtained using regression curve fitting 

analysis on deterioration curve, where 𝑌 is a condition grade value. Then, transition 

probability matrix is estimated by solving the constrained nonlinear optimisation 

problem (Jiang and Sinha 1989; Morcous and Hatami 2011) that minimises the sum of 

absolute difference between the regression model and the expected condition grade from 

the objective function. The objective function can be expressed as a function of the 

transition probability matrix in Markov chain model. It is assumed that for each desired 

time-step 𝑛 in a finite set of ages, there are one or more observations of condition grades, 

and the optimisation function is expressed as follows (Baik et al. 2006) 

min
𝑝𝑖𝑗

∑∑(𝑌(𝑛) − 𝔼𝑋𝑛)2 

subject to: 0 ≤ 𝑝𝑖𝑗 ≤ 1 𝑎𝑛𝑑 ∑ 𝑝𝑖𝑗 = 1 , 𝑓𝑜𝑟 𝑖, 𝑗 = 1,2, … ,𝑀𝑀
𝑗=1  

(4.14) 

where 𝑌(𝑛) is an observation of a condition grade at time-step 𝑛 from the non-linear 

regression function; and 𝔼𝑋𝑛 is the expected value for condition grade after 𝑛 transition 

from Markov model.  
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4.3.3. Model verification 

The chi-square goodness-of-fit test is used in a statistical model to make sure whether 

the transition matrix reflects the observed data, or whether the observed values are close 

to the expected distribution matching to the non-linear fitted model. The chi-square test 

is often used to test the values in two-way tables where the Markov model is evaluated 

against the observed data. The generalised chi-square test is expressed here as (Norris 

1997) 

χ2 = ∑
(Observed − expected)2

Expected
 (4.15) 

The test will verify or refute whether the Markov model developed for the deterioration 

prediction of flood defence structure is reliable with the observations. The observed data 

are available from the Environment Agency (Halcrow 2013). The hypothesis testing 

method allows finding whether the proposed probability model is consistent with a set of 

observations used to validate the models (Garthwaite et al. 2002). The chi-square (χ2) 

test can be used to compare the observed frequency with the expected condition grades 

at a particular observed time. The test for the deterioration models developed in this study 

can be calculated as 

χ2 = ∑
(𝑌(𝑛) − 𝔼𝑋𝑛)2

𝔼𝑋𝑛

5

1

 (4.16) 

where 𝑌(𝑛) is the observed values; and 𝔼𝑋𝑛 is the model’s values.  If the chi-square is 

larger than the critical χ2
0.05,4, corresponding to 95% confidence level and four degrees 

of freedom, the hypothesis is rejected. To ensure that the χ2 statistic accurately 

approximates the χ2 distribution, the traditional rule of thumb is executed, where all 

values should be at least 1.0, and more than 80% values should be more than 5.0 (Tables 

are available in appendix section).  

 

4.3.4. Limitation of homogeneous Markov chain 

Even though homogeneous Markov chain has been widely used to model the 

deterioration of various assets, the process has been criticised about the stationary 

assumptions for the time-dependent deterioration rate. In general, homogeneous Markov 

chain models have two significant limitations that make it challenging to predict flood 



  

109 

 

defence deterioration process accurately. The first one is the majority of assumptions for 

the Markov model are not consistent with the reality. For example, the parameters that 

might influence of the deterioration process are assumed to be constant, while in reality, 

the deterioration rates are different in various condition grades. A sea dyke at condition 

grade 4 is expected to degrade faster than a sea dyke in condition grade 2 due to the 

resistance and material factors.  

 

This problem makes the simulation results to be different from the reality especially in 

long-term situations. The problem could be mitigated by using the short-term 

simulations. Also, Markov chain for the deterioration modelling is assumed to be a single 

step function. This means the elements do not transmit more than one condition state 

within a given time-step. The second major limitation of Markov chain models is the 

process of transition probability evaluation, which is often biased and needs 

observational data. The transitions matrices are very sensitive to the calibration methods, 

e.g. by using different calibration methods, the value of probabilities change significantly 

(Mishalani and Madanat 2002).  

 

In a homogeneous Markov chain model, it is impossible to model the time-dependent 

deterioration process of flood defences. Hence, some methods overcome the limitation 

by dividing the lifetime into short and equal segments and then estimates the transition 

probability matrices for each time segment. The influence of the environmental factors 

such as hydraulic loads and traffic volume on the flood defence are neglected.  

 

4.4. Non-homogenous Markov chain 

A non-homogenous Markov model is more appropriate in flood defence deterioration 

modelling, as the transition probabilities are inherently time-dependent, for example 

older assets deteriorates faster. The basic features of the Markov chain are also valid in 

a time-dependent model such as being memoryless and stochastic. Let 𝑋 =

{𝑥1, 𝑥2, … , 𝑥𝑀} be a set of finite states of a flood defence asset. A time-dependent Markov 

process of a flood defence is defined once its transition probability matrices and initial 

condition state 𝑋0(𝑡) at time 𝑡 ≥ 0 are specified, where 𝑋0(𝑡) = {𝛼1
𝑡 , 𝛼2

𝑡 , … , 𝛼𝑀
𝑡 }, ∑𝛼𝑖

𝑡 =

1 and 𝛼𝑖
𝑡 ≥ 0. A discrete-time Markov property for the mentioned process 𝑋𝑡 at time 

𝑡 (𝑡 > 0) is expressed as (Kleiner 2001)                    
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𝑝𝑖𝑗
𝑡,𝑡+1 = Pr(𝑋𝑡+1|𝑋1, 𝑋2, … , 𝑋𝑡) = Pr(𝑋𝑡+1 = 𝑥𝑗|𝑋

𝑡 = 𝑥𝑖) (4.17) 

where conditional probability  𝑝𝑖𝑗
𝑡,𝑡+1, with constraints 𝑝𝑖𝑗

𝑡,𝑡+1 ≥ 0 and ∑ 𝑝𝑖𝑗
𝑡,𝑡+1𝑀

𝑗=1 = 1,  

denotes the transition of the asset from condition grade 𝑖 to 𝑗 during a given period of 

time. Figure 4.2 shows the progress of an asset probability mass function over time 

regarding time-dependent deterioration rate. 

 
Figure 4.2 Progress of asset pmf over time regarding time-dependent transition 

probability. 

 

4.4.1. Time-dependent transition probability matrix  

The transition probabilities are normally expressed as an 𝑀 ×  𝑀 matrix, where  𝑀 is 

the number of possible states, referred to as transition probability matrix 𝐏 as 

𝐏𝑡,𝑡+1 =

[
 
 
 
 
 𝑝11

𝑡,𝑡+1

𝑝21
𝑡,𝑡+1

𝑝11
𝑡 ⋮

𝑝11
𝑡1 ⋮

𝑝𝑀1
𝑡,𝑡+1

𝑝12
𝑡,𝑡+1

𝑝22
𝑡,𝑡+1

𝑝11 ⋮

𝑝11 ⋮

𝑝11 ⋯

𝑝11
𝑡,𝑡+1 ⋯

     𝑝23
𝑡,𝑡+1

𝑝11 ⋮

𝑝11 ⋮

𝑝11 ⋯

𝑝11
𝑡,𝑡+1 ⋯

𝑝11
𝑡,𝑡+1 ⋯

𝑝11
𝑡,𝑡+1 ⋮

𝑝11
𝑡,𝑡+1 ⋮

𝑝11
𝑡,𝑡+1 ⋯

𝑝1𝑀
𝑡,𝑡+1

𝑝2𝑀
𝑡,𝑡+1

𝑝11 ⋮

𝑝11 ⋮

𝑝𝑀𝑀
𝑡,𝑡+1

]
 
 
 
 
 

 (4.18) 

In flood defence the deterioration modeling it is assumed that the assets can only transit 

to the next worse condition grades and cannot improve in condition, e.g. under do-

nothing maintenance plan. As discussed earlier, coastal defence structures are 

categorised into 5 condition grades, where condition grade 1 denotes good as new and 
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condition grade 5 denotes failure. If a structure is in condition grade 5 under the no-

maintenance plan, then cannot transit to a higher (worst) state, and always remains in 

condition grade 5. The one-step transition probability matrix under do-nothing 

maintenance plan is expressed here as  










































10000

pp1000

0pp100

00pp10

000pp1

1t,t

45

1t,t

45

1t,t

34

1t,t

34

1t,t

23

1t,t

23

1t,t

12

1t,t

12

1tt,
P  (4.19) 

Once the transition probability matrix is defined, the expected condition of the system in 

the future can easily be obtained. Thus, suppose the system has an initial distribution 

vector 𝑋0(𝑡) , then the probability that the system being in state 𝑗 after 𝑛 time steps is 

expressed as: 

𝑋(𝑡 + 𝑛) = 𝑋0(𝑡) ∙ 𝑃𝑡,𝑡+1 ∙ 𝑃𝑡+1,𝑡+2 ∙ … ∙ 𝑃𝑡+𝑛−1,𝑡+𝑛 (4.20) 

And accordingly, the expected condition grade is 

𝐸(𝑡 + 𝑛) = 𝑋(𝑡 + 𝑛) ∙ 𝐺𝑇 (4.21) 

where 𝐺 is the condition rating vector; and 𝑇 is the transpose function  

 

4.4.2. Weibull-distributed sojourn time 

In a Markov process, a state space remains in a particular state for a given length of time, 

then transits to another state. Let {𝑇1, 𝑇2, … , 𝑇𝑀} be random variables denote the sojourn 

time in states {𝑥1, 𝑥2, … , 𝑥𝑀}, respectively. Their corresponding probability density 

function (PDF), cumulative distribution function (CDF), and survival function are 

denoted 𝑓𝑖(𝑡), 𝐹𝑖(𝑡) and 𝑆𝑖(𝑡), respectively. Thus, 𝑇𝑖,𝑖+1 is the time from state 𝑖 to 

state (𝑖 + 1).  The random variable denoting the sum of the sojourn times in states {𝑖, 𝑖 +

1, … , 𝑘 − 1}, 𝑇𝑖→𝑘, is calculated as 

𝑇𝑖→𝑘 = ∑ 𝑇𝑖,𝑖+1

𝑘−1

𝑖

      ;    𝑖 = {1,2, … ,𝑀 − 1}, 𝑘 = {2,3, … ,𝑀} (4.22) 
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𝑇𝑖→𝑘 represents the time that will take for the process to go from state 𝑖 to 𝑘. In order to 

represent the flood defence deterioration process, let the sojourn times in states 𝑖 =

{1, 2, … ,𝑀 − 1} be {𝑇1, 𝑇2, … , 𝑇𝑀−1}, respectively. The time-dependent transition 

probabilities from state 𝑖 at time 𝑡 to next state at time 𝑡 + 1 can be expressed here as 

(Kleiner 2001) 

𝑝𝑖,𝑖+1(𝑡) = Pr{𝑋𝑡+1 = 𝑖 + 1| 𝑋𝑡 = 𝑖} =
𝑓1→𝑖(𝑇1→𝑖)

𝑆1→𝑖(𝑇1→𝑖) − 𝑆1→(𝑖−1)(𝑇1→𝑖−1)
      ,

𝑖 = {1,2, … ,𝑀 − 1} 

(4.23) 

where 𝑇1→𝑖 indicates the time that will take for process to go from state 1 to 𝑖;  and the 

transition probability 𝑝𝑖,𝑖+1(𝑡) is time-dependent and non-homogenous. For example the 

transition probability from state 4 to state 5 at time 𝑡 is expressed as  

𝑝4,5(𝑡) =
𝑓1→4(𝑡)

𝑆1→4(𝑡) − 𝑆1→3(𝑡)
 (4.24) 

Weibull distribution is one of the most widely used lifetimes and continues distributions 

in reliability analysis. It is a distribution that can take on the features of other types of 

distributions, based on the value of the shape parameter. The Weibull distribution is 

almost a normal distribution when shape parameter 𝜅 =  3.25. Figure 4.3 shows Weibull 

distribution gives a distribution for which the failure rate is proportional to a power of 

time as: 

 Shape parameter 𝜅 < 1 indicates that the failure rate decreases over time.   

 A value of 𝜅 = 1 indicates that the failure rate is constant over time hence the 

Weibull distribution reduces to an exponential distribution. 

 A value of 𝜅 > 1 indicates that the failure rate increases with time. This happens 

if there is an aging or deteriorating process. 

Assume that the waiting time 𝑇𝑖 follows Weibull distribution. The CDF (𝐹), PDF (𝑓), 

and survival 𝑆 function of Weibull distribution are expressed, respectively, as (Birolini 

2007) 

  𝐹𝑖(𝑡, 𝜃𝑖 , 𝜅𝑖) = 1 − exp[−(𝜃𝑖𝑡)
𝜅]       ,               𝑡 > 0;   (𝐹(𝑡) = 0 𝑓𝑜𝑟 𝑡 ≤ 0)                 (4.25) 

𝑓𝑖(𝑡, 𝜃𝑖 , 𝜅𝑖) = 𝜃𝑖𝜅𝑖(𝜃𝑖𝑡)
𝜅𝑖−1 exp[−(𝜃𝑖𝑡)

𝜅𝑖] (4.26) 

https://en.wikipedia.org/wiki/Failure_rate
https://en.wikipedia.org/wiki/Failure_rate
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𝑆𝑖(𝑡, 𝜃𝑖 , 𝜅𝑖) = 1 − 𝐹𝑖(𝑡, 𝜃𝑖 , 𝜅𝑖) = exp[−(𝜃
𝑖
𝑡)𝜅𝑖] (4.27) 

where 𝜃𝑖 and 𝜅𝑖 are scale and shape parameters, respectively. Under the specification of 

Weibull parameters, the probability of the transition from state 𝑖 to state (𝑖 + 1) can be 

estimated.  

 
Figure 4.3 Weibull density function with different shape and scale parameters. 

 

4.4.3. Parameter estimation 

Two-state approach 

The scale 𝜃𝑖 and shape 𝜅𝑖 parameters are estimated based on historical observations and 

condition assessments, which are available via Environment Agency publications as 

discussed in Chapter 3 (e.g. Halcrow Group 2013). Deterioration curves are developed 

by experts to predict the condition grade of assets associated with time according to their 

environment, material, deterioration rate and maintenance regime. For example, a 

deterioration curve for a specific asset describes that the structure remains in condition 

grade 𝑖 for 𝑇 years. After selecting an appropriate deterioration curve for the case study, 

a two-state Markov chain is utilised to estimate the transition probability for condition 

grade 𝑖. The one-step transition matrix is expressed here as  

�̂� = [
𝑝𝑖𝑖 1 − 𝑝𝑖𝑖

0 1
] (4.28) 

where �̂� is a discrete-time and homogenous Markov transition matrix; and 𝑝𝑖𝑖 is the 

probability of being in condition grade 𝑖 at time step (year). Transition probability that 

Variable (x) 
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the coastal defence goes from condition grade 𝑖 to next condition grade in 𝑛 steps is 

called 𝑛-step transition probability and is calculated from the 𝑛th power of the transition 

matrix �̂�. Let 𝜏  be the time-step (year) that the structure remains in the same condition 

grade with probability of  𝑝𝑎 = 50%. From Equation (4.27) is it written as 

         exp[−(𝜃𝑖𝜏)
𝜅𝑖] = 𝑝𝑎 = 𝑝𝑖𝑖

𝜏 (4.29) 

Also, it was assumed that the survival function at condition grade 𝑖 follows a Weibull 

survival function 𝑆𝑖. A non-linear least squares method is suggested to find the scale 𝜃𝑖 

and shape 𝜅𝑖  parameters by minimising the difference between two functions. The scale 

𝜃𝑖 and shape 𝜅𝑖  parameters can be estimated by solving the minimization function given 

here as  

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 ∑ (𝑖 𝑆𝑖(𝑡) − 𝑝𝑖𝑖
𝑡)2  ;        𝑖 = {1,2,3,4} (4.30) 

where 𝑆𝑖(𝑡)= exp(−(𝜃𝑖𝑡)
𝜅𝑖) is the Weibull survival probability at time (year) 𝑡. For 

example, assume a slope sea dyke, which transits from condition grade 1 to condition 

grades 2, 3, 4, and 5 at years 9, 19, 33, and 56, respectively. The following transition 

matrix for transition from condition grade 1 to 2   

�̂�12 = [
0.93 0.07
0 1

] (4.31) 

 

 
Figure 4.4 Assumed Weibull survival function and two-state stationary Markov 

deterioration for the transition from condition grade 1 to 2. 
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Hence, the time-step (year) that the survival probability of the condition grade is about 

50% is 𝜏 = 9. The next step is to minimise the distance between the Weibull function 

and transition pattern via objective function as shown in Figure 4.4. The parameters are 

estimated by solving the objective functions and are provided in Table 4.1. The 

parameters in the table will be used for Monte Carlo simulations to generate the 

cumulative survival functions of the condition grades.   

 

Table 4.1 Parameter estimation utilising two-state approach. τ: years after the initial 

date that the sea dyke is in the same condition grade with 50% probability. SSE: the 

sum of squares due to error (Goodness-of-Fit test). 

 
Two state approach example 

year Shape Scale  

Grade 𝜏 𝜅𝑖 𝜃𝑖 SSE 

1(→ 2) 9 3.510 0.100 4.51e-06 

2(→ 3) 10 3.610 0.091 4.51e-06 

3(→ 4) 14 2.530 0.063 6.33e-06 

4(→ 5) 19 2.924 0.045 4.42e-04 

 

Transition approach 

Let 𝜏𝑥 be the time-step (year) that the structure remains in the same condition grade with 

probability of 𝑥%. The deterministic deterioration curves associated with condition 

grades for different types are provided by Environment Agency as discussed previously 

Halcrow Group (2013). Let 𝑡𝑖→(𝑖+1) be the time (year) that the asset moves from grade 𝑖 

to grade (𝑖 + 1). Hence, the probability that the asset is in grade 𝑖 and (𝑖 + 1) at year 

𝑡𝑖→(𝑖+1) is  {𝑝𝑖,𝑖
𝑡,𝑡+1 = 𝑝𝑖,𝑖+1

𝑡,𝑡+1 = 50%}. The probability of being in state 𝑖 (𝑖 =

{1,2, … ,𝑀 − 2}) is gradually decreasing until it is equal to zero at time (year) of the next 

transition 𝑡(𝑖+1)→(𝑖+2). For 𝑖 = (𝑀 − 1) the probability of being in the state is gradually 

decreasing until the mid-time period of the final transition, as the asset is in its worst 

condition grade and cannot deteriorate further. Hence, from the provided deterioration 

curves by Environment Agency, 𝜏50 = 𝑡𝑖→(𝑖+1) and 𝜏0 = 𝑡(𝑖+1)→(𝑖+2) are available. From 

Equation (4.27) gives 

exp(−(𝜃𝑖𝜏)
𝜅𝑖) =  𝑝𝑖,𝑖+1

𝜏  (4.32) 
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Figure 4.5 Assumed Weibull survival function and linear deterioration for the 

transition from condition grade 1 to 2. 

 

The scale 𝜃𝑖 and shape 𝜅𝑖 parameters can be estimated by solving the minimisation 

function, together with Equation (4.32), as  

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 ∑ (𝑖 𝑆𝑖(𝑡) − 𝑝𝑖,𝑖+1
𝜏 )2  ;        𝑖 = {1,2,3,4} (4.33) 

where 𝑆𝑖(𝑡)= exp(−(𝜃𝑖𝑡)
𝜅𝑖) is the Weibull survival probability at time (year) 𝑡.  

 

Table 4.2 Parameter estimation using transition approach. 𝜏x: years after initial date 

that the sea dyke is in the same condition grade with 𝑥% survival probability. SSE: 

sum of squares due to error (Goodness-of-Fit test). 

 
Second approach example 

year Shape Scale  

Grade 𝜏50 𝜏0 𝜅𝑖 𝜃𝑖 SSE 

1(→ 2) 9  19 3.294 0.099 4.51e-6 

2(→ 3) 10 24 2.831 0.087 4.51e-6 

3(→ 4) 14 37 2.523 0.061 6.33e-6 

4(→ 5) 14 23 3.441 0.081 4.42e-4 

 

For example, for the same sea dyke example discussed in the two-state approach, once 

the sea dyke is in year 9 the probability of being in condition grade 1 and 2 are the same 

and it is 50%. Then the probability of being in condition grade 1 continues to decrease 

linearly until year 19. Figure 4.5 shows the linear deterioration and Weibull survival 
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functions for the second approach. Table 4.2 shows the parameters estimated for all 

condition grades and the estimated parameters will be used in the Monte Carlo 

simulations to generate the survival functions of cumulative waiting times in different 

condition grades.  

 

4.5. Case study at Sheerness 

A case study for a sea dyke section is utilised for investigating the deterioration process 

by utilising the homogeneous Markov model. The structure has a crest height of 4.6 m 

from the toe, a seaside slope of 𝐶𝑜𝑡 (𝛼) = 4, and a land side slope of 𝐶𝑜𝑡 (𝜃) = 3. The 

seaside slope is protected by coarse gravel revetment within 0.8 m thickness to prevent 

wave attacks. The earth dyke rests on a layer of impermeable clay soils within 7.0 m 

thickness. Below the clay is 5.0 m of water conductive sand layer overlying impervious 

bedrock. The parameters relevant to the deterioration of crest level are considered. The 

initial condition vector for the sea dyke crest is assumed to be very good (1  0  0  0  0). 

The deterministic deterioration curves for the dyke subject to three deteriorating rates are 

selected from Halcrow group (2013) and presented in Figure 4.6.  

 

 
Figure 4.6 Deterioration times (year) to specified condition grades CG from new 

with three different deterioration rates subject to do-nothing maintenance. 
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4.5.1. Effect of deterioration rates on condition grades evolution 

The sea dyke deterioration curves show the lifecycle of condition grades with a scale of 

1 to 5 as shown in Figure 4.6. Nonlinear optimisation based on Equation (4.14) was 

performed to evaluate the transition probability. A MATLAB code was developed for 

the proposed state-based stochastic deterioration modelling. The codes solve the 

nonlinear optimisation based on an evolutionary algorithm for the problem described in 

Equation (4.14). The algorithm was run for some generations until it converges to the 

actual condition state. The estimated transition probability matrices for the first stage of 

transition for different deterioration rates are given as: 

𝐏𝑆𝑙𝑜𝑤 =

[
 
 
 
0.61
0
0
0
0

0.39
0.72
0
0
0

0
0.28
0.75
0
0

0
0

0.25
0.64
0

0
0
0

0.36
1 ]

 
 
 

 

(4.34) 𝐏𝑀𝑒𝑑𝑖𝑢𝑚 =

[
 
 
 
0.56
0
0
0
0

0.44
0.58
0
0
0

0
0.42
0.73
0
0

0
0

0.27
0.72
0

0
0
0

0.28
1 ]

 
 
 

 

𝐏𝐹𝑎𝑠𝑡 =

[
 
 
 
0.51
0
0
0
0

0.49
0.55
0
0
0

0
0.45
0.79
0
0

0
0

0.21
0.71
0

0
0
0

0.29
1 ]

 
 
 

 

Based on the evaluated transition probability matrices, condition grade distribution 

during the lifecycle can be evaluated using Markov chain model, as plotted in Figure 4.7. 

The results show how the embankment initially at condition state 1 (i.e. CG1) deteriorates 

from one state to another (CG1 to CG5) through the progress of time. From the results, 

it is clear that the probability of CG1 vanishes at approximately 20, 15, and 12 years after 

the initial day subject to slow, medium and fast deterioration rates, respectively. CG3 has 

the highest probability, compared with other condition states between the ages of 10 and 

20 years when the deterioration rate is slow, while the highest probability for CG3 is 

between years 12-15 and 9-14 when the deterioration rate is medium and fast, 

respectively. As expected, CG5 increases steadily with time, reaching approximately a 

probability of 70%, 82% and 94% at the age of 30 years for slow, medium and fast 

deterioration rates. The goodness-of-fit test using a Chi-squared test based on null 
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hypothesis is evaluated using Equation (4.16). The evaluated values of 𝜒2 for the earth 

dyke is much less than the critical Chi-square value 𝜒0.05,5
2  of 9.49 in this study, which 

validates the evaluation of condition grades by using the proposed grade-based stochastic 

deterioration model. 

 

 

 

Figure 4.7 Time-dependent condition grade probabilities from the Markov model 

for the earth sea dyke subject to varoius deterioration rates. 
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4.5.2. Effect of repair maintenance on condition grades evolution 

In this section, the effects of a maintenance plan over the three different deterioration 

rates are investigated. The repair maintenance strategy in the case study suggests to 

refurbish sea dyke back to a lower condition grade (one grade better) by applying 

structural repairs every 4 years. The effectiveness of the repair is estimated using the 

inspection results before and after the applied maintenance in the case study, and it is 

suggested that there is 10% probability for the dyke to move to a lower condition grade 

(HR Wallingford 2006). In this section, it is assumed that the improvement has equal 

effects on the probabilities of transiting to a higher condition grade or remaining in the 

same condition grade. The estimated transition probability matrices for the first stage of 

transition for different deterioration rates subject to minor maintenance are amended as 

𝐏𝑆𝑙𝑜𝑤 =

[
 
 
 
0.61
0.10
0
0
0

0.39
0.67
0.10
0
0

0
0.23
0.70
0.10
0

0
0

0.20
0.59
0.05

0
0
0

0.31
0.95]

 
 
 

 

(4.35) 𝐏𝑀𝑒𝑑𝑖𝑢𝑚 =

[
 
 
 
0.56
0.10
0
0
0

0.44
0.53
0.10
0
0

0
0.37
0.68
0.10
0

0
0

0.22
0.59
0.05

0
0
0

0.31
0.95]

 
 
 

 

𝐏𝐹𝑎𝑠𝑡 =

[
 
 
 
0.51
0.10
0
0
0

0.49
0.50
0.10
0
0

0
0.40
0.74
0.10
0

0
0

0.16
0.66
0.05

0
0
0

0.24
0.95]

 
 
 

 

The estimated transition probabilities are used to simulate the Markov process for the 

evolution of the condition grades over time as shown in Figure 4.8, Figure 4.9 and Figure 

4.10. The results show that a significant improvement in the lifecycle of good condition 

grades. For example, CG1 can survive about 22, 15 and 10 years longer for slow, medium 

and fast deterioration rates, respectively, due to the implemented maintenance plan. The 

probabilities of the condition grade 5 show a significant drop, which is about 36%, 30% 

and 26% decrease at year 50 due to the repairs.  
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Figure 4.8 Effect of maintenance on time-dependent condition grade probabilities 

from the Markov model for the earth sea dyke subject to slow deterioration rate. 

The maintenance model in this section shows the limitation of the deterministic 

evaluation of the effectiveness matrix for maintenance action. The effectiveness of the 

repair actions should be evaluated for all condition grades, not only the neighbour 

condition grades. Also, assuming similar improvement for all condition grades, e.g. 10% 

for all, is unrealistic. Because the effects of maintenance for higher condition grades are 

less than the effects of the repairs in lower condition grades, and the dyke needs more 

repairs to improve to a better grade. In the next chapters, the mentioned limitations will 

be addressed to estimate a proper effectiveness matrix due to maintenance actions.  

 
Figure 4.9 Effect of maintenance on time-dependent condition grade probabilities 

from the Markov model for the earth sea dyke subject to medium deterioration rate. 
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Figure 4.10 Effect of maintenance on time-dependent condition grade probabilities 

from the Markov model for the earth sea dyke subject to fast deterioration rate. 
 

4.6. Case study at Thames estuary 

A case study for a simplified sea dyke as shown in Figure 4.11 along Thames estuary 

flood defence system, described by Gouldby et al. (2007), is employed to demonstrate 

the applicability of the proposed non-homogeneous Markov model. The structure has a 

crest height of 6.40 mAOD, the seaside slope of 𝐶𝑜𝑡(𝛼1) = 4.20, the landside slope of 

𝐶𝑜𝑡(𝛼2) = 3.20, and foreshore slope of 1:30. The seaside slope protected by berm and 

coarse gravels to reduce the destructive effects of the sea waves. It is assumed that the 

sea dyke is in a very good initial condition (Condition grade 1).  

 

 
 

Figure 4.11 Sketch of the earth sea dyke section along Thames estuary. 
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Figure 4.12 Deterioration times to specified condition grades from new with 

various deterioration rates (Halcrow group 2013). 
 

4.6.1. Survival probabilities estimated from two-state approach 

The deterministic deterioration curves for the asset is provided in the case study by 

Gouldby et al. (2007) concerning different deterioration rates on a scale of 1 to 5 (1 for 

very good condition and 5 for very poor condition), as presented in Figure 4.12. The 

deterioration curves are utilised in the numerical example to evaluate the lifecycle of the 

condition grades for the sea dyke. The parameters of the Weibull function are estimated 

using Equations (4.28- (4.30). Trust-Region algorithm is utilised to solve the 

minimisation function to estimate the parameters for different condition grades are 

presented in Table 4.3.The estimated parameters in the tables are applied to Monte Carlo 

simulations to generate the cumulative survival distributions of the transition process, 

and their changes over time under the mentioned scenarios are shown in Figure 4.13 to 

Figure 4.15. 

Table 4.3 Parameter estimation for three different scenarios using two-state 

approach.  

 Fast rate Medium rate Slow rate 

CG 
𝜏 

𝜅𝑖 𝜃𝑖 
𝜏 

𝜅𝑖 𝜃𝑖 
𝜏 

𝜅𝑖 𝜃𝑖 (Year) (Year) (Year) 

1(→ 2) 6 3.325 0.111 7 5.362 0.097 9 5.362 0.079 

2(→ 3) 6 4.251 0.122 6 4.333 0.087 8 7.746 0.079 

3(→ 4) 9 4.732 0.067 12 5.745 0.061 12 7.562 0.054 

4(→ 5) 13 3.634 0.100 17 3.915 0.081 21 6.632 0.064 
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For example, for the sea dyke subject to fast deterioration rate, the probability of being 

in condition grade CG2 and CG3 after 15 years from the present day is about 22% and 

57%, respectively, as shown in Figure 4.13. While, for the same year and but subject to 

medium deterioration rate, the probability of being in CG2 and CG3 is about 31% and 

54%, respectively, as shown in Figure 4.14. Two examples of the estimated transition 

probabilities subject to slow deterioration rate at years 4 and 7 are presented here as 

𝑃4,5 =

[
 
 
 
0.852

0
0
0
0

0.148
0.742

0
0
0

0
0.258
0.653

0
0

0
0

0.347
0.648

0

0
0
0

0.352
1 ]

 
 
 

 (4.36) 

𝑃7,8 =

[
 
 
 
0.583

0
0
0
0

0.417
0.642

0
0
0

0
0.358
0.613

0
0

0
0

0.387
0.558

0

0
0
0

0.442
1 ]

 
 
 

 

 

(4.37) 

 

  

 
Figure 4.13 Survival functions of cumulative waiting times in different condition 

grades (CG) subject to fast deterioration rate.  
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Figure 4.14 Survival functions of cumulative waiting times in different condition 

grades (CG) subject to medium deterioration rate.  

 
Figure 4.15 Survival functions of cumulative waiting times in different condition 

grades (CG) subject to slow deterioration rate. 
 

4.6.2. Survival probabilities estimated from transition approach 

The parameters of the Weibull function are estimated using Equations (4.32- (4.33). 

Trust-Region algorithm is utilised to solve the minimisation function to estimate the 

parameters for different condition grades, and results are presented in Table 4.4. The 

estimated parameters in the tables are applied to Monte Carlo simulations to generate the 

cumulative survival distributions of the transition process and their changes over time 

are shown in Figure 4.16.  
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For the same year and but subject to medium deterioration rate, the probability of being 

in CG2 and CG3 is about 37% and 52%, respectively, as shown in Figure 4.17. For the 

sea dyke subject to the slow deterioration rate, the probability of being in fair conditions 

CG2 and CG3 at the same year, i.e. 15 years after the initial day, is about 50% and 31%, 

respectively, as shown in Figure 4.18. On the other hand, the probability of being in very 

good conditions (CG1) is negligible for a 10-year old sea dyke subject to fast and medium 

deterioration rates, while it is about 12% for slow deterioration rate.  

Table 4.4 Parameter estimation for three different scenarios using transition 

approach.  
 Fast rate Medium rate Slow rate 

CG 𝜏50 𝜏0 
𝜅𝑖 𝜃𝑖 

𝜏50 𝜏0 
𝜅𝑖 𝜃𝑖 

𝜏50 𝜏0 
𝜅𝑖 𝜃𝑖 (Year) (Year) (Year) 

1(→ 2) 6  11 3.212 0.111 6  14 2.851 0.097 8  16 2.815 0.079 

2(→ 3) 5 9 2.410 0.122 8 13 2.831 0.087 8 12 2.776 0.079 

3(→ 4) 9 14 2.855 0.067 10 15 2.523 0.061 12 21 2.525 0.054 

4(→ 5) 7 14 3.663 0.100 9 17 3.441 0.081 10 16 3.655 0.064 

 

 

 
Figure 4.16 Survival functions of cumulative waiting times in different condition 

grades (CG) subject to fast deterioration rate. 
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Figure 4.17 Survival functions of cumulative waiting times in different condition 

grades (CG) subject to medium deterioration rate. 
 

 

 

 

Figure 4.18 Survival functions of cumulative waiting times in different condition 

grades (CG) subject to slow deterioration. 
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4.6.3. Comparison of results from two approaches 

The evolution of the condition grades over time is estimated using the non-homogeneous 

Markov model by assuming that the waiting times follow a Weibull distribution. The 

parameters of the Weibull distribution are evaluated via two-state and transition 

approaches. In the two-state approach, it is assumed that the asset deteriorates according 

to a two-state homogeneous Markov model. While in the transition approach, the asset 

deteriorates gradually by assuming the survival probability at the deterministic transition 

year is 50%. 

 

A quick comparison between the estimated results shows that the two-state approach 

estimates a more conservative estimates, suggesting the asset reaches to the higher 

condition grades faster. The probability of the good condition grades 1 and 2 are closer 

to the reality if the transition approach utilised, suggesting higher probabilities at the 

early ages. The comparison between the estimated results and the available inspection 

data from the case studies shows that the transition approach provides a closer estimation 

to the observed condition grades. 

 

 

4.7. Summary and conclusions 

In this chapter, a gamma process model is investigated to simulate the deterioration 

process in flood defences. Additionally, two stochastic and state-based models are 

proposed to evaluate the future deterioration of flood defence structures by utilising 

Markov model with consideration of the structure’s current condition. The gamma 

process model was already developed in other studies, e.g. Chen and Alani (2012), and 

in this chapter only the simulation process is developed in order to compare and study of 

the deterioration process with other models. The state-based deterioration models 

(Markov models) are developed to characterise the deterioration process with a condition 

grading system, which is useful for risk management and maintenance optimisation. 

   

In order to characterise the deterioration models and to adopt them into the condition 

grading system (state-based), the geometrical damage tables, e.g. crest level loss in 

different condition grades, are utilised. The parameters for both homogeneous and 

inhomogeneous Markov models are estimated based on inspection results and available 

data, e.g. the data published by Environment Agency (2006). A Weibull function is 
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utilised to define the length the waiting time between the different condition grades with 

consideration of different deterioration rates. Two different approaches are suggested to 

evaluate the Weibull parameters, two-state and transition approaches, namely. Finally, 

case studies are provided for the developed models in order to show the applicability of 

the models and to illustrate the future deterioration process in coastal defence structures.  

 

From the results obtained by the proposed models, following conclusions are drawn: a) 

the stationary Markov process is used to model deterioration process that will be useful 

in the fragility curve estimations. Although the model is practical, it is not recommanded 

for simulation of the deterioration process of far future, e.g more than 40 year, because 

the possible change in the deterioration rate in the future is not considered in this model 

; b) the semi Markov model is capable of simulating time-dependent deterioration 

process, and it will be useful for time-dependent reliability analysis. However, the 

simulation and calulation process is complex, and many parametres need to be 

considered carefully; c) the probability distributions of condition grades of the structures 

provide information regarding the performance deterioration over time with 

uncertainties; d) the transition probability matrix is critical for the Markov chain 

deterioration models and can be determined by using robust non-linear optimisation 

techniques on the basis of estimated performance deterioration rates; e) and the 

estimation of the transition probaility  matrices mainly depends on the available data, e.g. 

the detrioration curves published  by Environment Agency, which is a limitation for the 

proposed model.
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5. Reliability-based performance assessment for coastal defences 

5.1. Introduction 

The challenge of an accurate failure probability and reliability evaluation for coastal 

flood defence structures has been addressed in many studies. Changes in the resistance 

of coastal defence structures and hydraulic loading conditions over time are two 

significant challenges for risk assessment. Risk assessment methodologies for the coastal 

defence structures still need to be developed due to the impact of climate change or other 

changing environments. As discussed in literature reviews, wave overtopping and piping 

are two primary failure mechanisms in coastal defences, and this thesis focuses on them. 

The main contributions of this chapter are as follows: 

 Fragility curves are developed by utilising the proposed stationary deterioration 

model to analyse the reliability of the coastal defences. 

 Fragility surface is proposed for a time-dependent reliability analysis associated 

with a particular load. 

 Time-dependent reliability model is developed by utilising the proposed non-

stationary deterioration model for coastal defences. 

 

5.2. Failure risk assessment  

Sea defences provide essential protection for coastal lowlands against flooding. The risk 

of land flooding can increase in the future due to the rise of sea level and change of wave 

conditions caused by climate change. The sea level rise also affects the future hydraulic 

loading on sea defence structures, leading to further deterioration of structural resistance. 

In order to effectively manage these risks, reliability analysis is often employed to 

provide a useful tool for quantitatively evaluating the risks of sea defence structures 

under future conditions in order to predict the probability of failure for the structures over 

time. The probability of failure of coastal flood defences is relevant to the type of the 

structure and its conditions. A proper reliability analysis needs three main steps (Buijs, 

2005; Steenbergen and Lassing 2004):  

1. Defining the flood defence system and its structure types, its boundary 

conditions and the floodplain protected by the flood defence. 
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2. Identifying failure mechanisms and their mutual relationships, developing 

fault tree, and formulating limit state functions.  

3. Discretion the flood defence system into flood defence sections, using the 

information from the flood defence system as a basis for probabilistic 

calculations. 

Failure probability of coastal defence structures is often calculated regarding annual and 

extreme hydraulic conditions. The annual probability of failure is used to determine the 

state of the asset, and the event probability of failure is used for risk analysis models 

(Buijs et al. 2009). In the reliability-based analysis, the first step is to define the 

desired/required performance level of the structure. The asset is prioritised to the required 

service life and the most extreme event in the fault tree that identifies the end of service 

life. Performance of the structure is the combination of the short-term and long-term 

fulfilment of the functional requirements, which includes safety, serviceability and 

functionality of the structure during the lifespan that may be expressed by limit state 

equations. As mentioned in literature reviews, the failure is defined when limit state 

equation is equal or less than zero, as shown in Figure 5.1.  

 
Figure 5.1 Schematic of a reliability function. 

 

Acceptable target limits or desired performance levels have to be set for the reliability 

assessment of the structures. In reliability analysis, the threshold for damage and 

deterioration is defined as a serviceability limit state, and the threshold between damage 

and break is defined as an ultimate limit state (Birolini 2007):  

 Serviceability limit state (SLS), defined as the limit between two states: 1) the 

state that the performance of the structure is acceptable, and 2) the state where 
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the structure is no longer serviceable. Excessive wave overtopping is most crucial 

failure mechanism in coastal flood defences in the category of serviceability 

failure modes.   

 Ultimate limit state (ULS), defined as the limit between two states: 1) the state 

that the structure is no longer serviceable, and 2) the state that the structure has 

collapsed. Piping and uplifting are two critical failure modes in this category.   

In the limit state equation, both strength and load may interpret in time-dependent 

stochastic random variables. The time-dependent failure probability is expressed as 

 𝑃𝑓(𝑡) = 𝑃𝑟(𝑍(𝑡) ≤ 0) = 𝑃𝑟(𝑆(𝑡) ≥ 𝑅(𝑡)) (5.1) 

The reliability is the counterpart of the probability of failure: 

 𝑃𝑟(𝑍(𝑡) > 0) = 1 − 𝑃𝑓(𝑡) (5.2) 

Hence, if the distribution and the density of the strength and load variables are known, it 

is possible to estimate the probability of failure. In the reliability function, the strength 

and load variables are assumed to be stochastic variables. It means the variables are 

defined by statistical distributions and probability density functions. The load variables 

are discussed in Chapter 3, and the variables of strength deteriorating over time are 

discussed in Chapter 4. The deterioration level is estimated by utilising stochastic 

processes, which are discussed in detail in the previous chapter. The failure probability 

for different time can be determined if the loads and deterioration level at the desired 

time is known. The failure probability over time can be described in a small time-step to 

estimate the rate of failure probability with respect to lifetime 𝐿 (Buijs et al. 2009).  

𝜂(𝑡)𝑑𝑡 = Pr[𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑓𝑜𝑟 (𝑡, 𝑡 + 𝑑𝑡)|(𝑛𝑜 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑓𝑜𝑟 (0, 𝑡)]

=  
𝑓𝐿(𝑡)𝑑𝑡

1 − 𝐹𝐿(𝑡)
 

(5.3) 

with the definition of hazard rate and lifetime distribution the following equation is 

derived 

𝜂(𝑡) =  
𝑓𝐿(𝑡)

1 − 𝐹𝐿(𝑡)
 (5.4) 

Now by considering the time-dependent limit state equation 𝑍(𝑡), time-dependent 

reliability analysis is calculated by means of at least one statistical distribution function 

for load or strength or both at time 𝑡, which provides the failure probability as well. The 
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statistical distribution functions can be extreme water levels, significant wave heights, 

etc. Consequently, time-dependent reliability analysis describes a stochastic process and 

calculates the failure probability per unit of time as   

𝑃𝑓(𝑡) = ∫ 𝑓𝑅𝑆(𝑠(𝑡), 𝑟(𝑡))𝑑𝑟𝑑𝑠

𝑍≤0

 (5.5) 

where 𝑓𝑅𝑆 is the joint probability density function of load 𝑆 with value of 𝑠 at time 𝑡, and 

strength 𝑅 with value of 𝑟 at time 𝑡. The integral implies that the time-dependent 

reliability problem is joint probability density function of loading and strength 

parameters, and continuously changes with time. Let 𝐹𝑅(𝑥) be the cumulative density 

function that returns the failure probability given the value 𝑥 of a certain load variable, 

e.g. sea water level. With the definition of limit state function, the annual failure 

probability of variable 𝑥 is given here as (Van der Meer et al. 2009) 

 𝑃𝑓 = ∫ 𝑓𝑆(𝑥)𝐹𝑅(𝑥)𝑑𝑥

∞

−∞

 (5.6) 

where the strength and the load are independent. The above function is the basis for 

estimating annual failure probability in this study. It was discussed in the previous 

chapters that the strength and load in coastal flood defence structures are always a 

function of multiple variables such as water level ℎ𝑤 and significant wave height 𝐻𝑚0.  

 

Simulation process 

Monte Carlo simulations are adopted to evaluate the time-dependent failure probability 

due to its flexibility. In the Monte Carlo simulations, a large number of samples ( >

10𝑒6) are generated corresponding to the variable parameters, and the probability of 

failures are estimated as follows 

 𝑃𝑓 ≈
1

𝑁
∑𝐼{𝑍(𝑅(𝑡), 𝑆(𝑡)) ≤ 0}

𝑁

1

 (5.7) 

where 𝑁 is the total number of simulations; and 𝐼[. ] is an indicator function which takes 

values when 𝑍(𝑡) ≤ 0. During the Monte Carlo simulations, the desired period of the 

analysis is divided into uniform time intervals, and then the stochastic processes are 

sampled. Therefore, for example for time 𝑡 = 1, sampling is undertaken for all random 

variables 𝑋1, . . , 𝑋𝑛. 𝑋𝑛(t), which is a time-dependent function 𝑋𝑛(𝑡) = 𝑓(𝑣1, … 𝑣𝑛) 
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where 𝑣 is the effective variable in a time-dependant process. The required number of 

sample for an acceptable level of accuracy is given in Melchers (1999) as  

 𝑁 >
− 𝑙𝑛(1 − 𝐿𝑐)

𝑃𝑓
 (5.8) 

where 𝐿𝑐 is the confidence level. Based on the sample of the random variables the limit 

state equations corresponding to the different failure mechanisms are computed and 

evaluated whether 𝑍(𝑡) ≤ 0. Then, the failure probability is 

 𝑃𝑓(𝑡) =
𝑁𝑓

𝑁
 (5.9) 

where 𝑁𝑓 is the numbers of simulations that the limit state function is equal or less than 

zero. 

 

5.3. Fragility curves and fragility surfaces 

A fragility curve provides information on the structure’s reliability associated with the 

loads as well as its uncertainty. The shape of the curve approaches to a form of step 

function when the uncertainty becomes lower, while high uncertainty makes it an 𝑆 shape 

curve. The step function shows a critical load that causes the system to fail, and it is 

appropriate for a well-understood system (Schultz et al. 2010) and also for a deterministic 

analysis as discussed in chapter 2. On the other hand, for a complex and changeable 

system with high level of uncertainty, the 𝑆-shaped function is more appropriate in order 

to illustrate the performance level of the system for a specific range of load/demand (Hall 

et al. 2009), as shown in Figure 5.2. 

  
Figure 5.2 Typical S-shape fragility curves (solid line) and the uncertainty area 

(dashed line). 
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Let the load variable to be considered in the fragility curve be water level. The failure 

probability 𝑃𝑓  corresponding to water level ℎ𝑤  is rewritten as  

 𝑃𝑓 = Pr(𝑆 ≥ 𝑅|ℎ𝑤) = ∫ 𝑓ℎ𝑤
(ℎ𝑤) ∙ 𝐹R(ℎ𝑤) ∙

∞

−∞

𝑑ℎ𝑤 (5.10) 

where 𝑓ℎ𝑤
(ℎ𝑤)is the probability distribution function of the water level; and 𝐹R(ℎ𝑤) is 

the cumulative distribution of the available strength for the water level load parameter 

which is called fragility curve. The above function can be expressed for any other load 

parameters similarly. The cumulative distribution function of the strength of the 

structure, e.g. sea dyke, gives the relationships between the load and the failure 

probability for the desired load, as shown in Figure 5.2. Therefore, by considering the 

relationship between the water level ℎ𝑤 at time 𝑡, the failure probability can be expressed 

as 

 𝑃𝑓 = 𝑃(𝑆 ≥ 𝑅|ℎ𝑤, 𝑡) = ∫ 𝑓ℎ𝑤
(

ℎ𝑤≥𝑅

ℎ𝑤(𝑡))𝐹𝑅(ℎ𝑤(𝑡))𝑑ℎ𝑤(𝑡) (5.11) 

where 𝑓𝑠(ℎ𝑤(𝑡)) is joint probability density for water level ℎ𝑤 at time 𝑡; and 𝐹𝑅(ℎ𝑤(𝑡))  

is cumulative density function which represents the failure probability given the water 

level ℎ𝑤 at time 𝑡 with consideration of the residual strength, and the fragility surface is 

shown in Figure 5.3.  

 

   

Figure 5.3 Fragility surf as a failure mechanism as a function of water level and 

time after initial date. 
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5.4. Excessive wave overtopping failure  

In a reliability analysis of a sea dyke, a critical failure mode such as the excessive wave 

overtopping might be dominant. The demand defined is based on allowable overtopping 

discharge over the dyke. The overtopping discharge related to the structure’s freeboard 

which is between the still water level and the crest level. The crest height will degrade 

over time as it ages and wears, and will cause decrease in capacity of freeboard. The 

probability of failure is the probability that the overtopping discharge exceeds allowable 

limit. When the overall failure probability exceeds a certain level, the maintenance 

should be applied on the dyke’s crest level. 

 

Wave overtopping discharge is one of the critical parameters in the failure mode. 

Depending on the structure’s type and importance, some rates of overtopping discharge 

are allowed (Van der Meer et al. 2016). However, excessive overtopping discharge may 

result in erosion and damage to the dyke. The influence of deterioration processes during 

structure’s lifespan such as settlement may reduce the resistance of the sea dyke, and 

ongoing excessive overtopping may cause the serviceability failure. Overtopping 

discharge rate is calculated based on an exponential function, with consideration of 

boundary conditions and structure strength, e.g. wave height, inner slope, wave angle and 

berm width, and given as (Pullen et al. 2007; Van der Meer et al. 2016) 

 𝑞 = 𝐴 𝑒𝑥𝑝 (𝐵𝑅𝑐) (5.12) 

where coefficients 𝐴 and 𝐵 in the function are related to the method concerned; and 𝑅𝑐 

is the freeboard defined by the height of the crest above still water level.  

 

Hydraulic conditions and structural resistance especially crest level control the failure 

probability of coastal defences due to excessive wave overtopping. Hydraulic loads vary 

due to changing environments significantly and often become more severe due to sea 

level rise. In the meantime, the structural resistance of coastal defences such as the crest 

level of earth sea dykes may decrease due to degradation, e.g. due to traffic and soil 

consolidation. Excessive wave overtopping may lead to the landslide slope and slope 

failure by eroding the dyke crest. Figure 5.4 illustrates schematic of excessive failure 
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mechanism for a sea dyke regarding changes in hydraulic conditions and deteriorations 

on the crest level over time. 

 

 

Figure 5.4 Schematic diagram of wave overtopping discharge over a sea dyke. 

 

Basic approaches for overtopping discharge calculations are divided into three groups, 

depending on the structure type:  

  Smooth slopes. 

  Rough slopes. 

  Special conditions.  

For smooth slopes and rough slopes the approaches for estimating overtopping by Owen 

(1980) and TAW (2002) are suggested in the most literature (e.g. Chini and Stansby 

2012; Sierra et al. 2016)). For special conditions such as oblique waves, and rough slopes 

with crest walls, approaches by TAW (2002) and Hawkes et al. (2000) are suggested. 

This study only focuses on TAW (2002) model as this method is the most comprehensive 

method and suggested by EurOtop manual II (Van der Meer et al. 2016).  

 

In order to protect seaside slope of earth sea dykes and embankments from wave 

overtopping, different kinds of revetment such as grass, asphalt, concrete and natural 

blocks are used. For consideration of the influence of surface roughness 𝛾𝑓 , berm 𝛾𝑏 and 

oblique waves 𝛾𝛽 , the values of reduction factors are available in CIRIA and EurOtop 
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manual. For example, concrete and grass revetments have roughness factor of 1.00, and 

ribs have roughness factor of 0.75. The limit state equation for overtopping failure 

mechanism 𝑍𝑞 is modified here as  

 𝑍𝑞(𝑡) = 𝑞𝑐𝑟 − 𝜒𝑞𝑞(𝑡) (5.13) 

where 𝑞𝑐𝑟 is the critical or predefined overtopping rate; 𝜒𝑞 is model uncertainty 

coefficient associated with overtopping; and 𝑞(𝑡) is average overtopping discharge over 

time, expressed here as (Van der Meer et al. 2016) 

𝑞(𝑡)

√𝑔𝐻𝑚0
3(𝑡) 

=  
0.023

√tan𝛼1

𝛾𝑏𝜉𝑚−1,0(𝑡) exp [−(2.7
𝑅𝑐,𝑖(𝑡) 

𝜉𝑚−1,0 𝛾𝑏𝛾𝑓𝛾𝛽𝐻𝑚0(𝑡)
)

1.3

] 
(5.14) 

with a maximum of: 

𝑞(𝑡)

√𝑔𝐻𝑚0
3(𝑡) 

=  0.09 exp [−(1.5
𝑅𝑐,𝑖(𝑡)

𝛾𝑓𝛾𝛽𝐻𝑚0(𝑡)
)

1.3

] 
(5.15) 

where 𝛾𝑏 , 𝛾𝑓 and 𝛾𝛽 are correction factors for berm, roughness and oblique wave attack, 

respectively; 𝐻𝑚0(𝑡) is depth-limited significant wave height at the toe of structure at 

time 𝑡; 𝑅𝑐(𝑡) is crest freeboard of the structure at time; and 𝜉
𝑚−1,0

(t) is local breaker 

parameter over time which is related to the slope steepness tan𝛼1.The breaker 

parameter or Iribarren number 𝜉𝑚−1,0 (also known as the surf similarity parameter) is a 

dimensionless parameter to model several effects of (breaking) surface gravity waves 

on sea bed and coastal structures, and describes as follow 

 

𝜉𝑚−1,0(𝑡) =
𝑡𝑎𝑛 𝛼1

√
𝐻𝑚0(𝑡)

𝐿𝑜𝑝

 

(5.16) 

where 𝛼1 is the slope of the horizontal and the overall structure slope; and 𝐿𝑜𝑝 is deep 

water wavelength expresses as 

𝐿𝑜𝑝 =
𝑔 ∙  𝑇𝑚−1,0

2

2𝜋
 (5.17) 

where g is the gravitational acceleration; and 𝑇𝑚−1,0 is spectral wave period.  
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Freeboard deterioration modelling using gamma process  

For the existing coastal defence structures subjected to sea level rise, by considering crest 

level settlement over time, the future freeboard 𝑅(𝑡) at time 𝑡 can be determined by 

𝑅𝑐(𝑡) = 𝑅𝑐(0) − ∆ℎ𝑤(𝑡) − ∑∆𝐻𝑑(𝑡) (5.18) 

where 𝑅𝑐(0) is initial freeboard at present day; ∆ℎ𝑤(𝑡) is the sea level rise at time 𝑡; and 

∆𝐻𝑑(𝑡) is the time-dependent deterioration of dyke crest height due to settlement. The 

settlement of dyke crest level is often estimated with uncertainties, requiring a stochastic 

modelling for the deterioration process. The gamma process is a stochastic process with 

independent non-negative increments having a gamma distribution with a given average 

of deterioration, therefore it is an appropriate model for the resistance degradation 

process such as crest level settlement over time. From the definition of the gamma 

process described in Chapter 4, the probability density function of the deterioration of 

dyke crest height due to settlement ∆𝐻𝑑 occurring at time 𝑡 (𝑡 ≥  0) can be described as 

𝑓∆𝐻𝑑(t)(∆𝐻𝑑) = 

𝐺𝑎(∆𝐻𝑑|𝜅𝑑(𝑡), 𝜃𝑑) = {
𝜃𝑑

𝜅𝑑(𝑡)

Γ[𝜅𝑑(𝑡)]
∆𝐻𝑑

𝜅𝑑(𝑡)−1𝑒−𝜃𝑑∆𝐻𝑑 ,      𝑓𝑜𝑟 ∆𝐻𝑑 ≥ 0

0   ,                                                           elsewhere

 
(5.19) 

where Γ[𝜂𝑑(𝑡)] = ∫ 𝑉𝜅𝑑(𝑡)−1∞

0
𝑒−𝜈𝑑𝜈 for  𝜅𝑑(𝑡) > 0 is the gamma function. The scale 

parameter 𝜃𝑑 with 𝜃𝑑 > 0 and the shape function 𝜅𝑑(𝑡) could be estimated from 

maximum likelihood method by using in-situ measurements about the dyke crest 

settlement, expressed here as 

𝜃𝑑 =
𝜇𝑑

𝜎𝑑
2
  

𝜅𝑑(𝑡) =
𝜇𝑑

2𝑡

𝜎𝑑
2

 

(5.20) 

where 𝜇𝑑 and 𝜎𝑑 are the mean value and standard deviation for the average decrease in 

the crest level, respectively. 
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Freeboard deterioration modelling using Markov process  

The crest freeboard of the structure at time 𝑡, 𝑅𝑐(𝑡), can be denoted as 𝑅𝑐,𝑖, given 

condition grade 𝑖 ∈ {1,2,3,4,5}. The future freeboard 𝑅𝑐,𝑖(𝑡) at time 𝑡 is described here 

as 

𝑅𝑐,𝑖(𝑡) = 𝑅𝑐,𝑖(0)−∆ℎ𝑤(𝑡) − ∆𝐿𝑍,𝑖(𝑡) (5.21) 

where 𝑅𝑐,𝑖(0) is initial freeboard at initial time; ∆ℎ𝑤(𝑡) is the sea level rise at time 𝑡; 

and ∆𝐿𝑍,𝑖(𝑡) is the deterioration of crest level in vertical direction, associated with certain 

condition grade at time 𝑡. In order to characterise the deterioration level ∆𝐿𝑍,𝑖 regarding 

the initial freeboard, Table 5.1 is suggested. The values in the below table are general 

and derived from the Environment Agency publications, and might be slightly different 

for each case study. 

 

Table 5.1 Suggested vertical crest level loss (Long et al. 2013) for a sea dyke 

related to condition grade system. 

Grade 
Crest level loss, ∆𝐿𝑍,𝑖 

(m) 

Distribution of deterioration intensity 

1 0.00 ≤ ∆𝐿𝑍,1 < 0.05 Lognormal 

2 0.05 ≤ ∆𝐿𝑍,2 < 0.10 Normal 

3 0.10 ≤ ∆𝐿𝑍,3 < 0.20 Normal 

4 0.20 ≤ ∆𝐿𝑍,4 < 0.40 Normal 

5 0.40 ≤ ∆𝐿𝑍,5 Lognormal 

 

 

Risk of failure due to wave overtopping 

The effects of dyke failure due to wave overtopping depend on the importance of the 

structure and the protected lands. Although the implications of failure in reality are 

random variables, this thesis is focused on the expected values of loss regarding likely 

damage and replacements. The annual risk 𝑅𝑓(𝑡) in monetary term is expressed (Allsop 

et al. 2008; Barone and Frangpol 2014) as 

𝑅𝑓(𝑡) = 𝐸(𝐶𝑅) = 𝑃𝑓(𝑡) ∙ ∑𝐶𝑡𝑜𝑡(𝑡) 
(5.22) 
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where 𝐸(𝐶𝑅) is the expected value of loss due to wave overtopping; and 𝐶𝑡𝑜𝑡(𝑡) is total 

cost of loss at time 𝑡. The total cost of loss 𝐶𝑡𝑜𝑡 at time 𝑡 is estimated as the sum of three 

different losses due to the dyke failure (Allsop et al. 2008), given here as 

𝐶𝑡𝑜𝑡(𝑡) =
𝐶ℎ𝑎𝑧𝑎𝑟𝑑 + 𝐶𝑑𝑖𝑟𝑒𝑐𝑡 + 𝐶𝑒𝑟𝑜𝑠𝑖𝑜𝑛

(1 + 𝑟)𝑡
 (5.23) 

where 𝐶ℎ𝑎𝑧𝑎𝑟𝑑 is the direct hazard of injury or death to people immediately behind the 

defence including direct and indirect costs expressed in monetary term; 𝐶𝑑𝑖𝑟𝑒𝑐𝑡 is the 

damage to property and infrastructure in the area defended, including the defence 

structure; 𝐶𝑒𝑟𝑜𝑠𝑖𝑜𝑛 is the damage to the environment and erosion of the coastline; and 𝑟 

is the annual discount rate. 

 

5.5. Piping failure  

Underground water seepage in the water-conductive layer carries soil particles from the 

permeable layer due to water head difference. If this process continues long enough, 

pipes generate in the water-conductive soils underneath the earth dyke, eventually 

leading to collapse of the structure. As shown in Figure 5.5, the structure fails as a 

consequence of piping if the water pressure head across the structure exceeds the time-

dependent critical head difference ℎ𝑐𝑟𝑝(𝑡). The limit state equation for this failure 

mechanism is given by Allsop et al. (2007) and modified here as  

𝑍𝑝(𝑡) = ℎ𝑐𝑟𝑝(𝑡) − ∆ℎ(𝑡) (5.24 ) 

where ∆ℎ(𝑡) is the difference between seaside water level at time 𝑡, and landside water 

level ℎ𝑏, defined as 

∆ℎ(𝑡) = ℎ𝑤(𝑡) − ℎ𝑏 (5.25) 

The earliest model to estimate the critical head difference was suggested by Bligh (1912). 

Lane (1935) developed Bligh’s formula to take into account the vertical component of 

the seepage length. Selmeijer (1989) further developed these models to consider more 

sophisticated soil properties, as well as seepage flow in different directions. Later, the 

model developed based on experiments in Weijer and Selmeijers (1993) with 

consideration of the sand layer thickness, given here as  
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ℎ𝑐𝑟𝑝 = 𝐶𝛽 ∙ (
𝛾𝑠

𝛾𝑤
− 1) ∙ tan 𝜃𝑠 ∙ (0.68 − 0.1 𝑙𝑛 𝐶)𝐿𝑃(𝑡) (5.26) 

where 𝛾𝑠 is weight per unit volume of sand particles; 𝛾𝑤 is weight per unit volume of 

water; 𝜃𝑠 is soil friction angle; 𝐿𝑃 is seepage length; 𝛽 reflects the effect of a finite 

thickness and coefficient 𝐶 describe the characteristic of soils during erosion, defined as 

𝐶 = (
𝐷𝑠

𝐿𝑃
)

0.28

(
𝐷𝑠
𝐿𝑃

)
2.8

−1
 (5.27) 

𝛽 = 𝜔𝑑70 (
1

𝜀𝐿𝑃
)

1
3
 (5.28) 

where 𝜔 is drag force factor; 𝑑70 the sand particle diameter of 70% weight grain size 

distribution; 𝜀 is intrinsic permeability; 𝐷𝑠  sand layer thickness. According to 

Vorogushyn et al. (2009), the Weijer and Selmeijers (1993) model has good results for 

fine sandy coastlines, but the poor prediction for coarse sands due to laminar flow 

through the sands. 

 

Figure 5.5 Schematic diagram of piping under a typical sea dyke over time. 

 

Seepage length deterioration modelling using gamma process 

The time-dependent critical head difference ℎ𝑐𝑟𝑝(𝑡) represents the resistance of seepage 

in soils over time. The resistance of seepage in the water-conductive layer deteriorates 

due to internal erosion in soils, which can be indicated by the reduction of seepage length 

over time (Buijs et al. 2009). The reduction of seepage length ∆𝐿𝑃, occurring at time 𝑡 as 
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a result of the deteriorating filter materials, and is described here as a stochastic gamma 

process. The probability density function of the increment of seepage length is modelled 

as 

𝑓∆𝐿𝑝(∆𝑡)(∆𝐿𝑝) = 𝐺𝑎(∆𝐿𝑝|𝜅𝑝(𝑡), 𝜃𝑝) (5.29) 

where the scale parameter 𝜃𝑝 with 𝜃𝑝 > 0 and the shape function 𝜅𝑝(𝑡) could be 

estimated from maximum likelihood method. The seepage length 𝐿𝑃(𝑡) at time 𝑡 is then 

calculated from  

𝐿𝑃(𝑡) = 𝐿𝑃(0) − ∑ ∆𝐿𝑝(𝑡) (5.30) 

where 𝐿𝑃(0) is initial seepage length. 

 

Seepage length deterioration modelling using Markov process 

Seepage length of the structure at time 𝑡, 𝐿𝑃(𝑡), can be denoted it as 𝐿𝑃,𝑖 given condition 

grade 𝑖 ∈ {1,2,3,4,5}. The future seepage length 𝐿𝑃,𝑖(𝑡) at time 𝑡 is expressed here as 

𝐿𝑃,𝑖(𝑡) = 𝐿𝑃(0)−∆𝐿𝑋,𝑖(𝑡) (5.31) 

where 𝐿𝑃(0) is the initial seepage length at initial time; and ∆𝐿𝑋,𝑖(𝑡) is the deterioration 

of dyke in water flow direction associated with certain condition grade at time 𝑡. In order 

to characterise the deterioration level ∆𝐿𝑋,𝑖 regarding the initial seepage length, Table 5.2 

is suggested. The values in the below table are general and derived from the Environment 

Agency publications, and might be slightly different for each case study. 

Table 5.2 Suggested seepage length loss (Long et al. 2013) in water flow direction 

for a sea dyke related with condition grade system. 

Grade 
Seepage length loss, ∆𝐿𝑋,𝑖, 

(m) 

Distribution of deterioration intensity 

1 0.00 ≤ ∆𝐿𝑍,1 < 0.05 Lognormal 

2 0.05 ≤ ∆𝐿𝑍,2 < 0.15 Normal 

3 0.15 ≤ ∆𝐿𝑍,3 < 0.30 Normal 

4 0.30 ≤ ∆𝐿𝑍,4 < 0.60 Normal 

5 0.60 ≤ ∆𝐿𝑍,5 Lognormal 
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5.6.  Case Study at Sheerness 

The same case study for an earth sea dyke that discussed in the previous chapter for the 

homogeneous Markov model is used here to demonstrate the reliability analysis. The 

deterioration process for different rates was provided, and the results from the previous 

chapter will be used in the current fragility curve evaluation. In this example, the 

parameters relevant to deterioration of crest level are considered. It is assumed that the 

structure is in very good conditions with the initial condition vector of (1 0 0 0 0). The 

transition probabilities between the condition grades were estimated using the proposed 

homogenous Markov deterioration model in Chapter 4. The extreme water levels and 

significant wave heights for a 1000-year return period are evaluated as 3.30 mOD and 

2.25 m, respectively.  

 

The projected sea level rises due to low, medium and high emission scenarios are adopted 

from UKCP09 (Jenkins et al. 2011) to analyse the future hydraulic conditions. According 

to UKCP09 low emission scenario, the projected sea level rise including vertical land 

movements over a period of 1990-2095 is between 18-42 cm, or 3.3 mm/year in average 

(Jenkins et al. 2011). According to UKCP09 medium emission scenario, the projected 

sea level rise including vertical land movements over a period of 1990-2095 is between 

24-62 cm, or 4.5 mm/year in average (Dahl et al. 2017). The estimated sea level rise for 

high emission scenario including vertical land movements over the same period is 

between 32-86 cm, or 5.9 mm/year (Dahl et al. 2017).  

 

5.6.1. Evaluation of the fragility curves 

A reliability analysis is carried out for the excessive wave overtopping through the dyke 

crest. The deterioration of crest level was considered for estimation of the overtopping 

failure probability. Figure 5.6 shows wave overtopping fragility curves for the sea dyke 

in different condition grades at 1 and 2 l/s/m wave overtopping limit, where the 

deterioration rate is medium. The failure fragility curves shift to the right when the 

critical values for overtopping increases. For example, the failure probability when the 

dyke is at condition grade 1 and water level 2.4 mOD is about 36% for 1 l/s/m wave 

overtopping, while the failure probability for the same situation for 2 l/s/m is about 11%.  
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The results show the failure probability was not critical for the structure when it is in 

condition grades 1 and 2 at the water level of less than 2.2 mOD. However, the sea dyke 

needs immediate maintenance to raise the dyke crest level when it is in condition grade 

3 for the same water level to improve the performance. The failure probability for 

condition grades 4 and 5 is high for the water levels more than 1.80 mOD, and the 

structure was not reliable due to the significant deterioration.  

 

The overall probability of failure over time subject to medium deterioration rate is also 

analysed regarding various values of water levels and 1 and 2 l/s/m wave overtopping 

discharge limits as shown in Figure 5.7. The results emphasise that for the water levels 

less than 1.8 m the structure is reliable after 50 years from the present day. The changes 

of structure response over time are also represented in Figure 5.8 for certain various 

times, e.g. 0, 10, 20, 30, and 40 years after the initial day for two allowable overtopping 

rates. The results show that the reliability of the sea dyke decreases significantly due to 

the crest level settlement and sea level rise. All figures have similar trends between 1 and 

2 l/s/m wave overtopping discharge limits, as expected.  
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Figure 5.6 Fragility curves for diffrent wave overtopping discharge limits in 

specific condition grades and medium deterioration rate. 
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Figure 5.7 Failure probability over time at certain sea water levels for various wave 

overtopping discharge imits. 
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Figure 5.8 Fragility curves for various wave overtopping discharge limits with sea 

level rise after present day. 
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Figure 5.9 Fragility curves for 1 l/s/m wave overtopping as a function of water level 

at 30 years after present condition subject to different deterioration rates. 

  

5.6.2. Effects of deterioration rates on the fragility curves 

The effects of different deterioration rates for 1 and 2 l/s/m overtopping rate limits are 

provided in Figure 5.9 and Figure 5.10, respectively. The deterioration rates are fast, 

medium and slow, and the transition probabilities were estimated in the previous chapter, 

as shown in Figure 4.7. The failure probability steadily increases with the increase of the 

water level, but with the different pace regarding the rate of the deterioration as shown 

in the figures. The increase in the rate of deterioration from slow to medium and fast (at 

year 30, water level 2.1 and overtopping rate 1 l/s/m) leads to the increase in the failure 

probability about 18% and 30%, respectively. The increase in failure probability from 

slow rate to medium and fast rates for the same water level and time, but 2 l/s/m 

discharge, is about 20% and 34%, respectively, as shown in Figure 5.10.  

 

Figure 5.10 Fragility curves for 2 l/s/m wave overtopping as a function of water 

level at 30 years after present condition subject to different deterioration rates. 
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5.6.3. Effects of repair maintenance on fragility curves  

In the maintenance plan, it is assumed that the dyke is refurbished to a better condition 

grade due to the maintenance implemented every 4 years. The effects of maintenance 

over different deterioration rates were estimated in the previous chapter, and the essential 

transition probabilities were calculated. Figure 5.13-5.16 demonstrate the effect of 

maintenance plan on three deterioration rates, by assuming the structure is at age 30 for 

a 1 l/s/m wave overtopping discharge limits. The deterioration rates are assumed to be  

fast, medium and slow.  

 

The maintenance decreases the probability of the failure due to the wave overtopping in 

all scenarios as expected, but with different effectiveness. The improvement in the 

reliability of the sea dyke due to the maintenance is higher when the deterioration rate is 

slower. For example, the decreases in the probability of failure when the structure is at 

age 30 and water level is at 2.2 mOD, are about 25%, 18% and 10% for deterioration 

rates of slow, medium and fast, respectively. This is because in a slow deterioration rate 

the lifecycle of the asset is longer. Hence it is possible to apply more maintenance 

intervals especially when the condition are better. It is also noticed that beside the 

decrease in the rate of deterioration due to the maintenance, the fragility curves are also 

shifted to the right. 

 

    
Figure 5.11 Fragility curves for 1 l/s/m wave overtopping as a function of water 

level at 30 years subject to slow deterioration rate and two maintenance plans. 
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Figure 5.12 Fragility curves for 1 l/s/m wave overtopping as a function of water 

level at 30 years subject to medium rate and two maintenance plans. 
 

 

 
Figure 5.13 Fragility curves for 1 l/s/m wave overtopping as a function of water 

level at 30 years subject to fast deterioration rate and two maintenance plans. 
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5.7. Case study at Thames estuary 

The Thames estuary case study described in the previous chapter is utilised to show the 

applicability of the proposed model for overtopping and piping failure mechanisms for 

the sea dyke. It is assumed that the structure is subjected to three different deterioration 

rates: slow, medium and fast. The extreme values for water level and significant wave 

height at 1000-year retrun period are 4.56 mOD and 1.20 m, respectively. It is expected 

to have sea level rises at 3.5 mm/year, 4.6 mm/year and 5.8 mm/year for low, medium 

and high emission scenarios, respectively, according to UKCP09. The data from the 

selected deterioration curves are utilised to estimate the deterioration of the structure, and 

given in the previous chapter.  

 

The survival functions of the transition processes and their changes over time are 

generated by Monte Carlo simulations using the estimated parameters. Then, the time-

dependent transition probabilities are generated using the proposed method in Chapter 4. 

A reliability analysis is carried out for each of the potential failure modes of the earth 

dyke section, such as wave overtopping through the dyke crest and piping in the sand 

layer underneath the sea dyke section, by assuming 2 l/s/m overtopping discharge as 

critical rate for overtopping failure.  

 

Since these two failure modes occur at different locations of the sea defence system, it is 

assumed that the failure modes are independent. A total number of 10e6 samples are 

utilised in the Monte Carlo simulations to estimate the failure probability for each failure 

mode. Reduction factors for berm 𝛾𝑏 and slope roughness 𝛾𝑓  are considered 0.85 and 

0.90, respectively. Figure 5.14 shows the expected deterioration in crest level and 

seepage length for different condition grades, as discussed in previous sections.  
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Figure 5.14 Probability density distribution of the sea dyke crest level and seepage 

length loss  associated with condition grade (CG). 
 

5.7.1. Effects of sea level rise on overtopping  

Figure 5.15 shows the effect of the decrease in the crest level on the overtopping 

discharge rate after 50 years from the present day for 1000-year return period event. The 

increase in the overtopping discharge is significant especially for medium and fast 

deterioration rates, and it is expected the dyke is no longer capable for servicing against 

the overtopping failure.  
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The relative increases in the overtopping discharge rate for various return period events 

are also provided for better understanding of the future conditions as shown in Figure 

5.16. For the events higher than 50-year return period, the dyke needs a comprehensive 

maintenance repairs to improve the overtopping reliability performance.  

 

Figure 5.17 shows the average mean overtopping discharge for the 1000-year return 

period event associated with the sea level rise over 50 years from the initial date. The 

uncertainty in the discharge prediction is significant for sea level rise more than 30 cm 

due to the uncertainty in the projection of the sea level rise for higher values. It is 

expected to experience overtopping discharges of more than 10 l/s/m for about 25 cm 

increase in the sea level rise. 

 

Figure 5.15 Different rates of crest level deterioration to give the same overtopping 

rate at 1000-year return period after 50 years from the initial date. 
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Figure 5.16 The relative changes of overtopping discharge in the future subject to 

different deterioration rates. 

 
Figure 5.17 Average mean overtopping discharge for the 1000-year return period 

event associated with the sea level rise after 50 years from the initial day with 95% 

percentiles shown by bars. 
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5.7.2. Evaluation of time-dependent failure probability 

Figure 5.18 shows the failure probability caused by wave overtopping and piping over 

50 years after the initial construction date subject to three deterioration rates. It is 

demonstrated that the probability of failure increases over time due to deterioration 

processes and sea level rise. The failure risk of overtopping and piping varies with the 

type of deterioration rate, as expected. For example, the risk of failure due to wave 

overtopping at age 20 years is about 67% for the sea dyke under fast deterioration rate, 

while it is about 18% and about 28% lower for the sea dyke under medium and fast 

deterioration rates, respectively.  

 

Piping failure mechanisms are associated with the deterioration of seepage resistance and 

the increase in water pressure head between the water levels at the seaside and land side. 

The water level on the seaside is increasing due to the rising sea level, and the water level 

on the land side is assumed at ground level. The permeable sand layer has soil parameters 

of saturated density 𝛾𝑠 = 17 kN/m3, soil friction angle of 35°, intrinsic permeability 𝜅 =

1.28 × 10−10, drag force factor 𝜂 = 0.25, and large grain fraction 𝑑70 = 0.3 mm. The 

results show that the probability of failure caused by piping in the sand layer increases 

rapidly after approximately 20 year, reaching a failure probability close to 1.00 in 

approximately 80 years. The failure probability due to piping shows less risk in 

comparison with overtopping failure mode. However, the risk of failure due to piping is 

still significant. 

 

Figure 5.19 and Figure 5.20 show the overall overtopping and piping fragility surfaces 

of the sea dyke associated with time and water level subject to various deterioration rates. 

The overall failure probability of the structure can be assessed by integration of failure 

probability for a specific water level and all possible condition grades with consideration 

of their probability distributions over time. The results show that the probability of failure 

due to wave overtopping for 4.50 mOD water level reached over 90%, 80% and 50% 

about 25 years after the initial date, subject to fast, medium and slow deterioration rates, 

respectively.  

 

It implies that the overtopping failure probabilities increase significantly due to the 

settlement of crest level over time. A quick comparison between the results provided in 
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Figure 5.18, Figure 5.19 and Figure 5.20 shows that the critical probability of failure 

occur when load variable (the water level) is lower than extreme values. Piping fragility 

surface shows that the probability of failure is critical when the water level is higher than 

4.5 mOD, even in the early stages of the asset lifecycle. 

 

 

 
Figure 5.18 Failure probability of the sea dyke due to wave overtopping and piping 

subject to different deterioration rate. 
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Figure 5.19 Fragility surface for overtopping failure mechanism subject to various 

deterioration rates. 

(c)  Slow deterioration rate 

(b)  Medium deterioration rate 

(a)  Fast deterioration rate 
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Figure 5.20 Fragility surface for piping failure mechanism subject to various 

deterioration rates.  

(a) Slow deterioration rate 

(b) Medium deterioration rate 

         (c) Fast deterioration rate 
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5.8. Summary and conclusions  

In this chapter, time-dependent reliability analyses of flood defences with consideration 

of changing environment and deterioration process is undertaken. The effects of climate 

change in the future such as sea level rise are adopted in the limit state equations for 

different failure modes. The decrease in the strength of the coastal defences over time 

due to deterioration process is also considered in the reliability analyses by utilising the 

proposed model in Chapter 4, and adopted into the limit state equations.  Fragility curves 

and fragility surfs are provided to demonstrate the performance deterioration associated 

with various parameters such as deterioration rate.  

 

The stationary and non-stationary effects of the deterioration process over the reliability 

of the assets in the future are studied. Wave overtopping and piping failure mechanisms 

are investigated specifically in this chapter as two major failure mechanism in sea 

defences. The effects of different parameters on wave overtopping discharge are 

investigated, such as the crest level settlement, wave parameters and sea level rise. The 

effects of seepage length loss is also investigated for piping failure mechanism with 

consideration of the sea level rise. The sea level rise is mainly responsible for the failure 

of overtopping discharge due to its double effect of the rise of design water level at the 

toe and the increase in local depth-limited significant wave height. Piping in the underlain 

water-conductive sand also make the earth dyke vulnerable due to sea level rise and 

internal erosion of the soils underneath the dyke in the future. 

 

From the results obtained by the proposed models, following conclusions are drawn: a) 

the proposed grade-based and non-stationary deterioration model in Chapter 4 can be 

utilised to evaluate the time-dependent reliability performance of the coastal defence 

structures; b) the reliability of the coastal defence structures is decreased significantly 

due to the deterioration  processes such as crest level settlement and seepage length loss; 

c) the obtained fragility surface is capable of providing time-dependent behavior of the 

coastal defences associated with specific water level; and d) the failure probabilities 

estimated in reliability analysis that uses non-stationary deterioration process are higher 

than the failure probabilities associated with stationary deterioration processes. This is 

due to the consideration of faster deterioration rate when the structure is in higher 

condition grades. 
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6. Optimal maintenance strategy for coastal defences 

6.1. Introduction 

Effective maintenance planning is necessary to keep the deteriorating sea defence 

structure safe and reliable. If no repair is undertaken, the resistance of the structure will 

deteriorate further until reaching the ultimate limit or collapse. Therefore, structural 

repairs should be organised to improve the resistance of the deteriorating structure 

against increasing hydraulic loads before collapse during its service life. The repair 

strategy for the deteriorating earth sea dyke could be determined by the statistical 

estimations of failure probability and the costs for the repairs. The main contribution of 

this chapter includes: 

 The cost of errors in inspection results on the maintenance optimisation process 

is considered. In order to optimise the maintenance strategy, Partially Observable 

Markov Decision Process (POMDP) model is utilised for determining optimal 

maintenance strategy for coastal defence structures. 

 A renewal maintenance model is also studied to evaluate the optimal repair and 

inspection intervals. 

 

6.2. Single-objective vs multi-objective decision process  

In coastal flood defence structures, the typical objectives are: to minimise the risk 

consequences, to minimise the failure probability of failure mechanisms, to minimise 

maintenance costs, and to keep the structure above a specific condition grade. The 

decision maker may choose one (single-objective) or many (multiple-objective) goals to 

be achieved in an optimal maintenance policy regarding the importance of the assets or 

budgetary matters. A single-objective optimisation is a process to find the best policy or 

solution to minimise or maximise the value of a single objective function, e.g. to 

minimise the costs of maintenance. In this process, the other objectives are not 

considered, and the method cannot provide alternative solutions that might improve or 

worsen other aspects of a maintenance strategy (Alex et al. 2009; Madanat and Ben-

Akiva 1994). While in a multi-objective optimisation a set of solutions are computed 

with consideration of the interaction between different objectives, e.g. minimising the 

costs and maximising the asset reliability at the same time. 
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The optimisation process for a single-objective problem is much easier and more 

straightforward than a multi-objective problem. However, it does not mean that for 

solving a multi-objective problem is required to have a particular multi-objective 

mathematical model. In a multi objective optimisation problem, the dominated solutions 

are required. The definition of domination is a key concept in a multi-objective 

optimisation problems. In a minimisation problem, the mathematical expression of a 

dominant solution is given as (Soh and Demiris 2011) 

𝑥�̂�  𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑠 𝑥�̂� 𝑖𝑓;  ∀𝑘 ∈  ℕ, 𝑂𝑏𝑗𝑘(𝑥�̂� ) ≤ 𝑂𝑏𝑗𝑘(𝑥�̂� ) (6.1) 

where 𝑂𝑏𝑗𝑘 is objective function of objective 𝑘. This is illustrated in a two-objective 

optimisation example in Figure 6.1. In the figure, objective function 𝑓1 and 𝑓2 need to be 

maximised and minimised, respectively. Each dot demonstrates a possible solution for 

the problem. Solution C dominates solution B as it is better in both objectives, while it 

does not dominate objective E in any functions. However, solution C dominates solution 

A in maximisation objective function, while they have the same value for minimisation 

objective function. 

     

 
Figure 6.1 Example of the dominance and Pareto optimally. 
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6.3. Evaluating effectiveness matrices for repair actions 

In a Markov process, the effect of maintenance action is defined in a probability form 

that improves the condition of the sea defence from grade 𝑖 (before maintenance action 

𝑎) to grade j (after maintenance action 𝑎) at time step 𝑡. Let 𝐏𝑎 be the effectiveness 

matrix of the action 𝑎. The transition probability due to action 𝑎 is expressed as 

𝑝𝑖𝑗,𝑎
𝑡 = Pr(𝑠𝑡 = 𝑗|𝑠𝑡−1 = 𝑖, 𝑎) (6.2) 

where 𝑝𝑖𝑗,𝑎
𝑡  is the probability of improving from condition grade 𝑖 to condition grade 𝑗 at 

time 𝑡 if action 𝑎 is implemented on the structure.  

 

A common approach to estimate the effectiveness transition matrices for repair actions 

is expert judgments. A considerable number of existing studies used expert judgment to 

estimate the transition action matrices (e.g. Corotis et al. 2005; Grall et al. 2002). Another 

way to estimate repair effectiveness matrix is to calculate the increase in average 

structure performance due to repair actions, by computing the change in the new 

performance index relative to the old performance index before the repair (Lavrenz et al. 

2014). As mentioned in Chapter 3, deterioration curves for structures subjected to 

different maintenance regimes are available and provided by Environment Agency, and 

it is used here as a basis for the estimations.  

 

In order to estimate the effectiveness of a maintenance action, non-linear equations of 

deterioration curves before 𝑓𝑖𝑛𝑖(𝑡), and after maintenance action 𝑓𝑎(𝑡) are derived. Then, 

the difference between the two areas under the deterioration curves are calculated as 

(Lavrenz et al. 2014) 

∆𝐴𝑟𝑒𝑎𝑗→𝑖 = ∫ 𝑓𝑎,𝑖→𝑗(𝑡)
𝑡𝑗

𝑡𝑖

𝑑𝑡 − ∫ 𝑓𝑖𝑛𝑖,𝑖→𝑗(𝑡) 𝑑𝑡
𝑡𝑗

𝑡𝑖

      𝑖 < 𝑗;  𝑖, 𝑗 ∈ {1,2,3,4,5}    (6.3) 

where 𝑓𝑖𝑛𝑖 is the equation of asset deterioration curve before maintenance; 𝑓𝑎 is the 

equation of deterioration curve after maintenance 𝑎; 𝑡𝑖 and 𝑡𝑗 are times (year) that the 

asset is in condition grade 𝑖 and 𝑗, respectively. The above equation estimates the 

cumulative difference between two diagrams shown in Figure 6.2. The figure shows 

deterioration curves for a sea dyke subject to do-nothing and major maintenance plan. 
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The area between two lines is considered as the improvement due to the maintenance 

action. 

 

For evaluating more than one condition grade improvement, Equation (6.3) is repeated 

for all condition grades. For example, to estimate the repair influence at condition grade 

4, ∆𝐴𝑟𝑒𝑎4→3,  ∆𝐴𝑟𝑒𝑎4→2, and ∆𝐴𝑟𝑒𝑎4→1 are calculated, which provide cumulative 

differences in the areas from condition grade 1 to condition grade 4. Hence, the 

probability of improvement from condition grade 𝑗 to 𝑖 due to action 𝑎 can be estimated 

as  

𝑝𝑎𝑗→𝑖
=

∆𝐴𝑟𝑒𝑎𝑗→𝑖` − ∆𝐴𝑟𝑒𝑎𝑖`→𝑖

∆𝐴𝑟𝑒𝑎𝑗→𝑖
          𝑖 < 𝑖` < 𝑗 (6.4) 

where 𝑎𝑗→𝑖 is the improvement effectiveness from condition grade 𝑗 to condition grade 𝑖 

after performing action 𝑎.  

 
Figure 6.2 The deterioration curve for a class-44 sea dyke subject to do-nothing and 

major maintenance action.  
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confirms the actual condition state of the asset, thus the maintenance action can be 

performed directly after each time step. For some civil infrastructures such as steel 

bridges, the condition state of the asset may be identified with high level of certainty by 

condition assessment techniques (Golroo and Tighe 2009) with reasonable costs 

compared to coastal defence structures.  

 

However, in coastal flood defence structures, the information about the current state of 

the asset is not complete due to many factors such as errors in inspection outcomes. 

Coastal defence assets deteriorate in an environment that is difficult or expensive to be 

observed or inspected with a high level of certainty. For example, visual indicators 

contributing to piping failure mode, such as porous in the soil, are changing over time 

and cannot be inspected easily. Additionally, as discussed in Chapter 3, the inspection 

strategies in flood defence structures have different level of accuracy with the correct 

results about 80% to 96% regarding the inspection method. Consequently, the 

deterioration rate can be accelerated by unnoticed factors. 

 

In order to model inspection error and the inability of capturing the condition grade of 

the flood defence to have results with 100% accuracy, Partially Observable MDP 

(POMDP) introduce the inspection (observation) matrix (𝐎𝑰). The inspection matrix 

represents the reliability of the inspection strategy as it gives the probability of  inspecting 

the asset in a certain condition grade with consideration of the actually being in that 

condition grade, which provides the possible error in that inspection results. For example, 

for Tier 1 inspection strategy (e.g. visual inspection), if a sea dyke is in condition grade 

1 then there is 80% probability of observing the asset in condition grade 1. Accordingly, 

𝑂𝑖𝑗 is the probability of observing an asset in state 𝑖 when the actual condition is 𝑗, hence 

it represents the error in the condition assessment technique. 

 

Hence, the decision maker needs to choose the policies based on incomplete or uncertain 

information. The process starts by multiplying the inspection matrix by the transition 

matrix producing what is called belief state 𝑏. This will update expected deterioration by 

updating the transition matrix with the reliability of the condition assessment method. 

As the difference between the belief state and the actual condition grade decreases, the 

reliability of information increases. A belief state 𝑏 is a probability distribution to show 
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the available information over all state spaces, and the sum of beliefs over the states equal 

to 1.0 (Kaelbling et al. 1998). The process of a single objective POMDP is illustrated in 

Figure 6.3. 

 

Figure 6.3 shows the sequences of a POMDP process in each time step. For example, at 

time step 𝑡, the structure is in state 𝑠𝑡, while 𝑠𝑡 is the outcome of the latest implemented 

action 𝑎𝑡−1 on state 𝑠𝑡−1. However, the decision maker can update the information via 

inspection outcome 𝑜𝑡−1 that is the outcome of the inspection strategy in the last time 

step. The available information about the current condition of the structure is summarised 

into the current belief state 𝑏𝑡. Consequently, the next decision or action 𝑎𝑡 will be 

implemented based on the current information or belief state 𝑏𝑡, and an immediate reward 

𝑅𝑡 will be assigned. 

 

 
Figure 6.3 Sequential decision process with partial information. 𝑠𝑘: states, 𝑎𝑘: 

actions, 𝑜𝑘: observations, 𝑏𝑘: belief states, 𝑅𝑘: reward value. 

 

The error for different inspection strategies in coastal defences, e.g. Tier1, 2 and 3, are 

estimated and discussed in Chapter 3. The value of information is described as the cost 

of the imperfect information plus the cost of the implementing the inspection strategy, 

and it is discussed in many literatures, e.g. by Keisler et al. (2013) and Osman et al. 

(2012). In order to quantify the errors, the cost of failure is described as cost matrix 𝐂. 

Then the cost matrix is multiplied by the inspection matrix to describe the errors in 

monetary values. Hence, the value of information 𝑉𝐼
𝑡 after 𝑡 time steps can be estimated 

by adding the cost of inspection strategy 𝐶𝐼 to the cost of imperfect information (Osman 

et al. 2011), given here as  
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𝑉𝐼
𝑡 = 𝐶𝐼 + 𝐂𝐈𝑰

𝒕 = 𝐂 ∙ 𝐏𝒕(𝐎𝐼 − 𝐈) (6.5) 

where 𝐂𝐈𝑰
𝒕 is the costs of imperfect information at time 𝑡 using inspection strategy 𝐼; 𝐏𝒕 

is the transition probability matrix; 𝐎𝑰 is the inspection matrix for inspection strategy 𝐼; 

and 𝐈 is the identity matrix.  

 

6.5. Bi-objective optimised inspection strategy regarding risk consequences 

During the life cycle of coastal defences affected by deterioration process, a series of 

inspection and maintenance actions may be needed, which requires the planned 

inspection and maintenance strategy to be scheduled and optimised. As discussed earlier, 

different inspection strategies may require different amount of resources, and they 

improve the condition of the asset to different levels. The primary objective of 

optimisation is to allocate minimum costs based on criticality to reduce the probability 

of unexpected failures. As such, each coastal defence asset will have two main objective 

functions: 1) minimum cost of condition assessment strategy to be applied with optimised 

interval; and 2) minimum consequences of risks due to a failure mode e.g. wave 

overtopping.  

 

Changing the time between inspection intervals can decrease or increase failure costs. 

The maintenance cost objective function aims to reduce the cost incurred by imperfect 

inspection, as discussed in previous section. Additionally, the risk consequence objective 

function aims to keep the asset above a certain performance level with respect to the 

monetary consequence of a concerned failure mode. In this chapter, the risk consequence 

due to wave overtopping is considered by utilising Equation (5.22), and the evaluation 

process is discussed in Section 5.4. Hence, the objective function is expressed here as 

𝑇𝑜 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒: {
𝑉𝐼

𝑡

𝑅𝑓(𝑡)
 

Subject to: {

𝑡𝑖𝑛𝑠𝑝 > 0
𝑡𝑚𝑖𝑛 ≤ 𝑡𝑖𝑛𝑠𝑝 ≤ 𝑡𝑚𝑎𝑥

∑𝐶𝐼 ≤ 𝐵

 

(6.6) 

where 𝑅𝑓(𝑡) is the consequence of failure in a monetary value; 𝑡𝑖𝑛𝑠𝑝 is the optimal 

inspection time that need to be estimated from the objective function; 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 are 

the minimum and maximum allowable time between condition assessments, 

respectively; 𝐵 is the available budget for conducting the maintenance, which only 

applies to single objective problems. Genetic Algorithms are considered suitable to solve 
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this optimisation problem because of the evolutionary process, and the ability to solve 

the large number of spaces. GA toolbox is available through MATLAB software.    

 

6.6. Optimal maintenance and replacement policy 

Renewal maintenance model are another common model to optimise maintenance 

strategies for infrastructures. In order to find out the optimum inspection/repair interval, 

the balance between the risk of failure and the total cost of repair and inspection should 

be considered at the same time. Hence, the maintenance models can be defined according 

to the risk models as condition-based models and reliability-based models. Both models 

can find the optimal solution of the maintenance strategy problems with minimum cost 

and predefined risk level (Noortwijk and Frangopol 2004). The reliability-based model 

treats the multi-component, and multi-failure modes, while condition-based model treats 

only one component and one failure mode. 

 

Kim et al. (2016) compared two distinct maintenance policies: reliability-based 

maintenance and condition-based maintenance under different cost environments for 

stochastically deteriorating infrastructures. The study showed that reliability-based 

maintenance causes some unexpected deterioration that leads to high cost, while 

condition-based maintenance maintains a certain level of condition steadily under 

consistent inspection, which enables steady spending at the management level. Also, life 

cycle cost under condition-based maintenance is relatively symmetric and has a more 

concentrated distribution than condition-based maintenance. 

 

The maintenance actions may bring back a flood defence into its original condition or 

as-good-as-new condition where the quantification of the maintenance costs can be 

obtained by modelling the maintenance of deteriorated flood defence structures as a 

discrete-time renewal process (Noortwijk, 2009). Therefore, the costs of actions that are 

performed to restore an asset or structure to the initial condition are considered as the 

cost of maintenance and can be defined as the cost parameter. Let a discrete renewal 

process be 𝑋𝑛, 𝑛 = {1,2, … }, which is a stochastic process with specific time intervals 

𝑇𝑘, 𝑘 = {1,2, … }. The interval times are expressed here as (Van Noortwijk and 

Frangopol, 2004) 
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Pr( 𝑇𝑘 = 𝑖) = 𝑞𝑖     (6.7) 

where time intervals are identically distributed with random variables; and 𝑞𝑖 represents 

the probability of a renewal in unit time 𝑖. Assuming 𝑐𝑖 as the renewal cost in this unit 

time 𝑖, the expected average costs over the horizon (0, 𝑛] can be obtained by averaging 

sum of the cost associated with the renewal and the additional expected cost during the 

interval (𝑖, 𝑛] , given by 

𝐶(𝑛) = ∑𝑞𝑖[𝑐𝑖 + 𝐶(𝑛 − 1)]

𝑛

1

  (6.8) 

According to the renew reward theory and age replacement policy, the expected costs of 

maintenance over a finite horizon per unit time depend on the preventive maintenance 

cost 𝐶𝑝, and the corrective maintenance cost 𝐶𝐹. The preventive and corrective 

maintenances are defined with respect to the failure probability, and the expected renew 

cycle length, expressed as the ratio of the expected cycle cost and expected cycle length, 

given here as (Van Noortwijk, 2003; Chen and Alani 2012) 

𝐶(𝑘) = lim
𝑛→∞

𝐶(𝑛)

𝑛
=

(∑ 𝑝𝑖
𝑘
1 )𝐶𝐹 + (1 − ∑ 𝑝𝑖

𝑘
1 )𝐶𝑃

(∑ 𝑖𝑝𝑖
𝑘
1 ) + 𝑘(1 − ∑ 𝑝𝑖

𝑘
1 )

 (6.9) 

where 𝑝𝑖 is the failure probability per unit time at 𝑖th time interval. Once the failure 

probability 𝑝𝑓 at time 𝑡 is estimated, the probability of failure per unit time at the time 

interval 𝑝𝑖 can be computed from 

𝑝𝑖 = 𝑝𝑓(𝑡𝑖) − 𝑝𝑓(𝑡𝑖−1),      𝑓𝑜𝑟 𝑖 = 1,2,3, … (6.10) 

in which the time interval could be taken as one year for the convenience in calculations. 

In order to compare the maintenance costs at present day and in the future, the future cost 

needs to be discounted to its present value by a discount factor. The expected discounted 

costs over time intervals (0, 𝑘) are then given by (Chen and Alani 2012) 

𝐶𝑑(𝑘) =
(∑ 𝑑𝑖𝑝𝑖

𝑘
1 )𝐶𝐹 + 𝑑𝑘(1 − ∑ 𝑝𝑖

𝑘
1 )𝐶𝑃

1 − [(∑ 𝑑𝑖𝑝𝑖
𝑘
1 ) + 𝑑𝑘(1 − ∑ 𝑝𝑖

𝑘
1 )]

 (6.11) 
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where coefficient 𝑑 = (1 + 𝑟)−1 represents discount factor per unit time and 𝑟 is 

discount rate per unit time. The optimal maintenance time interval 𝑘∗ without and with 

discounting are evaluated by minimising the expected average costs per unit time given 

in Equations (6.9) and (6.11). 

 

6.7. Case study at Thames estuary: POMDP optimisation 

6.7.1. Single objective optimisation  

A single objective POMDP optimisation is carried out for the Thames estuary case study 

in Chapter 5 to find the optimal maintenance strategy with respect to budgetary 

constraints. The performance of the sea dyke for different condition grades was discussed 

and transition matrix was estimated with respect to the initial condition state. The failure 

probability of the sea dyke due to excessive wave overtopping will be considered in this 

optimisation model. A yearly time interval for possible inspection is assumed, and the 

available inspection strategies are: (1) no inspection with inspection cost=0 unit; (2) Tier 

1 inspection such as visual inspection with inspection cost=30 units; and (3) Tier 3 such 

as detailed survey with inspection cost=120 units. Unit in this example means an arbitrary 

currency value, and it should be noted that the monetary values in this example are 

hypothesis. The outcome (observations) of the inspection strategies are five possible 

condition grades (CG1-CG5). The costs of inspection strategies are independent of the 

sea dyke condition grades. The inspection matrices regarding the accuracy of the 

inspection strategies are given here as 

























0.000.000.000.001.00

0.000.000.000.001.00

0.000.000.000.001.00

0.000.000.000.001.00

0.000.000.000.001.00

1I    

























0.800.200.000.000.00

0.100.800.100.000.00

0.000.100.800.100.00

0.000.000.100.800.10

0.000.000.000.200.80

2I  

(6.12) 
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0.920.080.000.000.00

0.040.920.040.000.00

0.000.040.920.040.00

0.000.000.040.920.04

0.000.000.000.080.92

3I  

Penalty costs are associated with CG4 (poor) and CG5 (failure) states and reflect the 

actual cost of overtopping failure. The failure costs are taken as 0, 0, 200, 500, and 1000 

units for CG1 to CG5, respectively. The transition matrix represents the expected 

deterioration process of the sea dyke in the future. As the partial reliability of the 

inspection techniques affects the accuracy of determining the current condition of the sea 

dyke, belief state is utilised to evaluate the current condition state as discussed 

previously. The condition that is evaluated via inspection matrix with respect to the 

transition matrix is called belief state, which shows the difference between the transition 

matrix and the belief state with respect to the expected error. 

 

The single objective optimisation model only minimised Equation (6.5) to utilises the 

value of information model 𝑉𝐼 to select the appropriate condition assessment and use the 

Genetic Algorithm to alter the time between inspection intervals. This is mainly 

constrained with budgetary limitations and in finding the optimal solution with respect 

to the risk exposure for the sea dyke. In this example the budgetary limitations are given 

in Table 6.1 with the following GA parameters: probability of mutation (0.1), probability 

of crossover (0.4), population size (600), and the upper and lower bounds for time 

between inspections (𝑡𝑚𝑖𝑛 = 3, 𝑡𝑚𝑎𝑥 = 12). The obtained optimal results are presented in 

Tables 6.1. For example, for the dyke subject to fast deterioration rate the total cost for 

inspection is 9,453 units with Tier 1 and Tier 3 inspection time intervals for every 3 and 

8 years, respectively.  

 

Table 6.1 Pareto optimum samples for single-objective optimisation. 

Deterioration 

rate 

Budget limit 

(unit) 

Total cost 

of 

inspection 

(unit) 

Tier 1 

time 

interval 

Tier 3 

time 

interval 

Fast 10000 9453 3 8 

Medium 14000 13823 4 10 

Slow 18000 16785 6 12 

 

 



  

172 

 

6.7.2. Multi-objective POMDP optimisation 

In the multi-objective model, it is aimed to balance between decreasing inspection costs 

while the minimum consequence of failure in sea dyke due to wave overtopping is 

obtained by minimising Equation (6.6). The model uses the same GA parameters with 

the upper and lower bounds for time between inspections as (𝑡𝑚𝑖𝑛 = 3, 𝑡𝑚𝑎𝑥 = 12). The 

parameters for the second objective or the annual failure risk are assumed as follow: 

𝐶ℎ𝑎𝑧𝑎𝑟𝑑=7,000 units, 𝐶direct =4,500 units, and 𝐶erosion =600 units. The results are shown 

in Fig 6.4. Table 6.2 provides a sample of the pareto optimal solutions over the solution 

space. In each solution, the appropriate condition assessment technique, time interval, 

costs, and risk consequence are shown for the sea dyke. Each solution dominates the 

optimal space in one objective e.g. maintenance cost or risk consequence.  

 

For example, solution A1 in Table 6.2 has an expected risk consequence of 2361 units, 

which is lower than solution A2 (3880 units). However, solution A2 is cheaper than 

solution A1 in terms of overall inspection cost, which is 9860 units for the sea dyke 

subject to fast deterioration rate. Solution B2 can be preferred when the decision maker 

has budgetary limitation, hence the decision will cost less inspection cost (13369 units) 

with reasonable inspection intervals for the sea dyke subject to medium deterioration 

rate. There are more dominated and non-dominated solutions for different deterioration 

rates with balance between the risk consequence and total inspection cost as shown in 

Fig. 6.4. The pareto space allows a decision maker to choose the best solution based on 

available resources and the importance of the asset.  

 

Table 6.2 Pareto optimum samples for multi-objective optimisation. 

Pareto 

solution 

Deterioration 

rate 

Expected 

risk 

consequence 

(unit) 

Total cost 

of 

inspection 

(unit) 

Tier 1 

time 

interval 

Tier 3 

time 

interval 

A1 Fast 2361 23370 2 6 

A2 Fast 3880 9860 4 10 

B1 Medium 1858 28083 2 5 

B2 Medium 3138 13369 4 8 

C1 Slow 2227 25707 2 5 

C2 Slow 4736 9329 5 9 
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Figure 6.4 Pareto sets of solutions for the sea dyke subject to different deterioration 

rates. 
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6.8. Case study at Thames estuary: Renewal maintenance optimisation 

The risk caused by the failures due to sea level rise and structural performance 

deterioration needs to be properly managed, while the costs for the maintenance of the 

deteriorating sea defence should be minimised. Here, the cost rates defined in Equation 

(6.9) or (6.11) are minimised with respect to the number of time interval 𝑘 to find an 

optimal value of the repair time. Only relative costs are needed to be considered in 

calculations, assuming here the corrective maintenance cost 𝐶𝐹 =1.00 and the preventive 

maintenance cost 𝐶𝑃 = 0.05𝐶𝐹 for the failure due to excessive wave overtopping. It is 

more convenient to calculate relative costs at time intervals within a time period and then 

to find the optimum repair time corresponding to the minimum relative cost.  

 

Figure 6.5 and Figure 6.6 show the results for the expected relative costs without and 

with discounting as a function of the repair time for different average annual crest level 

deterioration rates. The results without discounting in Figure 6.5 give optimal repair time 

at 20 years for the fast deterioration rate, at 29 years for the medium deterioration rate 

and at 32 years for the slow deterioration rate, respectively. Results in Figure 6.6 suggest 

the optimal repair time obtained with annual discounting rate of 5% is close to, but 2 to 

4 years longer than, that from without discounting for each case of settlement rates 

considered. 

 

Figure 6.7 shows the influence of the preventive maintenance cost 𝐶𝑃 on the optimal 

repair time where the preventive maintenance cost with different ratios to the corrective 

maintenance is assumed. The medium crest level deterioration rate is adopted in 

calculations and the annual discount rate is again assumed to be 5%. As expected, the 

value of the optimal repair time increases when the preventive maintenance cost goes up, 

increasing from 17 years when 𝐶𝑃 = 0.01𝐶𝐹 to 37 years when 𝐶𝑃 = 0.10𝐶𝐹 . Therefore, 

an earlier repair is necessary to reduce the risk of failure if the preventive maintenance 

cost is relatively low. When the preventive maintenance cost is higher the optimal repair 

time interval could be longer. The repair however should be undertaken well before the 

expected time to failure caused by excessive wave overtopping. 
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Figure 6.5 Expected annual relative costs without discounting as a function of time 

for different deterioration rates of the crest level. 
 

 
Figure 6.6 Expected relative costs with discounting at an annual rate of 5% as a 

function of time for various deterioration rates of crest level. 
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Figure 6.7 Expected relative costs with discounting and the medium deterioration 

rate of crest level as a function of time for various preventive maintenance costs Cp. 
 

6.9. Summary and conclusions 

In this chapter maintenance optimisation models for coastal defences are proposed with 

consideration of the deterioration process and possible inspection errors in this field. Two 

maintenance models are investigated: partially observable Markov decision process 

(POMDP), and renewal maintenance model, namely. The POMDP model provides a 

grade-based optimal maintenance solution and this model is able to consider the costs of 

imperfect information with respect to the available inspection strategies. As discussed in 

precious chapters, it is difficult to have accurate inspection results in coastal defences 

due to the nature of the structures, hence, consideration of the imperfect information in 

the maintenance optimisation process is essential.  

 

Single-objective and multi-objective models are adopted evolutionary Genetic 

Algorithm is utilised to solve optimisation functions that provides optimal policies for 

with respect to the defined constraints. Additionally, optimal repair planning during the 

service life is determined by optimising the balance between the risk of failure and the 

costs for maintenance by utilising renewal maintenance model. Numerical examples are 
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given to illustrate the applicability of both the renewal and POMDP models for coastal 

defences. The optimal maintenance strategy during the service life of the sea defences 

affected by sea level rise and structural resistance deterioration can be determined with 

consideration of single or multiple objectives and available conventional repair and 

inspection strategies. 

 

From the results obtained by the proposed models, following conclusions are drawn: a) 

the POMDP model is capable of considering the inspection error and cost of imperfect 

information in the process of decision making and leads to decrease in the total expected 

maintenance cost significantly; b) the POMDP model is also capable of optimising the 

maintenance strategies for multiple objectives with consideration of necessary 

constraints by utilising evolutionary algorithms; c) both POMDP and renewal models are 

flexible to be applied to different reliability models and different failure modes in coastal 

defences with respect to changing environment and different deterioration rates; and d) 

the renewal model is capable of estimating optimal inspection and repair time intervals 

with and without consideration of the discount factor. The optimal repair time largely 

depends on the deterioration rate, available actions, quality of the inspection strategies, 

number of the objectives, and little influence from discounting in the maintenance costs. 
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7. Conclusions and suggestions for future research 

7.1. Summary and conclusions 

The main aim of this research is to improve the understanding and performance 

prediction of the structural behaviour of coastal defences with special attention to two 

major causes: 1) deterioration processes in the coastal defences, and 2) changes in the 

hydraulic parameters in the future due to sea level rise. The research also aims to 

investigate the lifecycle management of coastal defence structures based on point-based 

Markov Decision Process (MDP) by considering realistic effects of partial information 

with inspection errors.  

 

First, probabilistic models developed to translate the current condition grade system and 

quantitative damage measurements to a probabilistic form. Then, the translated models 

are utilised in stochastic and grade-based Markov models to simulate deterioration 

processes in the future such as crest level and seepage length. The results obtained from 

the developed models validated with the field and experimental data available. 

Furthermore, performance deterioration also investigated by considering stationary and 

non-stationary parameters in the Markovian models. The time-dependent reliability 

analysis and fragility curves are also provided to analyse the behaviour and reliability of 

the structures in the future with consideration of the sea level rise impacts. Finally, the 

optimal repair planning and maintenance strategies during the lifetime are determined by 

balancing the maintenance cost and failure consequences using multi-objective POMDP 

maintenance model. A full set of conclusions are included at the end of each chapter. The 

most significant conclusions are now summarised in this chapter. 

 

Effects of sea level rise on hydraulic variables 

A practical approach is proposed to consider the effects of sea level on the extreme values 

of hydraulic variables such as sea level, wave heights and wave periods. A new approach 

to estimate the dependence value between the joint extreme variables is proposed based 

on a Copula function. The joint extreme value model is described and the common 

models for the coastal defences to evaluate extreme values are investigated and 

compared. It is found that the GEV model estimates higher extreme values than the GPD 

model. It is suggested that the GPD model is more realistic and cost-efficient. The 
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simulations for the future events show that the new dependence model is capable of 

generating the data in a flexible and efficient process, which improves the quality of the 

simulated data in comparison with the original data.  

 

Probabilistic condition grading system 

A probabilistic condition grading framework is developed to translate the deterministic 

deterioration curves to a probabilistic form with respect to the quality/error of inspection 

strategies. The visual indicators in the structures, which are defined by Environment 

Agency to rank the asset, are linked to relevant failure mechanisms based on quantitative 

values to be applied in the deterioration models. The quality of the available inspection 

strategies for flood defences is translated into a probabilistic framework and validated 

with the published data from various case studies.    

 

Stochastic grade-based deterioration models 

Two stochastic deterioration models are adopted to predict the deterioration of the coastal 

defence resistances by utilising state-based Markov models, i.e. homogeneous Markov 

model for stationary deterioration process, and inhomogeneous Markov model for non-

stationary deterioration process. A Gamma deterioration model is also utilised to 

simulate the process of the deterioration in coastal defences regardless of the condition 

grade system. The parameters of the stochastic state-based deterioration models are 

estimated using the available inspection data and deterministic deterioration curves. The 

proposed models are capable of providing reliable results when compared with available 

data. The essential parameters for the models are estimated using the available data from 

Environment Agency.  

 

It is suggested that the stationary Markov process is more appropriate for short-time 

reliability analyses and for the fragility curve evaluations. The non-stationary Markov 

and Gamma models are capable of simulating time-dependent deterioration rates, and 

they are useful for time-dependent reliability analysis. It is noted that the transition 

probability matrices are critical for the Markov chain models and can be determined by 

using robust non-linear optimisation techniques on the basis of estimated performance 

deterioration rates. The deterioration processes have significant impact on the 

performance of the coastal defences in the future.  
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Reliability assessment models 

A practical approach has been proposed to investigate the reliability of the coastal 

defences for overtopping and piping failure modes through fragility curves and time-

dependent reliability evaluation. In lifecycle performance assessment, Markov process 

was adopted for stochastic deterioration modelling to take uncertainties into account. The 

time-dependent reliability analysis is then employed to evaluate the probability of failure 

of the coastal defences with consideration of the sea level rise. The results from the 

analysis showed that the proposed stochastic deterioration model based on the Markov 

process can be applied to assess the lifecycle performance with uncertainties, such as 

deterioration of crest level and seepage length. The proposed fragility surfaces are 

capable of providing time-dependent behaviour of the coastal defences associated with 

specific load variable. During the analysis it has also been found that the structural 

reliability depends not only on deterioration rates but also on the sea level rise. The 

reliability of the coastal defence structures is decreased significantly due to the 

deterioration processes such as crest level settlement and seepage length loss.  

 

Optimal maintenance strategies  

A point-based optimisation model is adopted to find optimal maintenance strategies in 

coastal defence structures with respect to the imperfect information and inspection errors 

using POMDP model. A renewal maintenance model is also investigated using a 

corrective-predictive maintenance framework. The POMDP model is used to provide a 

state-based optimal solution with consideration of the errors in the available inspection 

strategies for single or multiple-objective problems. The POMDP model is capable of 

optimising the maintenance strategies for multiple objectives without considering 

complex constraints, and it is compatible with the different reliability models provided 

in this thesis. The optimal repair time largely depends on the deterioration rate, available 

actions, quality of the inspection strategies, number of the objectives, and little influence 

from discounting in the maintenance costs. 

 

7.2. Recommendations for future study 

Following recommendations are suggested for future study: 
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 The proposed model in Chapter 3 to translate the current deterministic data to a 

probabilistic form has a limitation that is dependent on the quality of the available 

data especially available quantitative data. Although the available quantitative 

data are sufficient to develop the model, more studies and investigations are 

needed to enrich the accuracy of the quantitative values that describe the intensity 

of the damage in an asset. Moreover, more studies are required to define a more 

comprehensive link between the structural damage in different part of a structure 

and the failure mechanisms, especially laboratory and field studies. 

  Further investigations are needed for the effects of sea level rise on the future 

hydraulic conditions acting on existing coastal defences and the response of the 

structures regarding various failure mechanisms such as piping and uplifting. It 

is assumed that the increase in water level usually leads to decrease in the 

reliability of the coastal defences against different failure modes. However, more 

investigations are needed concerning piping and uplifting failures modes, in order 

to investigate the influence of the change in hydraulic loading over the structure’s 

resistance.  

 Further studies are required to investigate the dependence between the different 

failure mechanisms. It is often assumed that the failure mechanisms that occur in 

different parts of a structure are independent, such as overtopping and piping 

failure mechanisms. However, from studies, there are some dependency, either 

positive or negative, between the so-called parallel failure mechanisms. The 

hypothesis of independency between the parallel failure mechanisms needs to be 

investigated. 

 The effect of imperfect information in a maintenance repair model needs to be 

studied. The effects of imperfect information on decision making are studied in 

this study e.g. considering the errors to update the information and inspection 

strategy. However, the cost of identifying an incorrect state that lead to 

implementing inappropriate repair actions is still not clear. This parameter may 

increase the importance of the inspection strategies with higher accuracy, 

although they are more expensive, in order to improve the quality of optimal 

repair and inspection solutions.    
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Appendix 2:  Summary of condition grade assessment in UK adopted from Environment 

Agency 2014. 
 

 

A2.1 Assessing condition 

Condition Assessment Manual (CAM) is a condition grade assessment criterion in the 

context of grade-based asset management (Environment Agency 2006). Condition grades 

are defined to offer a standardised approach to assess the deterioration of flood defence 

structures and to assist decision makers to manage the maintenance strategies. In an 

inspection process based on CAM, each component is visually inspected by a trained 

inspector, and it is ranked into one of five condition grades from 1 to 5 (1 for very good 

and 5 for very poor). 

 

Table A.2.1 Definitions of condition grades in Condition Assessment Manual. 

Grade Rating Description 

1 Very Good Cosmetic defects that will have no effect on 

performance. 

2 Good Minor defects that will not reduce the overall 

performance of the asset. 

3 Fair Defects that could reduce the performance of the asset. 

4 Poor Defects that would significantly reduce the performance 

of the asset.  

5 Very poor Severe defects are resulting in complete performance 

failure. 

 

 
A2.2 Weighting of elements  

Weightings in the Environment Agency approach can be used to indicate the importance 

of each element to the overall condition grade of the asset. The weightings used in this 

model range from 1 (elements that do not have a function) to 9 (critical elements 

function). The Environment Agency method is described as:  

 

 The overall grade of the asset is the sum of (weightings × condition grades) 

divided by the sum of the weightings.  

 If any individual element with a weighting of 9 (a critical element) falls below 

the target condition and the above calculation shows the asset is numerically 
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meeting its target condition, this should be overridden to give an overall condition 

grade below the target.  

 

 

A2.3 Assessment of data quality 

General descriptions of data quality regardless of the inspection method are provided in 

Table A2.3.1. The quality of data are categorised into 5 condition grades from good 

(condition grade 1) to missing (condition grade 5). Data quality is dominant to data 

management, however, should be proportional to the needs of users (level of decision), 

availability of data, the benefits, the costs and the risks associated with collecting, 

improving or not collecting of data. The quality of data (or dataset) is inherent in its 

associated attributes such as accuracy, age (how old the data is), and competence 

(dependent on the skill and experience of the data originator). 

 

Table A.2.1 Data quality indicators and their definitions. 

Grade Rating Description 

1 Good All elements visually assessed. 

2 Adequate One or more elements were not inspected but a detailed 

engineering survey has been undertaken. 

3 Suspect A single element that was inspected on the last 

inspection is not visible at the current inspection. 

4 Poor Two or more single elements that were inspected on the 

last inspection is not visible at the current inspection. 

5 Missing One or more single elements are not visible for two or 

more consecutive inspections. 

 

In case of missing elements (Grades 3 to 5 data quality) Flowchart A2.1 should be 

considered for next actions. The flowchart explains the necessary actions for the 

described situations and provides the relevant performance assessment activities for the 

suggested inspection activities.  

 

 

 

 

 



  

198 

 

Flowchart A2.1 Missing element data instruction. 
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