
Multi-Agent Path Finding for UAV Traffic Management
Robotics Track

Florence Ho
National Institute of Informatics

Tokyo, Japan
florence@nii.ac.jp

Ana Salta
INESC-ID

Lisbon, Portugal
anasalta@ist.utl.pt

Ruben Geraldes
National Institute of Informatics

Tokyo, Japan
rubengeraldes@gmail.com

Artur Goncalves
National Institute of Informatics

Tokyo, Japan
artur.alves.goncalves@gmail.com

Marc Cavazza
University of Greenwich

London, UK
m.cavazza@greenwich.ac.uk

Helmut Prendinger
National Institute of Informatics

Tokyo, Japan
helmut@nii.ac.jp

ABSTRACT
Unmanned aerial vehicles (UAVs) are expected to provide a wide
range of services, whereby UAV fleets will be managed by several
independent service providers in shared low-altitude airspace. One
important element, or redundancy, for safe and efficient UAV opera-
tion is pre-flight Conflict Detection and Resolution (CDR) methods
that generate conflict-free paths for UAVs before the actual flight.
Multi-Agent Path Finding (MAPF) has already been successfully
applied to comparable problems with ground robots. However,
most MAPF methods were tested with simplifying assumptions
which do not reflect important characteristics of many real-world
domains, such as delivery by UAVs where heterogeneous agents
need to be considered, and new requests for flight operations are
received continuously. In this paper, we extend CBS and ECBS to
efficiently incorporate heterogeneous agents with computational
geometry and we reduce the search space with spatio-temporal
pruning. Moreover, our work introduces a “batching” method into
CBS and ECBS to address increased amounts of requests for deliv-
ery operations in an efficient manner. We compare the performance
of our “batching” approach in terms of runtime and solution cost
to a “first-come first-served” approach. Our scenarios are based on
a study on UAV usage predicted for 2030 in a real area in Japan.
Our simulations indicate that our proposed ECBS based “batching”
approach is more time efficient than incremental planning based
on Cooperative A*, and hence can meet the requirements of timely
and accurate response on delivery requests to users of such UTM
services.

KEYWORDS
Unmanned Aircraft System Traffic Management; Pre-Flight Con-
flict Detection and Resolution; Multi-Agent Path Finding; Hetero-
geneous Agents

1 INTRODUCTION
In recent years, there has been an increasing focus on the use and
deployment of UAVs in low-altitude airspace [4, 23]. Several inde-
pendent operators will task multiple UAVs with limited capacities
to visit specific locations. This situation results in an airspace pop-
ulated by UAVs where no “conflict”, i.e., possibility of collision,
between UAVs is ever acceptable. Thus, there is a need to develop
a Unmanned Aircraft Systems Traffic Management (UTM) system
[15, 16] to ensure the safety of UAV operations. In the context of
UTM, as in ATM (Air Traffic Management), a conflict is defined as
“an event in the future in which two or more aircrafts will experi-
ence a loss of minimum separation between each other” [17].

The main challenge in the UTM context is to design efficient
Conflict Detection and Resolution (CDR) approaches [14]. Similar
to the ATM concept [14, 17], we can distinguish two phases in the
design of CDR methods for UTM: a pre-flight phase and an in-flight
phase. In-flight CDR methods will ensure conflict-free paths for all
UAVs during flight. Pre-flight CDR methods, on the other hand, aim
to provide conflict-free paths to all UAVs before actual take off.

In the design of future UTM systems, it is envisioned that UAV op-
erators submit flight paths that are pre-planned by service providers
to avoid collisions with static obstacles, such as terrain elevation
and no-fly zones. Then the UTM system processes the paths of
all UAVs given their properties such as speed, size, start time, and
so on. Then, in the in-flight phase, as a redundancy mechanism,
while UAVs populate the shared airspace, their trajectories can be
adapted due to emergent events, such as bad weather or emergency
operations, using in-flight CDR methods. While many in-flight
CDR methods have been recently developed in the UTM context
[1, 11, 13, 29, 36], pre-flight CDR methods remain mostly unex-
plored for this domain.

Thus, in this paper, we aim to advance the development of pre-
flight CDR methods. We consider quadcopters as service UAVs that
are assigned to fly anytime during a service day from start locations
(UAV hubs) to given task or goal locations, then return back to their
initial locations. Moreover, due to the variation of UAVs in size
and speed, we conceive the heterogeneity of the future integrated
airspace.

Pre-flight CDR relies on the concept of 4D trajectory-based oper-
ations, i.e., a sequence of waypoints that consists of 3D coordinates
and associated timestamps that a UAV passes. Pre-flight CDR can
be represented as a Multi-Agent Path Finding (MAPF) problem. In

MAPF, several agents must avoid collisions while moving from
given start locations to goal locations. MAPF has mostly been stud-
ied in 2D environments, for a variety of applications such as video
games and Amazon warehouse ground robots [20]. Further, the
typical MAPF setting is a “one-shot” problem where all agents start
simultaneously and all have a distinct pair of start and goal loca-
tions. It also assumes homogeneous agents which all have the same
size and are all contained inside each cell of the given grid map,
and all move by one cell at each time step.

Our low altitude airspace domain can be characterized by:

(1) UAV operations have different start times, hence newly com-
puted flight paths must take into account the existing (al-
ready approved) flight paths;

(2) UAVs fly from their respective hubs to specific locations
and then have to return to these hubs, which introduces a
precedence relationship;

(3) UAVs are heterogeneous agents in terms of different sizes
and speeds.

In this paper, we propose to extend the MAPF framework to the
UAV operations scenario for pre-flight CDR.

Existing MAPF solvers have been demonstrated to be optimal for
the sum of individual costs objective and complete such as Conflict-
Based Search (CBS) [25] or bounded suboptimal such as Enhanced
CBS (ECBS) [3]. Differently, incremental techniques that plan agents
sequentially in a predefined order, have also been proposed, such
as Cooperative A* (CA*) [27] and are known to be unbounded
suboptimal and incomplete.

In the UTM context, one suggestion is that UAS (Unmanned
Aircraft System) operators submit their flight plans on the previous
day, which corresponds to a “one-shot” approach. However, this
approach would be impractical for timely delivery by logistics com-
panies. Another suggestion is the “first-come first-served” (FCFS)
approach, where each incoming request is calculated in order. This
approach could be assimilated to the CA* method, which generates
unbounded suboptimal solutions with no guarantee for a solution.
Therefore, we propose to process “batches” of UAS operation re-
quests, as simultaneous planning provides the ability to replan
paths without any ordering constraints. We will compare CA* and
CBS/ECBS approaches in terms of computation time and solution
cost.

This paper makes two main contributions:

• We extend the MAPF formulation to the context of UTM
(Unmanned Aircraft System Traffic Management), specifi-
cally deliveries by UAVs in shared airspace. We introduce a
new formalization of the problem which takes into account
(i) flights with different start times, including return paths
after delivery, and (ii) agents (UAVs) of different size and
speed.

• We address heterogeneous agents by incorporating geomet-
rical computations, rather than simple voxel intersection,
into the internal conflict detection process of our considered
MAPF algorithms. Further, we introduce a spatio-temporal
pruning that reduces the search space.

We propose an extension of CBS and ECBS that introduces a
“batching” method to process incoming flight requests. This method

offers advantages to the FCFS approach, if timely response to the de-
livery user is important. We evaluate and compare these techniques
based on a realistic projection of drone usage in 2030, referring to
a real city in Japan.

The rest of the paper is structured as follows. Section 2 presents
related works. Section 3 formulates our extension of the MAPF
model. Section 4 describes the extensions made to these algorithms
with spatio-temporal pruning, geometrical conflict detection and
batch processing. Section 5 explains our simulations and its experi-
mental results. Section 6 concludes the paper.

2 RELATEDWORKS
CooperativeMulti-Agent Path Finding (MAPF) is known as NP-hard
to solve optimally for the sum of individual costs (SIC) objective
[37]. In the UTM context, low-altitude airspace is often seen as
a common resource. So the SIC objective aligns with the aim to
minimize the air traffic. While we adopt this global objective, other
works on MAPF use combinatorial auctions [2] or taxation schemes
[5] to consider self-interested agents.

A*-based MAPF solvers search the joint state space, treating a
configuration of several agents as a state. Such optimal algorithms
include Enhanced Partial Expansion A* (EPEA*) [10], Independence
Detection and Operator Decomposition (OD-ID) [28], Increasing
Cost Tree Search (ICTS) [26], M*[30] and Conflict Based Search
(CBS) [6, 9, 25]. Other optimal approaches use Integer Linear Pro-
gramming [37]. In contrast, suboptimal approaches have been de-
veloped to provide a better performance in runtime as opposed
to optimal approaches. The bounded suboptimal variant of CBS,
Enhanced CBS (ECBS) [3] is among the most efficient approaches.
Other suboptimal solvers make use of the existence of traffic flows
with a well-defined physical structure and obstacle density in given
instances by introducing flow annotation structures, such as Flow
Annotation Replanning (FAR) [32] and ECBS+HWY [7].

We can also distinguish suboptimal search-based solvers that
work in a prioritized way, but are incomplete and unbounded such
as CA* [27], where the agents are planned one after the other accord-
ing to a predefined order. Other unbounded suboptimal techniques
use specific movement rules to solve MAPF instances [8, 18, 33].
However, all these approaches originally target “one-shot” scenar-
ios, thus solved before all agents start to move. In this paper, we
will study a different version of MAPF where paths of agents are
added over time, while other agents may be following previously
generated plans. In our case, as a practical requirement, we do not
allow replanning of previously processed paths since it requires real
time communication and may incur some overhead in the online
modification of paths.

Recently, few works have proposed different extensions of the
MAPF framework to address real world settings. All these works
address different aspects in isolation. Yet, they did not tackle hetero-
geneous agents in terms of different sizes and speeds. We hereby
propose a setting that includes many of the realistic features proper
to the UTM context. Few MAPF algorithms have been described
for non-unit time step domains such as in [31] where the ICTS
algorithm is extended to the non-unit cost domain. [34, 35] have
incorporated any-angle pathfinding into the paths of each agent
but their work is still in a 2D homogeneous setting.

In the context of the Amazon warehouses, [21] proposed a life-
long algorithm within the pickup and delivery setting for agents
having tasks to reach in an ongoing way. They introduce a decen-
tralized approach focusing on task allocation. In our context, we
assume that every agent is associated with a given start and goal,
so there is no need for task allocation. In contrast, we study a cen-
tralized setting where agents service a large environment distinct
from the Amazon use case.

3 PROBLEM FORMULATION
3.1 UTM Application Context
In the low-altitude airspace context, we address a 3D scenario where
restrictions are put on the flight altitude related to the elevation of
the terrain. UAVs are allowed to fly between legal bounds that are
hereby fixed tominalt = 90 meters (m) for the minimum altitude,
andmaxalt = 150m for the maximum altitude, relative to the eleva-
tion from mean sea level of a point of given latitude and longitude
coordinates. Hence, there is a 60m altitude range. In our work, we
consider a 3D grid map composed of voxels with 30m edge size. We
consider quadcopters UAVs that have holonomic motion, thus can
move in any direction or hover.

In this paper, we consider service scenarios such as delivery,
where UAVs fly from predefined hubs to service locations, i.e., other
hubs or homes. The assignment of those locations is done inde-
pendently by service providers. So, the scope of this paper does
not include the allocation of tasks to the agents, unlike in [12, 19].
The role of the UTM System is to provide conflict-free paths for all
submitted flight requests from all UAV operators.

3.2 Problem Definition
An instance of our problem is composed of N operations O =
{O1, . . . ,ON } which are each performed by agents that are UAVs,
and an undirected graph G = (V ,E) which is a 26-neighbor cubic
grid allowing diagonal moves. Agents can move along an edge ofG
or can wait on a vertex of G.
An agent ai assigned to perform Oi ∈ O is characterized by:

• A radius ri : each agent is represented by a sphere of given ra-
dius ri , and a center position pi . In the UTM context, similar
to the ATM context, no physical collisions are ever accept-
able, so the radius of each UAV is enlarged with extra layers
to ensure physical separation between UAVs.

• A speed spi : the given speed of ai which is considered uni-
form on the whole path, as in the UTM context, this would
be a constraint to ensure conflict-free paths generation [24].

• A start si and goal дi locations: an operationOi is composed
of a pair of paths, an outbound path and a return path. The
outbound path goes from a hub location si to a delivery lo-
cation дi and the return path is assumed to be symmetrical
to the outbound path. In-between reaching the delivery lo-
cation and returning to the hub location, we assume a fixed
duration δi , and that agents do not remain in the space once
they reach their destination or hub, since we consider that
each UAV lands when reaching its assigned location.

• A start time tsi > 0: the time at which the operation must
start, hence when the agent takes off.

In the UTM context, we want to prevent any violation of the
minimum separation distance between two agents ai and aj , i.e.,
the sum of their respective radius, ri + r j . Hence, the constraint in
our formulation is defined as follows: ∀t ,dist(pi (t),pj (t)) > ri + r j .
Moreover, since each agent’s operation includes an outbound path
and a return path, we must ensure that the precedence relation
between the outbound path and the return path is always satisfied.
The objective we hereby adopt remains the same as in standard
MAPF, i.e., to minimize the sum of individual costs: min

∑
Oi ∈O Ti ,

with Ti the total cost of the operation Oi , which can either be the
total distance or the total duration of Oi . A solution consists of
conflict-free paths for all N operations such that no violation of
minimum separation occurs.

In Table 1, we describe how our formulation extends the MAPF
framework. Note that here, the grid discretization serves to repre-
sent static obstacles and allow path planning, unlike in standard
MAPF where it also indicates the position of each agent at each
time step.

4 EXTENSION OF CBS AND ECBS FOR UTM
CONTEXT

For the UTM context, we need to adapt and extend CBS and ECBS
in three ways. First, we reduce the search space of CBS and ECBS in
our problem domain by introducing a spatio-temporal pruning pro-
cess. Second, we propose to incorporate a continuous-time conflict
detection based on computational geometry, to integrate heteroge-
neous agents. Finally, we accommodate for the situation of ongoing
requests for deliveries. Here, we will introduce a batch processing
approach.

Note that in our case, initial paths for all agents are planned
independently by UAS service providers and then submitted to
the UTM system. As a result, a set of possibly conflicted paths is
produced.

4.1 Background
We hereby briefly describe CBS [25] and its bounded suboptimal
variant ECBS [3]. CBS is a two-level search algorithm, and is com-
plete and optimal with respect to the sum of individual costs.

The high level of CBS searches the binary constraint tree (CT).
Each node of the CT contains: (1) a set of constraints imposed on
the agents, meaning that an agent ai cannot occupy a vertex v at a
time step t ; (2) a single solution that satisfies all constraints; and (3)
the cost of solution, which is the sum of the path costs of all agents.
The root node of the CT contains an empty set of constraints. For
each CT node n generated by the high level, a low level searchwhich
is an A* search, is invoked. For an individual agent, it generates a
path that satisfies all constraints in node n imposed on the agent
and provided by the high level. Once a CT node n is chosen for
expansion by a best-first search, the solution is checked for any
conflicts between the agents along their planned paths. If node n
is conflict-free, then it is a goal node and CBS returns its solution.
Otherwise, n is split into two child nodes, each with an additional
constraint on only one of the two agents involved in the earliest
conflict for each child node, and thus, only the path of this agent
will be replanned. In the high and low level of ECBS, Focal search
[22] is used, it is a suboptimal variant of A* where a FOCAL list

Properties Standard MAPF Extended MAPF

Agent size Same size for all, inside one voxel: ∀ai , ri = r Different sizes, more or less than one voxel: ∀ai , ri > 0
Agent speed 1 voxel per time step for all: ∀ai , spi = sp Different speeds: ∀ai , spi > 0
Agent start time Simultaneous start for all: ∀ai , tsi = ts = 0 Different start times: ∀ai , tsi > 0
Path Unique path (si ;дi) for each agent: ∀ai , aj , si ,

sj ,дi , дj and no return
Agents can have the same starts and/or goals with dif-
ferent start times: ∃ai , aj , t

s
i , tsj , si = sj ,дi = дj and

all have to return
Conflict Agents moving to the same vertex: pi (t) = pj (t), or

exchanging vertices at the same time step:pi (t) = pj (t+
1) and pj (t) = pi (t + 1)

Any case of loss of minimum separation:
dist(pi ,pj) ≤ ri + r j

Table 1: Extending the MAPF framework.

is maintained alongside the OPEN list with a second inadmissible
heuristic that estimates the number of conflicts. This is used to
minimize the number of conflicts to solve. The FOCAL list contains
a subset of the entries in the OPEN list, such that the cost of the
entries in FOCAL are within a constant factorw of the best cost in
OPEN.

The following changes introduced in the remainder of this sec-
tion apply to both algorithms, CBS and ECBS, even though only
CBS is noted.

4.2 Spatio-Temporal Pruning
To detect any conflicts between all pairs of operations, the search
space contains N (N−1)

2 states. Thus, the amount of computations
increases significantly with the number of operations and the iter-
ations of the process during the search. Moreover, in our context,
two operations might have no time or no spatial intersection, i.e. no
possibility of conflict. So, we propose to reduce the search space of
potential conflicts by introducing a pruning process. We determine
and associate a subsetOConf lict

i of operations in potential conflict
for each operation Oi by considering the temporal and spatial in-
formation of the given instance as shown in Algorithm 1. Then
conflict detection (described below) is performed only within the
reduced set of identified operations and common paths segments.

4.3 Extension to Heterogeneous Agents
In standard MAPF, all agents move by one voxel at each time step
and there can only be two types of conflicts: vertex and edge conflict,
as mentioned in Table 1. In our extended MAPF, where agents have
different sizes and speeds, these properties do not hold anymore.
Agents can occupymore or less than one voxel at each time step, and
several voxels can be crossed between two successive time steps,
which can lead to possible conflicts in between time steps. The
use of straighforward discretization for conflict detection is thus
inefficient. Therefore, we propose a conflict detection mechanism
that relies on geometrical computations, and encodes continuous-
time conflict detection.

4.3.1 Incorporating Geometrical Computations. We present a
reformulated conflict detection mechanism that we incorporate
into CBS. We need to consider all possible cases of conflicts as

Algorithm 1: Spatio-Temporal Pruning: Define the subsets of
agents in potential conflict
Data: O set of operations, Oi with associated Ti time interval

and agent size ri
Result: ∀Oi ∈ O,O

Conf lict
i ⊆ O

for Oi ∈ O do
for O j ∈ O do

/* Determine if temporal overlap between Oi
and O j */

if Ti ∩Tj , ∅ then
/* Determine if spatial overlap during

common time interval */
if ShortestDistance(Oi ,O j ,Ti ∩Tj) ≤ ri + r j ;
then

Determine if the potential conflict is on the
outbound and/or return path of each
operation;

Add Oi in O
Conf lict
j and O j in O

Conf lict
i ;

represented in Fig. 1. All conflicts can be classified into these cate-
gories that can be considered as generalizations of vertex and edge
collisions of standard MAPF.

A straightforward approach would be to consider all voxels that
an agent intersects at each time step. Since an agent does not nec-
essarily move by only one voxel at each time step, a discretization
in time steps of the path of each agent according to their respective
speeds must also be performed. Then, a conflict is detected between
two agents between two successive time steps t and t+1 if they both
have at least one voxel in common within their respective set of
voxels as in Fig. 2. This method may be computationally expensive
in practice, (1) due to the determination of the occupied voxels set
of each agent, and (2) the intersection verification done at each time
step for these sets possibly containing several voxels. Moreover, it
induces an approximation in the actual space occupied by an agent
and can lead to false positives in the detection of conflicts.

Thus, we introduce a more effective method to detect conflicts
based on geometrical considerations. To detect a conflict between
agents whose paths segments have temporal overlap, we compute

Figure 1: Types of conflicts between two agents of differ-
ent sizes and speeds. a) Pursuit conflict, where the agents
move closely towards the same direction ; b) Head-on con-
flict, where the agents move into opposite directions ; c) In-
tersection conflict, where the agents cross paths.

the “time to collision” tC within the common time interval [ta ; tb].
tC is obtained by solving the following quadratic equation with vi
and vj the velocities and pi and pj the positions at any given times
of agents ai and aj respectively:

∥pi (tC) − pj (tC)∥
2 = (ri + r j)

2

i .e . (pi (ta) +vi · tC − (pj (ta) +vj · tC))
2 = (ri + r j)

2 (1)

If there are real positive roots for the equation in the range of
the interval [ta ; tb], we have obtained the time to collision tC =
Min(troot1; troot2). Thus, a conflict interval is defined, and it repre-
sents the time interval during which a violation of the separation
distance between two agents occurs,

IC = [tC ;Min(tb ;Max(troot1; troot2))]

.

4.3.2 Reformulation of Low Level Search. Having redefined the
conflict detection step, we now present the changes made to the
low level search of CBS. First, we redefine the constraint representa-
tion used in CBS. In standard MAPF, a constraint is only a given
vertex v ∈ V that cannot be occupied at a time step t . In extended
MAPF, since conflicts cannot be limited to discrete cases anymore,
the constraints are expanded to a set of occupied space that can-
not be crossed within the conflict interval during which a conflict
was detected. We denote 𝒱 (ai , IC) the space occupied by an agent
during the conflict interval. With our geometrical considerations,
it is a “capsule” volume shown in Fig. 2 characterized by a line
segment and the associated radius of the agent. If ai and aj are
in conflict in IC , then the constraints tuples (ai ,𝒱 (aj , IC), IC) and
(aj ,𝒱 (ai , IC), IC) are associated to ai and aj respectively.

In the low level search, the path of one agent in conflict is re-
planned with A* to satisfy all constraints associated to this agent. As
shown in Algorithm 2, at each node expansion, if there exists a con-
straint such that the associated conflict interval IC and [tcurrent ; tn]
overlap, then we perform a conflict detection computation within
the common time interval as in Equation. 1. If a conflict is detected,
then the move is not considered in the generation of the new path

Figure 2: a) Conflict interval for the voxels intersection
method (in red); b) Conflict interval for the computational
geometry method (indicated as constraints).

for the agent. When planning the conflict-free paths for all opera-
tions, we also need to ensure that the agents do not collide with any
static obstacles such as elevation or no-fly zones. Static obstacles
are represented via the voxels of the grid that are considered as
blocked. In A*, the д function is used to exclude or select nodes for
expansion. Here, we also improve the computational efficiency of
our approach by pruning the search space and using geometrical
computations instead of considering the intersection with each
voxel independently.

4.4 Batch Processing
Our problem starts with an empty airspace where no agent has
begun to fly yet, and our algorithm must solve a first given MAPF
instance containing a set of submitted operations. So, the first MAPF
instance is always a one-shot instance. Then, while the agents
execute their generated plan, a new set of operations appears which
might be in conflict with the already accepted operations. We refer
to each given set of operations as a batch containing a finite number
of operations. Hence, we need to consider two types of conflicts
that can occur for an agent from a later batch, which are (1) conflict
with an agent from a previous batch or (2) conflict with an agent
from the same batch. For (1), since we assume that previously
accepted operations cannot be modified anymore, we consider the
paths of these operations as spatio-temporal obstacles that have
to be avoided. So, a first step of detecting and solving this type of
conflicts is performed, then the existing spatio-temporal obstacles

Algorithm 2: Reformulated Low Level Search in Extended
CBS: Node expansion
Data: Node current to expand for agent i with Constraintsi
for node n ∈ Neighbors of current do

/* Check if reachable neighbor w.r.t static

obstacles */

if n not reachable then
Remove n from Neiдhbors;

else
for constraint c ∈ Constraintsi do

if Ic ∩ [tcurrent ; tn] , ∅ then
/* Check time to conflict in the

common interval */
Compute tC in common time interval between
Ic and [tcurrent ; tn];
if in Conflict then

Remove n from Neiдhbors;

are considered when replanning for conflicts within the same batch.
For (2), as described in 4.1, (E)CBS considers conflicts between
agents of the same batch and generates two child nodes for each
agent of the conflict.

5 EXPERIMENTS
In this section, we describe the simulations and obtained results.
First, we evaluate the efficiency of our extension to accommodate
heterogeneous agents. Here, we compare the use of computational
geometry and spatio-temporal pruning with a straightforward vox-
els intersection approach. Second, we compare the performances of
CBS and ECBS with “batch” processing of UAS operations to a CA*
based approach which exemplifies FCFS processing, in a real world
use case. We will not provide numerical results for the “one-shot”
approach, since it is impractical in the UTM context, where delivery
requests of users should be confirmed in a timely fashion.

As a baseline dimension, each voxel of the grid map represents
30m in the real world. The radius value attributed to each agent
ranges from 15m to 30m and the attributed speed from 15m/s to
18m/s. The starting time of each agent is set uniformly at random
from the interval [1s; 1800s], so several agents may start at the
same time. The approaches are implemented in Java and run on a
3.2GHz Intel Core i7-8700 desktop with 16 GB RAM.

5.1 Results for Adaptation to Heterogeneous
Case

In these experiments, the aim is to evaluate the efficiency of our ge-
ometrical method and spatio-temporal pruning to address instances
with heterogeneous agents for CBS, ECBS, and CA*. So, we perform
a Monte Carlo simulation on a 100 × 100 × 4 grid with 5% obstacle
density, which corresponds to likely no fly zones on a peripheral
(non-urban) area. For each number of operations ranging from 50
to 500, we create 30 instances by randomly generating start loca-
tions with associated goal locations for each agent. Fig. 3 shows
the runtimes for ECBS over the different number of operations

Figure 3: Average runtime for ECBS on 100×100×4 grid map
with 5% obstacle density.

considered, the observed trends being the same for CBS and CA*.
The use of computational geometry and spatio-temporal pruning
provides solutions significantly faster than a straightforward use
of voxel intersection.

5.2 Results for Comparing Different
Approaches to the Processing of UAS
Operations

5.2.1 Experimental Setup. We base our scenarios on the data
obtained from the study conducted by a consulting firm that projects
service UAV deployment in 2030 in one region in Japan. The study is
part of a large-scale governmental project on designing, specifying,
and simulating the future UTM system, sponsored by Anonymized.
We consider a 14.35 km × 17.10 km area. So we use a grid map
of dimensions 478 × 570 voxels, which is delimited in altitude by
a 2 voxels range (hence 60m range) relative to the elevation. The
positions of static obstacles, i.e., blocked voxels, is fixed according
to the given elevation map of the region and there are 41 no-fly
zones. Based on the study, we consider three logistics companies
that provide deliveries of goods and a Red Cross blood center that
distributes blood samples in packages in the area. We distinguish
two types of deliveries:

(1) Hub-to-Home deliveries: these are deliveries from hubs to
service locations (homes) in a given service radius. Within these ar-
eas, we randomly distribute the service locations, and the minimum
path length is fixed to 300m.

• Company A: 24 hubs, vicinity radius = 1500m, from 6,578
deliveries to 9,866 deliveries per day

• Company B: 24 hubs, vicinity radius = 1500m, from 4,385
deliveries to 6,578 deliveries per day

• Company C: 5 hubs, vicinity radius = 2000m, from 2,192
deliveries to 3,289 deliveries per day

(2) Hub-to-Hub deliveries: these are deliveries where specific
hubs are connected to each other, and operations can only be con-
ducted between those specific locations.

• Company A: 5 hubs, including one main hub from where all
operations depart and four other hubs, from 747 deliveries
to 1494 deliveries per day

Figure 4: a) Overview of the area used in our simulations and
of the considered vicinity areas for all hubs. The white and
red icons indicate the hub locations for Hub-to-Hub opera-
tions. b) Example of path topology of UAV delivery use case
for one hub.

• Company D: 8 hubs, including one main hub from where all
operations depart and seven other hubs, 8 deliveries per day

One day of service represents 13 hours, from 8 a.m to 9 p.m.
The total demand is estimated as up to 13,910 operations per day
in normal season and as up to 21,235 operations per day in busy
season. Fig. 4 indicates the positions of the hubs and their associated
vicinity area with different color for each company. In the study
upon which our simulations are based, the frequency of actual
deliveries is currently assumed to be uniformly distributed over
this time frame. There is no indication in the study on when the
delivery requests occur. However, wewill also consider “peak” times
with larger amounts of service requests and larger amounts of UAV
traffic.

Unlike most existing works on MAPF techniques, such as ware-
houses where the size of the grid map is small and the occupancy by
static obstacles is high [20], our scenario reflects a realistic use case
(prepared by a major consulting company), where the environment
size is large and has low density in terms of static and velocity
obstacles. In terms of static obstacles occupancy, there is less than
1% blocked voxels of the total flyable volume of the area including
no-fly zones and satisfying the altitude constraints. In terms of
occupancy by dynamic obstacles (UAVs), the average number of
UAVs in the air according to the study is about 200 UAVs at any time.
Hence, by considering an average radius of 22m, we estimate that
the average occupancy by UAVs at anytime is about 0.3% of the total
flyable space. For a Hub-to-Home delivery the maximum flight time
(for one way) is just a little over two minutes (2km distance with
15m/s speed), and most (one way) flights are just one minute. The
topology of our flight paths differs from existing works in MAPF as
all agents start from the same location (hub) but at different times
as shown in Fig. 4.

5.2.2 User Scenario. We consider a service scenario where users
(customers) request goods, such as food or other small items (under

5.5kg), which can be delivered by UAV. Such requests can refer to a
delivery “as soon as possible” (ASAP), or a delivery for a specific
later time, e.g., 7 p.m., on the same or next day. After putting the
request, the user expects a response from the system almost imme-
diately, such as “Your food item will arrive in 22 minutes”, or “Your
itemwill arrive tomorrow at 7:05 p.m.”. This is an improvement over
today’s situation, where ASAP deliveries often have to change time
estimates due to traffic, etc. Deliveries for specific future times often
only provide a time window, such as “Your item will be delivered
between 7 p.m. and 9 p.m.”.

By 2030, we expect a better service for customers. Since cus-
tomers want the timely response, the time efficiency of algorithms
becomes very important. After a user submits the request for a
good, it is processed by the UTM system. In simplified terms, a UAS
service provider will first plan a flight path that avoids terrain and
other static obstacles. This is a problem of single-agent planning
and using A*-based search, it takes a few milliseconds for flight
path up to 2 km. Then the UTM system performs pre-flight CDR.
After the result is known – “Accept”, “Accept with Modification”,
or “Reject” – the user is informed about the exact delivery time via
the UAS service provider in a short time after putting the delivery
request.

5.2.3 Analysis. In our experiments, we study runtime and so-
lution costs of FCFS (hereby labeled as CA*) and batch processing
(hereby labeled as CBS, ECBS). Note that the computational geome-
try and spatio-temporal pruning are hereby used in all approaches
compared. Table 2 shows the results that are averaged over all iter-
ations in our experiments. We fix a time limit of 10 min for each
run. When a run takes more than 10 min in more than 15 iterations,
we mark it as an excess in time limit and represent it with a dash
line. We run 30 iterations for each experiment. The suboptimality
boundw for ECBS is fixed to 1.5.

In our real world use case, we assume that peaks occur at certain
hours, such as lunch or dinner times. In this case, 1000s of user
requests are submitted in a small time window, which also creates
more UAV traffic. Accordingly, we represent the ongoing UAV traffic,
i.e., UAVs in the air at any time, as “# Operations already accepted”
in Table 2. Then, “# Operations newly submitted” refers to the
operations that are not yet integrated to the airspace. We propose
to compare the performances of CBS/ECBS with “batch” processing
and CA*-based processing for FCFS.
Runtime.CBSwith batch processing is themethodwith the longest
runtime overall, which is expected for an optimal algorithm. The
difference between ECBS with batch processing and CA* indicates
that the former allows a significant gain in time compared to the
latter when processing large number of operations submitted. So,
processing UAS operation requests in “batches” can be advanta-
geous over a method that processes each UAS operation one after
the other. However, the advantage only applies to situations where
a large number of requests has to be processed. If requests drop in
with low frequency, CA*-based is clearly more suitable, as ECBS
would have to “wait” until the batch is filled.
Deviation and solution costs. The deviation is hereby defined
as the difference in distance costs between the initially submitted
flight path and the possibly replanned conflict-free flight path. Our
results show that the average deviation is small for all algorithms,

Ops
already accepted

Ops
newly submitted

Runtime (in s)
Total deviation (in m)
from initial solution

per operation

Rejection rate
(in % of # Ops

newly submitted)
CBS ECBS CA* CBS ECBS CA* CBS ECBS CA*

200
100 6 2 2 3 8 9 0 0 0
300 47 8 11 4 11 19 0 0 0
500 154 15 26 9 24 30 0 0 0.2

400
100 10 4 4 12 21 25 0 0 0
300 278 17 37 12 25 33 0 0 0.2
500 - 31 59 - 27 39 - 0.2 0.6

700
100 22 4 6 15 21 27 0.2 0.2 0.5
300 - 27 48 - 36 45 - 0.5 1.5
500 - 104 131 - 42 51 - 0.5 2

Table 2: Comparisons between CBS, ECBS with batch processing and CA*-based FCFS processing.

and our ECBS batch processing provides a slightly better cost in
average. Note that UAVs have speeds of up to 18m/s, so even 40m
mean deviation corresponds to just a few seconds delay in average.
Rejection rate. We define the rejection rate metric as the per-
centage of UAS operations rejected among those submitted. The
meaning of “rejection” is that no solution was found for the in-
stance in question. Overall, our ECBS batch processing mechanism
shows lower rejection rates than CA*. Non-solvable cases can be a
situation where a UAV from an already accepted operation reaches
its destination location at a certain time and another UAV from a
newly submitted operation starts its flight at a close time from the
same location. In this case, no solution can be found for the latter
UAV. This rate not only increases with the number of submitted
operations, but also with the number of already accepted opera-
tions, since these are considered as spatio-temporal obstacles in
both approaches.

6 CONCLUSIONS
We address the pre-flight CDR (Conflict Detection and Resolution)
problem as a key component of an UTM (Unmanned Aircraft Sys-
tem Traffic Management) system. For this purpose, we propose
an extended formulation of MAPF (Multi-Agent Path Finding) to
address heterogeneous agents with different start times and return
paths in the service UAV situation. To our knowledge, we are the
first to introduce an extension of CBS, and its suboptimal variant
ECBS, to address the UTM setting of UAS operations for delivery
in a realistic scenario.

To efficiently handle heterogeneous agents, we incorporate a
mechanism relying on spatio-temporal pruning and computational
geometry into CBS and ECBS. Then, we present a comparative
study of FCFS (first-come first-served), encoded by Cooperative A*
(CA*) and a “batching” approach, encoded by CBS and ECBS. Im-
portantly, our results are based on a study that projects drone usage
in a real area in Japan in 2030. While other works rely on 2D maps
with various degrees of obstacles or agents, we decided to focus
on a use case as realistic as possible. Our results suggest that our
proposed ECBS with batch processing has better runtime perfor-
mance and solution cost than CA*-based FCFS for a high number of
simultaneous requests for airspace reservation in a realistic setting
of drone usage. This is important as users of a UAV delivery system
want feedback on their request for a delivery as soon as possible,

as for any other online service. Further, the incompleteness of CA*
means that no solution is found. If the value is 1%, it might amount
to an average of around 200 “rejections” over the course of a day,
given 21,000 deliveries per day. However, if the number of incoming
requests is not sufficiently large, there is no reason to fill up the
batch. In this case, CA* is more suitable.

A “smart” implementation of a pre-flight CDR method will esti-
mate the expected demand (i.e., number of requests) and select the
batch size accordingly.

CBS and ECBS are methods for cooperativeMAPF. As a pre-flight
CDR method, those methods globally optimize UAV traffic. In our
study (see Table 2), we observe that most UAVs do not deviate from
the initial flight path, whereby a small number of UAVs deviate
by several hundreds of meters. This might be seen as undesirable.
Therefore, in our future work, we want to study agent centered
objectives, rather than a global objective, such as auction-based
approaches [2]. We are also considering fixed-wing UAVs with
precise kinematics to better represent the future airspace that might
include passenger drones.

We hope that our work can provide a first realistic assessment
into the research challenges of future UTM-based services and their
management via a UTM system.

7 ACKNOWLEDGEMENTS
This paper is based on results that were obtained as part from the
research conducted by the National Institute of Informatics (NII)
in a project recommissioned by the Japan Aerospace Exploration
Agency (JAXA), which is commissioned by the New Energy and
Industrial Technology Development Organization (NEDO).

REFERENCES
[1] J. Alonso-Mora, T. Naegeli, R. Siegwart, and P. Beardsley. Collision avoidance for

aerial vehicles in multi-agent scenarios. In Autonomous Robots, pages 101–121,
2015.

[2] O. Amir, G. Sharon, and R. Stern. Multi-agent pathfinding as a combinatorial auc-
tion. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence
(AAAI), pages 2003–2009, 2015.

[3] M. Barer, G. Sharon, R. Stern, and A. Felner. Suboptimal variants of the conflict-
based search algorithm for the multi-agent pathfinding problem. In 21st European
Conference on Artificial Intelligence (ECAI), pages 961–962, 2014.

[4] Z. Beck, L. Teacy, A. Rogers, and N. Jennings. Online planning for collaborative
search and rescue by heterogeneous robot teams. In International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pages 1024–1032, 2016.

[5] Z. Bnaya, R. Stern, A. Felner, R. Zivan, and S. Okamoto. Multi-agent path finding
for self interested agents. In Symposium on Combinatorial Search (SOCS), 2013.

[6] E. Boyarski, A. Felner, R. Stern, G. Sharon, O. Betzalel, D. Tolpin, and E. Shimony.
ICBS: the improved conflict-based search algorithm for multi-agent pathfinding.
In Proceedings of the Twenty-Fourth International Joint Conference on Artificial
Intelligence, (IJCAI), pages 740–746, 2015.

[7] L. Cohen, T. Uras, and S. Koenig. Feasibility study: Using highways for bounded-
suboptimal multi-agent path finding. In Symposium on Combinatorial Search
(SOCS), pages 2–8, 2015.

[8] B. de Wilde, A. Mors, and C. Witteveen. Push and rotate: cooperative multi-agent
path planning. In International conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), pages 87–94, 2013.

[9] A. Felner, J. Li, E. Boyarski, H. Ma, L. Cohen, S. Kumar, and S. Koenig. Adding
heuristics to conflict-based search for multi-agent path finding. In International
Conference on Automated Planning and Scheduling, 2018.

[10] M. Goldenberg, A. Felner, , R. Stern, G. Sharon, N. Sturtevant, R. C. Holte, and
J. Schaeffer. Enhanced partial expansion A*. In Journal Of Artificial Intelligence
Research, volume 50, pages 141–187, 2014.

[11] F. Ho, R. Geraldes, A. Goncalves, M. Cavazza, and H. Prendinger. Simulating
shared airspace for service UAVs with conflict resolution. In Proceedings of the
17th International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS), pages 2192–2194, 2018.

[12] W. Hoenig, S. Kiesel, A. Tinka, J. W. Durham, and N. Ayanian. Conflict-based
search with optimal task assignment. In Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pages 757–
765, 2018.

[13] Y. I. Jenie, E.-J. van Kampen, J. Ellerbroek, and J. M. Hoekstra. Selective velocity
obstacle method for deconflicting maneuvers applied to unmanned aerial vehicles.
Journal of Guidance, Control, and Dynamics, 38, 2015.

[14] Y. I. Jenie, E.-J. van Kampen, J. Ellerbroek, and J. M. Hoekstra. Taxonomy of
conflict detection and resolution approaches for unmanned aerial vehicle in
an integrated airspace. IEEE Transactions on Intelligent Transportation Systems,
18(3):558–567, 2016.

[15] P. Kopardekar, K. Bilimoria, and B. Sridhar. Initial concepts for dynamic airspace
configuration. In Proceedings of AIAA Aviation Technology, Integration, and
Operations Conference, 2007.

[16] P. Kopardekar, J. Rios, T. Prevot, M. Johnson, J. Jung, and J. E. Robinson. Unmanned
Aircraft System TrafficManagement (UTM) Concept of operations. In Proceedings
of AIAA Aviation Technology, Integration, and Operations Conference, 2016.

[17] J. K. Kuchar and L. C. Yang. A review of conflict detection and resolutionmodeling
methods. IEEE Transactions on Intelligent Transportation Systems, 1(4):179–189,
2000.

[18] R. Luna and K. E. Bekris. Push and swap: Fast cooperative path-finding with
completeness guarantees. In Proceedings of the 22nd International Joint Conference
on Artificial Intelligence (IJCAI), pages 294–300, 2011.

[19] H. Ma and S. Koenig. Optimal target assignment and path finding for teams of
agents. In International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 1144–1152, 2016.

[20] H. Ma, S. Koenig, N. Ayanian, L. Cohen, W. Hoenig, T. K. S. Kumar, T. Uras, H. Xu,
C. Tovey, and G. Sharon. Overview: Generalizations of multi-agent path finding
to real-world scenarios. In CoRR, 2017.

[21] H. Ma, J. Li, T. K. S. Kumar, and S. Koenig. Lifelong multi-agent path finding for
online pickup and delivery tasks. In International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 837–845, 2017.

[22] J. Pearl and J. Kim. Studies in semi-admissible heuristics. In IEEE Transactions on
Pattern Analysis and Machine Intelligence, pages 392–399, 1982.

[23] S. D. Ramchurn, T. D. Huynh, Y. Ikuno, J. Flann, F. Wu, L. Moreau, N. R. Jennings,
J. E. Fischer, W. Jiang, T. Rodden, E. Simpson, S. Reece, and S. J. Roberts. HAC-ER:
A disaster response system based on human-agent collectives. In International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages
533–541, 2015.

[24] L. Ren, M. Castillo, Effen, H. Yu, E. Johnson, T. Nakamura, Y. Yoon, and
C. A.Ippolito. Small unmanned aircraft system (sUAS) trajectory modeling
in support of UAS traffic management (UTM). In AIAA Aviation Technology,
Integration, and Operations Conference, 2017.

[25] G. Sharon, R. Stern, A. Felner, and N. Sturtevant. Conflict-based search for optimal
multi-agent path finding. In Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence (AAAI), pages 563–569, 2012.

[26] G. Sharon, R. Stern, M. Goldenberg, and A. Felner. The increasing cost tree search
for optimal multi-agent pathfinding. In Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI), pages 662–667, 2011.

[27] D. Silver. Cooperative pathfinding. In AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, pages 117–122, 2005.

[28] T. S. Standley. Finding optimal solutions to cooperative pathfinding problems.
In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence
(AAAI), 2010.

[29] S. Vera, J. A. Cobano, D. Alejo, G. Heredia, and A. Ollero. Optimal conflict resolu-
tion for multiple UAVs using pseudospectral collocation. In 23rd Mediterranean
Conference on Control and Automation, pages 28–35, 2015.

[30] G. Wagner and H. Choset. M*: A complete multirobot path planning algorithm
with performance bounds. In International Conference on Intelligent Robots and
Systems (IROS), pages 3260–3267, 2011.

[31] T. T. Walker, N. R. Sturtevant, and A. Felner. Extended increasing cost tree search
for non-unit cost domains. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence (IJCAI), pages 534–540, 2018.

[32] K.-H. C. Wang and A. Botea. Fast and memory-efficient multi-agent pathfinding.
In Proceedings of the Eighteenth International Conference on Automated Planning
and Scheduling, ICAPS, pages 380–387, 2008.

[33] K.-H. C. Wang and A. Botea. Mapp: a scalable multi-agent path planning algo-
rithm with tractability and completeness guarantees. In Journal Of Artificial
Intelligence Research, volume 42, pages 55–90, 2011.

[34] K. Yakovlev and A. Andreychuk. Resolving spatial-time conflicts in a set of
any-angle or angle-constrained grid paths. In CoRR abs, 2016.

[35] K. Yakovlev and A. Andreychuk. Any-angle pathfinding for multiple agents
based on SIPP algorithm. In International Conference on Automated Planning and
Scheduling, page 586, 2017.

[36] J. Yang, D. Yin, Y. Niu, and L. Zhu. Cooperative conflict detection and resolution
of civil unmanned aerial vehicles in metropolis. In Advances in Mechanical
Engineering, 2016.

[37] J. Yu and S. M. LaValle. Planning optimal paths for multiple robots on graphs. In
IEEE International Conference on Robotics and Automation (ICRA), pages 3612–
3617, 2013.

	Abstract
	1 Introduction
	2 Related works
	3 Problem Formulation
	3.1 UTM Application Context
	3.2 Problem Definition

	4 Extension of CBS and ECBS for UTM Context
	4.1 Background
	4.2 Spatio-Temporal Pruning
	4.3 Extension to Heterogeneous Agents
	4.4 Batch Processing

	5 Experiments
	5.1 Results for Adaptation to Heterogeneous Case
	5.2 Results for Comparing Different Approaches to the Processing of UAS Operations

	6 Conclusions
	7 Acknowledgements
	References

